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Maximum principle and bang-bang property of time optimal controls

for Schrödinger type systems

Jérôme Lohéac∗ Marius Tucsnak∗†

April 16, 2013

Abstract

We consider the time optimal control problem, with a point target, for a class of infinite di-
mensional systems with a dynamics governed by an abstract Schrödinger type equation. The main
results establish a Pontryagyn type maximum principle and give sufficient conditions for the bang-
bang property of optimal controls. The results are then applied to some systems governed by partial
differential equations. The paper ends by a discussion of possible extensions and by stating some
open problems.

Key words. time optimal control, Pontryagyn’s maximum principle, Bang-Bang property, Schrödinger
equation

1 Introduction

Time optimal control is a classical problem for linear finite dimensional systems. For theses systems,
among the interesting properties of time optimal controls, the facts that they satisfy Pontryagyn’s
maximum principle and that they are bang-bang, are well-known (see Bellman, Glicksberg and Gross
[4]). The first extensions of these results to infinite dimensional linear systems have been given in
Fattorini’s paper [7]. The progress made in this field has been successively reported in the books of
Lions [20] and of Fattorini [9]. In particular, the bang-bang property of time optimal controls has been
quite rapidly established for invertible input operators. In the case of systems governed by PDE’s,
this means, roughly speaking, that the control is active in the entire spatial domain where the PDE is
considered. The situation in which the control is active only in a part of the considered domain (or of
its boundary) has been considered only recently. The results in this direction are limited as far as we
know, to systems governed by linear parabolic equations (see, for instance, Mizel and Seidman [23],
Wang [30], Phung and Wang [25], Kunisch and Wang [17]). The methodology used in most of the
above mentioned works, based on a special L∞ null-controllability property of the considered system,
does not seem applicable to systems which are time reversible, as those governed by wave, Schrödinger
or Euler Bernoulli equations. The first aim of this paper is to show that for some of these systems,
provided that they are exactly controllable in arbitrarily small time, Pontryagyn’s maximum principle
holds in a standard form. Moreover, assuming that the system is approximatively controllable with
controls active only for times t in a set of positive measure, we prove that time optimal controls have
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the bang-bang property and they are unique. We provide several examples of applications of these
results to systems governed by the Schrödinger or the Euler-Bernoulli plate equations.

Let us recall, in order to give the precise statement of our main result, some classical notation and
definitions from control theory.

We first introduce some notation. Let X and Y be Hilbert spaces. If P ∈ L(X; Y ) then the
null-space and the range of P are the subspaces of X and Y respectively defined by

Ker P = {x ∈ X , Px = 0}, Ran P = {Px , x ∈ X} .

Throughout this paper, X and U are complex Hilbert spaces, identified with their duals. The inner
product and the norm in X are denoted by 〈·, ·〉X and ‖ · ‖X , respectively. We denote by T = (Tt)t>0

a strongly continuous semigroup on X generated by an operator A : D(A) → X.
Let B ∈ L(U, X) be a control operator, let z0 ∈ X and let u ∈ L2([0,∞), U). We consider the

infinite dimensional system described by the equation

ż(t) = Az(t) + Bu(t), z(0) = z0 . (1.1)

With the above notation, the solution z of (1.1) is defined by

z(t) = Ttz0 + Φtu
(
t > 0

)
, (1.2)

where Φt ∈ L(L2([0, t], U);X) is given by

Φtu =

∫ t

0
Tt−σBu(σ)dσ (u ∈ L2([0,∞), U)) . (1.3)

The maps (Φt) are called input to state maps.
Recall the following classical definitions (see, for instance, Tucsnak and Weiss [29, Sections 4.2 and

11.1]):

Definition 1.1.

• The pair (A, B) is said approximatively controllable in time τ if Ran Φτ is dense in X.

• The pair (A, B) is exactly controllable in time τ if Ran Φτ = X.

We also need the following (less classical) definition.

Definition 1.2. Let e ⊂ [0, τ ] be a set of positive Lebesgue measure. The pair (A, B) is said ap-
proximatively controllable in time τ from e if the range of the map Φτ,e ∈ L(L2([0, τ ], U), X) defined
by

Φτ,eu =

∫

e

Tτ−σBu(σ) dσ (u ∈ L2([0, τ ], U))

is dense in X.

We are now in position to give a precise definition of time optimal controls.

Definition 1.3. Let z0, z1 ∈ X with z0 6= z1. A function u∗ ∈ L∞([0,∞), U) is said a time optimal
control for the pair (A, B), associated to the initial state z0 and the final state z1, if there exists τ∗ > 0
such that

1. z1 = Tτ∗z0 + Φτ∗u∗ and ‖u∗‖L∞([0,τ∗],U) 6 1;
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2. If τ > 0 is such that there exists u ∈ L∞ ([0, τ ], U) with

z1 = Tτz0 + Φτu, ‖u‖L∞([0,τ ],U) 6 1, (1.4)

then τ > τ∗.

Our first main result provides a class of infinite dimensional system for which the maximum
principle from the linear finite dimensional case can be extended in its classical form.

Theorem 1.4. Suppose that (A, B) is exactly controllable in any time. Moreover, assume that z0, z1 ∈
X, z0 6= z1 are such that there exist τ > 0 and u ∈ L∞([0, τ ], U) such that (1.4) holds. Then there
exists a time optimal control u∗ steering z0 to z1 in time τ∗ = τ∗(z0, z1). Moreover, there exists η ∈ X,
η 6= 0, such that

Re 〈B∗
T
∗
τ∗−tη, u∗(t)〉U = max

v∈U,
‖v‖U61

Re 〈B∗
T
∗
τ∗−tη, v〉U (t ∈ (0, τ∗) a.e.) . (1.5)

Remark 1.5. In the case of a skew-adjoint generator A, as shown in Proposition 2.2 below, the second
assumption in the above theorem (i.e., the existence of τ > 0 and of u ∈ L∞([0, τ ], U) such that (1.4)
holds) follows from the first one, i.e., from the exact controllability of the pair (A, B).

Remark 1.6. Assuming again that X is infinite dimensional and A is skew-adjoint, the assumptions
of Theorem 1.4 cannot hold with a finite dimensional input space U . Indeed, the facts that (A, B) is
exactly controllable and B ∈ L(U, X) imply that A − BB∗ generates an exponentially stable semi-
group(see, for instance, [21]). On the other hand, assuming by absurd that U is finite dimensional
implies that A−BB∗ is a compact perturbation of A, which generates an unitary group. Or according
to Theorem 3 in Guo, Guo and Zhang [10], this fact cannot hold under our assumptions, so we have
obtained a contradiction.

Our second main result shows that, under an extra assumption, the time optimal controls in the
above theorem are bang-bang.

Corollary 1.7. With the notation and the assumptions in Theorem 1.4, assume moreover that the
pair (A, B) is approximatively controllable in time τ∗ from any e ⊂ [0, τ∗] of positive measure. Then
the time optimal control u∗ is bang-bang, in the sense that

‖u∗(t)‖U = 1 (t ∈ [0, τ∗] a.e.) . (1.6)

Moreover, the time optimal control is unique.

In some situations in finite dimensional theory or for parabolic PDE’s, one can take U = R. The
constraint on the control considered above simply writes

|u(t)| 6 1 (t > 0 a.e.)

The bang-bang character of the time optimal control u∗ simply means that u∗(t) ∈ {−1, 1} for almost
every t > 0. In this situation an important role in computing time optimal controls is played by the
switching locus which is formed by those instants t ∈ [0, τ∗] when u∗ is discontinuous (see, for instance,
Lee and Markus [19, Section 2.5]). The problem of switching locus does not, at least as stated above,
make sense in the general framework considered in Theorem 1.4. Indeed, according to Remark 1.6,
our assumptions exclude the case of an finite dimensional input space U .

A situation in which the exact controllability holds with a finite dimensional input space and
for which the question of switching locus make sense is described in Section 5 where we consider an
example of system with unbounded input operator with a larger class of constraints on the control.
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2 Some background on infinite dimensional systems

In this section we gather, for easy reference, some results on infinite dimensional systems with bounded
input and observation operators.

We continue to use the notation introduced in the previous section. In particular, X, U and Y are
Hilbert spaces, A : D(A) → X is the generator of a C0 semigroup T in X, B ∈ L(U, X) is a control
operator and C ∈ L(X, Y ) is an observation operator.

The concept of exact controllability in Definition 1.1 says that we can reach any final state by
means of controls in L2([0, τ ], U). The usual statement of time optimal control problems considers
controls in L∞([0, τ ], U). This difference is not essential in the case of bounded input operators as
shown in the result below.

Proposition 2.1. Let τ > 0 and let

Rτ =

∫ τ

0
TtBB∗

T
∗
t dt ∈ L(X) ,

be the controllability Gramian in time τ for the pair (A, B). Assume that the pair (A, B) is exactly
controllable in time τ . Then Rτ is invertible and, for every z0, z1 ∈ X, the control u ∈ C([0, τ ], X)
defined by

u(t) = B∗
T
∗
τ−tR

−1
τ (z1 − Tτz0) (t ∈ [0, τ ]) , (2.1)

steers the solution z of (1.1) to z1 in time τ .

For a proof of this result we refer, for instance, to Zabczyk [31, Theorem 2.3, p. 210].

In the case of skew-adjoint generators, the above result implies a global controllability property
under constraints. More precisely, we have the following result, which is essentially contained in
Phung, Wang, Zhang [26]. However, for the sake of completeness, we give a relatively short proof
below.

Proposition 2.2. With the notation and hypothesis in Proposition 2.1, assume that A is skew-adjoint.
Then for every z0, z1 ∈ X there exists T > 0 and

u ∈ L∞([0, T ], U), ‖u‖L∞([0,T ],U) 6 1 ,

such that the solution z of (1.1) satisfies the condition z(T ) = z1.

In order to prove the above proposition, we need the following result. We give here a direct proof.
We refer to [26] for a duality based proof of a more general result.

Lemma 2.3. With the notation and assumptions in Proposition 2.2, take M > 0. Then there exists
T > 0, depending only on M and on the operators A and B, such that for every z0 ∈ X with ‖z0‖ 6 M

one can find

u ∈ L∞([0, T ], U), ‖u‖L∞([0,T ],U) 6 1 , (2.2)

such that the solution z of (1.1) satisfies the condition z(T ) = 0.

Proof. Using the fact that T is in this case an unitary group, together with (2.1), it follows that any
point in the closed ball of center Tτz0 and of radius ‖B∗‖−1

L(X,U)‖R
−1
τ ‖−1

L(X) can be reached by a control

such that ‖u‖L∞([0,τ ],U) 6 1. This means, in particular, that the conclusion of the lemma holds (with
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T = τ) for M 6 ‖B∗‖−1
L(X,U)‖R

−1
τ ‖−1

L(X). Therefore, without loss of generality, we can assume that

M > ‖B∗‖−1
L(X,U)‖R

−1
τ ‖−1

L(X) and it suffices to prove the result for z0 ∈ X with

‖B∗‖−1
L(X,U)‖R

−1
τ ‖−1

L(X) < ‖z0‖ 6 M.

For such z0 we define α1 ∈ X by

α1 =

(
1 −

‖B∗‖−1
L(X,U)‖R

−1
τ ‖−1

L(X)

2‖z0‖

)
Tτz0 . (2.3)

Since we clearly have ‖α1−Tτz0‖ 6 ‖B∗‖−1
L(X,U)‖R

−1
τ ‖−1

L(X), it follows that there exists u ∈ L∞([0, τ ], U),

‖u(t)‖ 6 1 a.e. such that the solution z of (1.1) satisfies the condition z(τ) = α1. Moreover, from
(2.3) it easily follows that

‖α1‖X 6 M −
1

2
‖B∗‖−1

L(X,U)‖R
−1
τ ‖−1

L(X) .

Let n be the largest integer such that

n

2
‖B∗‖−1

L(X,U)‖R
−1
τ ‖−1

L(X) 6 M .

Iterating the above argument on the intervals [kτ, (k + 1)τ ], k ∈ N, it follows that there exists

αn ∈ X, ‖αn‖X 6 M −
n

2
‖B∗‖−1

L(X,U)‖R
−1
τ ‖−1

L(X) < ‖B∗‖−1
L(X,U)‖R

−1
τ ‖−1

L(X) ,

and
u ∈ L∞([0, nτ ], U), ‖u‖L∞([0,nτ ],U) 6 1 ,

such that z(nτ) = αn. Using again the fact that T is in this case an unitary group, together with
(2.1) it follows that we can steer αn to zero in time τ by means of controls with ‖u(t)‖ 6 1. Since n

depends only on M and the operators A and B, we have thus shown that the conclusion of the lemma
holds with T = (n + 1)τ .

We next give, following [26], the proof of Proposition 2.2.

Proof of Proposition 2.2. Applying this result with M = 2(‖z0‖X + ‖z1‖X) it follows that there exists
T > 0 (depending only on M) and u satisfying (2.2) such that the solution ξ of

ξ̇(t) = Aξ(t) + Bu(t), ξ(0) = z0 − T
−1
T z1 ,

satisfies ξ(T ) = 0. Setting
z(t) = ξ(t) + TtT

−1
T z1 (t ∈ [0, T ]) ,

it is easily seen that we have

ż(t) = Az(t) + Bu(t) (t ∈ [0, T ]) ,

together with z(0) = z0 and z(T ) = z1, which concludes the proof.

Definition 2.4. The L∞ reachable space at time t of the pair (A, B) is defined as

R∞
t = Φt

(
L∞([0, t], U)

)
. (2.4)
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By a slight variation of the argument in [9, Lemma 2.1.1] one can check that, for each t > 0, when
endowed with the norm

‖x‖R∞
t

= inf
{
‖u‖L∞([0,t],U) , Φtu = x

}
(x ∈ X) , (2.5)

R∞
t is a Banach space.

Proposition 2.5. Let 0 6 σ 6 t. Then we have the continuous inclusions

R∞
σ ⊂ R∞

t ⊂ X .

Proof. It is clear that the above inclusions hold. To show that they are continuous, we take x ∈ R∞
t ,

so that there exists u ∈ L∞([0, t], U) with x = Φtu. Since Φt ∈ L(L2([0, t], U), X) it follows that
there exists M > 0 such that ‖x‖X 6 M‖u‖L∞([0,t],U) for every u ∈ L∞([0, t], U) satisfying Φtu = x.
Consequently, we have

‖x‖X 6 M inf
u∈L∞([0,t],U)

Φtu=x

‖u‖L∞([0,t],U) = M‖x‖R∞
t

,

so that the inclusion R∞
t ⊂ X is continuous.

To prove the continuity of the inclusion R∞
σ ⊂ R∞

t , it suffices to note that if x ∈ R∞
σ and

u ∈ L∞([0, σ], U) are such that x = Φσu then ũ ∈ L∞([0, t], U) defined for almost every s ∈ [0, t] by
ũ(s) = χ(t−σ,t)(s)u(s − t + σ), where χ(t−σ,t) denotes the characteristic function of the set (t − σ, t),
has the property x = Φtũ and ‖ũ‖L∞([0,t],U) = ‖u‖L∞([0,σ],U).

From Proposition 2.1 it follows that if (A, B) is exactly controllable in some time τ > 0 then
R∞

τ = X. This fact, combined with Proposition 2.5 and with the closed graph theorem clearly imply
the result below.

Corollary 2.6. Assume that (A, B) is exactly controllable in some time τ > 0. Then the norms
‖ · ‖R∞

τ
and ‖ · ‖X are equivalent.

Remark 2.7. If R∞
t = X, the control cost Ct in time t is defined by

Ct = sup
x 6=0

‖x‖R∞
t

‖x‖X

(t > 0) . (2.6)

It is easily seen that the map t 7→ Ct is non-increasing.

We also need some concepts of observability theory. Let Y be another Hilbert space and let
C ∈ L(X, Y ) be an observation operator for the semigroup T. For τ > 0 we consider the initial state
to output map Ψτ defined by

(Ψτz0)(t) = CTtz0 (z0 ∈ X, t ∈ [0, τ ]) .

The operators Ψτ are briefly called output maps corresponding to the pair (A, C). If e ⊂ [0, τ ] is a set
of positive measure, we consider the restriction of the above defined initial state to output map to a
set of positive measure e ⊂ [0, τ ], which is defined by

Ψτ,e ∈ L(X, L2([0, τ ], Y )), Ψτ,e = χeΨτ ,

where χe is the characteristic function of e.

6



We denote by Ψd
τ (respectively Ψd

τ,e) the output maps corresponding (respectively the restriction
to a set of positive measure e ⊂ [0, τ ] of these output maps) corresponding to the pair (A∗, B∗), i.e.,
we set

(Ψd
τz0)(t) = B∗

T
∗
t z0 (z0 ∈ X, t ∈ [0, τ ]) , (2.7)

Ψd
τ,e ∈ L(X, L2([0, τ ], U)), Ψd

τ,e = χeΨ
d
τ .

There are several generalizations of the concept of observability to infinite dimensional linear
systems. In this paper we need only the following one.

Definition 2.8. Let τ > 0 and e ⊂ [0, τ ] be a set of positive measure. The pair (A, C) is said
approximately observable from e if Ker Ψτ,e = {0}.

We have the following duality result, which is a simple consequence of the corresponding result for
e = [0, τ ] (see, for instance [22, Proposition 2.4]).

Proposition 2.9. Let τ > 0, e ⊂ [0, τ ] a set of positive measure and let

e′ = {τ − t | t ∈ e}.

Then
Φτ,e = (Ψd

τ,e′)
∗ Rτ , (2.8)

where (Ψd
τ,e′)

∗ ∈ L(L∞([0, τ ];U), X) is the dual operator of Ψd
τ,e′ and Rτ is the reflection operator on

L2([0, τ ];U), defined by Rτu(t) = u(τ − t) (Notice that Rτ is self-adjoint and also unitary.).
In particular, the pair (A, B) is approximatively controllable in time τ from a set of positive measure

e ⊂ [0, τ ] if and only if
Ker Ψd

τ,e′ = {0}.

Remark 2.10. If e = [0, τ ] then formula (2.8) simply writes

Φτ = (Ψd
τ )

∗ Rτ . (2.9)

3 Main results

In this section we extend the maximum principle, well-known for finite dimensional systems, to a
class of infinite dimensional systems. To this aim, we continue to use all the notation in Section 2.
In particular we denote by X the state space (assumed to be Hilbert), A stands for the semigroup
generator and the control operator (assumed to be bounded) is still denoted by B. We also continue
to use the notation R∞

t , introduced in (2.4), for the space which is reachable by L∞ input functions.
Moreover, for every t > 0, the closed unit ball in R∞

t is:

B∞
t (1) =

{
Φtu , u ∈ L∞([0, t], U) , ‖u‖L∞([0,t],U) 6 1

}
.

Before deriving the maximum principle, we note the following existence result for time optimal
controls. We skip the proof of this result since it can be obtained by simple adaptation of the proofs
in [9, Lemma 3.1.1 and Theorem 3.1.2].

Proposition 3.1. With the above notation and assumptions, assume moreover that z0, z1 ∈ X, z0 6= z1

are such that there exists t > 0 with
z1 − Ttz0 ∈ B∞

t (1) .

Then there exists τ∗(z0, z1) > 0 such that

τ∗(z0, z1) = min{t > 0 | z1 − Ttz0 ∈ B∞
t (1)} > 0 (3.1)

7



In other words τ∗ is the minimal time in which z0 can be steered to z1 by controls satisfying
‖u(t)‖ 6 1 for almost every t. Therefore, any u∗ ∈ L∞([0, τ∗], U) satisfying

z1 − Tτ∗z0 = Φτ∗u∗ , (3.2)

is called a time optimal control for the pair (A, B).
Let now give the proof of Theorem 1.4.

Proof of Theorem 1.4. The existence of a time optimal control u∗ is given by Proposition 3.1. To
prove the maximum principle, we first show, in the spirit of [9], that z1 − Tτ∗z0 ∈ ∂B∞

τ∗(1), the
boundary being taken in the sense of the topology of R∞

τ∗ and hence, according to Corollary 2.6, in
the sense of the topology of X. Assume, by contradiction, that z1 − Tτ∗z0 6∈ ∂B∞

τ∗(1). This implies
the existence of r ∈ (0, 1) such that 1

r
(z1 − Tτ∗z0) ∈ B∞

τ∗(1), i.e., the existence of u1 ∈ L∞([0, τ∗], U),
‖u1‖L∞([0,τ∗],U) 6 r < 1 such that z1 − Tτ∗z0 = Φτ∗u1. Let t < τ∗. Then

z1 − Ttz0 = Tτ∗z0 − Ttz0 + Φτ∗u1 =

= Φtu1 + Tτ∗z0 − Ttz0 +

∫ t

0
(Tτ∗−σ − Tt−σ)Bu1(σ) dσ +

∫ τ∗

t

Tτ∗−σBu1(σ) dσ .

Let

ϕ(t, τ∗) = Tτ∗z0 − Ttz0 +

∫ t

0
(Tτ∗−σ − Tt−σ)Bu1(σ) dσ +

∫ τ∗

t

Tτ∗−σBu1(σ) dσ (t ∈ (0, τ∗) ,

so that
z1 − Ttz0 = Φtu1 + ϕ(t, τ∗) . (3.3)

It is easily seen that lim
t→τ∗

ϕ(t, τ∗) = 0 in X. From Remark 2.7, we have that ‖ϕ(t, τ∗)‖R∞
t

6

Ct‖ϕ(t, τ∗)‖X , with t 7→ Ct a non-increasing function. This means that for t close enough to τ∗

there exists a control u2 ∈ L∞([0, t], U) with

‖u2‖L∞([0,t],U) 6 1 − r, Φtu2 = ϕ(t, τ∗) .

The above formula and (3.3) imply, denoting u = u1 + u2, that

z1 − Ttz0 = Φtu, ‖u‖L∞([0,t],U) 6 1 ,

which contradicts the fact that τ∗ is minimal in the sense of (3.1). We have thus shown that indeed
z1 − Tτ∗z0 ∈ ∂B∞

τ∗(1). This implies, using a consequence of the Hahn-Banach theorem (see, for
instance, [2, Theorem 1.13]) and the fact that the interior of B∞

τ∗(1) is non empty, that there exists
η ∈ X, η 6= 0 such that

Re〈η, z1 − Tτ∗z0〉X > Re〈η, x〉X (x ∈ B∞
τ∗(1)) .

The above formula, combined to the definition (3.2) of the time optimal control implies that

Re

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, u∗(t)〉U dt > Re

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, v(t)〉U dt (‖v‖L∞([0,τ∗],U) 6 1) . (3.4)

Using Lemma 2.2.1 of [9] and the fact that t 7→ B∗
T
∗
τ∗−tη is U -weakly measurable, we obtain that

sup
v∈L∞([0,τ∗],U),
‖v‖L∞([0,τ∗],U)61

Re

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, v(t)〉U dt =

∫ τ∗

0
‖B∗

T
∗
τ∗−tη‖U dt ,
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and hence we have

Re

∫ τ∗

0
〈B∗

T
∗
τ∗−tη, u∗(t)〉U dt =

∫ τ∗

0
‖B∗

T
∗
τ∗−tη‖U dt .

On the other hand, we clearly have

Re 〈B∗
T
∗
τ∗−tη, u∗(t)〉U 6 ‖B∗

T
∗
τ∗−tη‖U (t ∈ [0, τ∗] a.e.) .

The last estimate and (3.4) imply that

Re 〈B∗
T
∗
τ∗−tη, u∗(t)〉U = ‖B∗

T
∗
τ∗−tη‖U (t ∈ [0, τ∗] a.e.) ,

which implies (1.5).

We conclude this Section by giving the proof of Corollary 1.7.

Proof of Corollary 1.7. We know from Theorem 1.4 that there exists η ∈ X, η 6= 0, such that we have
(1.5). On the other hand, the fact that the pair (A, B) is approximatively controllable in time τ∗

from any e ⊂ [0, τ∗] of positive measure, together with Proposition 2.9, ensures that B∗
T
∗
τ∗−tη 6= 0 for

almost every t ∈ [0, τ∗]. Therefore, (1.5) implies that the time optimal control is given by

u∗(t) =
1

‖B∗T∗
τ∗−tη‖U

B∗
T
∗
τ∗−tη (t ∈ [0, τ∗] a.e.) ,

which clearly implies (1.6).

The uniqueness of u∗ can be proved in a standard way, using the strict convexity of U and the bang-
bang property of every time optimal control. Indeed, assume by contradiction that there exist two
time optimal controls u∗

1 6= u∗
2. Then for u∗ = 1

2(u∗
1+u∗

2) ∈ L∞([0, τ∗], U), we have ‖u∗‖L∞([0,τ∗],U) 6 1,
‖u∗(t)‖U < 1 for t in some set of positive measure and Φτ∗u∗ = z1 −Tτ∗z0. Thus u∗ is a time optimal
control which does not satisfy the bang-bang property, so that we have obtained a contradiction.

4 Application to the Schrödinger equation

We first give two preliminary lemmas for which, although the results seem quite simple, we did not
find the exact statement in the literature.

The proof of these lemmas are obtained using a uniqueness theorem of Privalov (see, for instance,
[32, Vol. II, ch. XIV, Theorem 1.9]), which says that if a holomorphic function in the unit disk has
non tangential limits equal to zero on a set of positive measure of the unit circle then the function is
equal to zero in the whole disk. The idea of using such lemmas for unique continuation of PDE’s is
borrowed from Reifler and Vogt [27] (see also Hante, Sigalotti and Tucsnak [11]).

Lemma 4.1. Let I ⊂ Z, (λn)n∈I be a sequence of real numbers bounded from below (or from above),
let e ⊂ R a bounded set of positive measure and let (an)n∈I ∈ ℓ1(I, C). Assume that

∑

n∈I

aneiλnt = 0 (t ∈ e) . (4.1)

Then ∑

n∈I

aneiλnt = 0 (t ∈ R) . (4.2)
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Proof. Let
C+ = {s ∈ C | Im s > 0}, C− = {s ∈ C | Im s < 0} ,

and ϕ be o conformal map of the unit disk D of C to C+ (respectively on C−). Let g : D → C be
defined by

g(z) =
∑

n∈I

aneiλnϕ(z) (z ∈ D).

Since (an) ∈ ℓ1 we have that g is holomorphic in D and continuous up to the boundary. Moreover, by
(4.1) we have

g(ϕ−1(t)) = 0 (t ∈ e).

Using Privalov’s uniqueness Theorem, [32, Vol. II, ch. XIV, Theorem 1.9] it follows that g vanishes
in D, so that we obtain (4.2).

The assumption (an) ∈ ℓ1 in the above result is not appropriate some applications developed in
Section 5, where the natural condition is (an) ∈ ℓ2. The result below shows that the conclusion of
Lemma 4.1 still holds, provided that we do more assumptions on the sequence (λn).

Lemma 4.2. Let (an) ∈ ℓ2(N, C) and let (λn) be such that λn ∈ N for every n ∈ N and λn 6= λm for
m 6= n. Moreover, suppose that ∑

n∈N

aneiλnt = 0 (t ∈ e) , (4.3)

where e ⊂ [0, 2π] is a set of positive measure. Then an = 0 for every n ∈ N.

Proof. Let D be the open unit disk in C and let g : D → C be defined by

g(z) =
∑

n∈I

anzλn (z ∈ D) .

Since (an) ∈ ℓ2 we have that g is holomorphic in D. Moreover, by Abel’s theorem (see, for instance
[28, p.229]), relation (4.3) implies that

lim
z→eit

Ang

g(z) = 0 (t ∈ e),

where the notation Ang means that z → eit non tangentially. Using Privalov uniqueness Theorem it
follows that g = 0 on D and hence the result.

From Lemma 4.1, we can derive the following result:

Lemma 4.3. Let X and Y be Hilbert spaces, let A0 be a self-adjoint and diagonalisable operator on
X with domain D(A0) and let C ∈ L(X, Y ). Moreover, assume that that the spectrum σ(A0) of A0

satisfies σ(A0) ⊂ [m,∞) for some m ∈ R. Let z0 ∈ X and z ∈ C0(R, X), y ∈ C0(R, Y ) satisfying

ż(t) = iA0z(t) (t ∈ R), z(0) = z0 , (4.4)

y(t) = Cz(t) (t ∈ R) . (4.5)

If
y(t) = 0 (t ∈ e) ,

for some set e ⊂ R of positive measure, then

y(t) = 0 (t ∈ R) .
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Proof. Since A0 is assumed to be self-adjoint and diagonalisable, there exists an orthonormal basis of
eigenvectors (ϕn)n∈I of A0, with I ⊂ Z and a corresponding sequence of eigenvalues (λn)n∈I , where
(λn)n∈I is a sequence with values in [m,∞). The solution z of (4.4) writes

z(t) =
∑

n∈I

aneiλntϕn (t ∈ R) ,

where an = 〈z0, ϕn〉X for every n ∈ I. Hence y in (4.5) writes

y(t) =
∑

n∈I

aneiλntCϕn (t ∈ R) .

For any v ∈ Y , we have

〈y(t), v〉Y =
∑

n∈I

aneiλnt〈Cϕn, v〉Y =
∑

n∈I

aneiλnt〈C∗v, ϕn〉X (t ∈ R) .

Since (an)n ∈ ℓ2(I, C) and (〈C∗v, ϕn〉X)n ∈ ℓ2(I, C), it follows that (an〈C
∗v, ϕn〉X)n ∈ ℓ1(I, C).

Moreover, we know that 〈y(t), v〉Y = 0 for every t ∈ e and that the sequence (λn)n∈I is bounded from
bellow, hence, using Lemma 4.1, we deduce that 〈y(t), v〉Y = 0 for every t ∈ R. Since this property is
true for every v ∈ Y , we conclude that y(t) = 0 for every t ∈ R.

We next study a Schrödinger equation with distributed internal control. More precisely, we consider
the system

ż(x, t) = −i∆z(x, t) + ia(x)z(x, t) + u(x, t)χO(x) (x ∈ Ω, t > 0) , (4.6)

z(x, t) = 0 (x ∈ ∂Ω, t > 0) , (4.7)

where Ω ⊂ R
n is an open set, O is an open subset of Ω, χO is the characteristic function of O and the

control u is such that ‖u(·, t)‖L2(O) 6 1 for almost every t > 0.

Proposition 4.4. Assume that one of the assumptions

1. The open set Ω is bounded, ∂Ω is of class C3, a ∈ L∞(Ω, R) and O satisfies the geometric optics
condition, as described in Bardos, Lebeau and Rauch [3];

2. The open set Ω is a rectangular domain, a is a real constant and O is an arbitrary nonempty
open subset of Ω,

holds. Then for every z0, z1 ∈ L2(Ω), with z0 6= z1, there exists a unique time optimal control u∗

steering the solution of (4.6)-(4.7) from z0 (at t = 0) to z1 (at t = τ∗ = τ∗(z0, z1)). Moreover, there
exists η ∈ L2(Ω), η 6= 0, such that

Re

∫

O
w(x, t)u∗(x, t) dx = max

v∈L2(O),
‖v‖

L2(O)61

Re

∫

O
w(x, t)v(x) dx (t ∈ [0, τ∗] a.e.) , (4.8)

where w is the solution of the adjoint problem

ẇ(x, t) = −i∆w(x, t) + ia(x)w(x, t) (x ∈ Ω, t > 0) , (4.9)

w(x, t) = 0 (x ∈ ∂Ω, t > 0) , (4.10)

w(x, τ∗) = η(x) (x ∈ Ω) . (4.11)

Finally, u∗ has the bang-bang property

‖u∗(·, t)‖L2(O) = 1 (t ∈ [0, τ∗] a.e.) . (4.12)
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Proof. Note first that it suffices to consider the case a > 0. Indeed, the case of an arbitrary
a ∈ L∞(Ω, R) can be reduced to the case a(x) > 0 by an obvious change of variables.

The result is a consequence of Theorem 1.4 and Corollary 1.7, with a particular choice of spaces
and operators. More precisely let X = L2(Ω), U = L2(O) and let the operator A be defined by

D(A) = H2(Ω) ∩ H1
0 (Ω) , (4.13)

Aϕ = −i∆ϕ + ia(x)ϕ (ϕ ∈ D(A)) . (4.14)

The operator A is clearly skew-adjoint and diagonalisable, with eigenvalues of positive imaginary part.
The control operator B ∈ L(U, X) is defined by

Bu = χOu (u ∈ L2(O)) .

We note that, with the above defined spaces of operators, the system (4.6), (4.7) writes in the form
ż = Az + Bu. Since A is skew-adjoint, in order to apply Theorem 1.4, it suffices to check that the
pair (A, B) is exactly controllable in any time τ > 0 (see also Remark 1.5). Under the first assump-
tion of the present proposition, this fact follows from Burq [5], combined with classical arguments
(see, for instance, Remark 7.4.4 and Theorem 6.7.2 from [29]). Under the second assumption in the
present proposition, the exact controllability in any time of (A, B) has been proved in Jaffard [12] and
Komornik [13]. Consequently, we can apply Theorem 1.4, so that we obtain (4.8).

In order to apply Corollary 1.7, we have to check that (A∗, B∗) is approximatively observable from
any set of positive measure e ⊂ [0, τ∗]. In PDE terms this means that we have to show that if a
solution of (4.9) is such that

w(x, t) = 0 (x ∈ O, t ∈ e) ,

then

w(x, t) = 0 (x ∈ Ω, t ∈ R) .

To accomplish this goal, we note that, due to the fact that a ∈ L∞(Ω), the operator A in (4.13),
(4.14) writes A = iA0 with A0 self-adjoint, diagonalisable and with a spectrum bounded from below.
Hence, we can apply Lemma 4.3 to obtain that w(x, t) = 0 for x ∈ O and t ∈ R. Consequently, using
again the exact controllability in any time of the pair (A, B) (thus the exact observability in any time
of (A∗, B∗)), it follows that w(x, t) = 0 for x ∈ Ω and t ∈ R. Finally, we can apply Corollary 1.7 to
obtain (4.12).

5 An extension to unbounded control operators

Some of the results in the previous section can be generalized to the case of unbounded control
operators. We give in this section an extension of the maximum principle in Theorem 1.4 and of its
consequences to a class of possibly unbounded control operators. The main difficulty in this case arises
when we want to apply these results to given systems. More precisely, unlike in Proposition 2.1, the
fact that there exists controls which are L2 with respect to time and which steer any initial state to any
other state in time τ , no longer implies that the same action can be accomplished by controls which
are in L∞ with respect to the time variable. Therefore the existence of such controls has to be imposed
as an explicit assumption in the statement of the extension to the unbounded case of Theorem 1.4.
The main difficulty arises when we want to provide examples of systems with unbounded control
operator satisfying this assumption. We provide such an example by constructing an abstract infinite
dimensional system with lacunary spectrum in the sense of Zygmund.
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To state the main results in this section we need some notation and some background on unbounded
control and observation operators (we refer to [29] for a detailed presentation of these concepts and of
related results). As previously, X, U and Y are complex Hilbert spaces, identified with their duals and
T = (Tt)t>0 is a strongly continuous semigroup on X generated by an operator A : D(A) → X with
resolvent set ̺(A). The notation X1 stands for D(A) equipped with the norm ‖z‖1 := ‖(βI − A)z‖,
where β ∈ ̺(A) is fixed, while X−1 is the completion of X with respect to the norm ‖z‖−1 :=
‖(βI − A)−1z‖. We use the notation A and T also for the extensions of the original generator to X

and of the original semigroup to X−1. It is known that X−1 is the dual of D(A∗) with respect to the
pivot space X. The semigroup T can be extended to X−1, and then its generator is an extension of
A, defined on X.

In this case the input to state map Φt if a linear operator from L2([0, t], U) to X−1. As previously,
we define for every t > 0 and u ∈ L2([0, t], U),

Φtu =

∫ t

0
Tt−σBu(t) dσ .

We say that the control operator B is admissible for the semigroup T if there exist t > 0 such that
Ran Φt ⊂ X. Notice that if B is an admissible control operator then for every t > 0, we have
Φt ∈ L

(
L2([0, t], U), X

)
(see for instance [29, Proposition 4.2.2]).

In all this section, we assume that B is an admissible control operator for T. In this case, as in the
case of bounded control operators, we say that (A, B) is exactly controllable in time τ if Ran Φτ = X.
Moreover, we denote

R∞
t = Φt

(
L∞([0, t], U)

)
. (5.1)

Remark 5.1. We have seen in Proposition 2.1 that for bounded control operators, the fact that (A, B)
is exactly controllable in time τ implies that R∞

τ = X. This property does no longer hold, in general, for
unbounded control operators (it suffices to consider the example of a 1D wave equation with Dirichlet
boundary control).

We also need the concepts of admissible observation operators and of observability for such op-
erators. Let Y be another Hilbert space and let C ∈ L(X1, Y ) be an observation operator for the
semigroup T. For τ > 0 and e ⊂ [0, τ ] of positive measure we define the initial state to output maps
Ψτ and Ψτ,e as in Section 2 with the difference that these maps are now defined on a smaller space,
i.e., we have

Ψτ , Ψτ,e ∈ L(X1, L
2([0, τ ], Y )) .

We consider in this section only admissible observation operators which means operators for which Ψτ

(thus also Ψτ,e) can be extended to a map in L(X, L2([0, τ ], Y )). We say, as in Definition 2.8, that the
pair (A, C) is approximately observable from e (a set of positive measure of [0, τ ]) if Ker Ψτ,e = {0}.
Moreover, we still denote by Ψd

τ (respectively Ψd
τ,e) the output maps corresponding (respectively the

restriction to a set of positive measure e ⊂ [0, τ ] of these output maps) corresponding to the pair
(A∗, B∗). Note that B is an admissible control operator for T iff B∗ is an admissible observation
operator for T

∗ (see, for, instance [29, Theorem 4.4.3]). Moreover, the duality result given in Propo-
sition 2.9 still holds (in fact the already quoted result from [22, Proposition 2.4] covers this more
general case). Let us also note that since, as mentioned in Remark 5.1, the property R∞

τ = X, no
longer follows from the exact controllability in time τ of (A, B), the above mentioned duality results
cannot be applied to characterize by duality the property R∞

τ = X. However, we have the following
result, which goes back to [30] (see also [22, Proposition 2.5]).
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Proposition 5.2. With the above notation, let τ > 0. Then the following two properties are equivalent

1. There exists Kτ > 0 such that

Kτ

∥∥∥Ψd
τϕ
∥∥∥

L1([0,τ ],Y )
> ‖T∗

τϕ‖X (ϕ ∈ X). (5.2)

2. R∞
τ = X.

Using the concepts and results recalled above, it is not difficult to adapt the proofs of Theorem 1.4
and of Corollary 1.7 to show that the following assertions hold.

Theorem 5.3. Suppose that B ∈ L(U, X−1) is an admissible control operator for the semigroup T

and that R∞
t = X for every t > 0. Moreover, we consider z0, z1 ∈ X, z0 6= z1 such that there exist

τ > 0 and u ∈ L∞([0, τ ], U) such that (1.4) holds. Then there exists a time optimal control u∗ steering
z0 to z1 in time τ∗ = τ∗(z0, z1). Moreover, there exists η ∈ X, η 6= 0, such that

Re 〈(Ψd
τ∗η)(τ∗ − t), u∗(t)〉U = max

v∈U, ‖v‖U61
Re 〈(Ψd

τη)(τ∗ − t), v〉U (t ∈ (0, τ∗) a.e.) . (5.3)

Corollary 5.4. Under the assumptions of Theorem 5.3, assume that the pair (A, B) is approximatively
controllable from any e ⊂ [0, T ] of positive measure. Then the time optimal control u∗ is bang-bang,
in the sense that

‖u∗(t)‖U = 1 (t ∈ [0, τ∗] a.e.) .

Moreover, the time optimal control is unique.

Remark 5.5. Assuming that U = C, the result in Theorem 5.3 can be easily adapted to other
constraints on the control. An example which will be useful in the remaining part of this section is
given by constraints of the form

u(t) ∈ P (t > 0), (5.4)

where P is the unit square
P = {z ∈ C | |Re z| 6 1, |Im z| 6 1}.

In this case, the maximum principle (5.3) writes

Re
[
(Ψd

τ∗η)(τ∗ − t) u∗(t)
]

= max
v∈P

Re
[
(Ψd

τη)(τ∗ − t) v
]

(t ∈ (0, τ∗) a.e.) . (5.5)

We found no example of application of Theorem 5.3 and of Corollary 5.4 coming from PDE’s with
boundary control. The main difficulty in exhibiting such an example consists in checking the condition
R∞

t = X for every t > 0. To show that the domain of application of the last two results is not reduced
to bounded control operators we constructed, in an abstract functional analytic setting, a system (of
Schrödinger type) with unbounded control operator for which all the assumptions in Theorem 5.3
hold.

Take X = ℓ2(N, C) and let A : D(A) → X be defined by

(Az)k = iλkzk, D(A) =
{

z ∈ ℓ2(N, C)
∣∣ ∑

k∈N

λ2
k|zk|

2 < ∞
}

, (5.6)

where (λk)k∈N is a sequence of positive numbers.
In other words, A is a diagonal operator with the sequence of eigenvectors (ek) which is the standard
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basis of ℓ2(N, C) and with the corresponding sequence of eigenvalues (iλk). This fact implies that the
adjoint A∗ of A is given by

(A∗z)k = −iλkzk, D(A∗) = D(A) . (5.7)

Moreover, the semigroups T (respectively T
∗) generated by A (respectively by A∗) is given by

(Ttz)k = eiλktzk , (T∗
t z)k = e−iλktzk , (t > 0, z ∈ ℓ2(N, C), k ∈ N) . (5.8)

It is not difficult to check that in this case the space X−1 defined at the beginning of this section
becomes

X−1 =
{

z = (zk)
∣∣ ∑

k∈N

|zk|
2

λ2
k

< ∞
}

. (5.9)

Moreover, the norms on X1 and X−1 are respectively defined by

‖z‖2
1 =

∑

k∈N

λ2
k|zk|

2 (z ∈ X1) ,

‖z‖2
−1 =

∑

k∈N

|zk|
2

λ2
k

(z ∈ X−1) .

Proposition 5.6. Let X = ℓ2(N, C) and let A be the operator defined by (5.6). Assume that the
sequence of positive numbers (λk) in (5.6) is increasing and that

lim
k→∞

(λk+1 − λk) = ∞ . (5.10)

Let B be the linear operator associating to each v ∈ C the sequence Bv defined by

(Bv)k = v (v ∈ C, k ∈ N) . (5.11)

Then B ∈ L(C, X−1) and B is an admissible control operator for the semigroup T generated by A.
Moreover, the pair (A, B) is exactly controllable in any time τ > 0.

Proof. From (5.10) and the fact that (λk) is increasing it follows that there exists γ > 0 such that

|λk+1 − λk| > γ (k ∈ N).

Consequently, we have ∑

k∈N

1

λ2
k

< ∞ ,

which, according to the definition of the norm in X−1, clearly implies that B ∈ L(U, X−1). Using
(5.11) it is easily checked that the operator B∗ ∈ L(X1, C) satisfies

B∗ek = 1 (k ∈ N) . (5.12)

The last formula and (5.10) imply, using the facts that (ek) is an orthonormal basis of ℓ2(N, C)
formed of eigenvectors of A∗, with corresponding eigenvalues (iλk), together with the results in [29,
Proposition 8.1.3] that B∗ is is an admissible observation operator for T

∗ and that the pair (A∗, B∗) is
exactly observable in any time τ > 0. From a classical duality result (see, for instance, Theorem 4.4.3
in [29]) it follows that indeed B is an admissible control operator for T. To show that (A, B) is

15



exactly controllable in any time τ > 0 we first note that condition (5.10) implies, by using a version
of Ingham’s inequality (see, for instance, [14, Theorem 4.6]) that for every τ > 0 there exists Kτ > 0
such that

K2
τ

∫ τ

0
|
∑

k∈N

zke
−iλkt|2 dt >

∑

k∈N

|zk|
2 (z ∈ ℓ2(N, C)). (5.13)

Using (5.8) and (5.12) the last formula writes

K2
τ

∫ τ

0
|B∗

T
∗
t z|

2 dt > ‖z‖2 (z ∈ X1), (5.14)

i.e., that (A∗B∗) is exactly observable in any time τ > 0. Using again duality (see, for instance
Theorem 11.2.1 in [29]), it follows that indeed (A, B) is exactly controllable in any time τ > 0.

We are unable to prove or to disapprove that the assumptions in Proposition 5.6 imply the property
R∞

t = X, which would be needed in order to apply Theorem 5.3. However, by assuming that the
sequence (λk) is lacunary in the sense of Zygmund, which is a gap condition much stronger then (5.10),
this property holds true.

Proposition 5.7. Let X, A and B be the spaces and operators considered in Proposition 5.6. Moreover
suppose that, besides the assumptions in Proposition 5.6, the sequence (λk) is formed of integers and
it is lacunary in the sense of Zygmund, i.e. that

sup
r∈Z∗

card{(k, l) ∈ N
2 , λk − λl = r} < +∞ . (5.15)

Then the corresponding space R∞
t , defined in (5.1), coincides with X for every t > 0.

Proof. Denote

f(s) =
∑

k∈N

e−iλkszk (s > 0, z ∈ ℓ2(N, C)) .

The estimates which follow being uniform with respect to z ∈ ℓ2(N, C), we do not write explicitly the
dependence of f on z. Without loss of generality, we can assume that t ∈ (0, 2π). Let is first note
that inequality (5.13) in the proof of Proposition 5.6 can be rephrased to assert, for each t > 0, the
existence of a positive constant Kt such that

K2
t

∫ t

0
|f(s)|2 ds >

∑

k∈N

|zk|
2. (5.16)

Let

Et = {s ∈ [0, t] , |f(s)| >
2

t
‖f‖L1[0,t]} (t ∈ (0, 2π)) .

We clearly have that the Lebesgue measure µ(Et) of Et satisfies the condition µ(Et) 6
t
2 for every

t ∈ (0, 2π)). Hence

µ([0, 2π] \ Et) >
t

2
. (5.17)

At this point we use the key estimate of the proof, which consists in using a quantitative version of a
theorem of Zygmund (see Nazarov [24, Theorem III]). According to this result, for every ε > 0 there
exits C(ε) > 0 such that

‖f‖2
L2[0,2π] 6 exp

(
C(ε)

µ([0, 2π] \ Et)2+ε

)∫

[0,2π]\Et

|f(s)|2 ds .
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Using the fact that |f(s)| 6
2
t
‖f‖L1[0,t] for s ∈ [0, 2π] \Et, together with (5.17), we can conclude that

‖f‖2
L2[0,t] 6 exp

(
C̃(ε)

t2+ε

)
8π

t2
‖f‖2

L1[0,t] (t ∈ (0, 2π)).

By combining the last estimate and (5.16) it follows that for every t > 0 there exists K̃t > 0 such that

K̃t

∫ τ

0
|f(s)|ds >

(
∑

k∈N

|zk|
2

) 1
2

. (5.18)

By combining the second formula in (5.8) with the fact that

B∗z =
∑

k∈N

zk (z ∈ X1) ,

it follows that (5.18) can be rephrased to say that for every t > 0 there exists K̃t > 0 with

‖z‖X 6 K̃t

∫ t

0
|B∗

T
∗
σz|dσ (t > 0, z ∈ X1) .

The last estimate implies, by using Proposition 5.2, that indeed R∞
t = X for every t > 0.

We are now in a position to study the time optimal control problem associated to the system
considered in Proposition 5.7.

Proposition 5.8. Let X, A and B be the spaces and operators considered in Proposition 5.7. Then
for every z0, z1 ∈ X, z0 6= z1 there exists a unique time optimal control u∗, steering z0 to z1 in time
τ∗ = τ∗(z0, z1), with ‖u∗‖L∞([0,τ∗],C) 6 1. Moreover, there exists η ∈ X \ {0} such that

u∗(t) =

∑
n∈N

exp
(
iλn(τ∗ − t)

)
ηn∣∣∑

n∈N
exp
(
iλn(τ∗ − t)

)
ηn

∣∣ (t ∈ [0, τ∗] a.e.) . (5.19)

Proof. Proposition 5.7 ensure that R∞
t = X for every t > 0. On the other hand, it is not diffi-

cult to check that the proof of Proposition 2.2 adapts to the case of an unbounded admissible B

(the main change would occur in the proof of Lemma 2.3, where ‖B∗‖L(X,U) should be replaced

by ‖Ψd
τ‖L(X,L2([0,τ ],U))). These facts imply for every z0, z1 ∈ X there exists T > 0 and a control

u ∈ L∞([0, T ], C) such that the solution z of (1.1) satisfies the condition z(T ) = z1. Consequently,
the pair (A, B) satisfies all the assumptions in Theorem 5.3. Applying this result it follows that there
exist a minimal time τ∗ = τ∗(z0, z1) > 0 and a corresponding control

u∗ ∈ L∞([0, τ∗], U), ‖u∗‖L∞([0,τ∗],U) 6 1 ,

such that z1 = Tτ∗z0 + Φ∗
τu

∗. In addition, there exists η ∈ X \ {0} such that

Re
[
(Ψd

τ∗η)(τ∗ − t) u∗(t)
]

= max
v∈C

|v|61

Re
[
(Ψd

τ∗η)(τ∗ − t) v
]

(t ∈ [0, τ∗] a.e.) . (5.20)

On the other hand, from the second formula in (5.8) and (5.12) we see that

(Ψd
τ∗η)(τ∗ − t) =

∑

n∈N

exp
(
−iλn(τ∗ − t)

)
ηn (t ∈ [0, τ∗]) , (5.21)
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where the sum of the above series is computed in L2([0, T ], C). Moreover, note that, since η 6= 0, we
can apply Lemma 4.2 to say that

∑

n∈N

exp
(
−iλn(τ∗ − t)

)
ηn 6= 0 (t ∈ [0, τ∗] a.e.) . (5.22)

Consequently, the combination of (5.20), (5.21) and (5.22) leads to (5.19).

Remark 5.9. Assumption (5.15), appearing in Proposition 5.7 (and consequently in Proposition 5.8)
is not satisfied if (λn) are the eigenvalues of the one dimension Dirichlet Laplacian. Indeed, in this
case, up to a multiplicative constant, we have λn = n2 for every n ∈ N. Indeed, it is not difficult to
check that the number of solutions (k, l) ∈ N

2 of

k2 − l2 = 2m,

tends to +∞ when m → ∞.
An example of sequence (λn) satisfying (5.15) is λn = 2n for every n ∈ N. Indeed, it can be easily

checked that
sup
r∈Z∗

card{(k, l) ∈ N
2 , 2k − 2l = r} = 1 .

The constraint |u(t)| 6 1 is not appropriate for considering questions such as the switching locus.
Therefore, in order to investigate this issue, we have to consider different constraints on the control,
such as the one introduced in Remark 5.5. In this case we have:

Proposition 5.10. Let X, A and B be the spaces and operators considered in Proposition 5.7. Con-
sider the system with the control system (A, B) with the control constraints described in Remark 5.5.

Then for every z0, z1 ∈ X, z0 6= z1 there exists a time optimal control u∗, steering z0 to z1 in time
τ∗ = τ∗(z0, z1). Moreover, there exists η ∈ X, η 6= 0 such that

u∗(t) = sign

[
Re
∑

n∈N

exp
(
iλn(τ∗ − t)

)
ηn

]
+ i sign

[
Im
∑

n∈N

exp
(
iλn(τ∗ − t)

)
ηn

]
(t ∈ [0, τ∗] a.e.)

(5.23)
where, as usual sign(a) = −1 when a is negative, sign(a) = 1 for positive a and sign(0) = 0.

Proof. We first note that, according to the result in [24, Theorem III] for every η ∈ X \ {0} we have
that

Re
∑

n∈N

exp
(
iλn(τ∗ − t)

)
ηn 6= 0, Im

∑

n∈N

exp
(
iλn(τ∗ − t)

)
ηn 6= 0 (t ∈ [0, τ∗] a.e). (5.24)

On the other hand, by combining (5.5) and (5.21), we have that

Re

[
∑

n∈N

exp
(
−iλn(τ∗ − t)

)
ηn u∗(t)

]
= max

v∈P
Re

[
∑

n∈N

exp
(
−iλn(τ∗ − t)

)
ηn v

]
(t ∈ (0, τ∗) a.e.) .

The last two formulas clearly imply the conclusion of the proposition.

Remark 5.11. We also note that, under the above assumptions, every input satisfying the maximum
principle (5.23) is the time optimal control steering 0 to Φτ∗u∗. The proof of this assertion can be
done following line by line the proof given, for the finite dimensional case, in Agrachev and Sachkov
[1, Theorem 15.4 ].
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Corollary 5.12. Let X, A and B be as in Proposition 5.10, let z0, z1 ∈ X. Then the time optimal
control u∗, steering z0 to z1 in time τ∗ = τ∗(z0, z1) is unique and it satisfies

u∗(t) ∈ {−1 − i,−1 + i, 1 − i, 1 + i} (t ∈ [0, τ∗] a.e.). (5.25)

Moreover, for every N ∈ N there exist z0, z1 ∈ X such that Re u∗ and Im u∗ switch between −1 and
1 more than N times for t ∈ [0, τ∗].

Proof. The fact that any time optimal control satisfies (5.25) follows directly from (5.24) and (5.23).
The uniqueness of the time optimal control follows next from (5.25) by the usual convexity argument.

To show that the number of switches can be arbitrarily large, we consider an arbitrary τ∗ > 0, we
take m ∈ N, which will be made precise later, and we define

u∗(t) = sign[cos(λm(τ∗ − t))] + i sign[sin(λm(τ∗ − t))] (t ∈ [0, τ∗]).

The control u∗ satisfies the maximum principle with η = em (recall that (en) is the standard basis
in l2 so that, according to Remark 5.11, u∗ is the time optimal control steering 0 to Φ∗

τu
∗ under

the constraint (5.4). Choosing m such that
[

λmτ∗

π

]
> N , it is easily checked that the real and the

imaginary parts of u∗ switch from −1 to 1 more than N times.

6 Concluding remarks and open questions

Our results in the previous section are, as far as we know, the first establishing the maximum principle
and the bang-bang property for the time optimal controls in the case of a class of time reversible
systems (of Schrödinger type) with controls localized in a strict subset of the spatial domain. If we
take controls active in the whole spatial domain, one can easily adapt our methods to the wave or
Euler-Bernoulli plate equation. More generally, the results in the previous can be easily adapted to
systems of the form

ẅ + A0w = u, (6.26)

where A0 is a positive operator in a Hilbert space H and u is the input function. We can easily
check that the above equation can be written as a first order system satisfying the assumptions in
Theorem 1.4 and Corollary 1.7, so that we have the maximum principle and the bang-bang property
for the associated time optimal control problem. Since this question has been tackled directly, by
quite similar methods, in Fattorini [8] and Krabs [15] we do not give the detailed argument here.
Note that, taking H = L2(Ω), where Ω ⊂ R

n is bounded and with a smooth boundary, and A0 to be
the Dirichlet Laplacian (respectively the square of the Dirichlet Laplacian) in Ω, (6.26) becomes the
wave (respectively the Euler-Bernoulli plate) equation, with control active in all of Ω. We also refer
to Kunisch and Wachsmuth [16] for a theoretical and numerical study of the time optimal control
problem for the wave equation.

An interesting and partially open question consists in obtaining the maximum principle and the
bang-bang property of time optimal controls for systems governed by the Euler-Bernoulli plate equa-
tion with localized distributed control. The question is challenging, in particular, since most of the
control theoretic results known for the Schrödinger equation have a natural counterpart for the Euler-
Bernoulli plate equation (at least for hinged boundary conditions). It turns out that the situation
seems unclear in the case of time optimal control problems, at least as far as the bang-bang property
is concerned. More precisely, consider the one dimensional case (Euler-Bernoulli beam equation) with
locally distributed control. The main technical obstacle (within our method) in obtaining the bang-
bang property of time optimal controls consists in the fact that, in order to apply Corollary 1.7, one
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would need a counterpart of the uniqueness result in Lemma 4.1, with the sequence (±n2)n>1 (which is
bounded neither from below nor from above) instead of (λn). Therefore, even in one space dimension,
establishing the uniqueness of time optimal controls and their bang-bang property are open questions.

However, we have a partial result, asserting that the maximum principle holds for the time optimal
control problem for a system governed by the Euler-Bernoulli plate equation with locally distributed
control. More precisely, consider the system

z̈(x, t) = −∆2z(x, t) + χO(x)u(x, t) (x ∈ Ω, t > 0) , (6.27)

z(x, t) = ∆z(x, t) = 0 (x ∈ ∂Ω, t > 0) , (6.28)

where Ω ⊂ R
n is an open set, O is an open subset of Ω, χO is the characteristic function of O and the

control u is such that ‖u(·, t)‖L2(O) 6 1 for almost every t > 0.

Proposition 6.1. Assume that one of the assumptions

1. The open set Ω is bounded, ∂Ω is of class C∞ and O satisfies the geometric optics condition;

2. The open set Ω is a rectangular domain and O is an arbitrary nonempty open subset of Ω,

holds. Then for every f0, f1 ∈ H2(Ω)∩H1
0 (Ω) and g0, g1 ∈ L2(Ω), with (f0, g0) 6= (f1, g1), there exists

a time optimal control u∗ steering the solution of (6.27)-(6.28) from (f0, g0) (at t = 0) to (f1, g1) (at
t = τ∗). Moreover, there exists (η0, η1) ∈ [H2(Ω) ∩ H1

0 (Ω)] × L2(Ω), with (η0, η1) 6= (0, 0) such that
∫

O
ẇ(x, t)u∗(x, t) dx = max

v∈L2(O),
‖v‖

L2(O)61

∫

O
ẇ(x, t)v(x) dx , (6.29)

where w is the solution of the adjoint problem,

ẅ(x, t) = −∆2w(x, t) (x ∈ Ω , t ∈ R) , (6.30)

w(x, t) = ∆w(x, t) = 0 (x ∈ ∂Ω , t ∈ R) , (6.31)

w(x, τ∗) = η0(x), ẇ(x, τ∗) = η1(x) (x ∈ Ω) . (6.32)

Proof. The proof follows closely the reasoning used in the first part of the proof of Proposition 4.4.
More precisely, it suffices to apply Theorem 1.4, with a particular choice of spaces and operators. Take
X =

[
H2(Ω) ∩ H1

0 (Ω)
]
× L2(Ω), U = L2(O) and consider the operator A defined by

D(A) =
{
f ∈ H4(Ω) ∩ H1

0 (Ω) , ∆f = 0 on ∂Ω
}
×
(
H2(Ω) ∩ H1

0 (Ω)
)

,

A

[
f

g

]
=

[
0 I

−∆2 0

] [
f

g

]
=

[
g

−∆2f

] ([
f

g

]
∈ D(A)

)
.

The control operator B ∈ L(U, X) is defined by

Bu =

[
0

χOu

]
(u ∈ L2(O)) .

We note that, with the above defined spaces of operators, the system (6.27), (6.28) writes in the

form Ż = AZ + Bu, where Z =

[
z

ż

]
.

In order to apply Theorem 1.4, it suffices to check that the pair (A, B) is exactly controllable in any
time τ > 0. This fact is classical and follows from known (already used above) exact controllability
results for the Schrödinger equation (see, for instance, [29, Proposition 7.5.1] or [18, Section 5]).
Consequently, we can apply Theorem 1.4, so that we obtain (6.29).
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Besides the theoretical open questions raised above, the numerical analysis of the time optimal
control problem for infinite dimensional systems is an essentially open field, at least for point targets.
An interesting track to tackle these issues could consist in adapting some of the results on the numerical
approximation of norm optimal controls (see, for instance, Ervedoza and Zuazua [6] and references
therein).
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