Maximum Principle Preserving Schemes for Interface Problems
with Discontinuous Coefficients

Zhilin Li and Kazufumi Ito
Center for Research in Scientific Computation
& Department of Mathematics
North Carolina State University
Raleigh, NC 27695
zhilin@math.ncsu.edu & kito@math.ncsu.edu

Abstract

New finite difference methods using Cartesian grids are developed for elliptic interface
problems with variable discontinuous coefficients, singular sources, and non-smooth or even
discontinuous solutions. The new finite difference schemes are constructed to satisfy the sign
property of the discrete maximum principle using quadratic optimization techniques. Conver-
gence proofs are provided for the first and second order methods by constructing comparison
functions. The methods are coupled with a multigrid solver. Numerical examples are also
provided to show the efficiency of the proposed methods.
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1 Introduction

Many important practical problems lead to partial differential equations whose solutions have
discontinuities or non-smoothness across some interfaces within the solution domains. In this
paper, we propose a class of numerical methods that preserve the discrete maximum principle for
the interface problems defined below:

(ﬂum)w"i_(ﬂuy)y_’%(xay)u:f(xay), ('Tay) EQ:Q—Fin, (1'1)

with a boundary condition on 052, where 3, k and f are piecewise continuous and may have jump
discontinuity across some curve I in the domain €2, f can also contain singular sources as reflected
in the following jump conditions:

[ulxer =w(s),  [Bunlixer = v(s), (1.2)

where the jump is defined as the difference of the limiting values of two different sides of the
interface, for example

= 1. — l'
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—

Q

L L L L L
-3 -2 -1 0 1 2 3

Figure 1: (a). A diagram of a rectangular domain = Q7 U Q™ with an immersed interface T'.
The coefficients 3(x) may have a jump across the interface.

see Fig. 1 for an illustration. The interface I' can be an arbitrary piecewise smooth curve lying in
). We need not assume that I' is closed or even connected. In the case that x is continuous and
w(s) = 0, the interface problem can be written as a boundary value problem below:

V- (BVu) —ku=f+ /Ffu(s)dg(x — X (s))ds, (z,y) € Q,

given boundary condition on 0X2,

where §o is the two dimensional Dirac delta function which is singular, the second term at the
right hand side is a distribution which satisfies

// /v(s)ég(x—X(s))\I!(w,y)dxdyds :/v(s)\I!(X(s),Y(s))ds (1.3)
QJr r

for any arbitrary smooth function ¥(z,y). The discussion of the existence and the regularity of
the solution can be found, for example, in [2, 6]. Generally, if 3, k, and f are piecewise continuous
in , and w and v are continuous along I'; then the solution to the interface problem exists and
it is in H2((Q).

There are several numerical methods in the literature designed for the interface problems
discussed in this paper. We just mention a few here: the finite element methods using body
fitting grids [6, 35]; the fast solvers based on integral equations for piecewise constant coefficients
[10, 25, 26, 27] including the fast multipole method; the first order ghost fluid method [24]. In
this paper, our new methods are based on the local immersed interface method (IIM) [15, 18].

The immersed interface method [15, 18] was originally designed for elliptic equations having
discontinuous coefficients and singular source terms due to interfaces in the solution domain. In-
tended to improve Peskin’s immersed boundary method (IBM) [30, 31], which is a first order
method using discrete delta functions, the immersed interface method can be used to deal with
discontinuous coefficients and singular sources simultaneously by using known jump conditions.
The essence of the ITM includes: (@) using uniform or adaptive Cartesian grids, therefore there is
almost no cost in the grid generation since Cartesian grids are fixed. This is very significant for
moving interface/free boundary problems, or problems with complicated geometries, or problems
with topological changes, because the grid generation process may be the most expensive part



in an entire simulation. Another advantage using Cartesian grids is that we can take advantage
of many software packages or methods developed for Cartesian grids, for example, fast Poisson
solvers [32], Clawpack [14], Amrclawpack [3], the level set method [29], algebraic multi-grid solvers
[1, 8], and many others. (b) using standard numerical methods away from interfaces where there
are no irregularities; (¢) taking into account the known jump conditions, usually in the solutions
and fluxes, in deriving numerical schemes at grid points near or on interfaces to keep the global
accuracy unaffected by the presence of the interfaces; (d) introducing non-zero correction terms
to balance the singular source terms. The IIM gives sharp solutions (no smear-out) across the
interfaces since the jump conditions are enforced. Generally the IIM uses only local information,
specifically, the partial differential equations (PDE), the jump conditions, the interface, and the
underlying grid. Pointwise second order accuracy is either proved or confirmed in further devel-
opment of the method and applications, see for example, [5, 9, 12, 16, 19, 20, 34]., The IIM has
been successfully coupled with evolution schemes such as the particle approach and the level set
method for moving interface and free boundary problems [11, 13, 17, 22, 23].

The original immersed interface method provides a new approach to discretize interface prob-
lems to second order accuracy. The method is very successful and has been applied to many
problems. However, for variable coefficients with jumps, the resulting linear system of equations
from the IIM is not symmetric positive definite. While it is stable for one dimensional problems
and certain two dimensional problems [12], the stability of the algorithm depends on the choice
of one or more extra grid points in addition to the standard finite difference stencil [9]. Various
attempts have been made to speed up the process for solving the resulting linear system and im-
prove the stability of the original immersed interface method, for example, the multigrid method
by L. Adams [1]; the explicit jump immersed interface method by Wiegmann [33] and some others.
For the special case when (3 is piecewise constant, the fast iterative method proposed in [20] is
very successful and efficient [11, 23, 22].

In this paper, we will develop new methods for arbitrary ((z,y) using direct finite dif-
ference discretization. The new methods satisfy the sign property that guarantees the discrete
maximum principle. The sign property is enforced through a constrained quadratic optimization
problem. The resulting linear system of equations from the finite difference methods is diagonally
dominant and its symmetric part is negative definite. Two typical finite difference schemes using
the optimization approach are specifically discussed. One is a first order method that uses the
standard five-point stencil. The other one is a second order method that uses a standard nine-
point stencil. Proofs of the convergence and error estimates of these two methods are provided.
For the second order method that uses a standard nine-point stencil, we use multigrid solvers
developed in [1] and [8] to solve the resulting linear system of equations. The generalization of
the methods to non self-adjoint elliptic, parabolic equations, and three dimensional problems, are
under consideration.

The idea in this paper actually was proposed and tested by Z. Li (1993), S. Moskow and
F. Santosa (1996-1997). But due to various reasons, it has never been written up and published.

The paper is organized as follows. In Section 2, we lay down some theoretical fundamentals for
interface problems that are needed in deriving the new methods. Then we derive the new methods
using optimization techniques in Section 3. Convergence analysis for the first order and second
order methods are given in Section 4 and 5 respectively. The numerical results are presented in
Section 6. In Appendix, we present an integral equation for the solution of the interface problems
with piecewise constant coefficients and a regularity result of solutions.



2 Preliminaries

2.1 The local coordinates and the jump relations
Given a point (X,Y") on the interface, it is sometimes convenient to use the local coordinates in
the normal and the tangential directions:

E=(r—X)cosf+ (y—Y)sin0, 2.4)
n=—(z—X)sinf+ (y—Y)cos¥, 2

where 6 is the angle between the z-axis and the normal direction, pointing in the direction of
a specified side, say the + side in Fig. 2.1. We use the superscripts — or + to denote the
limiting values of a function from one side or the other. Under the local coordinates, the limiting
differential equation approaching to the interface from a particular side, for example, from the —
side, can be written

B~ (uge +upy) + Beug +Bruy —k~u” =f". (2.5)
At the point (X,Y), the interface can be written as

§=x(n), with x(0)=0, x'(0)=0. (2:6)
The curvature of the interface at (X,Y) is x”.
n

§=x(n)

Figure 2: A diagram of the local coordinates in the normal and tangential directions, where 8 is
the angle between the z-axis and the normal direction.

2.2 Interface relations
From the jump conditions (1.2) and the partial differential equation (1.1), we have derived the

following interface relations in [15, 18] that represent the limiting quantities from one side in terms
of the other.

Theorem 2.1 Let u(z,y) be the solution to (1.1) and (1.2). Let (X,Y) be a point on the in-
terface. Define p = 37 /B~. Then there are the following interface relations under the local
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coordinates (2.4).

u+:u7+w,

+ _ v
U’§ —pu§ +ﬂ_+’

+ = '
Uy, = U, +w,
- + - +
+ ﬂ& " — " ﬂ& + ﬁn - /Bn +
“§§—<5—+_X>“5+< _ﬁ—+>u§+ﬁ—+“n_ﬁ—+“n (2.7)
— - n . Lf] ["5]“_+”+ [u]
—i—(p—l)u,m—l-pugg—w +l8—++l8—+,
uf;n = Uy, + (ug — ug') x4+ w”,

+_ﬂ77_7*577+++(+ x4 f_i_“l
Yen = g e T g e T Wtn TP ) X0 T P Uy T g

These interface relations are used in deriving the new finite difference method in the next
section.

3 Algorithm description

We assume the domain (2 is a rectangle, say [a,b] X [c,d]. We take a uniform grid with
z; = a+thg, yj =a+jhy, 1=0,1,--- ,m, j=0,1,---,n,
where hy = (b —a)/m and hy = (d — ¢)/n.
Our goal is to develop a finite difference equation of the form
ns

> e Uiyt — i Uig = fij + Cij (3.8)
k

for use at any grid point (z;,y;), where ng is the number of grid points in the finite difference
stencil, and U;; is the approximation to the solution u(z,y) of (1.1) and (1.2) at (z;,y;). The sum
over k involves a finite numbers of points neighboring (z;,y;). So each iy, ji will take values in
the set {0,4+1,+2---}. The coefficients 7, and the indices i, jr will depend on (i, 5), so these
should really be labeled +;jx, etc., but for simplicity of notation we will concentrate on a single
grid point (z;,y;) and drop these indices.

The local truncation error at a grid point (z;,y;) is defined as

Ns

T = Z% U (Titiy, Yitie) — Kij w(@i, y5) — f(@i,y5) — Cij (3.9)
k

We say (z,y;) is a regular point if the interface does not come between any points in the
standard five-point stencil centered at (i,7). At these points we obtain an O(h?) truncation error



using the standard 5-point (ns = 5) formula

h_lz (ﬂi—i—l/?,jw — Bi—1/2,5 W) (3.10)
+ hiy (ﬁz‘,jﬂ/z—(ui’ﬂzy_ vig) ﬁz‘,j—l/2—(ui’j _h:i’jl)> — Kijij = fijs
with
Cyj =0, (3.11)
where
By = Blany), B, =B (x + };—“,yj) ,
and so on.

We wish to determine formulas of the form (3.8) for irregular grid points around which the
standard five-point stencil contains grid points from both sides of the interface. First we choose
a point (z],y;) on the interface I' near the grid point (z;,y;). Usually, we take (z],y;) as the
projection of (z;,y;) on the interface or the intersection of the interface and one of axes. We then
expand each u(ziti,,Yyj+j,) about (z7,y;) under the local coordinates, being careful to use the
limiting values of derivatives of u from the correct side of the interface.

1 1
WEitiys Yitge) = Wl me) = u* + Epug + mpuy + 551%“22 + g, + 5771%“3[77 +0(h%), (3.12)

where the + or — sign is chosen depending on whether (£, n,) lies on the + or — side of T.

If we do this expansion at each point used in the finite difference equation (3.8) then the local

truncation error T;; can be expressed as a linear combination of the values ui,uzt, uff, uéj'EE’ uztn,
uﬁn as the following,
Tij = a1u —I—a2u+ + as ug + ay ug' + as u; —l—aﬁuf{ + a7 ugg—I-ag ug'g (3 13)

+ag Uy, + a0 Upy +an ug, Hauf, -k uT — fT—Ci 4

The quantities f*, k%, 8% are the limiting values of the functions at (zF ,y]*) from + side or —
side of the interface. The coefficients a; depend only on the position of the stencil relative to the
interface. They are independent of the functions u,x and f. If we define the index sets Kt and
K~ by

K* = {k: (&, nx) is on the + side of '},

then the a; are given by
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ek - keK+
as= Y & ar= Y &
KEK kEK+
as= Y T as= Y T
kK- keK+
1
2 2
=5 Z &Yk ag =5 Z &Yk (3.14)
keEK— keK+
1
= e aon =g Y T
keEK— keKT
a1 =Y G a2 = Y G-
keK - keK+

Using the interface relations (2.7), we eliminate the quantities from one side, say, the + side
using the quantities from the other side, say, the — side, collect terms to get an expression of the
form!

Ty = (a1+ ﬂ£]+a2)u_+{a3+a8(ﬂﬂ—+— >+a10X +a12ﬁﬂ+_
+ +
+p <a4 + ag (X" — %) — a0X’ —6112%+ ) 5{} Ug
By~ ﬂ"+ . B B (3.15)
+{a5+a6+a8 (ﬁ—+_ﬂ—+) +a12(1 — p) X" — By }“n

+{a7+a8p—ﬁ*} Uge + {ag+a10+a8 (p—1) —,6’*} Uy
+{an +arp} ug, — Kk u =+ (T — Cy) +--

where
. v ag Bet
T;j = axw+ai ﬁ__" + (as — Sﬁﬂf + a12X”> w'
B + +
+ alow —i- ,8_+ <a4 + ag(X” — ﬁg—-l-) — a10X — a12%+ v (316)

ot
+as{[ﬁfj ﬁw w”}.

Although the local truncation errors do not tell the whole story about the global error due to
the cancellation of errors, we can guarantee certain accuracy of the computed solution by requiring

'A more subtle approach is to expand all u(Zi+i,,¥;+j,) at the grid point (z:,1;). If (Titiy, yj+j,,) is a grid
point on the different side from (z:,y;), we can first expand u(ziti,, yj+j,) at a point (x7,y;) on the interface;
then express all the quantities up to second order derivative in terms of the those on the other side using the jump
relations (2.7); expand those quantities again at (x;,y;). This approach gives slight better results (small error
constant). However, for simplicity, we will use the equation on the point (x;,y;) from a particular side.



some of coefficients of v, Ug , Uy o vanish:

[~]

ai + az + ag gr = 0
- + " " - +
as + pas + ag B pﬂﬁi [lx + a9 [ﬂﬁ]f + a2 By ﬁfﬁ" = B
_ 3.17
a5+a6—a3[§—1]+a12(1—p)x" = 0 ( )
art+agp = [~
ag+aptag(p—1) = B~
ain +aizp = 0,
where p = 37 /8%. Once the 7;’s are computed, we can easily obtain Cj; as
Cij = Tij (3.18)

where Cf’ij is given by (3.16).

3.1 An optimization approach

In order to obtain finite difference schemes that satisfy the discrete maximum principle, see Section
6.5 of Morton and Mayers [28] for the definition, we need to impose the sign restriction on the
coefficients 7 in (3.8)

Y& > 0 if (ikajk) 7£ (070)7

T (3.19)
Y <0 if (i, j%) = (0,0),

along with several equations in (3.17). At regular grid points, the standard central finite difference
scheme satisfies the sign restriction and the equations in (3.17). So we will only concentrate our
discussion on a typical irregular grid point (z;,7;). We form the following constrained quadratic
optimization problem to determine the coefficients of the finite difference scheme

1
min {i'yTH'y - 'yTg} , (3.20)
v
s.t. A’Y = b, Yk > 0, if (ikajk) 7é (070) Y <0, if (ikajk) = (070)7 (321)

where v = [71,72,+ -+ , |7 is the vector composed of the coefficients of the finite difference scheme,
H is a symmetric positive definite matrix and g € R™. A~ = b is the system of linear equations
that contains several or all equations in (3.17). Naturally we want to choose - in a such a way
that they become the coefficients of the standard 5-point central difference scheme if there is no
interface. This can be done by minimizing

1 9
d — 22
min o Zk:(')’k 9r)° (3.22)



where

205 s ..
g = %7 (Zka.jk) S {(_170)7(170)7(07_1)a(05 1) }’
. o (3.23)
— _ P = O 0
Gk h?c T hi’ (Zk’]k) ( ) )’
g = 0, Otherwise.

The matrix H in (3.20) is then the identity matrix. Another choice of g is g = A*bh, where AT
is the pseudo-inverse of A, and g = ATb is the least squares solution to the system of equations
Az = b. We can also choose some combination of (3.23) and A™b.

There are two parameters in the optimization algorithm (3.20)-(3.21) that are to be deter-
mined. The first one is ng, the number of grid points involved in the finite difference scheme. The
second one is the number of equations from (3.17) that to be satisfied in (3.21). We will discuss
two different methods in this paper.

3.2 First order methods

If we wish to get a simple first order method, then we can use the first three equations in (3.17).
In this case, as we will show later, we can take ny; = 5, and the standard five-point stencil

{(il,jl)’ (i25j2)a (i3aj3), (7;4aj4)a (’i5,j5)} = {(_1’ O)’ (O’ O)’ (1’ O)a (05 _1), (Oa 1)} . (3'24)

The optimization problem can be constructed as:

6
) 1
min {§7TH7 — g+ wi (Ay —by)’? } : (3.25)
=4
Ay
s.t. Aa Y= b, Y 2> 0, if (ikajk) ?é (0’0) e < 0, if (ikajk) = (070)7 (326)
As

where A;y = b, 1 <i < 6, is the [-th equation in (3.17), w; are pre-defined weights for [ = 4,5, 6.

Since the high order terms have little effect on the convergence order, we can neglect them to
get simplified equality and inequality constraints

ai +az + as[ﬂil =0
az+pas = P (3.27)
as +ag = ﬂﬂ_

’YkZOa k5é27 72 < 0.

Even though the local truncation errors at irregular grid points using the first order method are
O(1), the global error is O(h) as we will show later.



3.3 Second order methods

In order to get second order methods, we require all the six equations in (3.17) to be satisfied plus
the sign restriction (3.19) for the optimization problem. Therefore ngs > 6. It is not clear what the
smallest ng is. The hint is from the conforming finite element method for interface problems with a
uniform triangulation [21]. The implementation is somewhat complicated for the conforming finite
element method though. The analysis there suggests a non-standard nine-point stencil for the
finite element method that guarantees the stiffness matrix to be symmetric positive definite. Since
we do not require the symmetry in the linear system of the finite difference equations described
in this paper, we should expect that the minimum ns needed for the optimization problem to
have solutions is ng < 9 if h; and hy are small enough. Thus we can take a standard nine-point
stencil. Our numerical experiments showed that it is enough to have an eight-point stencil provide
that we carefully choose additional three grid points in addition to the standard five-point stencil.
Usually we should choose the additional grid points close to the interface as the finite element
method suggested. However, a more robust choice is the standard nine-point stencil, ny =9, and
the resulting linear finite difference system of equations is still block tridiagonal. If we use the
standard nine-point stencil, ny = 9, the k, ix, and j; can be determined by the following loop

k=1
for i_k = -1,1
for j.k=-1, 1
k=k +1
end
end

Later we will numerically prove the existence of the solution to the optimization problem.

3.4 Solving the optimization problems

There are several commercial and educational software packages that are designed to solve con-
strained quadratic optimization problems. For example, the QP function in Matlab; the QL
program in Fortran computer language developed by K. Schittkowski; and the IQP Fortran code
from Port managed by Lucent Technology.

Most of quadratic optimization solves require users to provide the initial guess, the lower and
upper bounds and other information. In our method, we take the initial guess as the vector g,
and the lower and upper bounds as

Qﬂmax . . .
0 —_ f 0,0);
<% < hg—l-h?/’ 1 (Zkajk) 7&( ) )a

—%ﬂTm% < <0, if (i, jk) = (0,0), (3.28)
where Omnax 18 an estimation of the upper bound of the coefficient S(z,y). Since the size of the
optimization problem is very small, the total cost in solving the associated optimization problems
is only a small portion compared with that needed for solving the global resulting linear system
of equations. Our preliminary tests using the FFT or multi-grid solver for the linear system of
equations show that the extra time needed in dealing with the interface including solving the
optimization problem is only about 5-8% in the entire solution process, see Sec. 6.2.
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In case that the optimization solver fails to give a solution or provides a wrong solution, we can
either add a few more grid points that are closer to the interface or switch to another scheme that
satisfies the discrete maximum principle at the particular grid point such as the ghost fluid or the
smoothing method, without affecting global accuracy. As we will show later, if the optimization
solver fails to return a feasible solution, it usually means the grid resolution is too low and the
interface cuts the grid lines more than twice meaning the curvature is very large relative to the
underlying grid. In our numerical tests, such failure has never happened for second order methods
with reasonable grids.

4 Convergence analysis for the first order method

In this section, we show some theoretical results for the first order method using a standard
five-point stencil. First we prove the existence of the related optimization problem.

4.1 Existence of the solutions to the optimization problem

If we use the standard five-point stencil (ns = 5), and solve the constrained optimization problem
(3.20)-(3.21) with equality constraints (3.27), we will get a first order method as we will prove
later in this section. We first prove the existence of the solution to the optimization problem for
the first order method. The stencil at an irregular grid point (z;,y;) is composed of

corresponding to the index k = 1,2, 3,4, 5. For simplicity, we assume that g is piecewise constant

gt if (z,y) € QF

Ala,y) = { P (4.30)

and K = 0. We also assume that h; = hy, = h. Under these assumptions, we can eliminate 7,
from the first equation in (3.27) to get

Y==Y. W (4.31)

The equality and inequality constraints of the optimization problem are the following

(g €
5 (5o

k=1 k#2
5
> tm—m)w = 0 (4.33)
k=1k#2
>0, k=1,3,4,5, (4.34)

where B = B(itiy,Yj+j,) takes either 81 or B~ depending on which side of the interface the
grid point (i1, ,Y;+j,) is- We will prove the following theorem.

11



Theorem 4.1 Let (:c;",y;‘) be a point on a piecewise smooth interface I' that satisfies
lz; — x| + |y; —y;] < 1. (4.35)

Assume that the interface T' cuts through the azxes at no more than two points, and the tangent
line at (m:‘,y;“) separates the grid points in the five-point stencil in the same way as the interface
does. Then there is at least one set of solutions vy, > 0,k = 1,3,4,5 that satisfies (4.32)-(4.33).

Figure 3: A diagram of the geometry at an irregular grid point if A is sufficient small.

Proof: Without loss of generality, and for simplicity for indexing, we assume that = —xz; > 0,
y; —y; > 0, the angle between the z- axis and the normal direction 6 is in the interval [0,7/2).
There are two different cases depending on which side the grid point (z;,y;41) is. We will prove
one of cases as shown in Fig. 3. The proof of the other case is long and technically similar, so it
will be omitted here. From Fig. 3, it is easy to see
£1<07 £3>07 £4S0a &5207
7)120, ?7230, 774<07 7I5>0

With such a geometry, the two equations (4.32) and (4.33) are

SIS &€ & ¢ &€
st e () e (i) e (3 32) m = 0 o

(m—=—m)v+m—m2) v3+ @ma—m2) va+ (s —m) vs = 0. (4.37)

Introduce the parameters a;; as in the following

a11:—<£——€—2)>0, (11326—3—5—2_>0a

p- B~ gt B
0142—(%—2—2_>20, 6152%—5—2_20,

ag3 = —(m3—m2) >0, ax = (m —n2) >0,

ag4 = —(774 - 7)2) >0, a= (715 - 772) > 0.

12



We can rewrite the equations (4.36)-(4.37) as?

a137Y3 — Q1171 = Q1474 — 1575,

a237y3 —a21Y1 = —02474 + G2575-

We are ready to prove the theorem by distinguishing the following cases.

e a93 = 0. In this case, we also have as; = 0. We choose

Biit1 ags
7_1}’:—;>0, 4= —"75>0,
a4
2Bi-1,5 a1474 — 01575 1
y = ﬂ;ﬂ j Loy sl 0,  73=—(aum +auv — ai57s)
a1 a13

e a14 = 0. In this case, we also have a;5 = 0. We choose

i1 a
M>Oa 732271>01
h2 ai3
206; i1 a —a 1
Y4 = ﬁz’; + | a7 — azm | >0, v5 = — (@244 + @233 — a2171)
h aoy a25
. E:E:'r>0. We choose
a1 a23
Bij-1 a4 + TA24
= 2 > O’ e ———
T h? 5 a15 + Tags
With such choice of 74 and 75, we have
Q1474 — Q1575 = —TG247Y4 + TA2575.

Then we choose

26;i—1 | |aiays — a157s|

= +
" 72 .
1
3 = — (aum +a1av4 — a157s) -
a13
ail azi1 .. . . .
e — > —_ This is one of general cases. Consider the following two functions
aiz @23
91(74,75) = @1as —a15s
92(74,75) = —agavs + a5

> 0.

> 0.

In the first quadrant of the ~4-v5 plane, there are three different regions where g1 > g9,
g1 = g2, and g1 < go respectively. Choose a point y; > 0, vz > 0 in the first quadrant of
the v4, 5 plane in such a way that g1 < go. Let ], 75 be the solution to the system of

a

equations (4.38)-(4.39) with 74-v5 being substituted by 7] and 73, since 11 >
conclude that 7 > 0 and 5 > 0.

It is also easy to show that a3 = a» and as4 = ass.

13
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a a . .
o L« 21 The proof is almost exactly the same as the previous case except we choose

ai3 az3
i > 0, v5 > 0 such that g; > go.

Remark 4.1 If the interface is smooth, then the conditions in Theorem 4.1 will be satisfied
if h is small enough. For a coarse grid, occasionally, the conditions in Theorem 4.1 may be
violated. Some modification may be needed. In practice, we do not need to check the conditions
in Theorem 4.1. Most of quadratic optimization solvers will either return an error indicator or
wrong solution in such cases. We then can decide to take an alternative scheme at these grid
points. Note that compared with the ghost fluid method, the methods proposed here do not need to
move interface and decompose the flux jump condition.

Corollary 4.1 From the proof of the existence of the optimization problem, we can conclude that
C
|’7k|§ﬁa k=1,2,---,5,

and there is at least one of yx from each side of the interface such that

C

where the constants are O(1) and independent of the grid points, but depend on the coefficient (3.

This corollary is useful in proving the convergence of the first order method.

4.2 Convergence proof of the first order method

We need the following lemma which is a generalization of Theorem 6.1 and Theorem 6.2 of
Morton & Mayer’s book [28] for multiple sub-regions J;.

Lemma 4.1 Given a finite difference scheme Ly, defined on a discrete set of interior points Jo
for Dirichlet elliptic equations, we assume the following conditions hold:

1. Jq can be partitioned into a number of disjoint regions

Jo=JiULUJ3---UJ,, JiNJ,=0, ifi#k. (4.40)

2. The truncation error of the finite difference scheme at a grid point p satisfies

T, <T;, VYp€ldi, i=1,2--,s. (4.41)

3. There ezists a non-negative mesh function ¢ defined on Ui_,J; satisfying

Lh¢p > Cz > 07 vp € Ji’ 1= ]-a 2; Tty S (442)
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Then the global error of the approzimate solution from the finite difference scheme at mesh points
18 bounded by

T;
< -~ .
| En]loo < (AIQ?Q‘Q“SA) 112?57‘5{01}’ (4.43)

where Ey, is the difference of the exact solution of the differential equation and the approximate
solution of the finite difference equations at the mesh points, and Jyq is the set that contains the
boundary points.

Theorem 4.2 Let u(z,y) be the exact solution to (1.1) and (1.2) with k = 0, piecewise (3 as
defined in (4.30), and a Dirichlet boundary condition. Assume

1. the optimization problem (8.20)-(3.21) has a set of solution 7y with the first three equations
in (3.17) being satisfied exactly or to the leading order at every irregular grid points;

2. u(z,y) has piecewise continuous second order derivatives;

3. h is sufficient small;

4. at all irreqular grid points, the following is true:

Ci
> s > S (4.44)

§k>0

Then we have the following error estimate for the approxzimate solution obtained from the first
order optimization method

lu(zi, y;) — Uijlloo < Ch, (4.45)

where C' = O(1) depends on the geometry, the coefficient 3.

Proof: If h is sufficient small, we have proved that the optimization problem has solutions.
Consider the solution to the following interface problem

V-BVe = 1,
[¢] =0, Bon] =1, doa = 1.
From the results in [2, 6], we know that the solution ¢ exists, unique, and piecewise continuous.

Therefore the solution is also bounded. In fact, with piecewise (3, we can further prove that the
solution is also piecewise smooth using integral equations, see the Appendix. Let

(4.46)

b(z,y) = ¢(z,y) + (4.47)

min ¢(z, .
(in, $(z,y) ‘

Then ¢(z,y) > 0 and still satisfy the differential equation and the jump conditions in (4.46). We
define the discrete finite difference operator as

r
k

15



Let (z;,y;) be an irregular grid point. If A is small enough, then we know that -y, is bounded by
C/h?%. Therefore we have

Ns
Lnp@oy) = D9k (Eivigs Yits)

= (a1 +a2)dp” + (as + pay — ag [%]i( ) 4_55_ +

[ﬁ+] +a12(1 = p) X") &y + Y Wk +O(1)

+ ((15 + ag — asg 3
£ 20

= ) & +0(1),

&k >0

where aj, are defined in (3.14). Note that agfx" /B8, asf,/0, and ai2(1 — p) X" are O(1) terms.
The condition v, < C/h? is needed to guarantee that the lower order term is O(1) but not larger.
Thus from (4.44), the comparison function ¢ satisfies

1+ O(h?) if (z;,y;) is a regular grid point,
Lnd(wiry;) = Z Yk > 24 O(1) if (z;,y,) is an irregular grid point.
&k >0

At a regular grid points we have

|TLJ| 02h2
Lh¢($za y]) 1

At an irregular grid points we have

= Cyh?. (4.49)

|T55] Cs Cs
i < = —"h. 4.50
Lnd@iy,) ~ Ci/h O (4.50)

From Lemma 4.1, we conclude the global error then satisfies
lu(zi,yi) — Uijlloo < max ¢(z,y) | max Gy Cah ¢ h (4.51)
i Yj tjlloo = (2,9)C00 » Y Cl ) V2 .

< Ch. (4.52)

Remark 4.2 1. The term Z§k>0 Y€k acts as a discrete delta function to the singular source
in the following equation B

V. (8Vu) = /FaQ(x — X(s))ds.

Thus generally we can ezpect D ¢ o7k to be O(1/h) since 7y is O(1/h?), except when
all the grid points from other side of the interface other than (z;,y;) are very close to the
interface. In this case, the finite difference scheme usually turns out to be close to the
standard central finite difference scheme with the correction term mainly involves the jump
in the solution.
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2. First order convergence also seems to be obuvious with the following common belief: the
approzimation at the boundary can be one order lower than that in the interior domain
without affecting global order accuracy. Since the interface is an internal boundary with local
truncation error being O(1), we can expect the global error to be O(h). For one-dimensional
elliptic equations, this has been quantitatively explained in [4] which we briefly ezplain below
for our problem. Since the problem is linear, the error E;; = u(z;,y;) — Usj should satisfy
the finite difference equation with a discrete source term

0 at a reqular grid point and the boundary,

Fij = C;;
% at an irregular grid point,

if we neglect high order terms. An irregular grid point (z;,vy;) is near the interface, thus the
leading error term Cj; = O(1) is a quantity that is defined on the interface. Therefore E;;
can be regarded as a discrete solution to the continuous problem

V. (8Ve) = h/FC’(s)ég(x—X(s))ds,
6|0§2 = 07

for some function C(s) defined along the interface. This boundary value problem has a
bounded solution of O(||C||pe(ryh) and thus we conclude that E;; = Ch.

5 Convergence of the second order methods

In general we may argue that if we enclose enough grid points, then the six equations (3.17) and
the sign property are satisfied and in turn we obtain a second order method. As we discussed in
Section 3, we use the standard nine-point stencil and prove indeed that our claim holds. First,
we will show numerically below that the corresponding optimization problems have solutions that
are bounded.

5.1 Numerical proof of the existence of the solution to the optimization prob-
lem.

We again assume that < =0 in (1.1), and the h is small enough that the interface behaviors like
a straight line relative to the underlying grid. We also assume that 3 is piecewise constant as
in (4.30). Under these conditions, the coefficients of the system of equations that contain x” in
the second and the third equations of (3.17) are high order term O(h?) compared to those in a3
and pay which are O(h). We will neglect these high order terms O(h?). In other words, if h is
sufficient small, the existence of the solution to the optimization problem is independent of the
curvature of the interface, assuming that the Kuhn-Tucker condition for the binding constraints is
satisfied. With the standard nine-point stencil, we will numerically prove the following theorem.

Theorem 5.1 Let (z;,y;) be an irregular grid point, and (z},y) be its projection on the interface,
Then the optimization problem defined in (3.20)-(3.21) with siz equality and the sign constraints
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has solutions. The solution of the coefficients v also satisfy

Yk C
—| <=, k=1,---,9. 5.53
18_ — h27 7 7 ( )
Furthermore there are y’s from each side of the interface such that
Yk Cy
|22 (5.54)
and
S o> 2, if max{&) > Cyh. (5.55)
=h ’ €50 =

§p>0
The constants are O(1) which depend on the coefficient 3 but are independent of i and j.
Proof: Take a typical irregular grid points (z;,y;). First we can shift and scale the problem
in the following way:

Tz Y-y W
h Yy h Yk B2

Tr =

For simplicity, we will use the same notations without bars. The nine-point stencil then is the
square —1 < z,y < 1. With the local coordinates, we can just consider the case that the projection
is in the first quadrant.

Given any point (z*,y*), and an angle 0

0<z*<1, 0<y*<1—z* ogogg, (5.56)
we can write down the equation of the interface as
cos@(z —x*) +sinf (y —y*) =0. (5.57)

The interface will cut the square —1 < z,y < 1 into two parts. We denote the side which contains
the origin as — side, and the other one as + side. We also scale the coefficient g either as = =1,

Bt =1/p,or gt =1, 6~ =p.
The optimization problem is:
1 2
mhg Zk: (v — k)
st. Ay=b =0, if (ig,Jk) #(0,0) % <0, if (ix,5k) = (0,0),
where

gk = ﬂia (Zka]k) € {(_170)7(170)7(07_1)a(0a1) }7
gk = _4a (ikajk) = (OaO)a
gr = 0, Otherwise,
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and A7y = b is the following system of equations:

a1+ax = 0

az+pag =

as +ag =
art+agp = [
ag+ap+ag(p—1) = B~
a1 +app = 0.

To solve the problem numerically, we use a uniform grid

1
ri = tAr, Ar=—, i=0,1,---,m,
m’
0; = jAO, AO=_—, j=0,1,---,n,
2n’
Ny + N
o = 10—N1+kAp, Ap — 2 —iL_ 1’ k= O’ 1, . ,L

The projection then is determined by
x; =1 cos80j, yi =r;sinb;
excluding those y; > 1 — z; that are outside of the five-point stencil. Define

1] _

Ymaa(p) = max max ‘o =max
5
’Ymin(ﬂ) = min—— |')"
75,0;

Smin (p) = Z EkVk-

n,ﬂj,max§k>0{§k}>03h f >0

Our numerical tests show that the solution to the optimization problem always exits. Fig-
ure 4 and Figure 5 summarize the numerical proof about the magnitude of the finite difference
coefficients. In Figure 4, the dashed line is Ypqz(p) and it is bounded by |yx| h? < 10. The solid
line is Ymin(p) and |ys|h% > 1. If B~ = BT, we will have y5h? = 4 exactly as we can see from
Figure 4. Therefore Figure 4 confirms the inequalities (5.53) and (5.54).

In Figure 4, we plot hSy,in(p)/Ce where
_ max {8 /BB /B"}
max {1, B~} max{L, A7}
This constant was found by numerical experiments. The minimum of ) £,>0 Y€y is taken all cases
except for two points (1,0) and (0,1) where the interface actually is z = 1 and y = 1 respectively.
In these cases, the grid points touch the interface and the finite difference scheme is the standard

five-point stencil scheme with possible non-zero correction Cj; for the jump in the solution and
the flux. In Figure 4 (a) and Figure 4 (b), we always have

> wmék > - 01 02 if ) {&} > Csh.

& 20 £p >0

(5.58)
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B'=1,B/B"=p g=1F"=p
10 T T T T T

N — max(y, 178 L .
N min{y, }/B” _ maxy, }/B
Els ] - e 7+ ! __ min{y,}/B

Figure 4: The computed Ymaz(p) and ymin(p) with m =n = L = 60, Ny = 9, and Ny = 10. (a)
B =1p"=1/p. (b) BT =1,8" =p.

Thus the numerical proof confirms the inequality (5.55). We have tried different grids size and
all the results showed the same results. Even though we can not test all possible £, the jump in
the ratio is large enough (from 10~ to 10'°) that should cover most of applications.

Iy & §20. B'=1BTR"=p
:

Iy & §20. B=1BTR"=p
:

minimum=0.0111

. . .
107 10° 10° 10° 10 107 10° 10° 10°

Figure 5: The computed Spin(p) with m =n = L = 60, Ny = 9, and Ny = 10. (a) = = 1,
Bt =1/p. (b) =1, =p.

The complete theoretical proof of the theorem is difficult. However we have proved (5.53) in
the theorem for the case p > 1 assuming the optimization problem has solutions.

‘ Theoretical Proof of (5.53) when p > 1: ‘ We assume that the optimization problem has

solutions and 3~ > 1. Since (z7,y;) is the projection of (z;,y;) on the interface, we know that
Nk, = 0, where k. is the k such that (i, ji,) = (0,0). From the fifth equation in (3.17)

ka +ag(p—1) =47,
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and the fact that ag > 0 and p > 1, we can conclude that

8

Z'}’ké <p

and 7, < C/h? except at most two possible k, say k1, k2 where 7, is very small, see Fig. 3 for an
illustration. The possible such £’s in Fig. 3 are k = 1 and k = 9 corresponding to the grid points
(zi—1,9j-1) and (zi11,y;+1). Note that (z;, ,y;, ) and (zi,,y;,,) have to be on different sides of
the interface. Without loss of generality, we assume that £, < 0 and &, > 0. From the second
equation and the fourth equations in (3.17) we have

h&k,  hék, hék,  hék )
o () o () <o,

& TR AW
(B ) e (%) o0,

The determinant J of the 2 x 2 matrix of the system of equations above is given by

2 2
7= ﬁﬁ%Q%—%r@ﬁ%W%—mﬂ.

pt B gt B
Since &, < —h <&, <0, &, > 0, there exists a constant ¢; > 0 such that

T 5&_&6):@ Eks Eke
pr B pt B~ Bt Bt B~

Since &, — &, < —cah for some cy > 0, it follows that J < —ch* for some ¢ > 0 and thus we have
Yk1s Vko < C/hQ' 0

> Clh2

(

) = (ks + &)

— (&ky + k)

+ &k,

Similarly, for the case p < 1 if a7 > 0 then (5.53) holds. In fact, from the forth and fifth
equations of (3.17)
a7 +ag = ag +ayg

Since a7 > 0 it follows from the forth equation of (3.17) that
a7 +ag = ag + aip < 7.

Thus exactly the same argument as above is applied.

5.2 Convergence of the second order method.

Parallel to the convergence result for the first order method, we have the following theorem:

Theorem 5.2 Let u(z,y) be the exact solution to (1.1) and (1.2) with k = 0, piecewise (3 as
defined in (4.30), and a Dirichlet boundary condition. Assume

1. the optimization problem (8.20)-(3.21) has a set of solution v with all the siz equations in
(8.17) being satisfied at every irregular grid points;
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2. u(z,y) has piecewise continuous fourth order derivatives;
3. h is sufficient small;

4. at all irreqular grid points, the following is true:

C
> M= 7 (5.59)
£k >0
or
Eng}é{fk} < Coh  with Cy > 0 sufficiently small. (5.60)
k>

Then we have the following error estimate for the approrimate solution obtained from the first
order optimization method

lu(zi, y5) — Uijlloo < C3h?, (5.61)

where the constants depend on the geometry and the coefficient 3.

Remark: We have numerically proved that (5.59) holds as long as maxg, >0 {{x} > C2h with
Cy = 0.01. Otherwise (5.59) may not hold. However, we will show that quadratic convergence
can still be proved by constructing a modified comparison function in the following proof.

Proof: If (5.59) is true, then we know that

- C
Lyd(zi,y;) = Z Y&k + lower order terms > 71,
&k >0

where ¢(z,y) is defined in (4.47) in Section 4. If (5.59) is violated but (5.60) is true, then all the
grid points from other side of the interface other than (z;,y;) are very close to the interface. For
the nine-point stencil, this can only happen when the interface is very close to one of the grid
lines, z = x;_1, or T = T;41, or y = y;_1, or y = y;41. Without loss of generality, we assume that
the interface cuts the grid line y = y; at =}, where

z; < 7 < Tig1, zit1 — x; < Cah.

The normal direction is nearly parallel to the z- axis. Since maxg, >0 {&} < Coh, we know that
(i+1,Y4), (Tix1,Yj—1), and (@i41,y;j4+1) are only three grid points in the nine-point stencil that
are in the different side from (x;,y;), and (z},vy;) is very close to the projection of (z;,y;) on the
interface. Since there is no interface involved in the y direction, we can decompose the equations
(3.17) in the z- and y- directions. In the y- direction, assuming (z;,y;) is in — side, we have

/8_ ’U,(.’L'Z', yj—l) - 2U(J,‘z', y]) + ’U,(.’BZ‘, yj+1)
h2

which is the standard three-point difference scheme.

= B uyy(zi, ;) + O(h?),

In the z- direction, consider also the three-point difference scheme: The equations in the z-
direction are

a1 +ax = 0,
a3 +pag = 0,
d7 + 68 p = /875
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where we use @; to represent those terms in z- directions in a;’s in (3.17). From the one-dimensional
result, see [18] we have that the solution to the equations above is also close to the standard
three point central difference scheme for ug,(z;,y;) since as/h, as/h* are of order O(Cy). From
(3.20)-(3.21) of the constructed optimization problem, we can conclude that the solution to the
optimization problem is close to the standard five-point stencil scheme with a correction term of
O(Cy/h?). For such a point, we define a function

(z} — zi)(zi — 2)

5 , ifx <uaj,
. R
¥ (@) = (@is1 — 20)(@ — zis1) (5.62)
it ) “U iz >
VZ+1,Jh3

(2)

where 7,7’ is the coefficient of the finite difference scheme centered at (x;, ;) corresponding to the

ij
grid point (z;_1,y;) with k = 2; 75?1’]- is the coefficient of the finite difference scheme centered at

(zi+1,y;) corresponding to the grid point (z;12,y;) with k = 8. Notice that 97 (zi) = 97 (zit1) =
0 and ¢ (z;) > 0 for j # i, i + 1 and that ¢f;(z) < M for all (z,y) € 2. More important, we
can easily derive

Leny) = S (14+0(G), (5.63)
Lpij(Tiv1,y5) = %%(14‘0(02)) (5.64)

The high order terms are due to the fact that Ly may not be exact the standard five-point finite
difference scheme although it is close. Therefore when all £, > 0 is very small, z] — z; is close to
h and Lyptpj;(zi,y;) = 1/h.

Similarly we can construct such ¢7;(z) or ( ) at the points where (5.60) holds. Define the

comparison function as
$(z,y) = ¢z, 9) + > vfi(@) + D vhi(y)
where ¢ is the same as defined in (4.47) in Section 4. Then
([ 1+ 0(h?) if (z;,y;) is a regular grid point,

_ vtr > L 0(1) if (5.59) is true.
Lyd(xi,y5) > 4 kz>0

1-0Co
L h

if max {{x} < Coh, with Cy < 1.
&k >0

Note that at some regular grid points, thg(xi, yj) can be very large but it is nonnegative. Thus,
the first inequality above still holds. Therefore at a regular points we have

T Csh?
At an irregular grid point where (5.59) is satisfied, we have
T3] < Cih  Cy
Lud(xi,y;) — Ci/h G

h2
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since the truncation error is bounded by

T3] < Cah
for some constant Cj that depends on the third derivatives of the solution on each side of the
interface. At an irregular grid point where the (5.60) is true, we also have

Thus, from Lemma, 4.1, again we have proved the quadratic convergence.

h2.

Notice that, if h is small enough, we have numerically proved the existence of the solution
to the optimization problems and (5.59) piecewise constant [, therefore the method using the
standard nine-point stencil is second order convergent.

For variable coefficient 3 and non zero jump [k], since all the terms in the linear system of
equations (3.17) that involve [k] and the derivatives of 3 are high order terms of h, we can conclude
the same result if A is sufficient small theoretically. Our numerical tests have verified second order
accuracy for piece-wise and variable discontinuous coefficients through grid refinement analysis
even if h is relatively large.

6 Numerical Results

We have performed a number of number of numerical experiments for both first order and second
order methods. The results agree with our theoretical analysis. The computation are done using
either Sun’s Ultra-1 workstation or IBM SP2 machine. The linear system of equations is solved
using the multigrid method developed by P. M. de Zeeu [8]. MGD9V takes the standard nine
point stencil. Our code is modified from the package developed in [18]. The interface is a closed
curve in the solution domain and expressed in terms of the periodic cubic spline interpolation.

6.1 Grid refinement analysis
Example 6.1

This example is the same as the example 2 in [15]. The interface is the circle 22 + y? = § L within
the computation domain —1 < x,y < 1. The equations are

(Bu)s + (Bu)y = @)+ C [ 87 X(5)ds, (6.65)
with flz,y) =8(z? +1y*) + 4 and
2 +y?+1, ifz? 49> < g,
Blz,y) = e 2 2 111
b, if +y° > i

Dirichlet boundary conditions are determined from the exact solution

r2, if r < %,
u(z,y) = 6.66
(=:9) (1—%—%)/44—( +72)/b+ C log(2r)/b, ifr> 3. (6.66)
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(a) b=10, C =0.1.

Nfinest | M1 | level | neoarse | En || oo order
42 40 | 4 6 5.0184 103
82 80 5 6 1.7610 102 | 1.5652
162 160 6 6 1.4726 1073 | 0.2628
322 320 7 6 5.3827 10~% | 1.4650
642 640 8 6 2.6156 10~* | 1.0459

(b) b=0.1, C =0.1.

Ntinest | M1 | level | Neoarse | En |l order
42 40 | 4 6 3.8393 10T
82 80 5 6 1.2884 10~ | 1.6320
162 |160| 6 6 9.7770 1072 | 0.4053
322 [320] 7 6 3.7634 1072 | 1.3898
642 640 | 8 6 1.8031 10~2 | 1.0663

Table 1: Numerical results of the first order method for Example 6.1. First order convergence is
observed.

It is easy to check that (6.66) satisfies (6.65). In this example, we have variable and discontinuous
coefficients. Table 1 and Table 2 give numerical results using the first order method and the
second order method for different choices of b and ¢. The maximum error over all grid points,

| En |loo = max | u(zi,y;) — Ui |,

is presented, where U;; is the computed approximation at the uniform grid points (z;,y;). The
order of convergence is computed from

log (|| Eny || oo/l Ens 1l00)
log(ni/n2)

order = )

which is the solution of
|| En ||oo — Chorder
with two different n’s.

As explained earlier and in [20], for interface problems, the errors usually do not decline
monotonously. Instead it depends on the relative location of the grid and the interface. However,
we can easily observe the first order and second order convergence in Table 1 and Table 2. Notice
that as the parameter b gets smaller, the solution in the outside of the interface becomes larger and
the problem becomes harder to solve. But our second order method still converges quadratically.

Example 6.2

In this example, the interface is the ellipse z2 + 4y? = 1 within the computational domain
—2 < z,y < 2. The equation is

/8 (uzz + uyy) = f(l'ay)a
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(a) b=10, C =0.1.

Nfimest | M1 | level | neoarse | En oo order
34 40 3 9 1.0179 1073
66 80 4 9 1.9532 10~* | 2.4889
130 [ 160 | 5 9 5.3213 107° | 1.9183
258 [320| 6 9 1.2102 10~° | 2.1605
514 | 640 | 7 9 3.0413 10~° | 2.0038

(b) b= 1000, C = 0.1.

Nfinest | M1 | level | Neoarse | En |l o order
34 40 3 9 5.1361 1074
66 80 4 9 8.2345 107° | 2.7598
130 [160| 5 9 1.8687 107° | 2.1878
258 | 320 6 9 4.0264 107% | 2.2394
514 | 640 | 7 9 9.430 107 | 2.1059

(¢) b=0.001, C =0.1.

Nfinest | M1 | level | Neoarse | En o order
34 40 3 9 9.3464
66 80 4 9 2.0055 2.3204
130 160 | 5 9 5.8084 101 | 1.8280
258 | 320 6 9 1.3741 107! | 2.1031
514 | 640 | 7 9 3.5800 102 | 1.9514

Table 2: Numerical results of the second order method for Example 6.1, second order convergence
is observed.
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(a) BT =1, B~ = 1000

Nfinest | M1 | level | Neoarse | En o order
34 40 3 9 1.8322 107!
66 80 4 9 3.5224 1073 | 5.9574
130 [ 160 ] 5 9 4.5814 10~° | 3.0090
258 | 320 6 9 1.4240 10~° | 1.7049
514 | 640 | 7 9 3.1501 107% | 2.1887

(b) B+ =1000, B~ =1

Ninest | M1 | level | neoarse | En |l oo order
34 40 3 9 8.0733 103
66 80 4 9 3.0371 1073 | 1.4739
130 [160 | 5 9 7.1981 10~* | 2.1238
258 [320| 6 9 1.6876 10~* | 2.1162
514 | 640 | 7 9 2.7407 107° | 2.6371

Table 3: Numerical results of the second order method for Example 6.2, second order convergence
is observed.

where the coefficients are defined as
5 B, ifz?+4y? <1,
)| B, iz 4y > 1.
The jumps [u] in the solution, [Suy,] in the flux, and [f] in the source term are chosen so that the
following function is the exact solution:
z% — 2, if 22 +4y? < 1,
u(z,y) =q | , (6.67)
sin(z) cos(y), if 22 +4y? > 1.
Unlike Example 6.1, the solution in this example is discontinuous and independent the coefficients
(. Table 3 shows the results of the grid refinement analysis using the second order method. Again
we see clearly second order accuracy. Fig. 6 (a) plot the solution which is composed of two pieces.
Fig. 6 (b) is the error plot of the computed solution. The error looks like piecewise smooth as
well.

It is worth to point out that, compared with the original immersed interface method, the error
distribution obtained from the new methods developed here behaves much better due to the facts
that (1) the resulting linear system of equation is an M-matrix; (2) more grid points are involved.

Example 6.3

Finally we show an example with the same solution inside and outside of the interface as the
example above but with more complicated interface:

1
p=g5t 0.1 sin(56), 0<6 < 2m. (6.68)

Fig. 7 shows the computational domain and the interface. Table 4 is the grid refinement analysis.
Second order convergence again is verified.
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Computed Solution (n=82)
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Figure 6: (a). The solution of Example 6.2 with jumps in the solution as well as in the normal
derivatives. The parameters are 37 = 1, 8~ = 100, and 7 finest = 82. (b). The error plot with the
same parameters. The error distribution is better than that obtained from the original immersed
interface method.

Nfinest | M1 | level | Neoarse | En |l o order
42 40 4 6 2.4858 102
82 80 5 6 3.3258 1073 | 3.0065
162 [ 160 | 6 6 4.9338 10 | 2.8026
322 320 7 6 1.2191 10~% | 2.0351

Table 4: Numerical results of the second order method for Example 6.3 with 3~ = 1 and 8+ =
1000, second order convergence is observed.

6.2 Algorithm efficiency analysis

A natural concern about the new methods proposed in this paper is how much extra cost needed
in solving the quadratic optimization problem at each irregular grid point. In Fig. 8 we plot
the percentage of the computational time used in the interface treatment versus the ratio of the
jump in the coefficients. The cost for dealing with the irregular grid points includes solving
the quadratic optimization problem, interpolating the cubic spline, indexing the irregular grid
points, and finding (z, y;) For regular problems, the multigrid solver is as fast as the FFT fast
Poisson solver and a little bit fast than the ADI (alternating directional implicit) method for
Poisson equations. Therefore the multigrid method that we used is indeed a fast solver. In all
our simulations, the cost for dealing with the irregular grid points near on the interface is less
than 10%. When 8~ = 31, the finite difference coefficients become the standard five point stencil
scheme and the cost for the interface treatment reaches its minimum.

The CPU time used in the entire solution process depends on the geometry and the jump in
the coeflicients. Table 5 lists some statistics for Example 6.2 on IBM SP2 machine. Below is a
typical complete output.

n = 514, nl1 = 640, beta- 1000, Dbeta+ 1,
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Figure 7: The computational domain and the interface for Example 6.3.

level = 7, ncoarse = 9, error = 0.354242602715481542E-04
12.8u 0.6s 0:35 37% 211+51816k 0+0io 4pf+0w

We can see that for the large problem 514 x 514 with big jump in the coefficients, the CPU time
needed is within a second.

N finest n1 | level | nearse | B~ | BT | CPU time (s)
258 x 258 | 320 6 9 1 1000 0.04
514 x 514 | 640 7 9 1 1000 0.15
514 x 514 | 640 7 9 1000 1 0.35

Table 5: CPU time for Example 6.2 with different parameters using IBM SP2 machine.

Remark 6.1 It seems that the convergence of the multigrid solver depends on the jump in
the coefficient and the mesh size. Therefore for piecewise constant coefficient 3, the fast solver
proposed in [20] may be a better choice since the number of iterations of the fast solver proposed
in [20] is independent of the jump and the mesh size.

Remark 6.2 The linear system of equations using the finite difference methods proposed in this
paper is irreducible and diagonally dominant. The multigrid solver DMGDYV is designed for the
finite difference method of standard nine-point stencil but not specifically for interface problems.
Generally the multigrid method converges very fast for our method. However, we do observe
occasionally that the multigrid stops before it returns a convergent result. In these cases, we still
can make the multigrid method work by changing some built-in parameters such as the number of
maximum iterations on the coarse grid, the number of smoothing operations etc. Other DMGD9V
users® have had the same experiences.

3Private communication with Dr. X. Wu from Caltech and Exxon Company.
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Figure 8: Percentage of the CPU time used for dealing with interfaces.

7 Conclusions

In this paper, we have proposed a class of finite difference methods that preserve the discrete
maximum principles for elliptic interface problems. The convergence of the methods have been
provided. The methods can be easily generalized to parabolic interface problems. We would
strongly recommend the second order method over the first order method. A Fortran pack-
age for a single closed interface and the Dirichlet boundary condition is available upon request
(zhilin@math.ncsu.edu).
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8 Appendix: Relation to an intergral equation.

In this appendix, we show how the solution of the interface problem is associated with an integral
equation.

Let T be a closed C? curve, and the coefficient of 3 is piecewise constant. Consider the
interface Poisson problem defined on the infinite domain R?

V-8Vu = 0,

[u] = 0, [Bun] =V (s),

where V(s) € C%*([), 0 < @ < 1 is a function defined on the interface I'. We represent the
solution u by the single-layer potential

w0 = 5- [ Gl y)oly) dy.

where G is the Green’s kernel function (G(x,y) = log(|x — y|) for R?). It follows from [7] that
if ¢ € C%(T), Holder continous with exponent «, then u is continuous across I' and piecewise

Cl,a

We determine ¢ so that the flux jump condition is satisfied. From the potential limiting theory
[7], we have

w6) = 5 [ G Goy)oy) dy 5

Define the integral operator K by

1 0
Ko =5 [ 5o Glxy)oly) dy

Note that
[Bun)(s) = Brul —puy
= Bruy = Brug + BTuy — Buy
= ﬁ+ [un] + [ﬁ]u;
= o+ [8(—% + K¢)

Therefore we get an integral equation for ¢(s):
(5 - B) s+ xo=vie

This is a Fredholm integral equation of the second kind. It has a unique solution C%%(T") provided
that V € C%*(T') [7] by the Riesz-Fredholm theory.
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