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Abstract: In this research paper, a hybrid Artificial Neural Network (ANN)-Fuzzy Logic Control (FLC)

tuned Flower Pollination Algorithm (FPA) as a Maximum Power Point Tracker (MPPT) is employed

to amend root mean square error (RMSE) of photovoltaic (PV) modeling. Moreover, Gaussian

membership functions have been considered for fuzzy controller design. This paper interprets the Luo

converter occupied brushless DC motor (BLDC)-directed PV water pump application. Experimental

responses certify the effectiveness of the suggested motor-pump system supporting diverse operating

states. The Luo converter, a newly developed DC-DC converter, has high power density, better

voltage gain transfer and superior output waveform and can track optimal power from PV modules.

For BLDC speed control there is no extra circuitry, and phase current sensors are enforced for this

scheme. The most recent attempt using adaptive neuro-fuzzy inference system (ANFIS)-FPA-operated

BLDC directed PV pump with advanced Luo converter, has not been formerly conferred.

Keywords: ANFIS; artificial neural network; brushless DC motor; FPA; maximum power point

tracking; photovoltaic system; root mean square error

1. Introduction

As conventional energy sources are depleting day by day, the demand forrenewable energy

sources is raising [1–3]. Solar energy sources are promising renewable energy sources for developed

and developing nations due to being free, abundant, and environmentally friendly. Standalone

photovoltaic (PV) systems for water-pumping applications are employed in remote areas [4,5]. Because

of grid absence in remote places, standalone PV water pumping is installed for agricultural and

household applications. Various electric motors have been used to drive the pumping system [6,7].

The DC motor-based pumping system requires maintenance because of commutator and brush

presence. Therefore, DC motors are not frequently used for PV pumping applications. Single-phase

induction motors have also been used for driving low-inertia torque load. Due to a complex control

strategy, the induction motors are not efficient for pumping applications. Therefore, in this research

work, a brushless DC (BLDC) motor has been considered as it has simple design control, low power
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range and requires maintenance-free operation compared to AC motors [8]. Distinct DC-DC converters

were contenders for optimizing PV module generated power with a soft-starting and controlling motor

pump system [9–11]. The contemporary PV system has insubstantial converse competency. Therefore,

Maximum Power Point Trackers (MPPT) is the indispensable constituents required for optimal power

tracking from PV modules. Numerous MPPT methods have been occupied viz. Perturb and Observe

(P&O), Increment Conductance (INC), Fraction Short/Open circuit etc. [12–14]. Under steady-state

operating conditions, particular algorithms provide high outturn. However, these algorithms are found

lacking under adverse weather conditions showing slow convergence velocity and being unable to

achieve a global power point (GPP) for partial shading situations with high power oscillations around

this point. Recently, different intelligent techniques viz. Fuzzy Logic Control (FLC) and Artificial

Neural Network (ANN) have been employed for PV tracking [15]. However, because of complex fuzzy

inference rules and individual sensor requirements, meta-heuristic algorithms have been employed

recently. Genetic algorithms and artificial immune systems (AIS) are meta-heuristic algorithms used

for non-linear stochastic problem solutions [16,17]. These algorithms are capable to resolve non-linear

complication. However, due to a large population size and adaptive immune cell mechanism, the GA

and AIS algorithms, respectively, have low velocity of convergence with large computational period.

However, the implementation of selection, mutation and crossover process is complex with reduced

convergence computational period. Currently, bio-inspired and swarm optimization have been

derived as MPPT techniques. The particle swarm optimization is an evolutionary methodology based

onthe nature of a swarm that can reduce oscillations around GPP [18]. The classical particle swarm

optimization PSO technique has randomness in acceleration value with high regulation parameters

as major problems. Nevertheless, variance of this algorithm is capitulated when randomness is

miniaturized. Surrogating to swarm techniques, current bio-inspired algorithms viz. Firefly Algorithms

(FA), Artificial Bee Colony (ABC), Cuckoo Search etc. are considered as bio-inspired MPPT and have

the advantages of high convergence speed, and less transience with fast tracked performance [19–21].

Nevertheless, because of a lower number of bees, ABC technique has a slow velocity of convergence

under fluctuating weather situations. Because of the deviating movement of a large number of fireflies,

the response of the system becomes slow with the prerequisite high computational period. The Cuckoo

search algorithm provides an efficient solution to non-linear problems. However, because of complex

nest population and inadequate contingency, the Cuckoo technique has slow convergence velocity

under varying environmental conditions. However, the implementation complexities with the tuning

of parameters are amajor hindrance of this finding. The above-mentioned algorithms’ drawbacks can

be handled by applying Flower Pollination (FPA) as an MPPT technique. Ram et al. [22] has discussed

the FPA algorithm for PV MPPT under dynamic operating conditions. This algorithm provides

single-stage global searching, simpler coding, and lower tuned specification requirements with low

cost implementation and has fast response compared to P&O and PSO techniques under dynamic

weather conditions. Included in this work, a novel flower pollination algorithm is contemplated and

associated with the hybrid ANFIS MPPT [23] algorithm. Compared to the FPA algorithm, the merits of

the hybrid ANFIS-Flower Pollination Algorithm (FPA) are simple implementation, high convergence

speed with tune parameters and easier code compilation. Due to presence of parasitic components,

the voltage outcomes and power transform adequacy are restrained in classical switched-power

converters. However, re-lift/triple lift methodology is employed by Luo converter to enhance the

voltage balance and run-over the limiter issue. Equated with Zeta, single-ended primary-inductor

converter (SEPIC) and Cuk converters, the Luo converter has accurate steady and dynamic system

behavior. However, the Cuk converter comprises maximum transients and more settled periods with

average system performance of SEPIC and Zeta compared to the Luo converter, which is applicable for

upraised power utility and electrical drive operation [24,25]. In contrast with different employed power

converters, modern Luo convertershave been considered for this research approach as they deliver

better power/density ratio with economical implementation. The most recent attempt, using adaptive

neuro-fuzzy inference system (ANFIS)-FPA-operated BLDC directed PV pump with advanced Luo
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converter, has not been formerly conferred and examined using dSPACE (DS1104) platform under

changing weather conditions.

2. Complete System Formation

Figure 1 illustrates the Luo converter-employed BLDC-driven PV pumping for a remote location.

A hybrid ANFIS-FPA MPPT controller is operated to produce required pulse for power switched of

Luo converter. This converter delivers better power/density ratio with economical implementation

with interface between the inverter power circuit and solar system. Moreover, electronic commutation

methodology controls voltage source inverter (VSI) employed BLDC motor in which winding current

is adjusted with the help of a decoder in a proper sequence.
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2.1. PV Generator

In this research work, a two-diode PV cell model is considered (Figure 2) because it is a simple and

accurate model compared to the single-diode PV cell. By means of photoelectric effect, the conversion

of solar energy to electricity takes place and output power can be enhanced by connecting numerous

solar cells in shunt or series as required. Both diodes are employed to represent polarization occurrence

with current source exhibiting sun insolation, followed by power loss delivered by resistances

(series/Parallel) used. The prognosis of the overall system is calculated based on accurate equivalent

modeling. The output of the PV current is expressed mathematically as [26]:

IPVo = IPVG − IRSC

(

I′ + 2
)

−

(

VPVo + IPVo × Rseries

RParallel

)

(1)

where,

I′ = exp

(

VPVo + IPVo × Rseries

VThermal

)

+ exp

(

VPVo + IPVo × Rseries

A × VThermal

)

(2)

IPVG = Photo Current

IRSC = Diode reverse saturation current

IPVo = Output PV current

VPVo = PV output voltage

Rseries = Resistance in series
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RParallel = Resistance in parallel

VThermal = PV module thermal voltage

A = Ideality constant of diode
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2.2. Luo Converter Mathematical Modeling

Renewable technology comprises DC-DC topologies for yield of energy harvest with admissible

proficiency. With respect to other DC-DC converters, modern Luo topology depicted in Figure 3

delivers reasonable cost, better power/density ratio and enhanced transformation efficiency.

It comprises the least ripple content with geometric output voltage and surpasses the parasitic

element action. The auxiliary benefit of this topology is switched components, which take ground

as a reference. In addition to that, the input inductor smoothes the ripple present to input source.

Employed capacitors get charged to stated value to accomplish high voltage leveled. Table 1 presents

the designed parameters of Luo Converter used during practical implementation.Energies 2018, 11, x FOR PEER REVIEW  5 of 16 
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Table 1. Luo converter parameter.

S.N Parameters Values

1. Inductor (L) 0.02 mH
2. Capacitor (C and C1) 20 µF, 15 µF
3. Switching Frequency (fpulse) 10 KHz

4. Duty Ratio (dduty) 0.58

Transfer gain voltage is evaluated as [24,25]:

V0

VS
=

2 − dduty

1 − dduty
(3)
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Relation between inductor ripple current and duty cycle is expressed as:

∆ILRipple
=

VS × dduty

fPulse × L
(4)

Capacitors (C=C1) values are determined mathematically as:

C = C1 =

(

1 − dduty

)

× V0

fPulse × RLoad × ∆V0
(5)

where,

dduty = Duty ratio

fPulse = Frequency of Switched pulse

V0 = Output Voltage of Luo Converter

2.3. A Hybrid Proposed FLC-ANN Tuned FPA MPPT

In this proposed scheme, the hybrid ANFIS-FPA MPPT algorithm is realized for maximizing

PV outturn and accurate motion control with PV-pump interface. The FLC data is trained by ANN

which is finally optimized by FPA method, leading to minimum RMSE of FLC and ANN. It comprises

the dominance of both FLC and ANN. The threshold and weight of NN models are optimized

by FPA algorithm to produce minimum RMSE. Figure 4 depicts the complete structure of hybrid

learning in which learning data has been achieved from FLC architecture. The FLC architecture

comprises fuzzification, Inference Rule base and defuzzification as elemental constituents. Real

variables are converted to linguistic parameters using fuzzification. The requisite output is introduced

by the Mamdani fuzzy inference rule deployed by max-min composition. With the help of centroid

method, the defuzzification process converts the linguistic parameters to real values. Parameters

used in FLC and ANN are presented using Table 2. Employed membership values are illustrated

in Figure 5. The FPA method of MPPT is predicted by reproduction of flower of transferring pollen.

This convection is possible through biotic/cross and abiotic/self-pollination. In cross-pollination the

pollens are translated between two unlike flowers. On the other hand, abiotic pollination takes place

between distant species. It is noted that in flower pollination 90% possibility of cross-pollination

and only 10% possibility of self-pollination happen, which is limited in the probability range Rε[1,0].

Table 3 describes ANFIS-FPA parameters used for practical validation of BLDC-driven PV pumping.

The complete process is based on the following 4 rules [22]. The min-max composition (Mamdani’s

rule) is employed to calculate the fuzzy error (E) and change in error (dE/CE) input as [23]:

E(r) =
dPPV(r)

dVPV(r)
(6)

dE = E(r)− E(r − 1) (7)

µP→Q(xy) = min
[

µP(x), µQ(y)
]

, ∀P ∈ X, ∀Q ∈ Y (8)

where,

µP(x) = Membership function of P fuzzy set in X Universe of discourse

µQ(y) = Membership function of Q fuzzy set in Y Universe of discourse

X, Y = x, y variables defined in Universe X and Y, respectively
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Table 2. Parameters used in FLC and ANN.

S.N Parameters Value

1 Total fuzzy rule base fired 25
2 Total number of Epoch 740
3 Types of membership function Gaussian type
4 Total layer (neural network) 5
5 Total neural network training data sets 200
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Table 3. ABC-FPA Parameters.

S.N Parameters Values

1. Switched Probability (Pf) 0.7
2. Scaling Factor 1.25
3. No of Epoch 740
4. RMSE (Obtained) 106 × 10−6

5. Total Rule Based Fired 25
6. ANFIS Obtained (Training Error) 0.6255 × 10−6

Output D is calculated as:

D̂ =
D ∈ S

∫

µD(D)dD

D ∈ S
∫

µD(D)
(9)
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where,

D̂ = Crisp output

µD(D) = Membership function (Aggregated)

D = Fuzzy output

S = Subarea/Universe of discourse

Also, neural-fuzzy network output (D) expressed mathematically as:

D = µA(E)× µB(dE)× WLi (10)

where,

µA(E) = Membership function of fuzzy set A in E universe of discourse

µB(dE) = Membership function of fuzzy set B in dE universe of discourse

WLi = Weight of consequent ith layer

The ANFIS objective function is expressed mathematically as:

RMSE =

[

1

P

P

∑
i=1

(

D − D
)2

]1/2

(11)

where,

P = Total sample

D = Fuzzy output

D = Neural network output

Rule I: Biotic pollination uses levy flight for transferring pollens and is called global pollination

in which the ith pollen solution vector is expressed mathematically using Equation (12). The Levy

flight factor is accountable for pollens transport which improves the methodology of pollination where

scaling factor is responsible to limit step size.

XT+1
i = XT

i + L f × γscaling ×

(

XT
i − Gbest

)

(12)

where,

XT
i = Vector representing solution

T = No. of iteration

Lf = Levy flight factor

γscaling = Scaling factor

Gbest = Global best solution

Rule II: Self-pollination is termed as local pollination and characterized mathematically as:

XT+1
i = XT

i + Pf ×

(

XT
m − XT

n

)

(13)

XT
m and XT

n = two unlike pollen in the species

Pf = Switched probability

Rule III: The performance of the flower is assumed to be identical to the probability of reproduction

which is equivalent to resemblance of two concerned flowers.

Rule IV: Pollination is interchanged between global and local, which depends on switching

probability which lies between 0 and 1.
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The proposed nature-inspired FPA algorithms are responsible for providing proper learning of

the neural network to reduce root mean square error between outcomes of D(Fuzzy output) and D

(Neural network output). Pollen position (duty ratio) is updated using biotic/abiotic pollination for the

next iteration. Under step variation in solar insolation, the corresponding variance in voltage/current

threshold is expressed mathematically as [22]:

dPPV(n)

dVPV(n)
≥ 0.2 (14)

dIPV(n)

IPV(n)
≥ 0.1 (15)

where,

VPV(n) =nth iteration PV voltage

IPV(n) =nth iteration PV current

dVPV(n) = change in PV voltage (nth and (n − 1)th iteration)

2.4. Electronic BLDC Commutator and VSI Switching

Commutation in Permanent Magnet DC Motor (PMDC) is obtained by a commutator and brushes.

Nevertheless, hall sensors are important components employed in BLDC motors which sense the

position of a rotor as the commutation wave. Coils and permanent magnets are employed as stator and

rotor respectively, in which stator’s magnetic field rotates the rotor. Armature of a BLDC motor consists

of a permanent magnet as a substitute of the coil which does not require brushes. Figure 6 demonstrates

BLDC-driven structure with induced EMF and reference current. The electronic commutation process

is used to control the VSI-employed BLDC motor in which winding current is adjusted with the help

of decoder in proper sequence. In this method, symmetrical DC currents are situated in the phase

voltage at 120◦. Based on the motor alignment, the hall sensors produce signals of 60◦ phase difference.

The gating signal for 3-phase VSI generated by transforming hall signals using the decoder is illustrated

in Figure 7. The pulse width modulated pulses are generated by comparing triangular signal with duty

cycle produced through MPPT. Table 4 portrays Hall signals and Switching states of BLDC used with

electronic commutation. The high-frequency PWM pulses and six fundamental signals are operated

with an AND gate, which produces 6 gating pulses for VSI inverter. As the atmospheric conditions

change, the duty cycle is also regulated using MPPT methods which control the VSI and finally the

BLDC motor is adjusted accordingly.

The BLDC motor is analyses mathematically as [27]:







Vap

Vbp

Vcp






=







RT 0 0

0 RT 0

0 0 RT













Iap

Ibp

Icp






+







L1 − M1 0 0

0 L1 − M1 0

0 0 L1 − M1







d
dx







Iap

Ibp

Icp






+







Eba

Ebb

Ebc






(16)

Developed electromagnetic torque (TEM) by BLDC motor can be expressed mathematically as:

TEM =
Eba × Iap + Ebb × Ibp + Ebc × Icp

ωrotor
(17)

where,

Vap, Vbp, Vcp = Phase voltage of a 3-Phase BLDC motor

Iap, Ibp, Icp = Phase Currents

Eba, Ebb, Ebc = Phase Back EMF of BLDC motor

L1 = Each Phase self-inductance

M1 = Two phase’s mutual inductance
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TEM = Developed Electromagnetic torque of BLDC motor

ωRotor = Rotor Speed
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Table 4. Hall signals and Switching states.

Angle
Hall Signals Switching States

H1 H2 H3 S1 S2 S3 S4 S5 S6

0–π/3 1 0 1 0 1 1 0 0 0
π/3–2π/3 0 0 1 0 1 0 0 1 0

2π/3–π 0 1 1 0 0 0 1 1 0
π–4π/3 0 1 0 1 0 0 1 0 0

4π/3–5π/3 1 1 0 1 0 0 0 0 1
5π/3–2π 1 0 0 0 0 1 0 0 1

3. Experimental Results

Performance justification of the BLDC-driven PV pumping-employed Luo converter has been

done through the dSPACE controller. For the purposes of MPPT operation, LA-55/LV-25 as

current/voltage sensors are employed during practical implementation. Figure 8 portrays the

BLDC-driven Luo converter-employed PV-pumping hardware developed in the laboratory. With the

help of an A/D converter, analog pulses are transformed to digital and fed to the dSPACE interface.

Electronic commutation/controlling BLDC has been executed by obtaining hall pulses from the

input/output terminal and then generated pulses are outturned to the inverter.Energies 2018, 11, x FOR PEER REVIEW  10 of 16 
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3.1. Steady-State Performance

The experimental behaviors of the PV module and motor pumping system have been tested

under steady-state condition of irradiance level 1000 W/m2. The proposed MPPT design technique is

working effectively and tracks optimal power from PV module with unity duty cycle at 1000 W/m2

solar insolation level depicted in Figure 9. Practical results obtained for the BLDC-driven Luo

converter-employed PV pumping are described in Figure 9a PVG at 1000 W/m2. (Figure 9b) BLDC

performance at 1000 W/m2. (Figure 9c) generated hall sensor pulses at 1000 W/m2 (Figure 9d) switched

and hall pulses at 1000 W/m2 (Figure 9e) BLDC performance at 300 W/m2 (Figure 9f) switched and hall

pulses at 300 W/m2.The corresponding BLDC motor and torque (1500 rpm) has been demonstrated

in Figure 9d presents the obtained hall sensor pulses with motor torque. The performance of the

BLDC motor-pumping system has been evaluated with 300 W/m2 solar irradiance. The motor torque
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is experimentally obtained, which is sufficient to operate PV water pumping. Based on duty cycle

generation using the MPPT algorithm, the corresponding hall signals have been generated to trigger

six switches of the inverter.
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performance at 1000 W/m2; (c) generated hall sensor pulses at 1000 W/m2; (d) switched and hall

pulses at 1000 W/m2; (e) BLDC performance at 300 W/m2; (f) switched and hall pulses at 300 W/m2.
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3.2. Dynamic Behavior of PV System

The effective practice of recommended PV pumping system was proved under varying sun

insolation levels. In this experiment, solar irradiance level is varied from 300 W/m2 to 1000 W/m2.

According to variation in sun irradiance level, corresponding changes in PV current, DC link voltage,

BLDC stator current and motor torque have been verified (Figure 10) and PV pumping is running

without any interruption. The duty cycle for BLDC-PV pump control is generated with variation in

sun insolation accordingly and outstanding motion control has been comprehended.

Energies 2018, 11, x FOR PEER REVIEW  11 of 16 

 

  
(c) (d) 

 
 

(e) (f) 
Figure 9. BLDC-driven Luo converter-employed PV pumping (a) PVG at 1000 W/m2;(b) BLDC performance at 
1000 W/m2; (c) generated hall sensor pulses at 1000 W/m2; (d) switched and hall pulses at 1000 W/m2; (e) BLDC 
performance at 300 W/m2; (f) switched and hall pulses at 300 W/m2. 

3.2. Dynamic Behavior of PV System 

The effective practice of recommended PV pumping system was proved under varying sun 
insolation levels. In this experiment, solar irradiance level is varied from 300 W/m2 to 1000 W/m2. 
According to variation in sun irradiance level, corresponding changes in PV current, DC link voltage, 
BLDC stator current and motor torque have been verified (Figure 10) and PV pumping is running 
without any interruption. The duty cycle for BLDC-PV pump control is generated with variation in 
sun insolation accordingly and outstanding motion control has been comprehended. 

  
(a) (b) 

Figure 10. BLDC-driven Luo converter (a) increased solar irradiance (b) decreased solar irradiance. Figure 10. BLDC-driven Luo converter (a) increased solar irradiance (b) decreased solar irradiance.

3.3. Behavior at Starting

Practical results found in Figure 11 interpret the safe starting of the BLDC motor under irradiance

level 1000 W/m2 and 300 W/m2. Initially, the duty cycle is kept at 0.5 to run the motor. The sufficient

motor speed is obtained by controlling the starting current, which runs the motor-pump system

successfully. Figure 11 portrays the successful action of BLDC-PV pump at the start by limiting starting

current, which reveals the progression with safe and soft start. The obtained results prove the more

relevant performance conducted for the EMI reduction and soft starting for the experimental test

conducted in [28].
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Table 5 portrays laboratory-adopted BLDC specification for a motion-controlled PV pump.

Figure 12 interprets the existing global nature of the PV system under divergent sun radiation, which

is demonstrated by the dark line. The operation begins with open-circuit voltage (VOPENCkt state) and

reaches a global power point with variable solar irradiance. With application of hybrid ANFIS-FPA

MPPT, steady GPP is attained over a complete day. The performance of the MPPT controllers for two

algorithms ANFIS-FPA and FPA are tested with stepped irradiance input. Figure 13a illustrates that the

proposed ANFIS-FPA imparts accurate and precise PV system outcomes with zero variation around

GPP with fluctuating sun insolation. However, the FPA employed algorithm provides inconsistent

and more oscillation nearby GPP that equates to the ANFIS-FPA algorithm described using Figure 13b.

Under these situations, ANFIS-FPA has high tracked PV power with proportionately less GPP time.

Practical results demonstrate that ANFIS-FPA algorithm contributes rapid and insignificant swinging

differentiated with FPA MPPT illustrated in Figure 13a,b. Figure 14 demonstrates the behavior of

numerous MPPT Viz. FPA, PSO, FLC and P and O control under standard test conditions. Under

standard test conditions, ANFIS-FPA has better PV tracking efficiency compared to ANFIS-PSO, FLC

and P and O methods, as illustrated with Figure 14. A hybrid ANFIS-FPA algorithm has global

power point trajectory with the most tracked power and has zero oscillation throughout, equated

with different controllers. The PV tracked trajectories are also examined under fluctuating weather

situations (Figure 15). Under dynamic weather conditions, the PV tracking trajectory is found to be

more accurate compared to conventional algorithms and has a zero GPP oscillation around this point,

which is explained by Figure 15. Practical results reveal that ANFIS-FPA-optimized MPPT provides

optimal tuning with high performance index.

Table 5. Laboratory adopted BLDC specification.

S.N Parameters Value

1 Resistance of stator 4.16 Ω

2 Inductance value of stator 2.2 mH
3 Speed rating 1500 rpm
4 Number of Pole pair 2
5 Constants(Voltage & torque) 86 VLL/KRPM & 0.85 Nm/Ampere
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4. Conclusions

The Luo converter-based BLDC-driven PV pumping with ANFIS-FPA MPPT has been

demonstrated under varying weather conditions using the dSPACE platform. The Luo converter

has been proposed for desired GPP functions and is responsible for updating the duty ratio in each

iteration using biotic/abiotic pollination. The PV-fed BLDC motor drive pumping system operates

effectively under steady, dynamic states and soft-starting operating conditions, which have been

validated through experimentally obtained responses. The enforcement of the ANFIS-FPA MPPT

controller has been equated with the general P&O and ANFIS-PSO methods, which gives high

tracking efficiency, fast design, and rapid convergence time under varying solar irradiance level.

Performed experimental responses reveal that, compared to different bio-inspired, swarm-intelligence

and classical MPPT techniques reviewed in literature, the ANFIS-FPA has superior power tracking

ability, fast convergence velocity and accurate system response. The designed PV-based BLDC-driven

pumping system provides the following functions viz. Luo converter-based MPPT tracking reducing

switching losses based on electronic commutation/VSI switching, maintenance of the DC-link voltage,

and BLDC motor speed regulation under low sun insolation, validated through practical responses

using the dSPACE board.
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