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�is paper presents a coordinated feedback linearization strategy (CFLS) for DC-based doubly-fed induction generator (DFIG)
system to track the maximum power point. �e stator and rotor of DFIG are connected to DC grid directly by two voltage source
converters. Compared with a traditional DFIG system, the DC-based DFIG system has more system inputs and coupling, which
increases the di�culty of vector control strategy. Accordingly, CFLS is proposed to make DFIG operate at the maximum power
point (MPP), and two aspects are improved: 	rst a single-loop control is adopted to make DFIG operate steady and accurate under
coordinated the control ofRSCandSSC. Second systemcontrol laws are obtainedby the feedback linearization strategy that achieves
DC-basedDFIG system decoupling fully during theMPPT and system control. Simulations are carried out the comparison between
CFLS and conventional vector control (VC), and it shows that the control performance of CFLS is superior.

1. Introduction

In recent years, the technology of wind power generation
has developed rapidly, due to its freely available and renew-
able resource. Variable speed constant frequency doubly
fed induction generator (DFIG) is o
en selected in wind
power generation [1]. Compared with the traditional AC
transmission, the DC transmission is more economical and
stable for the long distance high voltage transmission [2].�e
traditional DFIG stator windings are connected to anAC grid
by transformer, and the rotor windings is connected to the
AC grid by back to back converters.�erefore, the traditional
DFIG is used into the DC grid and additional converter will
be needed, which is bound to increase the cost [3].

Accordingly, the new converter system is adopted for
DFIG in DC grid. A diode-based stator converter interfaces
a DFIG with a DC grid, which has the advantages of low
cost and simple structure [4–7]. But harmonic may reach
from 5.97% to 11.66% [8]. An IGBT-based converters system
consisting of a rotor side converter (RSC) and a stator side
converter (SSC) connects rotor and stator with DC grid,

respectively [9–13]. �is structure has the advantages that it
can reduce the current harmonic e�ectively and regulate the
stator �ux and current �exibly according to the needs of the
system, not limited to AC grid.

However, the above improved structure results in that
the state variables and the system outputs of DFIG with
DC-based converters system are twice that of the traditional
system, which greatly increases the complexity and coupling
of the system and also increases the control di�culty of
the system. �erefore, the traditional vector control (VC),
which is based on approximate linear model, is di�cult to
achieve the global optimal control requirements of the new
system [14]. Reference [9] adopts indirect air gap �ux linkage
orientation strategy to control DFIG in a DC grid, but air gap
�ux linkage is not suitable formeasurement.Model predictive
control for DFIG in a DC grid is adopted by [13], which
requires high precision of system model.

Nowadays, Feedback linearization control (FLC) has been
widely used in power electronics and power systems [15–
21]. It adopts a dual-loop control strategy of FLC and PI
to control DFIG in an AC grid in [22]. �e advantage of
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Figure 1: DFIG with its DC-based converter system in a DC grid.
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Figure 2: �e output mechanical power, optimal power, and rotor speed.
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Figure 3: Control scheme for RSC and SSC.
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Figure 4: Performance response to the ramp-change wind speed.
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Figure 5: �� at the ramp-change wind speed.
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Figure 6: ��� at the ramp-change wind speed.

this method is simple to calculate, but the disadvantage
is that could not achieve full system decoupling. Arti-
cle [23] adopts rotor speed and stator reactive power of
DFIG in an AC grid as state variables for FLC, which
computationally complex and does not select direct sys-
tem parameters to controller which a�ects control accuracy
[24].

�is paper designs a CFLS for DC-based DFIG to achieve
maximum power point tracking (MPPT). �is control strat-
egy employs stator �ux, rotor speed, and rotor current as
system inputs, applies FLC to make up a single-loop control,
and achieves complete decoupling of the system, which
attains coordinated optimal control performance between the
SSC and the RSC. �is proposed control strategy has better
control accuracy and tracking speed than the traditional VC
strategy.

�e paper is organized as follows. In Section 2, the model
of DFIG based on DC grid is introduced. In Section 3,
the maximum wind power is achieved by designing CFLS.

In Section 4, simulation studies are evaluate the control
performance of the proposed control strategy on a DC-
based DFIG system. Finally there is conclusion of this
paper.

2. Modeling of DFIG System

2.1. System Con�guration. DFIG with its DC-based con-
verters system in a DC grid is shown in Figure 1 [12].
�e stator and the rotor of DFIG are connected to a DC
grid through SSC and RSC. �e stator voltage and fre-
quency are completely unrestricted by the power grid. SSC
can adjust stator voltage and frequency to control stator
current and compensate stator reactive power. RSC can
adjust rotor voltage to control rotor �ux. �e du/dt 	lter
inductors are connected to stator and rotor, respectively,
to prevent sharp voltage caused by converters and smooth
currents.
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Figure 7: Performance response to the ramp-change wind speed.

2.2. DFIG Model Description. In this paper, DFIG model
is adopted according to the motor direction in a d-q syn-
chronous frame that can be expressed as [24, 25]
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where �
�, �
�, 	
�, 	
�, �
�, and �
� are the d-q components
of stator voltage, current, and �ux, respectively; ���, ���,	��, 	��, ���, and ��� are the d-q components of rotor
voltage, current, and �ux, respectively; �1, �
, ��, and �� are
synchronous, slip, rotor, and mechanical angular frequency,
respectively; 
 
, 
�, and 
� are the stator, rotor, and mutual
inductance respectively; �� and �
 are the rotor and stator
resistance, respectively; � is electromagnetic torque; � is
generator rotational inertia; and � is the number of pairs of
poles.

3. Control Strategy Description

3.1. MPPT Control Strategy. Usually the maximum kinetic
power captured from the wind by a wind turbine is expressed
as follows [26]:

������ = 12�����������3���� (4)

where � is air density, ��� is radius of wind turbine, ����� is
wind speed, and ����� is maximum power coe�cient.

To capture the maximum wind power, the power coe�-
cient �� should maintain maximum����� at any wind speed
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Figure 8: Performance response to the random-change wind speed.
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within the operating range. Maximum ����� is achieved by
maintaining the tip speed ratio � equal to optimal value ����
and the pitch angle � at a 	xed value.

����� = �� (����)
= 0.5176(116�� − 0.4� − 5) �−21/��

+ 0.0068����
1�� =

1���� + 0.08� − 0.035�3 + 1

(5)

�e tip speed ratio � indicates the state of the wind wheel
under di�erent wind speeds, as

� = ������1����� (6)

When � is equal to ����, the optimal reference �∗� is

�∗� = �1������� ����� (7)

In this paper, the pitch angle is � = 0∘, the optimal tip speed
ratio is ���� = 9.7, and the maximum power coe�cient is����� = 0.4642. ������ is shown in the Figure 2.

3.2. CFLS of DFIG. From (1)-(3), the DFIG model can be
derived in the form

�̇ = � (�) + � (�) �
� = ℎ (�) (8)

where
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�is is a multi-input multioutput (MIMO) system. An
approach to obtain the inputCoutput linearization of the

MIMO system is to di�erentiate the output �� of the system
until the inputs �� appear, assuming that the corresponding
relation degree <� is the smallest integer such that at least one
of the inputs explicitly appears in [27]

�(��)� = 
���ℎ� +
�∑
�=1


��
��−1� ℎ��� (10)

where �(��)� denotes the <�th-order derivative of ��.
In (8), � is 5 dimensional state phase quantity, ��(�) (	 =1, 2, . . . , 5) is 5@ smooth vector 	eld, and ��(�) (	 = 1, 2, 3, 4)

is 4@ smooth vector 	eld. Each output �� has a <�, and by
calculating that is 1, 1, 1 and 2. �e system relation degree
is < = 1 + 1 + 1 + 2 = 5 = ; therefore, the system
has no nontrivial zero dynamics, which can be linearized by
feedback linearization. According to (10) and <� of each output��, the Lie Derivative of ℎwith along � and the Lie Derivative
of 
�ℎ(�) with along �(�) are obtained, and they are
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According to (8) and (11), the system can be described in the
following matrix form:

[�̇1 ̇�2 ̇�3 ̈�4]� = B (�) + C (�) � (12)

where
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�ere is det(C(�)) = 2D�2/'2 ̸= 0, so the inverse matrixC(�)−1 exists. Anew input variable is de	ned for input-output
feedback linearization, as V = [V1 V2 V3 V4].�e conversion
relation between the original input variable and the new input
variable is as follows:

� = C (�)−1 (−B (�) + V) (14)

where [ ̇�1 ̇�2 ̇�3 ̈�4]� = [V1 V2 V3 V4]�. �us, the input-
outputmapping of (8) can be simpli	ed as (14), which realizes
the linear decoupling between the system output and input
variables. According to the MTTP control strategy, and the

output is stabilized at M∗ = [�∗
� �∗
� 	∗�� �∗� ]�, where�∗
� �∗
� 	∗�� �∗� are the MPP reference value of the system.

�rough variable substitution � = M∗ − � the equilibrium
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Figure 10: ��� at the random-change wind speed.

point is moved to the origin, and the input variable can be
redesigned into (14)

[[[[[
[

V1

V2

V3

V4

]]]]]
]

=
[[[[[[[[[
[

�̇∗
� − P�1�1 − P�1 ∫�1@�
�̇∗
� − P�2�2 − P�2 ∫�2@�
̇	∗�� − P�3�3 − P�3 ∫�3@�

�̈∗� − P�4�4 − P�4 ∫�4@�

]]]]]]]]]
]

(15)

̈�� + P�� ̇�� + P���� = 0 (16)

In the controller design we can choice the parameters P�� andP�� (	 = 1, 2, 3, 4) in (15) and (16) to ensure the convergence
and stability of the �� (	 = 1, 2, 3, 4). Now we have derived
that the partial states �1 �2 �3 �4 track the setting reference
points.

�erefore, from the above analysis, the whole control
scheme is shown in Figure 3.

3.3. Reference Points of Controller. �e rotor �ux and stator
current are the control targets; themethod determined in this
paper is that, when a stator-oriented �ux frame is adopted
with its vector direction aligned with the q-axis, from (2), the
stator �ux reference value (�∗
 ) and its d-q components are
given by

�∗
� = 0
�∗
� = �∗
 = −���1 = −1 (17)

where �
 is generator rated voltage amplitude, �1 is syn-
chronous speed. In this paper, �
 = 1.0 pu, �1 = 1.0 pu.
Substituting (17) into (2), the rotor current are obtained:

	∗�� = −�∗

� = −0.34 (18)

3.4. Stability Analysis of State Variable �3. From the error
equation (16), we obtain that the partial states �1 �2 �4 �5
are bounded are converge to the reference point. Next we
will analyze the boundedness of the state �3. From (8), the
equation about �3 is extracted

�̇3 = ��
'
 
�1 −
�
'�2�5 − �� + �2�
' �3 + �
�4 − �

'�
�
+ 1'���

(19)

Substituting (14) into (19), that can be derived as

�̇3 = (3�2�
 − ��2' + 2�
2
 

+ 2�1�1 − (��
 + 1) �4 + V2�2 − �5�12�2 )�3
− ��2�52' + (�

 
 +

�� + �2�
' ) �1�42�2 − �5�42
− ��5�212'�2 + �4V1 + �1V3�2 − 12D�2 V4

(20)

From (15), the states �1 �2 �4 �5 are convergent to�∗
� �∗
� 	∗�� �∗� , and further from (17), (18), and (7) know that

their values are 0 − 1 − 0.34 0.09�����, so that dynamics
(20) can be approximated as

�̇3 = −0.0588�3 + 0.14355����� + 0.0243�̈���� (21)

In this paper, the rated wind speed of wind turbine is����� ��� = 13 m/s, and the variable wind speed range is
focus on 6-14m/s. And the high frequency components in the
wind speed measurement ����� may cause undesired noise;
therefore the measured wind speed is passed through low-
pass 	lter to attenuate its e�ect [28]. It is assumed that the
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Figure 11: �e output control signals response to the random-change wind speed.

magnitude of its derivative |�̈����| is bounded as |�̈����| ≤ 5;
it becomes

�̇3 = −0.0588�3 + S 0.7385 ≤ S ≤ 2.1215 (22)

�e above can be known, the state variable�3 (	��) is bounded,
when � T→ ∞.

4. Simulation Results

In this section, simulation results are carried out in MAT-
LAB/SIMULINK, to verify the coordinated optimal control
performance in a wide range operating conditions. �ere
are two tests performed: case one shows the accuracy of
CFLS compare with the VC under the ramp-change wind
and case two is the system that operates at random-change
wind to show the tracking speed of controller. �e DFIG
system parameters in the following simulation are listed in
Appendix A.

4.1. Ramp-ChangeWind. Figures 4–7 shows the performance
of a DFIG in DC-grid controlled by the VC and CFLS under
the ramp-change wind.�e wind speed condition is depicted
in Figure 4(a).�e wind speed rises from 7m/s to 14 m/s and
then remains 14 m/s. It can be seen from Figure 4(b) that the
optimal reference rotor speed �∗� is well tracked by the CFLS,

while the response of the VCwith larger overshoots is slower.
Figures 4(c), 4(e), and 4(f) show that the tracking references
performance of VC and CFLS and the tracking accuracy of
CFLS are better than that of VC. �e state variable �3(	��) is
shown in Figure 4(d), as it keep stable in both VC and CFLS
under ramp-change wind.

As shown in Figure 5, the CFLS can well capture the
maximum power coe�cient ����� value, but the VC needs
long time to catch �����. It means that the wind turbine
maintains the maximum output power under the proposed
control strategy.

Figure 6 shows the system output DC-voltage ��� that
connected to a stable DC-grid. It can be seen that the DC
voltage remains stable under the control of CFLS and VC,
when the wind ramp changes.

�e rotor currents and voltages (	���� , �����), and the stator
currents and voltages (	
���, �
���) can be seen that the DFIG is
operated at the rated value while under the CFLS in Figure 7.	
��� and �
��� are sine wave with frequency of 60 Hz, and
their amplitudes are 1.0 pu and 0.8 pu. 	���� is sine wave with
amplitude of 0.85 pu. ����� is the RSC output pulse wave, and
its amplitude is 0.7 pu.

4.2. Random-ChangeWind. �e performance of a DC-based
DFIG system controlled by the VC and CFLS under random-
change wind is shown in Figures 8–11. �e wind speed
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condition is depicted in Figure 8(a), which �uctuates between
6.8m/s and 13.4m/s. As shown in Figures 8(b), 8(c), 8(d), and
8(e), the tracking speed and accuracy of CFLS are obviously
better than VC when the wind speed is time-varying. �e
state variable �3(	��) in the CFLS is shown in Figure 8(f), as it
can stay mostly stable under the in�uence of random-change
wind.

When the wind speed changes at any time, the power
coe�cient �� should be kept at the maximum value in order
to extract the maximum wind power. As shown in Figure 9,
the maximum power coe�cient ����� can be well captured
by the CFLS. However, the change of the wind speed will
a�ect the maximum power coe�cient ����� obtained by
the VC strategy. �is means that the CFLS maximum power
tracking performance is much better than VC in a wide range
operating conditions.

System output DC-voltage ��� connected to a stable DC-
grid in the random-change wind speed is shown in Figure 10;
it remains stable under the control of CFLS and VC.

�e output control signals ��� ��� �
� �
� of controllers
are listed in Figure 11. Under the CFLS, because of the
rotor speed �� tracking the optimal reference rotor speed �∗�
that �uctuates follow the random-change wind, so the rotor
side output signals ��� ��� are �uctuated near the working
point. But the stator side output signals �
� �
� less �uctuant
and operate steadily at working point. �is shows that the
proposed control strategy achieves the complete decoupling
of DC-based DFIG system and that the stator side and rotor
side have each performs its own functions, and coordinate the
work.

5. Conclusion

From the simulation results and analysis, the following
conclusions may be drawn out:

(1) A coordinated feedback linearization strategy is
applied to achieve the complete decoupling and linearization
for the DFIG with DC-based converter system.

(2) �is paper gives up the traditional indirect dual-loop
control method of power and current and selects stator �ux
(�
� �
�), rotor speed (��), and rotor current (	��) as state
variables. A direct single-loop coordinated control method
is implemented, which achieves the division cooperation
between stator side and rotor side, and enhances the robust-
ness of the system.

(3) �e maximum power point tracking performance of
the proposed control strategy is better than traditional VC.
�e CFLS kept power coe�cient (��) at its maximum, to
make DFIG operate at the maximum power point (MPP).

In further study, this experiment will be extended to
verify the e�ectiveness of the system in case of failure.

Appendix

A.

A.1. DFIG Parameters [29]. ����� = 1.5 SW, ���� = 60 XY,
V
 ��� = 1.0 Z�, �
 = 1.0 Z�, �
 = 0.00706 Z�,�� = 0.005 Z�, 
 �
 = 0.171 Z�, 
�
 = 2.9 Z�, � = 3.

A.2. Wind Turbine Parameters. � = 1.225 P�/[3, ��� =40 [2, P1 = 3.711 , X = 5.04 \, ����� ��� = 13 [/].
A.3. VC Parameters [11]. RSC:

Outer-loop: P�� = 4, P�� = 0.1;
Inner-loop: P�� = 0.496, P�� = 0.0128.

SSC:

Outer-loop:P	� = 4, P	� = 0.1;
Inner-loop: P
� = 0.496, P
� = 0.0128.
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