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Abstract

In quantum physics the direct observables are probabilities of events. We ask, how ob-

served probabilities must be combined to achieve what we call maximum predictive power.

According to this concept the accuracy of a prediction must only depend on the number of

runs whose data serve as input for the prediction. We transform each probability to an asso-

ciated variable whose uncertainty interval depends only on the amount of data and strictly

decreases with it. We find that for a probability which is a function of two other probabilities

maximum predictive power is achieved when linearly summing their associated variables and

transforming back to a probability. This recovers the quantum mechanical superposition
principle.

1 Introduction

Quantum theory is not yet understood as well as e.g. classical mechanics or special relativity.

Classical mechanics coincides well with our intuition and so is rarely questioned. Special relativity

runs counter to our immediate insight, but can easily be derived by assuming constancy of the

speed of light for every observer. And that assumption may be made plausible by epistemological

arguments [1]. Quantum theory on the other hand demands two premises. First, it wants us to

give up determinism for the sake of a probabilistic view. In fact, this seems unavoidable in a

fundamental theory of prediction, because any communicable observation can be decomposed into

a finite number of bits. So predictions therefrom always have limited accuracy, and probability

enters naturally. More disturbing is the second premise: Quantum theory wants us to give up

the sum rule of probabilities by requiring interference instead. However, the sum rule is deeply

ingrained in our thought, because of its roots in counting and the definition of sets: Define sets

with no common elements, then define the set which joins them all. The number of elements in

this latter set is just the sum of the elements of the individual sets. When deriving the notion of

probability from the relative frequency of events we are thus immediately led to the sum rule, such

that any other rule appears inconceivable. And this may be the reason why we have difficulties

accepting the quantum theoretical rule, where probabilities are summed by calculating the square

of the sum of the complex square roots of the probabilities. In this situation two views are

possible. We may either consider the quantum theoretical rule as a peculiarity of nature. Or,

we may conjecture that the quantum theoretical rule has something to do with how we organize

data from observations into quantities that are physically meaningful to us. We want to adopt the
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latter position. Therefore we seek to establish a grasp of the quantum theoretical rule with the

general idea in mind that, given the probabilistic paradigm, there may exist an optimal strategy

of prediction, quite independent of traditional physical concepts, but resting on what one can

deduce from a given amount of information. We will formulate elements of such a strategy with

the aim of achieving maximum predictive power.

2 Representing Knowledge from Probabilistic Data

Any investigative endeavour rests upon one natural assumption: More data from observations

will lead to better knowledge of the situation at hand. Let us see whether this holds in quantum

experiments. The data are relative frequencies of events. From these we deduce probabilities

from which in turn we derive the magnitudes of physical quantities. As an example take an

experiment with two detectors, where a click is registered in either the one or the other. (We

exclude simultaneous clicks for the moment.) Here, only one probability is measurable, e.g. the

probablity Pl of a click in detector 1. After N runs we have nl counts in detector 1 and n2 counts

in detector 2, with nl + n2 = N. The probability pa can thus be estimated as

nl

p, = (1)

with the uncertainty interval [2]

Apl = IPl(1NPl)

From pl the physical quantity X(Px) is derived. Its uncertainty interval is

(2)

(3)

The accuracy of X is given by the inverse of A X. With the above assumption we expect it to

increase with each additional run, because we get additional data. Therefore, for any N, we

expect

Ax(N + 1) < Ax(N ). (4)

However, this inequality cannot be true for an arbitrary function X(Pl). In general A X will

fluctuate and only decrease on the average with increasing N. To see this take a theory A which

relates physical quantity and probability by XA = Pl. In an experiment of N = 100 runs and

nl = 90 we get: AXa(100 ) = .030. By taking into account the data from one additional run, where

detector 2 happened to click, we have AXA(101 ) = .031. The differences may appear marginal,

but nevertheless the accuracy of our estimate for XA has decreased although we incorporated

additional data. So our original assumption does not hold. This is worrisome as it implies that

a prediction based on a measurement of XA may be more accurate if the data of the last run are

not included. Let us contrast this to theory B, which connects physical quantity and probability

by XB = Pl s. With N and nl as before we have XB(100) = .106. Incorporation of the data from

the additional run leads to XB(101) = .104. Now we obviously don't question the value of the last

run, as the accuracy of our estimate has increased.
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The lesson to be learnt from the two examples is that the specific functional dependence of

a physical quantity on the probability (or several probabilities if it is derived from a variety of

experiments) determines whether our knowledge about the physical quantity will increase with

additional experimental data, and that this also applies to the accuracy of our predictions. This

raises the question what quantities we should be interested in to make sure that we get to know

them more accurately by doing more experiments. From a statistical point of view the answer is

straightforward: choose variables whose uncertainty interval strictly decreases, and simply define

them as physical. And from a physical point of view? Coming from classical physics we may

have a problem, as concepts like mass, distance, angular momentum, energy, etc. are suggested

as candidates for physical quantities. But when coming from the phenomenology of quantum

physics, where all we ever get from nature is random clicks and count rates, a definition of physical

quantities according to statistical criteria may seem more reasonable, simply because there is no

other guideline as to which random variables should be considered physical.

Pursuing this line of thought we want to express experimental results by random variables

whose uncertainty interval strictly decreases with more data. When using them in predictions,

which are also expressed by variables with this property, predictions should automatically become

more accurate with more data input. Now a few trials will show that there are many functions

X(Pl) whose uncertainty interval decreases with increasing N (eq.(3)). We want to choose the one

with maximum predictive power. The meaning of this term becomes clear when realizing that in

general A X depends on N and on nl (via Pl). These two numbers have a very different status.

The number of runs, N, is controlled by the experimenter, while the number of clicks, nl, is solely

due to nature. Maximum predictive power then means to eliminate nature's influence on A X. For

then we can know A X even before having done any experimental runs, simply upon deciding how

many we will do. From eq.(3) we thus get

which results in

x/-NAx = }0_pXl X/Zpl(1-pl)=constant, (5)

X = C arcsin(2pl - 1)+ D (6)

where C and D are real constants. The inverse is

1 + sin(X-_ -)
= 2 ' (7)

showing that the probability is periodic in X. Aside from the linear transformations provided by

C and D any other smooth function o(X) in real or complex spaces will also fulfill requirement

(5) when equally sized intervals in X correspond to equal line lengths along the curve _(X). One

part.icular curve is

_(X) = sin(2)e'X, (8) 0

which is a circle in the complex plane with center at i/2. It exhibits the property -- pl known

from quantum theory. But note, that for instance the function fl = sin(x/2) does not fulfill the

requirement that the accuracy only depend on N. Therefore the complex phase factor in eq.(8)

is necessary [3][4].
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3 Distinguishability

We have now found a unique transformation from a probability to another class of variables

exemplified by X in eq.(6). These unique variables always become better known with additional

data. But can they be considered physical? We should first clarify what a physical variable is. A

physical variable can assume different numerical values, where each value should not only imply

a different physical situation, but should most of all lead to a different measurement result in a

properly designed experiment. Within the probabilistic paradigm two measurement results are

different when their uncertainty intervals don't overlap. This can be used to define a variable which

counts the principally distinguishable results of the measurement of a probability. Comparison

of that variable to our quantity X should tell us how much X must change from a given value

before this can be noticed in an experiment. Following Wootters and Wheeler [5][6] the variable

0 counting the statistically distinguishable results at detector 1 in N runs of our above example

is given by

O(nl) = Jo Ap(p) = v/_ arcsin(2pl -- 1) + _ pl=-_ (9)

where Ap is defined as in eq.(2). When dividing 0 by N U2 it becomes identical to X when in

eq.(6) we set C = 1 and D = _. This illuminates the meaning of X: It is a continuous variable

associated with a probability, with the particular property that anywhere in its domain an interval

of fixed width corresponds to an equal number of measurement results distinguishable in a given

number of runs. With Occam's dictum of not introducing more entities than are necessary for

the description of the subject matter under investigation, X would be the choice for representing

physical situations and can rightly be called physical.

4 A Simple Prediction: The Superposition Principle

Now we return to our aim of finding a strategy for maximum predictive power. We want to see

whether the unique class of variables represented by X indicates a way beyond representing data

and perhaps affords special predictions. For the sake of concreteness we think of the double slit

experiment. A particle can reach the detector by two different routes. We measure the probabilty

that it hits the detector via the left route, PL, by blocking the right slit. In L runs we get rtL

counts. In the measurement of the probability with only the right path available, pR, we get nR

counts in R runs. From these data we want to make a prediction about the probability ptot, when

both paths are open. Therefore we make the hypotheses that Ptot is a function ofpR and PL. What

can we say about the function Ptot(PL,PR) when we demand maximum predictive power from it?

This question is answered by reformulating the problem in terms of the associated variables XL,

XR and Xtot, which we derive according to eq.(6) by setting C = 1 and D - _ The function"_.

Xtot(XL, XR) must be such that a prediction for Xtot has an uncertainty interval _X_tot, which only

depends on the number of runs, L and R, and decreases with both of them. (We use the symbol

_Xtot to indicate that it is not derived from a measurement of Ptot, but from other measurements

from which we want to predict Prof.) In this way we can predict the accuracy of Xtot by only

deciding the number of runs, L and R. No actual measurements need to have been done. Because
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of

 lox,o,l l X,o,= Vl OxL Z
maximum predictive power is achieved when

0_ 2
oXtot 1 (10)

+ OxR -R

_Xtot

= constant,
j=L,R. (11)

We want to have a real function Xtot(XL, Xn), and therefore we get

Xtot = aXL + bxn + c, (12)

where a, b and c are real constants. Furthermore we must have c = 0 and the magnitude of both

a and b equal to 1, when we wish to have Xtot equivalent to XR or to XL when either the one or

the other path is blocked. So there is an ambiguity of sign with a and b. When rewriting this in

terms of the probability we get

Ptot = sin2(XL -4- XR
2 )" (13)

This does not look like the sum rule of probability theory. Only for PL + Pn = 1 does it coincide

with it. We may therefore conclude that the sum rule of probability theory does not afford maxi-

mum predictive power. But neither does eq.(13) look like the quantum mechanical superposition

principle. However, this should not be surprising because our input were just two real valued

numbers, XL and Xn, from which we demanded to derive another real valued number. A general

phase as is provided in quantum theory could thus not be incorporated. But let us see what we

get with complex representatives of the associated variables of probabilities. We take a(X) from

eq.(8). Again we define in an equivalent manner aL, an and atot. From PL we have for instance

(from (8) and (7) with C = 1 and D = _)

(14)

and

0o,r 1AaL = OpL ApL- 2_" (15)

If we postulate a relationship atot(an, ai) according to maximum predictive power we expect

the predicted uncertainty interval _Satot to be independent of aL and an and to decrease with

increasing number of runs, L and R. Analogous to (11) we must have

yielding

OOQot =

vOaj constant, j = L, R, (16)

atot = SaL + tar + u, (17)

where s, t, and u are complex constants. Now u must vanish and s and t must both be unimodular

when ptot is to be equivalent to either PL or PR when the one or the other route is blocked. We
then obtain

Ptot = I, ,o,1 --Is,_L + t, ,l = = PL + PR + 2_cos(¢), (18)
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where ¢ is an arbitrary phase factor containing the phases of s and t. This is exactly the quantun

mechanical superposition principle. What is striking is that with a theory of maximum predictive

power we can obtain the general form of this principle, but cannot at all predict ptot even when

we have measured PL and pR, because of the unknown phase ¢. So we are lead to postulate ¢ as

a new measurable quantity in this experiment.

5 Conclusion

We have tried to obtain insight into the quantum mechanical superposition principle and set

out with the idea that it might follow from a most natural assumption of experimental science:

more data should provide a more accurate representation of the matter under investigation and

afford more accurate predictions. From this we defined the concept of maximum predictive power

which demands laws to be such that the uncertainty of a prediction is solely dependent on the

number of experiments on which the prediction is based, and not on the specific outcomes of these

experiments. Applying this to the observation of two probabilities and to possible predictions

about a third probability therefrom, we arrived at the quantum mechanical superposition principle.

Our result suggests nature's law to be such that from more observations more accurate predictions

must be derivable.
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