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Abstract

We present various versions of the maximum principle for optimal control of forward-
backward SDEs with jumps. Our study is motivated by risk minimization via g-
expectations. We first prove a general sufficient maximum principle for optimal control
with partial information of a stochastic system consisting of a forward and a backward
SDE driven by Lévy processes. We then present a Malliavin calculus approach which
allows us to handle non-Markovian systems. Finally we give examples of applications.

1 Introduction and motivation example

The purpose of this paper is to discuss solution methods of the maximum principle type for
the optimal control of systems of forward-backward stochastic differential equations driven
by Lévy processes. One of the motivations of this study is the problem of finding risk
minimizing portfolios in finance, where the risk is represented in terms of g-expectations.
We now explain this in more detail.

Let η(t) = η(t, ω); t ≥ 0, ω ∈ Ω, be a Lévy process on a filtered probability space
(Ω,F , {Ft}t≥0, P ). Let F be a family of FT -measurable random variables F : Ω → R, where
T > 0 is a fixed constant. We interpret F ∈ F as a financial position of a trader in a financial
market driven by the Lévy process η(t).

For simplicity we assume that

E[η2(t)] <∞ for all t ≥ 0.
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This implies that η(t) has the representation

η(t) = at+ bB(t) +

∫ t

0

∫
R0

zÑ(ds, dz); t ≥ 0 (1.1)

where a, b are constants, B(t) is an Ft-Brownian motion, R0 = R \ {0} and

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt

is the compensation of the jump measure N(·, ·) of η(·), ν being the Lévy measure of η(·).
We refer e.g. to Øksendal and Sulem [ØS2] and Applebaum [A] for more information

about the stochastic control and calculus of processes driven by Lévy processes.
LetR denote the set of all functions k : R0 → R. In the following we fix a convex function

g : R× R×R → R

and we consider the backward stochastic differential equation (BSDE)dX(t) = −g(X(t), Y (t), K(t, ·))dt+ Y (t)dB(t) +

∫
R0

K(t, z)Ñ(dt, dz)

X(T ) = F.
(1.2)

in the 3 unknown Ft-predictable processes X(t), Y (t), K(t, z). We assume that this equation
has a unique solution, which we denote by (XF

g (t), Y F
g (t), KF

g (t, z)). BSDE’s of this form are
related to the concept of convex risk measures, described as follows:

Risk measures. Let F = Lp(FT , P ) (p ∈ [1,∞]) represent the family of all financial
standings at time T . A convex risk measure is a map

ρ : F → R

satisfying the following conditions

(convexity) ρ(λF + (1− λ)G) ≤ λρ(F ) + (1− λ)ρ(G) for all, F,G ∈ F, λ ∈ (0, 1).
(1.3)

(monotonicity) F ≤ G⇒ ρ(G) ≤ ρ(F ) ; F,G ∈ F. (1.4)

(See e.g. Frittelli and Rosazza-Gianin [FR1], Föllmer and Schied [FS] and Biagini and
Frittelli [BF]).

Intuitively, ρ(F ) may be interpreted as the the amount the agent has to hold to cancel the
risk associated with his risky position F , that is ρ(F + ρ(F )) = 0 (see [BE]).

There are several useful representations of convex risk measures. One of them is the
following:
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Theorem 1.1 (Frittelli and Rosazza-Gianin [FR1], Föllmer and Schied [FS])
Every convex risk measure ρ : F → R which also satisfies the translation invariance

property
ρ(F + a) = ρ(F )− a ; ∀F ∈ F, a ∈ R (1.5)

is of the form
ρ(F ) = sup

Q∈P
{EQ[−F ]− ζ(Q)} ; F ∈ F (1.6)

for some family P of probability measures absolutely continuous with respect to P and some
convex “penalty” function ζ : P → R.

For example, if P is the set of all probability measures Q � P and ζ is the relative
entropy

ζ(Q) = E

[
dQ

dP
ln

(
dQ

dP

)]
= H(Q,P ) (1.7)

then
ρ(F ) := sup

Q�P
{EQ[−F ]−H(Q,P )} (1.8)

is called the entropic risk measure.
If one uses the representation (1.6) for the convex risk measure and wants to find the

portfolio that minimizes the risk of the corresponding terminal wealth; one arrives at a
stochastic differential game. This approach has been studied recently by Mataramvura and
Øksendal [MØ]. A corresponding risk indifference pricing method is studied in Øksendal and
Sulem [ØS1].

In this project we study the risk minimization problem by using another representation
of the convex risk measure, namely the representation in terms of g-expectation (See e.g.
Peng [P], Rosazza-Gianin [R]).

Definition 1.2 The risk ρ(F ) = ρg(F ) (associated to the convex function g) of a financial
position F ∈ F is defined by

ρ(F ) := Eg[−F ] := X−F
g (0) ∈ R, (1.9)

where X−F
g (0) is the value at t = 0 of the solution X(t) of the BSDE (1.2) with terminal

value −F .

Remark 1.3 The number X−F
g (0) = Eg(−F ) is called the g-expectation of −F . In the

Brownian motion case this concept has been studied extensively in the literature. See e.g.
Peng [P] or Frittelli & Rosazza-Gianin [FR1] for more information about g-expectations and
its relation to convex risk measures. In this paper we extend this concept to the Lévy process
case, and we use it to study risk minimization in financial markets.
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Remark 1.4 One can show that since g is convex the function ρg : F → R is indeed a convex
risk measure. The function g may be regarded as a measure of risk aversion. For example,
one can show that (see Coquet et al [CHMP])

g ≤ g̃ ⇒ ρg(F ) ≤ ρg̃(F ) ; F ∈ F.

If the function g does not depend on x, i.e. if

g(x, y, k) = g(y, k),

then ρg also satisfies the translation property (1.5) and then g is related to the penalty
function ζ in the representation (1.6). For example, if we choose ν = 0 and

g(x, y, k) =
1

2
y2 ; x ∈ R

then
ρg(F ) = Eg[−F ] = sup

Q�P
{EQ[−F ]−H(Q,P )}

coincides with the entropic risk measure. See Barrieu and El Karoui [BE] for more informa-
tion.

Risk minimizing portfolios Suppose we have a financial market with the following 2
investment possibilities:

A risk free asset, with unit price S0(t) = 1 for all t ∈ [0, T ] (1.10)

A risky asset, with unit price S(t) at time t given by (1.11)

dS(t) = S(t−)
[
α(t)dt+ β(t)dB(t) +

∫
R0

θ(t, z)Ñ(dt, dz)
]
; S(0) > 0

where α(t), β(t) and θ(t, z) are Ft-predictable processes such that θ(t, z) ≥ −1 + ε for some
ε > 0 and ∫ T

0

{
|α(t)|+ β2(t) +

∫
R0

θ2(t, z)ν(dz)
}
dt <∞ a.s.

Suppose we are given a subfiltration

Et ⊆ Ft for all t ∈ [0, T ]

representing the information available to the trader at time t. This means that the portfolio
π(t) of the trader, representing the fraction of the total wealth invested in the risky asset
at t, is required to be Et-predictable. The wealth process A(t) = Aπ(t) corresponding to the
portfolio π(t) is given bydA(t) = A(t−)π(t)

[
α(t)dt+ β(t)dB(t) +

∫
R0

θ(t, z)Ñ(dt, dz)
]

A(0) = a > 0.
(1.12)
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We say that the portfolio π(t) is admissible and write π ∈ AE if π is Et-predictable and∫ T

0

{
|α(t)π(t)|+ π2(t)β2(t) + π2(t)

∫
R0

θ2(t, z)ν(dz)
}
dt <∞ a.s.

The risk minimizing portfolio problem is to find the portfolio π∗ ∈ AE which minimizes the
risk of the terminal wealth, i.e.

inf
π∈AE

ρg(Aπ(T )) = ρg(Aπ∗(T )). (1.13)

In view of (1.9) this is equivalent to

inf
π∈AE

X−Aπ(T )
g (0) = X−Aπ∗ (T )

g (0), (1.14)

where X
−Aπ(T )
g (t) = X(t) is given by (1.2) with F = −Aπ(T ). This is an example of a

partial information stochastic control problem of a system of forward (1.12)-backward (1.2)
stochastic differential equations (FBSDEs), driven by Lévy processes.

In section 2 we study the general partial information optimal control problem for FBSDEs
and we prove a partial information sufficient maximum principle for such problems. In
Section 3 we prove a partial information necessary maximum principle. More precisely, we
prove the equivalence between being a critical point for the performance functional of a
partial information FBSDE problem and being a conditional critical point for the associated
Hamiltonian. A drawback of the methods of the previous sections is the assumption of the
existence of solutions of the BSDEs of the adjoint processes. In Section 4 we present a
method based on Malliavin calculus, where this assumption is not needed. Moreover, this
approach allows us to handle non-Markovian systems. Finally, in Section 5 we apply our
general results to the risk minimization problem mentioned in the introduction, and we find
explicit expressions for the minimal risk in special cases.

2 A maximum principle for optimal control of forward-

backward SDE

In this section we present a general sufficient maximum principle for optimal control with
partial information of a stochastic system consisting of a forward and a backward SDE
driven by Lévy processes. Such a maximum principle is also studied by Bahlali [B] and Shi
and Wu [SW] in the complete information case (and [B] with the Brownian motion case
only), and their proofs differ from ours. Related earlier results are Framstad, Øksendal and
Sulem [FØS] (maximum principle for (forward) jump diffusions), Baghery and Øksendal [BØ]
(partial information case (2007)) and Meyer-Brandis, Øksendal and Zhou [MØZ] (partial
information, non-Markovian system, Malliavin calculus for Lévy processes). See also [PW].

For simplicity we present the 1-dimensional case only. Suppose the state (A(t), X(t)) of
our system is described by the following coupled forward-backward system of SDE’s:

5



(Forward system in the controlled process A(t))
dA(t) = b(t, A(t), u(t))dt+ σ(t, A(t), u(t))dB(t)

+

∫
R0

γ(t, A(t), u(t), z)Ñ(dt, dz); t ∈ [0, T ]

A(0) = a ∈ R

(2.1)

(Backward system in the unknown processes X(t), Y (t), K(t, z))
dX(t) = −g(t, A(t), X(t), Y (t), u(t))dt+ Y (t)dB(t)

+

∫
R0

K(t, z)Ñ(dt, dz); t ∈ [0, T ]

X(T ) = cA(T ), where c ∈ R\{0} is a given constant.

(2.2)

Suppose in addition that we are given a subfiltration

Et ⊆ Ft; t ∈ [0, T ]

representing the information available to the controller at time t. For example, we could
have

Et = F(t−δ)+ (δ > 0 constant)

meaning that the controller gets a delayed information flow compared to Ft.
Let AE denote a given family of controls, contained in the set of Et-predictable controls

u(·) such that the system (2.1)–(2.2) has a unique strong solution. If u ∈ AE we call u an
admissible control. Let U ∈ R be a given convex set such that u(t) ∈ U for all t ∈ [0, T ] a.s.,
for all u ∈ AE .

Suppose we are given a performance functional of the form

J(u) = E
[ ∫ T

0

f(t, A(t), X(t), Y (t), K(t, ·), u(t))dt (2.3)

+ h1(X(0)) + h2(A(T ))
]
; u ∈ AE

where E denotes expectation with respect to P and f, h1, h2 are given functions such that

E
[ ∫ T

0

|f(t, A(t), X(t), Y (t), K(t, ·), u(t))|dt+ |h1(X(0))|+ |h2(A(T ))|
]
<∞.

The problem we consider is the following:

Problem 2.1 (Partial information optimal control of forward-backward SDEs) Find
ΦE ∈ R and u∗ ∈ AE such that

ΦE = sup
u∈AE

J(u) = J(u∗). (2.4)
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The Hamiltonian

H : [0, T ]× R× R× R× L2(ν)× U × R× R× R× L2(ν) → R

is defined by

H(t, a, x, y, k, u, λ, p, q, r(.)) (2.5)

= f(t, a, x, y, k, u) + g(t, a, x, y, u)λ+ b(t, a, u)p

+ σ(t, a, u)q +

∫
R0

γ(t, a, u, z)r(z)ν(dz)

We assume that H is Frechet differentiable (C1) in the variables a, x, y, k (See Remark
2.2 below). To this problem we associate a pair of forward-backward SDEs in the adjoint
processes λ(t), (p(t), q(t), r(t, ·)) as follows

(Forward system in the unknown process λ(t))

dλ(t) =
∂H

∂x
(t, A(t), X(t), Y (t), K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·))dt

+
∂H

∂y
(t, A(t), X(t), Y (t), K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·))dB(t)

+

∫
R0

∇kH(t, A(t), X(t), Y (t), K(t, ·), u(t), λ(t), p(t), q(t), r(t, ·))Ñ(dt, dz)

λ(0) = h′1(X(0)) (=
dh1

dx
(X(0)))

(2.6)

(Backward system in the unknown processes p(t), q(t), r(t, ·))
dp(t) = −∂H

∂a
(t, A(t), X(t), Y (t), K(t, ·), λ(t), p(t), q(t), r(t, ·))dt

+q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz); t ∈ [0, T ]

p(T ) = cλ(T ) + h′2(A(T ))

(2.7)

Remark 2.2 Let V be an open subset of a Banach space χ and let F : V → R.

(i) We say that F has a directional derivative (or Gateaux derivative) at x ∈ V in the
direction y ∈ χ if

DyF (x) := lim
ε→0

1

ε
(F (x+ εy)− F (x)) exists

(ii) We say that F is Fréchet differentiable at x ∈ V if there exists a linear map

L : χ→ R

such that

lim
h→0
h∈χ

1

‖h‖
|F (x+ h)− F (x)− L(h)| = 0.

In this case we call L the Fréchet derivative of F at x and we write

L = ∇xF.
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(iii) If F is Fréchet differentiable, then F has a directional derivative in all directions y ∈ χ
and

DyF (x) = ∇xF (y).

Theorem 2.3 (Sufficient conditional maximum principle) Let û ∈ AE with correspond-
ing solutions Â(t), X̂(t), Ŷ (t), K̂(t, z), λ̂(t), p̂(t), q̂(t) and r̂(t, z) of equations (2.1), (2.2),
(2.6) and (2.7). Suppose that

(Concavity) The functions x→ hi(x) ; i = 1, 2 and

(a, x, y, k, u) → H(t, a, x, y, k, u, λ̂(t), p̂(t), q̂(t), r̂(t, ·))
are concave, for all t ∈ [0, T ]. (2.8)

(The conditional maximum principle)

max
v∈U

E[H(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), v, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et]

= E[H(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et]. (2.9)

Moreover, suppose that for all u ∈ AE the following growth conditions hold:

E
[ ∫ T

0

X2(t)
{(∂Ĥ

∂y
(t)
)2

+

∫
R0

‖∇kĤ(t, z)‖2ν(dz)
}
dt
]
<∞ (2.10)

E
[ ∫ T

0

λ̂(t)2
{
Y 2(t) +

∫
R0

K2(t, z)ν(dz)
}
dt
]
<∞ (2.11)

E
[ ∫ T

0

A2(t)
{
q̂2(t) +

∫
R0

r̂(t, z)2ν(dz)
}
dt
]
<∞ (2.12)

E
[ ∫ T

0

p̂(t)2
{
σ2(t) +

∫
R0

γ2(t, z)ν(dz)
}
dt
]
<∞, (2.13)

where A(t), X(t), Y (t), K(t, z) are the solutions of (2.1), (2.2) corresponding to u, and we
are using the notation

∂Ĥ

∂y
(t) =

d

dy
H
(
t, Â(t), X̂(t), y, K̂(t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·)

)
y=Ŷ (t)

and similarly with ∇kĤ(t, z).
Then û(t) is an optimal control for Problem 2.1, i.e.

J(û) = sup
u∈AE

J(u).
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Proof. Choose u ∈ A with corresponding solutions A(t), X(t), Y (t), K(t, ·), λ(t), p(t), q(t),
r(t, ·). In the following we write (see (2.5))

Ĥ(t) = H(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), û(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·))
= f(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), û(t)) + g(t, Â(t), X̂(t), Ŷ (t), û(t))λ̂(t)

+ b(t, Â(t), û(t))p̂(t) + σ(t, Â(t), û(t))q̂(t) +

∫
R0

γ(t, Â(t), û(t), z)r̂(t, z)ν(dz)

H(t) = H(t, A(t), X(t), Y (t), K(t, ·), u(t), λ̂(t), p̂(t), q̂(t), r̂(t, ·))
= f(t, A(t), X(t), Y (t), K(t, ·), u(t)) + g(t, A(t), X(t), Y (t), u(t))λ̂(t)

+ b(t, A(t), u(t))p̂(t) + σ(t, A(t), u(t))q̂(t) +

∫
R0

γ(t, A(t), u(t), z)r̂(t, z)ν(dz)

and similarly
f̂(t) = f(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), û(t)); f(t) = f(t, A(t), X(t), Y (t), K(t, ·), u(t)) . . . etc.
Then

J(û)− J(u) = I1 + I2, (2.14)

where

I1 = E
[ ∫ T

0

{f̂(t)− f(t)}dt
]

(2.15)

and
I2 = E[h1(X̂(0))− h1(X(0)) + h2(Â(T ))− h2(A(T ))]. (2.16)

By the definition of H we have

I1 = E
[ ∫ T

0

{Ĥ(t)−H(t)− (ĝ(t)− g(t))λ̂(t)

− (b̂(t)− b(t))p̂(t)− (σ̂(t)− σ(t))q̂(t)

−
∫

R0

(γ̂(t, z)− γ(t, z))r̂(t, z)ν(dz)}dt
]
. (2.17)

Since h1 is concave, we have

h1(X̂(0))− h1(X(0)) ≥ (X̂(0)−X(0))h′1(X̂(0)) = (X̂(0)−X(0))λ̂(0). (2.18)

Since h2 is concave, we have

h2(Â(T ))− h2(A(T )) ≥ (Â(T )− A(T ))h′2(Â(T )). (2.19)
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By the Itô formula and (2.2) and (2.7) we get

E[(X̂(0−X(0))λ̂(0)] = E[(X̂(T )−X(T ))λ̂(T )]

− E
[ ∫ T

0

(X̂(t)−X(t))dλ̂(t) +

∫ T

0

λ̂(t)d(X̂(t)−X(t))

+

∫ T

0

∂Ĥ

∂y
(t)(Ŷ (t)− Y (t))dt+

∫ T

0

∫
R0

∇kĤ(t, z)(K̂(t, z)−K(t, z))ν(dz)dt
]

= E[(Â(T )− A(T ))(p̂(T )− h′2(Â(T )))]

− E
[ ∫ T

0

{
(X̂(t)−X(t))

∂Ĥ

∂x
(t)− λ̂(t)(ĝ(t)− g(t))

+
∂Ĥ

∂y
(t)(Ŷ (t)− Y (t)) +

∫
R0

∇kĤ(t, z)(K̂(t, z)−K(t, z))ν(dz)
}
dt

= E
[ ∫ T

0

(Â(t)− A(t))dp̂(t) +

∫ T

0

p̂(t)d(Â(t)− A(t))

+

∫ T

0

(σ̂(t)− σ(t))q̂(t)dt+

∫ T

0

∫
R0

(γ̂(t, z)− γ(t, z))r̂(t, z)ν(dz)dt

−
∫ T

0

{
(X̂(t)−X(t))

∂Ĥ

∂x
(t)− λ̂(t)(ĝ(t)− g(t))

+ (Ŷ (t)− Y (t))
∂Ĥ

∂y
(t) +

∫
R0

∇kĤ(t, z)(K̂(t, z)−K(t, z))ν(dz)
}
dt
]

− E[(Â(T )− A(T ))h′2(Â(T ))].

= E
[ ∫ T

0

{
(b̂(t)− b(t))p̂(t) + (σ̂(t)− σ(t))q̂(t)

+

∫
R0

(γ̂(t, z)− γ(t, z))r̂(t, z)ν(dz)− (Â(t)− A(t))
∂Ĥ

∂a
(t)

− (X̂(t)−X(t))
∂Ĥ

∂x
(t) + λ̂(t)(ĝ(t)− g(t))

− (Ŷ (t)− Y (t))
∂Ĥ

∂y
(t)−

∫
R0

∇kĤ(t, z)(K̂(t, z))−K(t, z))ν(dz)
}
dt
]

− E[(Â(T )− A(T ))h′2(Â(T ))]. (2.20)
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Combining (2.14)–(2.20) we get

J(û)− J(u) = I1 + I2

≥ E
[ ∫ T

0

{
Ĥ(t)−H(t)− (Â(t)− A(t))

∂Ĥ

∂a
(t)− (X̂(t)−X(t))

∂Ĥ

∂x
(t)

− (Ŷ (t)− Y (t))
∂Ĥ

∂y
(t)−

∫
R0

∇kĤ(t, z)(K̂(t, z)−K(t, z))ν(dz)
}
dt
]

= E
[ ∫ T

0

E
[{
Ĥ(t)−H(t)− (Â(t)− A(t))

∂Ĥ

∂a
(t)− (X̂(t)−X(t))

∂Ĥ

∂x
(t)

− (Ŷ (t)− Y (t))
∂Ĥ

∂y
(t)−

∫
R0

∇kĤ(t, z)(K̂(t, z)−K(t, z))ν(dz)
}
| Et

]
dt
]
. (2.21)

Since the function

(a, x, y, k, u) → H(t, a, x, y, k, u, λ̂(t), p̂(t), q̂(t), r̂(t, ·))

is concave, we have

Ĥ(t)−H(t) ≥ ∂Ĥ

∂a
(t)(Â(t)− A(t)) +

∂Ĥ

∂x
(t)(X̂(t)−X(t))

+
∂Ĥ

∂y
(t)(Ŷ (t)− Y (t)) +

∫
R0

∇kĤ(t, z)(K̂(t, z)−K(t, z))ν(dz)

+
∂Ĥ

∂u
(t)(û(t)− u(t)). (2.22)

Since u = û(t) maximizes

u→ E[H(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), u, λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et]

we deduce that

d

du
E[H(t, Â(t), X̂(t), Ŷ (t), K̂(t, ·), u,

λ̂(t), p̂(t), q̂(t), r̂(t, ·)) | Et]u=û(t)(û(t)− u(t)) ≥ 0

i.e.

E
[∂Ĥ
∂u

(t)(û(t)− u(t)) | Et

]
≥ 0. (2.23)

Combining this with (2.21) and (2.22) we conclude that

J(û)− J(u) ≥ 0.

Since this holds for all u ∈ AE , û is optimal. �
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3 A partial information equivalence principle for forward-

backward SDE’s

A drawback with the result in the previous section is that in many applications the concavity
condition may not hold. In this section, we prove a version of the maximum principle which
does not need this assumption. Instead, we assume the following:

(A1) For all s ∈ [0, T ) and all bounded Es-measurable random variables θ(ω) the control βs

defined by
βs(t) = θ(ω)χ(s,T ](t) ; t ∈ [0, T ]

is in AE .

(A2) For all u, β ∈ AE where β is bounded there exists δ > 0 such that the control

u(t) + yβ(t) ; t ∈ [0, T ]

belongs to AE for all y ∈ (−δ, δ).

Theorem 3.1 (Partial information equivalence principle) Suppose u ∈ AE with cor-
responding solutions A(t), X(t), Y (t), K(t, z), λ(t), p(t), q(t) and r(t, z) of (2.1), (2.2),
(2.6) and (2.7). Assume that (2.10)-(2.13) hold. Then the following are equivalent:

(i)
d

dy
J(u+ yβ) |y=0= 0 for all bounded β ∈ AE

(ii) E

[
∂

∂u
H(t, A(t), X(t), Y (t), K(t, ·), u, λ(t), p(t), q(t), r(t, ·))u=u(t) | Et

]
= 0

Proof. Define

α(t) =
d

dy
Au+yβ(t) |y=0

ξ(t) =
d

dy
Xu+yβ(t) |y=0

η(t) =
d

dy
Yu+yβ(t) |y=0

ζ(t, z) =
d

dy
Ku+yβ(t, z) |y=0

Note that

α(0) =
d

dy
Au+yβ(0) |y=0= 0

and

α(T ) =
d

dy
Au+yβ(T ) |y=0=

1

c

d

dy
Xu+yβ(T ) |y=0=

1

c
ξ(T ).
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With this notation we have, writing

∂b

∂a
(t) =

∂b

∂a
(t, A(t), u(t)) etc.,

dα(t) =

{
∂b

∂a
(t)α(t) +

∂b

∂u
(t)β(t)

}
dt

+

{
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

}
dB(t)

+

∫
R0

{
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

}
Ñ(dt, dz) (3.1)

dξ(t) =

{
−∂g
∂a

(t)α(t)− ∂g

∂x
(t)ξ(t)− ∂g

∂y
(t)η(t)− ∂g

∂u
(t)β(t)

}
dt

+ η(t)dB(t) +

∫
R0

ζ(t, z)Ñ(dt, dz) (3.2)

Assume that (i) holds. Then

0 =
d

dy
J(u+ yβ) |y=0

= E

[∫ T

0

{
∂f

∂a
(t)α(t) +

∂f

∂x
ξ(t) +

∂f

∂y
(t)η(t) +∇kf(t, z)ζ(t, z) +

∂f

∂u
(t)β(t)

}
dt

+h′1(X(0))ξ(0) + h′2(A(T ))α(T )] (3.3)

By the Itô formula,

E[h′1(X(0))ξ(0)] = E[λ(0)ξ(0)]

= E

[
λ(T )ξ(T )−

∫ T

0

λ(t)dξ(t)−
∫ T

0

ξ(t)dλ(t)

−
∫ T

0

∂H

∂y
(t)η(t)dt−

∫ T

0

∫
R0

∇kH(t, z)ζ(t, z)ν(dz)dt

]
= E

[
λ(T )ξ(T )−

∫ T

0

λ(t)

{
−∂g
∂a

(t)α(t)− ∂g

∂x
(t)ξ(t)

−∂g
∂y

(t)η(t)− ∂g

∂u
(t)β(t)

}
dt−

∫ T

0

ξ(t)
∂H

∂x
(t)dt

−
∫ T

0

η(t)
∂H

∂y
(t)dt−

∫ T

0

∫
R0

∇kH(t, z)ζ(t, z)ν(dz)dt

]
. (3.4)
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Similarly, by (2.7),

E[h′2(A(T ))α(T )] = E[(p(T )− cλ(T ))α(T )]

= E[p(T )α(T )]− E[λ(T )ξ(T )]

=

[∫ T

0

p(t)dα(t) +

∫ T

0

α(t)dp(t)

+

∫ T

0

q(t)

{
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

}
dt

+

∫ T

0

∫
R0

r(t, z)

{
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

}
ν(dz)dt

]
− E[λ(T )ξ(T )]

= E

[∫ T

0

(
p(t)

{
∂b

∂a
(t)α(t) +

∂b

∂u
(t)β(t)

}
− ∂H

∂a
(t)α(t)

+ q(t)

{
∂σ

∂a
(t, z)α(t) +

∂σ

∂u
(t)β(t)

}
+

∫
R
r(t, z)

{
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

}
ν(dz)

)
dt

]
− E[λ(T )ξ(T )]. (3.5)

Combining (3.3), (3.4) and (3.5) we get

0 = E

[∫ T

0

{
∂f

∂a
(t)α(t) +

∂f

∂x
(t)ξ(t) +

∂f

∂y
(t)η(t)

+

∫
R0

∇kf(t, z)ζ(t, z)ν(dz) +
∂f

∂u
(t)β(t)

+ λ(t)

(
∂g

∂a
(t)α(t) +

∂g

∂x
(t)ξ(t) +

∂g

∂y
(t)η(t) +

∂g

∂u
(t)β(t)

)
− ∂H

∂x
(t)ξ(t)− ∂H

∂y
(t)η(t)−

∫
R0

∇kH(t, z)ζ(t, z)ν(dz)

+ p(t)

(
∂b

∂a
(t)α(t) +

∂b

∂u
(t)β(t)

)
− ∂H

∂a
(t)α(t)

+ q(t)

(
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

)
+

∫
R0

r(t, z)

(
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

)
ν(dz)

}
dt

]
.
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Collecting the terms with α(t), ξ(t), η(t), ζ(t, z) and β(t), the above can be written

E

[∫ T

0

{(
∂f

∂a
(t) +

∂g

∂a
(t)λ(t) +

∂b

∂a
(t)p(t) +

∂σ

∂a
(t)q(t)

+

∫
R0

∂γ

∂a
(t, z)r(t, z)ν(dz)− ∂H

∂a
(t)

)
α(t)

+

(
∂f

∂x
(t) +

∂g

∂x
(t)λ(t)− ∂H

∂x
(t)

)
ξ(t)

+

(
∂f

∂y
(t) +

∂g

∂y
(t)λ(t)− ∂H

∂y
(t)

)
η(t)

+

∫
R0

(∇kf(t, z)−∇kH(t, z))ζ(t, z)ν(dz)

+

(
∂f

∂u
(t) +

∂g

∂u
(t)λ(t) +

∂b

∂u
(t)p(t) +

∂σ

∂u
(t)q(t)

+

∫
R0

∂γ

∂u
(t, z)r(t, z)ν(dz)

)
β(t)

}
dt

]
= 0 (3.6)

By the definition of H the coefficients of α(t), ξ(t), η(t) and ζ(t) are all 0, and we conclude
that

E

[∫ T

0

∂H

∂u
(t)β(t)dt

]
= 0 ; β ∈ AE bounded. (3.7)

In particular, this holds for all β ∈ AE of the form

β(t) = βs(t, ω) = θ(ω)χ[s,T ](t) ; t ∈ [0, T ] (3.8)

for a fixed s ∈ [0, T ) where θ(ω) is a bounded Es-measurable random variable.
This gives

E

[∫ T

s

∂H

∂u
(t)θdt

]
= 0.

Differentiating with respect to s we arrive at

E

[
∂H

∂u
(s)θ

]
= 0.

Since this holds for all bounded Es-measurable random variables θ, we conclude that

E

[
∂H

∂u
(s) | Es

]
= 0. (3.9)

This proves that (i) ⇒ (ii).
Conversely, since every bounded β ∈ AE can be approximated by linear combinations of

controls βs of the form (3.8), we can prove that (ii) ⇒ (i) by reversing the above argument.
�
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4 A Malliavin calculus approach

A major difficulty with the maximum principle formulations in Sections 2 and 3 is that they
involve the adjoint processes p(t), q(t) and r(t, z). They are defined in terms of backward
stochastic differential equations (BSDEs), which are usually hard to solve. In this section
we propose a new approach based on Malliavin calculus. With this approach the adjoint
processes above are replaced by processes p̃(t), q̃(t) and r̃(t, z) which are given directly in
terms of the parameters and state of the system, not by BSDEs. Moreover, this approach
allows us to handle non-Markovian systems. Our method is an adaptation of the method in
[MØZ] to our setting of stochastic control of forward-backward SDEs.

We keep the setup and notation in (2.1)-(2.4) above, except that now we allow the
coefficients to be non-Markovian, i.e. we have

b(t, A(t), u(t)) = b(t, A(t), u(t), ω),

σ(t, A(t), u(t)) = σ(t, A(t), u(t), ω),

γ(t, A(t), u(t), z) = γ(t, A(t), u(t), z, ω),

g(t, A(t), X(t), Y (t), u(t)) = g(t, A(t), X(t), Y (t), u(t), ω),

f(t, A(t), X(t), Y (t), K(t, ·), u(t)) = f(t, A(t), X(t), Y (t), K(t, ·), u(t), ω)

and
h2(A(T )) = h2(A(T ), ω),

where ω → b(t, a, u, ω) is Ft-measurable for each constant a, u, and similarly with σ, γ, g
and f .

In the following, DtF denotes the Malliavin derivative with respect to B(·) (at t) of a
given (Malliavin differentiable) random variable F = F (ω); ω ∈ Ω. Similarly, Dt,zF denotes
the Malliavin derivative with respect to Ñ(·, ·) (at t, z) of F . We let D1,2 denote the set of
all random variables which are Malliavin differentiable with respect to both B(·) and N(·, ·).
We will use the following duality formulae for Malliavin derivatives

E

[
F

∫ T

0

ϕ(s)dB(s)

]
= E

[∫ T

0

ϕ(s)DsFds

]
(4.1)

E

[
F

∫ T

0

∫
R0

ψ(s, z)Ñ(ds, dz)

]
= E

[∫ T

0

∫
R0

ψ(s, z)Ds,zFν(dz)ds

]
, (4.2)

valid for all Malliavin differentiable F and Ft-predictable processes ϕ and ψ such that the
integrals on the right converge absolutely. We also need the following basic properties of
Malliavin derivatives:

If F ∈ D1,2 is Fs- measurable, then

DtF = Dt,zF = 0 for all t > s (4.3)

(Fundamental theorems)
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Dt

(∫ T

0

ϕ(s)dB(s)

)
=

∫ T

0

Dtϕ(s)dB(s) + ϕ(t) (4.4)

Dt,z

(∫ T

0

∫
R0

ψ(s, y)Ñ(ds, dy)

)
=

∫ T

0

∫
R0

Dt,zψ(s, y)Ñ(ds, dy) + ψ(t, z), (4.5)

provided that all terms involved are well-defined. We refer to [DØP] for more information
about the Malliavin calculus for Lévy processes and its applications.

We now define modified adjoint processes p̃(t), q̃(t), r̃(t, z), λ̃(t) as follows:

p̃(t) = κ(t) +

∫ T

t

∂H0

∂a
(s)G(t, s)ds (4.6)

q̃(t) = Dtp̃(t) (4.7)

r̃(t, z) = Dt,zp̃(t), (4.8)

with

κ(t) = h′2(A(T )) + cλ̃(T ) +

∫ T

t

∂f

∂a
(s)ds (4.9)

H0(s, a, x, u) = κ(s)b(s, a, u) +Dsκ(s)σ(s, a, u)

+

∫
R0

Ds,zκ(s)γ(s, a, u, z)ν(dz) + g(s, a, x, u)λ̃(s) (4.10)

Above and in the following, We use the shorthand notation H0(s) = H0(s, A(s), X(s), u(s)).
The process λ̃(t) is given by the similar (forward) equation as in (2.6) but with p, q, r

replaced by p̃, q̃, r̃:

dλ̃(t) =
∂H

∂x
(t, A(t), X(t), Y (t), K(t, ·), u(t), λ̃(t), p̃(t), q̃(t), r̃(t, z))dt

+
∂H

∂y
(t, A(t), X(t), Y (t), K(t, ·), u(t), λ̃(t), p̃(t), q̃(t), r̃(t, z))dB(t)

+

∫
R0

∇kH(t, A(t), X(t), Y (t), K(t, ·), u(t), λ̃(t), p̃(t), q̃(t), r̃(t, z), z)Ñ(dt, dz) ; t ∈ [0, T ]

λ̃(0) = h′1(X(0)),

(4.11)
with the Hamiltonian H defined in (2.5).
We can now state and prove the main result of this section. We first introduce the notation:

G(t, s) = exp

(∫ s

t

{
∂b

∂a
(r)− 1

2

(
∂σ

∂a
(r)

)2
}
dr +

∫ s

t

∂σ

∂a
(r)dB(r)

+

∫ s

t

∫
R0

ln

(
1 +

∂γ

∂a
(r, z)

)
Ñ(dr, dz)

+

∫ s

t

∫
R0

[
ln

(
1 +

∂γ

∂a
(r, z)

)
− ∂γ

∂a
(r, z)

]
ν(dz)dr ; s > t. (4.12)
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F (T ) := h′2(A(T )) + cλ̃(T ) (4.13)

Φ(t, s) :=
∂H0

∂a
(s)G(t, s) (4.14)

Theorem 4.1 Let u ∈ Aε with corresponding solutions A(t), X(t), Y (t), K(t, z) and λ̃(t) of

(2.1), (2.2) and (4.11). Assume that the random variables F (T ),
∂f

∂a
(t) and Φ(t, s) belong

to D1,2 for all 0 ≤ t ≤ s ≤ T and that

E

[∫ T

0

{
(
∂σ

∂a
(s))2α2(s) + (

∂σ

∂u
(s))2 +

∫
R0

{
(
∂γ

∂a
(s, z))2α2(s) + (

∂γ

∂u
(s, z))2

}
ν(dz)

}
ds

]
<∞

E

[∫ T

0

∫ T

0

{
(Ds(

∂f

∂a
(t)))2 +

∫
R0

(Ds,z(
∂f

∂a
(t)))2ν(dz)

}
ds dt

]
<∞

E

[∫ T

0

∫ T

0

{
(DrΦ(t, s))2 +

∫
R0

(Dr,zΦ(t, s))2ν(dz)

}
dr ds

]
<∞. (4.15)

Then the following are equivalent:

(i)
d

dy
J(u+ yβ) |y=0= 0 for all bounded β ∈ AE

(ii) E

[
∂

∂u
H(t, A(t), X(t), Y (t), K(t, ·), u, λ̃(t), p̃(t), q̃(t), r̃(t, z))u=u(t) | Et

]
= 0

for a.a. (t, ω) ∈ [0, T ]× Ω.

Proof.

(i) ⇒ (ii): Assume that (i) holds. Then, as in (3.3),

0 =
d

dy
J(u+ yβ) |y=0

= E

[∫ T

0

{
∂f

∂a
(t)α(t) +

∂f

∂x
(t)ξ(t) +

∂f

∂y
(t)η(t) +

∫
R0

∇kf(t, z)ζ(t, z)ν(dz)

+
∂f

∂u
(t)β(t)

}
dt+ h′1(X(0))ξ(0) + (h′2(A(T )) + cλ̃(T )− cλ̃(T ))α(T )]. (4.16)

By (3.1) and the duality formulae (4.1), (4.2) we have, with F (T ) defined in (4.13),

E[F (T )α(T )] = E

[
F (T )

(∫ T

0

{
∂b

∂a
(t)α(t) +

∂b

∂u
(t)β(t)

}
dt

+

∫ T

0

{
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

}
dB(t) +

∫
R0

{
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

}
Ñ(dt, dz)

)]
= E

[∫ T

0

{
F (T )

[
∂b

∂a
(t) +

∂b

∂u
(t)β(t)

]
+DtF (T )

[
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

]
+

∫
R0

Dt,zF (T )

[
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

]
ν(dz)

}
dt

]
. (4.17)
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Similarly we have, using the Fubini theorem,

E

[∫ T

0

∂f

∂a
(t)α(t)dt

]
=

= E

[∫ T

0

∂f

∂a
(t)

(∫ t

0

{
∂b

∂a
(s)α(s) +

∂b

∂u
(s)β(s)

}
ds

+

∫ t

0

{
∂σ

∂a
(s)α(s) +

∂σ

∂u
(s)β(s)

}
dB(s)

+

∫ t

0

∫
R0

{
∂γ

∂a
(s, t)α(s) +

∂γ

∂u
(s, t)β(s)

}
Ñ(ds, dz)

)]
= E

[∫ T

0

(∫ t

0

{
∂f

∂a
(t)

[
∂b

∂a
(s)α′s) +

∂b

∂u
(s)β(s)

]
+Ds

(
∂f

∂a
(t)

)[
∂σ

∂a
(s)α(s) +

∂σ

∂u
(s)β(s)

]
+

∫
R0

Ds,z

(
∂f

∂a
(t)

)[
∂γ

∂a
(s, z)α(s) +

∂γ

∂u
(s, z)β(s)

]
ν(dz)

}
ds

)
dt

]
= E

[∫ T

0

{(∫ T

s

∂f

∂a
(t)dt

)[
∂b

∂a
(s)α(s) +

∂b

∂u
(s)β(s)

]
+

(∫ T

s

Ds

(
∂f

∂a
(t)

)
dt

)[
∂σ

∂a
(s)α(s) +

∂σ

∂u
(s)β(s)

]
+

∫
R0

(∫ T

s

Ds,z

(
∂f

∂a
(t)

)
dt

)[
∂γ

∂a
(s, z)α(s) +

∂γ

∂u
(s, z)β(s)

]
ν(dz)

}
ds

]
.

Changing the notation s↔ t this becomes

= E

[∫ T

0

{(∫ T

t

∂f

∂a
(s)ds

)[
∂b

∂a
(t)α(t) +

∂b

∂u
(t)β(t)

]
+

(∫ T

t

Dt

(
∂f

∂a
(s)

)
ds

)[
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

]
+

∫
R0

(∫ T

t

(
∂f

∂a
(s)

)
ds

)[
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

]
ν(dz)

}
dt

]
. (4.18)

19



Combining (4.17) and (4.18), and using (4.9) we get

E

[∫ T

0

{
∂f

∂a
(t)α(t) +

∂f

∂u
(t)β(t)

}
dt+ h′2(A(T ))α(T )

]
= E

[∫ T

0

{
κ(t)

[
∂b

∂a
(t)α(t) +

∂b

∂u
(t)β(t)

]
+Dtκ(t)

[
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

]
+

∫
R0

Dt,zκ(t)

[
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

]
+
∂f

∂u
(t)β(t)

}]
− E[λ̃(T )ξ(T )], using that cα(T ) = ξ(T ). (4.19)

Then by the Itô formula and (4.11),

E[h′1(X(0))ξ(0)] = E[λ̃(0)ξ(0)]

= E

[
λ̃(T )ξ(T )−

∫ T

0

λ̃(t)dξ(t)−
∫ T

0

ξ(t)dλ̃(t)

−
∫ T

0

∂H

∂y
(t)η(t)dt−

∫ T

0

∫
R0

∇kH(t, z)ζ(t, z)ν(dz)dt

]
= E

[
λ̃(T )ξ(T )−

∫ T

0

λ̃(t)

{
−∂g
∂a

(t)α(t)− ∂g

∂x
(t)ξ(t)

−∂g
∂y

(t)η(t)− ∂g

∂u
(t)β(t)

}
dt−

∫ T

0

ξ(t)
∂H

∂x
(t)dt

−
∫ T

0

η(t)
∂H

∂y
(t)dt−

∫ T

0

∫
R0

∇kH(t, z)ζ(t, z)ν(dz)dt

]
.

Now

∂H

∂x
(t) =

∂f

∂x
(t) +

∂g

∂x
(t)λ̃

∂H

∂y
(t) =

∂f

∂y
(t) +

∂g

∂y
(t)λ̃

∇kH(t, z) = ∇kf(t, z).

Hence the above simplifies to

E[h′1(X(0))ξ(0)] = E[λ̃(T )ξ(T )

+

∫ T

0

{
λ̃(t)

[
∂g

∂a
(t)α(t) +

∂g

∂u
(t)β(t)

]
− ∂f

∂x
(t)ξ(t)− ∂f

∂y
(t)η(t)

−
∫

R0

∇kf(t, z)ζ(t, z)ν(dz)

}
dt

]
. (4.20)
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Combining (4.16), (4.19) and (4.20) we get

0 =
d

dy
J(u+ yβ) |y=0

= E

[∫ T

0

{
κ(t)

[
∂f

∂a
(t)α(t) +

∂f

∂u
(t)β(t)

]
+Dtκ(t)

[
∂σ

∂a
(t)α(t) +

∂σ

∂u
(t)β(t)

]
+

∫
R0

Dt,zκ(t)

[
∂γ

∂a
(t, z)α(t) +

∂γ

∂u
(t, z)β(t)

]
ν(dz) +

∂f

∂u
β(t)

+λ̃(t)

[
∂g

∂a
(t)α(t) +

∂g

∂u
(t)β(t)

]}
dt

]
= E

[∫ T

0

{[
κ(t)

∂b

∂a
(t) +Dtκ(t)

∂σ

∂a
(t) +

∫
R0

Dt,zκ(t)
∂γ

∂a
(t, z)ν(dz) + λ̃(t)

∂g

∂a
(t)

]
α(t)

+

[
κ(t)

∂b

∂u
(t) +Dtκ(t)

∂σ

∂u
(t) +

∫
R0

Dt,zκ(t)
∂γ

∂u
(t, z)ν(dz)

+
∂f

∂u
(t) + λ̃(t)

∂g

∂u
(t)

]
β(t)

}
dt. (4.21)

This holds for all β ∈ AE . In particular, if we apply this to

βθ = βθ(s) = θ(ω)χ(t,t+h](s)

where θ(ω) is Et-measurable and 0 ≤ t ≤ t+ h ≤ T we get, by (3.1),

α = α(βθ)(s) = 0 for 0 ≤ s ≤ t

and (4.21) can be written
L1(h) + L2(h) = 0, (4.22)

where

L1(h) = E

[∫ T

t

{
κ(s)

∂b

∂a
(s) +Dsκ(s)

∂σ

∂a
(s) +

∫
R0

Ds,zκ(s)
∂γ

∂a
(s, z)ν(dz)

+λ̃(s)
∂g

∂a
(s)

}
α(s)ds

]
(4.23)

and

L2(h) = E

[
θ

∫ t+h

t

{
κ(s)

∂b

∂u
(s) +Dsκ(s)

∂σ

∂u
(s) +

∫
R0

Ds,zκ(s)
∂γ

∂u
(s, z)ν(dz)

+
∂f

∂u
(s) + λ̃(s)

∂g

∂u
(s)

}
ds

]
(4.24)

Note that with α(s) = α(βθ)(s) we have, for s ≥ t+ h,

dα(s) = α(s−)

{
∂b

∂a
(s)ds+

∂σ

∂a
(s)dB(s) +

∫
R0

∂γ

∂a
(s, z)Ñ(ds, dz)

}
(4.25)
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Hence, by the Itô formula

α(s) = α(t+ h)G(t+ h, s) ; s ≥ t+ h (4.26)

where G is defined in (4.12). Note that G(t, s) does not depend on h. Then

L1h = E

[∫ T

t

∂H0

∂a
(s)α(s)ds

]
. (4.27)

where H0 is defined in (4.10). Differentiating with respect to h at h = 0 gives

L′1(0) =
d

dh
E

[∫ t+h

t

∂H0

∂a
(s)α(s)ds

]
h=0

+
d

dh
E

[∫ T

t+h

∂H0

∂a
(s)α(s)ds

]
h=0

. (4.28)

Since α(t) = 0 we see that

d

dh
E

[∫ t+h

t

∂H0

∂a
(s)α(s)ds

]
h=0

= 0. (4.29)

Therefore, by (4.26)

L′1(0) =
d

dh
E

[∫ T

t+h

∂H0

∂a
(s)α(t+ h)G(t+ h, s)ds

]
h=0

=

∫ T

t

d

dh
E

[
∂H0

∂a
(s)α(t+ h)G(t+ h, s)ds

]
h=0

ds

=

∫ T

t

d

dh
E

[
∂H0

∂a
(s)G(t, s)α(t+ h)

]
h=0

ds. (4.30)

By (3.1) we have

α(t+ h) = θ

∫ t+h

t

{
∂b

∂u
(r)dr +

∂σ

∂u
(r)dB(r) +

∫
R0

∂γ

∂u
(r, z)Ñ(dr, dz)

}
+

∫ t+h

t

α(r−)

{
∂b

∂a
(r)dr +

∂σ

∂a
(r)dB(r) +

∫
R0

∂γ

∂a
(r, z)Ñ(dr, dz)

}
. (4.31)

Therefore, by (4.30) and (4.31)
L′1(0) = Γ1 + Γ2, (4.32)

where

Γ1 =

∫ T

t

d

dh
E

[
∂H0

∂a
(s)G(t, s)θ

∫ t+h

t

{
∂b

∂u
(r)dr +

∂σ

∂u
(r)dB(r)

+

∫
R0

∂γ

∂u
(r, z)Ñ(dr, dz)

}]
h=0

ds (4.33)
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and

Γ2 =

∫ t+h

t

d

dh
E

[
∂H0

∂a
(s)G(t, s)

∫ t+h

t

α(r−)

{
∂b

∂a
(r)dr +

∂σ

∂a
(r)dB(r)

+

∫
R0

∂γ

∂a
(r, z)Ñ(dr, dz)

}]
h=0

ds. (4.34)

By the duality formulae (4.1), (4.2) we have, using (4.14)

Γ1 =

∫ T

t

d

dh
E

[
θ

∫ t+h

t

{
∂b

∂u
(r)Φ(t, s) +

∂σ

∂u
(r)DrΦ(t, s)

+

∫
R0

∂γ

∂u
(r, z)Dr,zΦ(t, s)ν(dz)

}
dr

]
h=0

ds

=

∫ T

t

E

[
θ

{
∂b

∂u
(t)Φ(t, s) +

∂σ

∂u
(t)DtΦ(t, s)

+

∫
R0

∂γ

∂u
(t, z)Dt,zΦ(t, s)ν(dz)

}]
ds, (4.35)

Since α(t) = 0 we see that
Γ2 = 0. (4.36)

We conclude from (4.32)-(4.36) that

L′1(0) = Γ1. (4.37)

Moreover, we see directly that

L′2(0) = E

[
θ

{
κ(t)

∂b

∂u
(t) +Dtκ(t)

∂σ

∂u
(t)

+

∫
R0

Dt,zκ(t)
∂γ

∂u
(t, z)ν(dz) +

∂f

∂u
(t) + λ̃(t)

∂g

∂u
(t)

]
. (4.38)

By differentiating (4.22) with respect to h at h = 0 we thus obtain the equation

E

[
θ

{(
κ(t) +

∫ T

t

Φ(t, s)ds

)
∂b

∂u
(t) +Dt

(
κ(t) +

∫ T

t

Φ(t, s)ds

)
∂σ

∂u
(t)

+

∫
R0

Dt,z

(
κ(t) +

∫ T

t

Φ(t, s)ds

)
∂γ

∂u
(t, z)ν(dz) +

∂f

∂u
(t) + λ̃(t)

∂g

∂u
(t)

}]
= 0. (4.39)

Using (4.6), equation (4.39) can be written

E

[
θ
∂

∂u
{f(t, A(t), X(t), Y (t), K(t, ·), u)

+ p̃(t)b(t, A(t), u) + λ̃(t)g(t, A(t), X(t), Y (t), u)

+ Dtp̃(t)σ(t, A(t), u) +

∫
R0

Dt,zp̃(t)γ(t, A(t), u, z)ν(dz)

}
u=u(t)

]
= 0. (4.40)
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Since this holds for all Et-measurable θ we conclude that

E

[
∂

∂u
H(t, A(t), X(t), Y (t), K(t, ·), u, p̃(t), q̃(t), r̃(t, z), λ̃(t))u=u(t) | Et

]
= 0. (4.41)

(ii) ⇒ (i): Conversely, suppose (4.41) holds for some u ∈ AE . Then we can reverse the
argument to get that (4.22) holds for all β = βθ. Then (4.22) holds for all linear combinations
of such βθ. Since all bounded β ∈ AE can be approximated by such linear combinations, it
follows that (4.22) holds for all bounded β ∈ AE . Hence, by reversing the remaning part of
the argument above, we conclude that (ii) ⇒ (i). �

5 Applications in Finance

5.1 Risk minimizing portfolios

To illustrate our results, we now apply them to study the risk minimizing portfolio problem
stated in the introduction. Note that the Malliavin calculus approach in Section 4 does not
require that the system is Markovian. So we assume that the wealth process A(t) = Au(t)
corresponding to the portfolio u is as in (1.12), i.e.dA(t) = u(t−)

[
α(t)dt+ β(t)dB(t) +

∫
R0

θ(t, z)Ñ(dt, dz)

]
A(0) = a > 0

(5.1)

where α, β and θ are given predictable processes. Here u(t) = π(t)A(t−) is the amount
invested in the risky asset at time t.

The corresponding BSDE for X(t) = Xu(t), Y (t) = Yu(t) and K(t, z) = Ku(t, z) in (1.2)
becomes dX(t) = −g(t,X(t), ω)dt+ Y (t)dB(t) +

∫
R0

K(t, z)Ñ(dt, dz)

X(T ) = −Au(T )
(5.2)

where g : [0, T ]×R×Ω → R is a given function, such that (t, ω) → g(t, x, ω) is Ft-predictable
for each given x.

The performance functional J(u) in (2.3) simplifies to

J(u) = Xu(0),

i.e. we have
f = 0, h1(x) = x and h2 = 0. (5.3)

Moreover, here we have

c = −1

b(t, a, u, ω) = uα(t, ω) = uα(t)

σ(t, a, u, ω) = uβ(t, ω) = uβ(t)

γ(t, a, u, z, ω) = uθ(t, z, ω) = uθ(t, z), for short.
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Therefore, the Hamiltonian becomes (dropping the ω in the notation for simplicity)

H(t, a, x, y, k, u, p, q, r(.), λ, ω)

= λg(t, x) + uα(t)p) + uβ(t)q +

∫
R0

uθ(t, z)r(z)ν(dz), (5.4)

The modified adjoint processes are given by:

p̃(t) = κ(t) +

∫ T

t

∂H0

∂a
(s)G(t, s)ds = −λ̃(T ) (5.5)

q̃(t) = −Dtλ̃(T ) (5.6)

r̃(t, z) = −Dt,zλ̃(T ) ; 0 ≤ t ≤ T. (5.7)

λ̃(t) is given by (4.11), i.e. {
dλ̃(t) = λ̃(t)g′(t,X(t))dt

λ̃(0) = 1,
(5.8)

where g′(t, x) =
∂

∂x
g(t, x). The equation (5.8) has the solution

λ̃(t) = exp

(∫ t

0

g′(s,X(s))ds

)
; 0 ≤ t ≤ T. (5.9)

The condition (ii) in Theorem 4.1 for an optimal control û(t) is

E

[
α(t)λ̃(T ) + β(t)Dtλ̃(T ) +

∫
R0

θ(t, z)Dt,zλ̃(T )ν(dz) | Et

]
= 0. (5.10)

Equation (5.10) is a (linear, homogeneous) partial information, Malliavin-differential type
equation in the unknown random variable λ̃(T ). In the Appendix, we solve this equation
and then extend the solution to the in-homogeneous equation. An equation of this type was
also encountered and solved in [MØZ] in the case when Et = Ft and ν = 0.

From now on, we assume that

Et = Ft for all t ∈ [0, T ] (5.11)

By Theorem A.1 we get,

λ̃(T ) = E[λ̃(T )] exp

(∫ T

0

σ(s)dB(s)− 1

2

∫ T

0

σ2(s)ds

+

∫ T

0

∫
R0

ln(1 + γ(s, z))Ñ(ds, dz)

+

∫ T

0

∫
R0

{ln(1 + γ(s, z))− γ(s, z)}ν(dz)ds
)

(5.12)
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for some Ft-predictable processes σ(t) and γ(t, z) such that

α(t) + β(t)σ(t) +

∫
R0

θ(t, z)γ(t, z)ν(dz) = 0 for a.a. t, ω. (5.13)

Remark 5.1 Note that condition (5.13) is saying that the measure Q defined by

dQ(ω) =
λ̃(T )

E[λ̃(T )]
dP (ω) on FT (5.14)

is an equivalent local martingale measure (ELMM) for the process A(t) given by (5.1). (See
Øksendal and A. Sulem [ØS2, Theorem 1.31]).

In particular, if σ and γ satisfy the Novikov condition

E

[
exp

(
1

2

∫ t

0

{
σ2(s) +

∫
R0

[(1− γ(s, z)) ln(1− γ(s, z)) + γ(s, z)]ν(dz)

}
ds

)]
<∞ (5.15)

then Q is an equivalent martingale measure (EMM) (see [KS, p. 408]).

We now study some special cases in more detail.

Lemma 5.2 Suppose the driver g(t, x, ω) satisfies the equation

mxg′(t, x)− g(t, x) + c1(t)x+ c0(t) = 0 (5.16)

for some constant m > 0 and some bounded predictable processes c1(t), c0(t). Define

λ(t) = λu(t) = exp

(∫ t

0

g′(s,X(s))ds

)
, (5.17)

where X(s) = Xu(s) is as in (5.2). Then

X(0) = −E
[
λ(T )m exp

(∫ T

0

c1(s)ds

)
A(T )

−
∫ T

0

λ(t)m exp

(∫ t

0

c1(s)ds

)
c0(t)dt

]
. (5.18)

Proof. Assume that g(t, x) has the form

g(t, x) = h(t, x)x+ c0(t) (5.19)

for some predictable processes h(t, x), c0(t). Then the equation for X(t) becomes

dX(t) = −h(t,X(t))X(t)dt− c0(t)dt+ dM(t),
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where

dM(t) = Y (t)dB(t) +

∫
R0

K(t, z)Ñ(dt, dz).

This can be written
d(J(t)X(t)) = J(t)[−c0(t)dt+ dM(t)],

where

J(t) = exp

(∫ t

0

h(s,X(s))ds

)
. (5.20)

Hence,

J(T )X(T ) = X(0) +

∫ T

0

J(s)[−c0(s)ds+ dM(s)]. (5.21)

In particular, if
h(t, x) = mg′(t, x) + c1(t), (5.22)

where m > 0 is a constant and c1(t) is a predictable process, then

J(t) = exp

(
m

∫ t

0

g′(s,X(s))ds+

∫ t

0

c1(s)ds

)
= λ(t)m exp

(∫ t

0

c1(s)ds

)
. (5.23)

Therefore, by (5.21),

λ(T )m exp

(∫ T

0

c1(s)ds

)
X(T ) =

= X(0)−
∫ T

0

λ(t)m exp

(∫ t

0

c1(s)ds

)
c0(s)ds+

∫ T

0

J(s)dM(s).

Taking expectation and noting that

X(T ) = −A(T ) = −Au(T ),

we obtain

X(0) =E

[
−λ(T )m exp

(∫ T

0

c1(s)ds

)
A(T )

+

∫ T

0

λ(t)m exp

(∫ t

0

c1(s)ds

)
c0(s)ds

]
, (5.24)

as claimed. �

Lemma 5.3 The general predictable solution g(t, x, ω) of equation (5.16) is as follows:
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(i) If m = 1, then
g(t, x) = −c1(t)x lnx+ c0(t) + c(t)x, (5.25)

where c(t) is an arbitrary predictable process.

(ii) If m 6= 1, then

g(t, x) = − c1(t)

m− 1
x+ c0(t) + c(t)x

1
m , (5.26)

where c(t) is an arbitrary predictable process.

Proof. The proof is straightforward and hence omitted. �

In particular, if we choose m = 1 and c0(t) = 0 in (5.16) we get the driver

g(t, x) = −c1(t)x lnx+ c(t)x. (5.27)

This gives the following result:

Theorem 5.4 Suppose g(t, x) is as in (5.27) and that c1(t) is deterministic and Et = Ft.
Let λ̃(T ) be the solution of (5.10) as given by (5.12) and suppose σ, γ satisfies (5.15). Then
the minimal risk X̂(0) satisfies the equation

X̂(0) + a exp

(∫ T

0

c1(s)ds

)
E[λ̃(T )] = 0. (5.28)

Proof. By Lemma 5.2

X̂(0) = −E
[
λ̃(T ) exp

(∫ T

0

c1(s)ds

)
Â(T ),

]
= − exp

(∫ T

0

c1(s)ds

)
E[λ̃(T )Â(T )].

By Remark 5.1 it follows that the measure Q defined by

dQ(ω) :=
λ̃(T )

E[λ̃(T )]
dP (ω) on FT (5.29)

is an EMM for A(t). Hence EQ[Â(T )] = a and

X̂(0) = −a exp

(∫ T

0

c1(s)ds

)
E[λ̃(T )].

�

Remark 5.5 The remaining problem is that we only know λ̃(T ) up to a multiplicative con-
stant (see Theorem A.1).
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As a second example, suppose we choose m = 1 and c1(t) = 0 in (5.16). Then by (5.25)
we get the driver

g(t, x) = c0(t) + c(t)x, (5.30)

where c0(t) and c(t) are given predictable processes. In this case we are able to find explicitly
the minimal risk X̂(0) as follows:

Theorem 5.6 Suppose the driver g(t, x) = g(t, x, ω) is given by (5.30). Suppose Et = Ft

and that

E

[
exp

(∫ T

0

c(s)ds

)(
1 +

∫ T

0

| c0(s) | ds
)]

<∞.

Suppose an optimal control û exists. Then the minimal risk is

X̂(0) = −aE
[
exp

(∫ T

0

c(s)ds

)]
+

∫ T

0

E

[
c0(t) exp

(∫ t

0

c(s)ds

)]
dt, (5.31)

which is attained at u = û = 0.

Proof. In this case we get

λu(t) = exp

(∫ t

0

g′(s,Xu(s))ds

)
= exp

(∫ t

0

c(s)ds

)
.

Hence by (5.18) we have, for u ∈ A,

Xu(0) = −E
[
λu(T )Au(T )−

∫ T

0

λu(t)c0(t)dt

]
.

In the optimal case u = û we have λû(T ) = λ̃(T ) and by Remark 5.1 and (5.29) we get

X̂(0) = Xû(0) = −E[λ̃(T )Aû(T )] + E

[∫ T

0

λ̃(t)c0(t)dt

]
= −E[λ̃(T )]EQ[Aû(T )] + E

[∫ T

0

λ̃(t)c0(t)dt

]
= −aE[λ̃(T )] + E

[∫ T

0

λ̃(t)c0(t)dt

]
= −aE

[
exp

(∫ T

0

c(s)ds

)]
+

∫ T

0

E

[
c0(t) exp

(∫ t

0

c(s)ds

)]
dt.

By direct computation we see that this value is attained by using u = 0, which therefore is
optimal. �

29



Remark 5.7 If g is as in Theorem 5.6, then the BSDE for Xu(t) is linear and we can solve
for Xu(t) as follows:

Xu(t) = E[Xu(T ) exp(

∫ T

t

c(s)ds) +

∫ T

t

exp(

∫ s

t

c(r)dr)c0(s)ds | Ft]. (5.32)

In particular, if we put t = 0 and take expectation we get

Xu(0) = E[Xu(T ) exp(

∫ T

0

c(s)ds) +

∫ T

0

exp(

∫ s

0

c(r)dr)c0(s)ds]

= −E[Au(T ) exp(

∫ T

0

c(s))ds] +R, (5.33)

where

R = E[

∫ T

0

exp(

∫ s

0

c(r)dr)c0(s)ds]. (5.34)

Therefore, to minimize Xu(0) is the same as to maximize

J0(u) := E[Au(T ) exp(

∫ T

0

c(s)ds)]. (5.35)

If c(s) is deterministic we see that

J0(u) = exp(

∫ T

0

c(s)ds)(a+ E[

∫ T

0

α(t)u(t)dt]) (5.36)

which has a finite maximum iff

α(t) = 0 for a.a. t, ω ∈ [0, T ]× Ω. (5.37)

And if (5.37) holds, an optimal control is

û = 0 for a.a. t, ω (5.38)

and hence

X̂(0) = X0(0) = −a exp(

∫ T

0

c(s)ds) +R, (5.39)

as obtained in Theorem 5.6.
However, we cannot get this conclusion from the above argument if c(s) is stochastic.

Theorem 5.6 states that it also holds in this case (provided an optimal control exists at all).

Remark 5.8 In (5.11) and the remaining part of Section 5 we have assumed that the con-
troller has full information, i.e. that Et = Ft for all t ∈ [0, T ]. However, it is possible
to do a similar analysis also in some partial information cases, e.g. when Et = Ft−δ for
some positive constant δ. In this case one can solve the corresponding partial information
Malliavin-differential type equation (5.10) by using that the process η(t) := η(t − δ) is a
Lévy process with respect to Ft−δ.
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5.2 Utility optimization under risk constraint

Our general forward-backward control formulation also covers the situation when one wants
to maximize (over all admissible portfolios) the expected utility of the terminal wealth,
subject to the constraint that the risk must not exceed a given threshold.

To explain this, consider again the forward-backward system (5.1)-(5.2).
Let U : [0,∞) → [−∞,∞) be a given utility function and let ρ0 be given real number.

The risk constrained maximal utility problem is the following:

Maximize E[U(Au(T ))] over all u ∈ AE , subject to

ρ(Au(T )) ≤ ρ0. (5.40)

As before the risk ρ is interpreted as

ρ(Au(T )) = Xu(0).

We can use the Lagrange multiplier method to study this problem:

Fix y > 0 and consider the unconstrained problem to maximize

E[U(Au(T ))] + y(ρ0 −Xu(0)). (5.41)

This is of the form (2.1)-(2.3), with c = −1, f = 0, h2(a) = U(a) ; a > 0 and h1(x) =
−yx ; x ∈ R.

Let the optimal control (portfolio) corresponding to y be denoted by û(y) and let X̂(y)(0)
be the corresponding risk. Suppose we can find y∗ > 0 such that the corresponding minimal
risk X̂(y∗)(0) satisfies (5.40) with equality, i.e.

X̂(y∗)(0) = ρ0.

Then u∗ := û(y∗) is an optimal control for the constrained problem, because

sup
u:Xu(0)≤ρ0

E[U(Au(T ))] ≤ sup
u
E[U(Au(T ))] + y∗(ρ0 −Xu(0))]

= E[U(Au∗(T ))] + y∗(ρ− X̂(y∗)(0))

= E[U(Au∗(T ))]

≤ sup
u:Xu(0)≤ρ0

E[U(Au(Y ))].

We conclude that it suffices to study the problem to maximize (5.41) for each given y > 0
without constraints. For this we can proceed as in subsection 5.1.
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Appendix

A Solution of linear Malliavin differential equations

We first consider the homogeneous equation (5.10). We assume Et = Ft. Let α(t), β(t),
and θ(t, z) be given Ft-predictable processes. We want to find all FT -measurable Malliavin
differentiable random variables Z = Z(ω) > 0 such that

α(t)E[Z | Ft] + β(t)E[DtZ | Ft]

+

∫
R0

θ(t, z)E[Dt,zZ | Ft]ν(dz) = 0 ; t ∈ [0, T ]. (A.1)

Theorem A.1 The general solution Z > 0 of the homogeneous equation (A.1) has the form

Z =c exp

(∫ T

0

σ(s)dB(s)− 1

2

∫ T

0

σ2(s)ds

+

∫ T

0

∫
R0

ln(1 + γ(s, z))Ñ(ds, dz)

+

∫ T

0

∫
R0

{ln(1 + γ(s, z))− γ(s, z)} ν(dz)ds
)

(A.2)

for any constant c > 0, where σ(s) and γ(s, z) are any predictable processes such that

α(t) + β(t)σ(t) +

∫
R0

θ(t, z)γ(t, z)ν(dz) = 0 for a.a. t, ω. (A.3)

Proof. Let Z ∈ D1,2 be FT -measurable. By the Itô representation theorem there exist
Ft-predictable processes σ0(t) and γ0(t, z) such that

Z = E[Z] +

∫ T

0

σ0(s)dB(s) +

∫ T

0

∫
R0

γ0(s, z)Ñ(ds, dz). (A.4)

This gives

E[Z | Ft] = E[Z] +

∫ t

0

σ0(s)dB(s) +

∫ t

0

∫
R0

γ0(s, z)Ñ(ds, dz), (A.5)

E[DtZ | Ft] = E

[
σ0(t) +

∫ T

t

Dtσ0(s)dB(s) +

∫ T

t

∫
R0

Dtγ0(s, z)Ñ(ds, dz) | Ft

]
= σ0(t), (A.6)

and

E[Dt,zZ | Ft] = E

[
γ0(t, z) +

∫ T

t

∫
R0

Dt,zγ0(s, ζ)Ñ(ds, dζ) | Ft

]
= γ0(t, z). (A.7)
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Substituting (A.5)-(A.7) into (A.11) we get

α(t)E[Z | Ft] + β(t)σ0(t) +

∫
R0

θ(t, z)γ0(t, z)ν(dz) = 0

or

α(t) + β(t)σ(t) +

∫
R0

θ(t, z)γ(t, z)ν(dz) = 0, (A.8)

where

σ(t) =
σ0(t)

E[Z | Ft]
and γ(t, z) =

γ0(t, z)

E[Z | Ft]
. (A.9)

Substituting (A.9) into (A.4) we get

Z = E[Z] +

∫ T

0

σ(s)E[Z | Fs]dB(s) +

∫ T

0

∫
R0

γ(s, z)E[Z | Fs− ]Ñ(ds, dz). (A.10)

Therefore, if we define
Z(t) := E[Z | Ft]. (A.11)

We have

dZ(t) = Z(t−)

[
σ(t)dB(t) +

∫
R0

γ(t, z)Ñ(dt, dz)

]
. (A.12)

This stochastic differential equation has the solution

Z(t) = E[Z] exp

(∫ t

0

σ(s)dB(s)− 1

2

∫ t

0

σ2(s)ds

+

∫ t

0

∫
R0

ln(1 + γ(s, z))Ñ(ds, dz)

+

∫ t

0

∫
R0

{ln(1 + γ(s, z))− γ(s, z)}ν(dz)ds
)
. (A.13)

That completes the proof of Theorem A.1. �

We proceed to study the inhomogeneous equation.
Let α(t), β(t), ζ(t) and θ(t, z) be given Ft-predictable processes. We want to find all

FT -measurable Malliavin differentiable random variables Z = Z(ω) such that

α(t)E[Z | Ft] + β(t)E[DtZ | Ft]

+

∫
R0

θ(t, z)E[Dt,zZ | Ft]ν(dz) = ζ(t) for a.a. (t, ω) ∈ [0, T ]× Ω. (A.14)

Theorem A.2 Suppose Z = Z(T ) ∈ D1,2, where Z(t) is a solution of the SDE

dZ(t) = (ξ(t) + σ(t)Z(t))dB(t)

+

∫
R0

(η(t, z) + γ(t, z)Z(t−))Ñ(dt, dz) ; Z(0) ∈ R. (A.15)
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Then Z is a solution of (A.14) if the processes ξ(t), σ(t), η(t, z) and γ(t, z) are Ft-predictable
and satisfy the equations

α(t) + β(t)σ(t) +

∫
R0

θ(t, z)γ(t, z)ν(dz) = 0, a.a. (t, ω) (A.16)

and

β(t)ξ(t) +

∫
R0

θ(t, z)η(t, z)ν(dz) = ζ(t), a.a. (t, ω). (A.17)

Proof. We proceed as in the proof of Theorem A.1. With Z as in (A.4) we get, by
substituting (A.5)-(A.7) into (A.14),

α(t)E[Z | Ft] + β(t)σ0(t) +

∫
R0

θ(t, z)γ0(t, z)ν(dz) = ζ(t). (A.18)

Now choose processes σ(t), ξ(t), γ(t, z) and η(t, z) such that

σ0(t) = σ(t)E[Z | Ft] + ξ(t) (A.19)

and
γ0(t, z) = γ(t, z)E[Z | Ft] + η(t, z). (A.20)

Then (A.18) becomes[
α(t) + β(t)σ(t) +

∫
R0

θ(t, z)γ(t, z)ν(dz)

]
E[Z | Ft]

+ β(t)ξ(t) +

∫
R0

θ(t, z)η(t, z)ν(dz) = ζ(t). (A.21)

We conclude that the random variable Z = Z(T ) with Z(t) = E[Z | Ft] defined by
(A.15) satisfies the equation (A.14) for any choice of σ, ξ, γ and η such that (A.16) and
(A.17) hold. �
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