
Algorithmica (1991) 6:597-619

Algorithmica
�9 1991 Springer-Verlag New York Inc.

Maximum Queue Size and Hashing with Lazy Deletion

Claire M. Kenyon 1 and Jeffrey Scott Vitter 2

Abstract. We answer questions about the distribution of the maximum size of queues and data

structures as a function of time. The concept of "maximum" occurs in many issues of resource

allocation. We consider several models of growth, including general birth-and-death processes, the

M/G/oe model, and a non-Markovian process (data structure) for processing plane-sweep information

in computational geometry, called "hashing with lazy deletion" (HwLD). It has been shown that

HwLD is optimal in terms of expected time and dynamic space; our results show that it is also optimal

in terms of expected preallocated space, up to a constant factor.

We take two independent and complementary approaches: first, in Section 2, we use a variety of

algebraic and analytical techniques to derive exact formulas for the distribution of the maximum queue

size in stationary birth-and-death processes and in a nonstationary model related to file histories. The

formulas allow numerical evaluation and some asymptotics. In our second approach, in Section 3, we

consider the M/G/co model (which includes M/M/co as a special case) and use techniques from the

analysis of algorithms to get optimal big-oh bounds on the expected maximum queue size and on the

expected maximum amount of storage used by HwLD in excess of the optimal amount. The techniques

appear extendible to other models, such as M/M/1.

Key Words. Queues, Maximum, Hashing with lazy deletion, Data structures, File histories, Stacks,

Priority queues, Linear lists, Symbol tables, Continued fractions, Orthogonal polynomials, Birth-and-

death process, M/M/co, M/G/co, Transforms.

1. Introduction. Queueing phenomena are widespread in the fields of operating

systems, distributed systems, and performance evaluation. Queues are also a

natural way to model the size of classical dynamic data structures, such as buffers,

dictionaries, sets, stacks, queues, priority queues, and sweepline structures. As a

consequence, many statistical properties of queues have been investigated, such as

their expected size and variance. Yet, very little was known about the maximum size

of queues over a given period of time. If the size of the queue represents the amount

of resource used by a computer program or a systems component, then such

information is important for making intelligent decisions about preallocating

resources.

a Ecole Normale Suprrieure, Laboratoire d'Informatique, 45 rue d'Ulm, 75230 Paris Cedex 05, France.

Research was also done while the author was at Princeton University, supported in part by a Procter
Fellowship.

2 Department of Computer Science, Brown University, Box 1910, Providence, RI 02912-1910, USA.

Research was also done while the author was on sabbatical at INRIA in Rocquencourt, France, and at

Ecole Normale Sup6rieure in Paris, France. Support was provided in part by National Science

Foundation Research Grant DCR-84-03613, by an NSF Presidential Young Investigator Award with

matching funds from an IBM Faculty Development Award and an AT&T research grant, by a

Guggenheim Fellowship, and by the Office of Naval Research and the Defense Advanced Research

Projects Agency under Contract N00014-83-K-0146 and ARPA Order 6320, Amendment 1.

Received May 5, 1988. Communicated by Philippe Flajolet.

598 C.M. Kenyon and J. S. Vitter

Another motivation for our study was the need to develop and analyze practical

space-efficient methods for processing sweepline information. Some work in this

area has been done by Van Wyk and Vitter [1986], Morrison et al. [1987], and

Ottmann and Wood [1986], but as the latter point out, "Surprisingly there has

been little theoretical investigation of space-economical plane-sweep algorithms

even though such algorithms have significant practical applications." Ottmann

and Wood [1986] do not investigate the maximum number of items cut by the

sweepline; they express the running times of their algorithms in terms of the

maximum number. Our approach in this paper is to examine the distribution of the

maximum number of cut items, based on several popular input models, and in

addition show that the "hashing with lazy deletion" (HwLD) algorithm introduced

by Van Wyk and Vitter [1986] is extremely practical and optimum in both average

running time and preallocated space.

We develop new methods and obtain several results about the distribution of the

maximum queue size, under several models of growth. We study stationary birth-

and-death processes, and are particularly interested in M/M/oo and the more

general M/G/oo queues, which model the amount of plane-sweep information as a

function of time. We also concentrate on HwLD, which is a non-Markovian

queueing model corresponding to the space usage of the algorithm by the same

name. In addition we study a nonstationary model corresponding to histories of

priority queues.

Plane-sweep algorithms process a sequence of items over time; at time t the data

structure stores the items that are "living" at time t. Let us think of the ith item as

being an interval [s,, ti] in the unit interval, containing a unique key ki of

supplementary information. The ith item is "born" at time s,, "dies" at time t~, and

is "living" at time t when t ~ [s~, tJ. The data structure must be able to support the

dynamic operation of searching the living items based on key value. It is natural to

think of the data structure as a queue, as far as size is concerned. Let us denote the

queue size at time t by Need(t), the number of items that need to be included in the

data structure. If we think of the items as horizontal intervals, then Need(t) is just

the number of intervals "cut" by the vertical sweepline at position t. In a typical

application, we may have 106 intervals in the time range [0, 1], with E(Need) =
10 a; that is, only the square root of the total number of items tends to be present at

any given time [Szymanski and Van Wyk, 1983]. It is thus very inefficient to devote

a separate storage location to every item; the data structure should be dynamic.

In HwLD, items are stored in a hash table of H buckets, based upon the hash

value of the key. The distinguishing feature of HwLD is that an item is not deleted

as soon as it dies; the "lazy deletion" strategy deletes a dead item only when a later

insertion accesses the same bucket. The number H of buckets is chosen so that the

expected number of items per bucket is small. HwLD is thus more time-efficient

than doing "vigilant-deletion," at a cost of storing some dead items.

Let Use(t) be the number of items in the HwLD data structure at time t. It is

shown by Van Wyk and Vitter [1986] for the M/M/oo model that at any given time

t we have

E(Use) E(Need) + H 2 = = - + H ,

Maximum Queue Size and Hashing with Lazy Deletion 599

where 2 is the birth rate of the intervals and 1//t is the average lifetime per item. The

amount of wasted space is equal to the number H of buckets. A possible choice of H

is H = | so that the expected amounts of space and time used by HwLD

are optimal, up to a constant factor. (In practice, the computer memory space used

by HwLD if often less than the space used by "vigilant-deletion" strategies, because

the latter are typically based on balanced trees and priority queues, which require

more storage overhead (pointer information) per item.) It was conjectured by Van

Wyk and Vitter [1986] that

E(max {Use(t)} - max {Need(t)}) = O(H),
\o_<i_<1 O_<t< 1 /

which would prove that HwLD is also optimal in terms of preallocated storage. A

system of equations for the distribution of maxt{Need(t)} and for the degenerate

H = 1 distribution of maxt{ Use(t)} in equilibrium for the M / M / ~ model was

recently developed by Morrison et al. [1987]. This system can be used to get

numerical data. Both distributions are nearly identical, because when H = 1 we

have maxt > t.{Need(t)} = m a x t >t,{ Use(t)}, where t* is the birthtime of the first item

to enter the queue after time t = 0.

In this paper we attain an array of results about the maximum queue size using

two independent approaches. In the first approach, described in the next section,

we develop several formulas for the distribution of maxt{Need(t)} for general

birth-and-death processes (which includes the M / M / ~ process) and for the

distribution of maxt{ Use(t)} in the general H > 1 case of HwLD. We also handle a

nonstationary model described by Van Wyk and Vitter [1986]. The formulas

provide exact numerical data on the distributions, and in some cases lead to

asymptotics as the time interval grows. There is a common underlying structure in

the formulas for the different models: the transform of interest in each case is the

ratio of consecutive classical orthogonal polynomials.

In our second approach, described in Section 3, we prove the above conjectures

for the general M / G / ~ model, which includes M / M / ~ as a special case. We obtain

optimal big-oh bounds on the expected maximum queue size by using non-

queueing-theory techniques. We approximate the continuous-time processes

max,{Need(t)} and maxt{ Use(t)} by sums of discrete quantities related to hashing,

specifically, maximum slot occupancies. (The hashing in our approximation

scheme has nothing to do with the hashing inherent in HwLD.) Our techniques

also seem applicable to other queueing models, such as M/M/1.

2. Exact Formulas for Maximum Queue Size. It is convenient to extend the range

of time to [0, T] for arbitrary T; the results can be translated back to T = 1 later.

In the following sections we derive exact formulas for the distribution of the

maximum queue size in several models. Our formulas are amenable to numerical

calculation and yield asymptotic expressions in some cases.

600 c.M. Kenyon and J. S. Vitter

The problem has been studied previously by Morrison et al. [1987] for the

special cases of M/M/oo and the H = 1 case of HwLD. However, analysis for

the case H = 1 cannot be used to get a good bound for when H > 1; a corollary

of our analysis in Section 3 is that H.max,{Usel(t)} is typically greater than

maxt{Use(t)} by more than a constant factor, where Usel(t) is the occupancy of

bucket 1 at time t.

A birth-and-death process is a Markov process in which transitions from level k

are allowed only to levels k + 1 and k - 1. We restrict ourselves to continuous time

in this exposition. Borrowing notation from HwLD, we define Need(t) to be the

level of the process at time t. The infinitesimal birth and death rates at level k are

denoted)~k and #k:

2kAt+o(At) if j = k + l ,

~1 -- (2 k d- #k)At -t- o(At) if j = k,
Pr{Seed(t + At) = j I Need(t) = k} = |#k At + o(At) if J k 1,

/

[o(At) otherwise.

For the special case of the M/M/oo model we write 2 o = 21 2 and #k = k/~.

For the M/M/1 model we write 2o = 21 2 and #1 = #z #. In both

cases the arrival process is Poisson, and for the M/M/oo case the lifespans are

exponentially distributed. The reader can consult [Kleinrock, 1975] for further

background.

In Sections 2.1-2.5 we derive exact formulas for Pr{maxo_<t<r{Need(t)} = k}
using a variety of algebraic and analytical techniques. The first three sections

handle the case of general homogeneous and stationary birth-and-death processes

in equilibrium at t = 0, the fourth discusses HwLD under the M/M/oo model in

equilibrium at t = 0, and the last deals with a nonstationary model.

2.1. Applications o f Stack Histories. A Dyck path is a walk in Z 2 above the x-axis

such that each step is of the type (a, b) ---, (a + 1, b _ 1). Its level is the maximal

y-coordinate reached. Dyck paths are a special case of file histories: they corre-

spond to histories of stacks [Flajolet et al., 1980]. (File histories are discussed

further in Section 2.3.) Let {o be a Dyck path going from level i to level I in n steps,

and with height constrained to be _< k. For each such co we define po,(T) to be the

probability that in time interval [0, T] the successive different states of the process

Need(t) correspond exactly to o), given that Need(O) = i.

LEMMA 2.1. We have

Pr I max {Need(t)} <_ k} = ~"
[O < t < T i , l ,n ,e~

(Pr{Need(O) = i}. po,(T)).

As an example of our method, let us consider the M/M/1 model with parameters

2 and #. The equilibrium probabilities are given by Pr{Need = i} = (2/#)i(1 - 2/#).

It remains to calculate the po~(T) terms, which can be expressed as a multiple

Maximum Queue Size and Hashing with Lazy Deletion 601

integral. In fact, p,o(T) does not depend upon the actual shape of Co, but only upon

the number of times the path hits the x-axis. Using that gives us p~,(T) in simple

summation form. Lemma 2.1 can thus be applied to yield an exact expression for
Pr{maxo<t~ r{Need(t)} <_ k}.

2.2. Applications o f Orthogonal Polynomials.
by Morrison et al. [1987] for the M/M/oo
processes. We have

We can extend the approach used

model to general birth-and-death

Pr max {Need(t)} N k = ~ Pr{Need(O) = j } . Sj, k(t)dt ,
(O<_t<_T O<j<_k

where Sj.k(t) is the density of the first-passage time to level k starting from level j.

These densities {Sj, k}j<k are solutions of a system of integral equations; taking
Laplace transforms aj, k(S) we get the following system:

aj,~(s) = ~j,j+ l(S)~j+ 1,j+2(s) "" *~- 1,,(s),

s + 2j + J~j

Let us define cO~+l(S) to be 1/(ao, l a l , 2 . . . O ' j , j + l) , where C0o(S) = 1. We find that

cot+ l(s) is a polynomial of degreej + 1, and it can be computed by iteration. Hence,

aj.,(s) = COj(S)/COk(S) is a rational fraction; its poles are roots of ~0k, and yield Sj, k(t)
and thus Pr{maxo~<T{Need(t)} < k}. Moreover, when Need(t) i s a birth-and-

death process, computing the roots of Cok is an easier task because {Co j} is a family of

orthogonal polynomials, and when T goes to infinity, Pr{max o<_7<_ T{Need(t)} <
k} ~ Ke "r, with K a constant and c~ a root of Cos with maximal modulus.

Karlin and McGregor [1958] introduce the family of polynomials {Q.(x)} with

the properties that Q o (x) - 1 and - x Q = AQ, where A is the infinitesimal
generator matrix defined by

ik if j = k + l ,

Ak, j = --'~k - - #k if j = k,

k if j = k - 1 ,

otherwise.

It turns out that Q,(x) = co , (-x) . This expression gives an extremely simple tool
for linking birth-and-death processes to classical families of orthogonal polyno-
mials:

THEOREM 2.1. For the M / M / 1 process we have

1
(v%"O.(.x) = r.(z) ~ r._l(z),

602 C . M . Kenyon and J. S. Vitter

where a = 2/p, z = - (x - a - 1)/x/~ and {Tj(u)} is the family of Chebyshev
orthogonal polynomials. For the M/M/oe process we have

Q~(x) = (- 1)JaJc} ~ ,

where { c}a)(u)} is the family of Poisson-Charlier orthogonaI polynomials. For several
types of linear birth-and-death processes, of the form 2k = ek + fl, #k = 7k + 6, Q~(x)
can be expressed in terms of either Laguerre polynomials or Meixner polynomials of
the second kind.

General birth-and-death processes can also be related to orthogonal polyno-

mials, using the framework of file histories discussed by Flajolet et al. [1980].

2.3. Applications of Continued Fractions. File histories model the evolution of

several classical types of dynamic data structures: stacks (S), priority queues (PQ),

linear lists (LL), symbol tables (ST), and dictionaries (D). The data structures are

treated as combinatorial objects; their performance characteristics are determined

by the relative order of the elements they contain, not by the actual values of the

elements. Thus, we say that there are k + 1 ways of inserting a new element into a

dictionary of size k, since there are k + 1 "gaps" where the new element can fit in,

relative to the k elements already present. The evolution of the data structure is

represented as a path in Z 2 (the x-coordinate counts the number of operations,

whether they be insertions, deletions, or queries, and the y-coordinate counts the

size), where each step is of the type (a, b) -o (a + 1, b _ 1) (insertion or deletion) or

(a, b) ~ (a + 1, b) (positive or negative query). To each step we associate a certain

choice among the possibilities, each equally likely. For example, in priority queue

files, deletions can be performed only for the minimum element, so the number of

possibilities for a deletion is 1. Table 2.1 summarizes the number of possibilities for
each type of data structure and operation.

Flajolet [1981] showed that the ordinary generating functions of file histories are

equal to continued fractions, and to the convergents when the height is constrained.

This gives yet another way of expressing o-j,k(t), namely, in terms of generating

functions of histories. (A related result is Karlin and McGregor's formula for

expressing the transition probability Po.o(t) for birth-death processes as a con-

tinued fraction [Karlin and McGregor, 1958].)

Table 2.1

D P Q LL ST S

Insertions k + 1 k + 1 k + 1 k + 1 1

Deletions k 1 k 1 1

Positive queries k 0 0 k 0

Negative queries k + 1 0 0 0 0

Maximum Queue Size and Hashing with Lazy Deletion 603

For purposes of brevity, let us restrict ourselves to the M/M/oo model in which

2 = #. This process is related to histories of symbol tables, in which the number of

possibilities for insertion, deletion, and query at level k are equal to k + 1, 1, and k,

respectively [Flajolet et al., 1980]. We let Hj, k(t) be the ord inary generat ing

function of the n u m b e r of symbol table histories going f rom level j to k, and we

define <h H f k (t) similarly except with the histories const ra ined to have height < h.

Let us consider the bounded process 2 o = 21 2h- 1 = 2, 2 h = 0, /~k = k/~,

whose height can never exceed level h (this process can be denoted M/M/oo /h) . We

define <h Ss to be the associated density funct ion for the first passage t ime to level

k. If we call cr~ h_ l(s) the Laplace t ransform of s;~p_ 1(0, then a~p_ l(s) is the solut ion

of the system

< h = i #

ai ' i - l (s) ;~ + i# + s -- 2ar

for i < h. Hence we have

a7,i-1 I~ + s (i + 1)s 2
1 - i s -

1 - - (i + 1) s - -
(i + 2)s 2

~

1 - (h - 1) s

hs 2

1 - (h - 1) s

and as ~k,l(S) = ~k.~-l(S)" ' "al+l.z(S), if k > I, we see that

6k, l(S) : (- - 1) k - l - l (l - t - 1) ~ S . ~ F + l , k ~ II + Sj

As for the upper first-passage t ime densities, in a similar way we can show that

It 1
O'i.i+l(S) = - - -

kt + s iy2
1 iy

1 - - (i - - 1) y

(i - 1)y 2

1 _ y _ y 2

where y = -g / (/~ + s). This gives us

ai'i+ l(S) [.~ "-~ S

604 C.M. Kenyon and J. S. Vitter

and for k < I this yields

%I(S)=,7,,.k+~(S)ak+I.~+2(S)...CrZ_LI(S)=(__ly-,,-~ ~ ~ l - ~ { ~ "~

Thus the Taylor coefficients of ~k,~(#(--S -- 1)) can be interpreted in terms of the

number of histories going from level 1 - 1 to level k with bounded height.

All file histories seen so far have their height bounded above or below by some

constant. This is due to our concentrating on times of first passage through a state l,

which implies that level l must be a barrier for the histories: they must not be

allowed to go through state I. But if we now remove the constraint of first passage

and consider Pk,~(t) = Pr{Need(t) = I[Need(O) = k}, in the same way we now get

(with nk, l(S) the Laplace transform of Pk, z(t))

{t(~ 1) t-k 1 Hk, l l l - (-)
+ s # + s

~k ,~(s) =

1)l_ k 1 s) Hk,1 (#)
(t + 1)(~ + ~ + s

if k<_l,

if k > l .

Taking the inverse Laplace transform will finally yield Si, k(t) and Pj, k(t).

2.4. Hashing with Lazy Deletion. The case H = 1 in which there is no hashing and

a vigilant-deletion strategy is used was analyzed by Morrison et al. [1987]. We can

generalize their method to H = 2 by considering the appropriate conditional

probabilities. For bucket i, we define Usei(t) and Needi(t) in the obvious way and

define Wastei(t) = Usei(t) - Needi(t). We have Use(t) = Needl(t) + Needz(t) +
Waste~(t) + Waste2(t).

At equilibrium we have, because of the independence between the two buckets,

Pr{Nl(0) = nl, I411(0) = wl, N2(0) = n2, W2(0) = w2}

= Pr{NI(0) = nl, WI(0) = wl} x Pr{N2(0) = n2, Wz(O) = w2}

(nl + wl)(2/21~)"'+WlF(~./2# + nl)e -z/zu

nl! F()~/2# + nt + wl + 1)

(n2 + w2)()~/2#)'2+W2F(,~/2# + nz)e -z/2"
x

n2! F(2/2# + nz + Wa + 1)

Let us define

P ~2,h(T) = Pr t max {Use(t)} < h [NI(0) = n 1, WI(0)
LO<t<_T

= W1, N2(0) = n 2, W2(0) = w2}.

Maximum Queue Size and Hashing with Lazy Deletion 605

Then we have

= E Pr{Nx(0) = na, Wx(0) = w~, N2(0) = n2, W2(0) = w z } p h(T),

where the sum is over the domain nl + n 2 + w 1 -t- w 2 < h. These probabil i t ies can
be computed :

P ~,,~ h(T) = s,, 2,h(t) dr,

where s.l,w 1 ,~,h(t) is the first-passage t ime density f rom the given initial state

(nl , Wx, n2, w2) to a state where Use(t) = h. I t satisfies the following equality:

s,l, w, 2,h(t)

+ nl#s.~-x,~,+~,.2.w~.h(t - u)

+ n2#s 1,n2-1,wz+l,h(t -- U)~ du
/

+ e-(Z+(n~ +n2)#)t

if nl , nz, wa, and w 2 are nonnegat ive numbers whose sum is smaller than h, and 0

otherwise. Tak ing the Laplace t ransform we get a closed system of l inear equat ions

and, solving, we get the density s 2,w2(t). This yields a me thod for obta ining

numerical ly the values of P r { m a x o z , _ ~ r{Use(t)} < h} and hence the distr ibution

and mean of maxo<~< r{Use(t)}. The same tools can be used for getting numerical

results in any case where H is a fixed constant .

2.5. Nonstationary Mode l and Hermite Polynomials. We consider the nons ta t ion-

ary model in t roduced by Van W y k and Vitter [1986], in which the 2n bir tht imes

and deatht imes of the n i tems are independent uni form r a n d o m variables f rom the

unit interval. The ith i tem is born at t ime min{si, ti} and dies at t ime max{si, t~}.

The average queue size E(Need(t)) = 2nt(1 - t) a t ta ins its m a x i m u m n/2 at t = �89

The quest ion of interest is to determine the dis tr ibut ion of the r a n d o m variable

maxo < t_~ 1 {Need(t)}. We shall see that it is the same as the height of a pr ior i ty queue
file history as discussed by Flajolet et al. [1980].

F o r a given choice of (s t , s,, tl t,), since the 2n values are distinct with

probabi l i ty 1, they can a lmost surely be sorted into increasing order u~ < u z <

�9 " < u2,. We now define an involut ion a E $2, by the condi t ion that ~(i) = j if

606 C.M. Kenyon and J. S. Vitter

and only if there is a k such that {ui, u~} = {Sk, tk}. An involution a has no fixed

point; for each k, it associates the two values that delimit the life of customer k.

Notice that knowledge of a gives enough information to obtain the value of

maxo <t<l{Need(t)}. The ith transaction on the structure is an insertion if a(i) > i,
and then the size is increased by one, and it is a deletion if a(i) < i, in which case the

size is decreased by one,

Since the random variables s~ s,, t a , . . . , t, are independent and uniformly

distributed in the unit interval, all involutions a with no fixed point are equally

likely. But we know that there is a one-to-one correspondence between such

involutions and file histories weighted by qi = 0, a~_ 1 s, = i, which are nothing but

priority queue file histories. (Here qi, a,, and si are the number of possibilities for

query, insertion, and deletion.) Hence, the problem is equivalent to knowing the

distribution of the height of a priority queue file history with length 2n. The schema

of the history is the sequence of the successive sizes of the process. The problem has

now become purely combinatorial.

More precisely, let H~,* denote the number of priority queue histories of length

2n and height < h. Since there are 1.3 --. (2n - 1) priority queue histories of length

2n (just as many as there are involutions with no fixed point on {1, 2 2n}), we

have

Pr I max {Need(t)} < h} = H~"h
lo_t_ t - 1 . 3 . . z : ~ n - - 1)"

We can now use the results of Flajolet et al. [-1980]:

H<-h(Z) = ~" H~. h z z" _ Q h - l (z)

. 9 . , (z) '

where Qh(Z) is an even polynomial with degree h or h + 1 according to whether h is

even or odd. Moreover, Hh+ ~(z) = z h+ 1Qh(1/z) is the (h + 1)st orthogonal Hermite

polynomial, whose roots are all real and distinct (see [Szeg6, 1939] for the

properties of orthogonal polynomials). Let a l , h + 1 < a 2 . h + 1 < "'" < a t , h + 1 be the

positive roots of Hh+l(z). Thus

Q h - l (z 1 : 2) y~ y , _ _2k+~ Q h _ , (1 / a , . h + ,)
~i ,h+ l t zk ;

Qh(Z 1/2) a<_i<_l k . _ O Qh(1/ai,h+O

hence we have

Pr (max {Need(t)} <_ h} 2" n, ~. 2.+1 Qh-l(1/ai. h+t)
- - ai , h+ 1 ,

~o_<,_< ~ (2n)! ~ ~ Q~(1/a,,h+ ~)

and when n goes to infinity, this yields

Pr t max {Need(t)} < h} ~ -- Qh-l(llal'h+l) at2"h++~ en
~o_~,_~ - Q~(1/~,,~+O 4 5 (2n) ~"

Maximum Queue Size and Hashing with Lazy Deletion 607

3. Optimal Bounds. In this section we prove for the stationary M / G / ~ model

that the experienced maximum storage needed (that is, the expected maximum

M / G / ~ queue size) and the expected maximum storage used in excess of that

amount are within constant factors, respectively, of the expected storage needed and

wasted at any given time. The birth rate is a Poisson process with intensity 2. In the

special case of the M / M / ~ model, the lifespans are given by the exponential

distribution with mean 1/#. In the general M/G/oo model, the lifespan distribution

is arbitrary, with mean 1/#. Our results hold in the asymptotic case, in which/~

and 2 are sufficiently large; we assume that #, 2 _> e 2 ~ 7.4.

The following two theorems are the main results of Section 3:

THEOREM 3.1. We have

E (ma x l { N eed (t) }) = O(E(Need)) = 0 (~) ,

under the condition that # = O(2/log 2) in the M/M/oo case, and # = O(,~/log 2 2) in
the 9eneral M/G/oo case.

THEOREM 3.2. Let e > 0 be any constant. Then if the number H of buckets in HwLD
is ~((log 2) 1 +9, we have

/ \
E [max {Use(t)} - max {Need(t)}} = O(E(Use - Need)) = O(H).

\O<t_< l O<t_<l .]

The restrictions on /~ and H in the theorems are extremely weak; they are

typically met in geometrical applications, for example [Van Wyk and Vitter, 1986].

In fact, it can be shown that Theorem 3.1 is not true if/t is too large; the restriction

is thus partly inherent in the problem. For Theorem 3.2, however, we conjecture

that the restriction H = f~((log)~)1 +~) can be lifted.

We prove Theorem 3.1 in the next section and Theorem 3.2 in Section 3.2. Our

approach for both is to approximate the queueing process by a sequence of stages

of a discrete analog, which we call time hashing. The particular forms of time

hashing we use for the two cases are quite different. But they share the common

property that the early stages of the time hashing capture most of what is going on

in the queueing process; in the later stages the number of slots in the hash table

becomes smaller and smaller (and each slot covers a larger span of time) and the

contribution becomes less and less.

It is interesting to compare the idea of time hashing with those of extendible

hashing and other methods of dynamic hashing, in which the reverse phenomenon

occurs: in the early stages, the slots are coarse, and as items are inserted, the

number of slots gets larger and larger [Fagin et al., 1979]. Time hashing bears no

relation to the hashing that gives its name to HwLD. In a sense, the concept of time

hashing is orthogonal to it, because the slots represent intervals of time, whereas in

HwLD an item born at a certain time can potentially be stored in any of the H

608 C .M. Kenyon and J. S. Vitter

buckets. To make things clearer, we always use the terminology "bucket" when

discussing the hashing inherent in HwLD and the term "slot" when discussing time

hashing.

3.1. Maximum Size of the M/G/oc Queue. This section is devoted to the proof of

Theorem 3.1. The number H of buckets in the HwLD implementation does not

affect the value of Need in any way, so we assume in this section that H = 1. The

distribution of Need(t) is Poisson with mean 2/#:

LEMMA 3.1. For the M / G / ~ model we have

e-Z/u(2/~) i
Pr{Need(t) = i} - i!

PROOF. This is a well-known result for the M/M/oe model; see [Feller, 1968], for

example. It can also be shown for the more general M/G/oe model by considering

the nonstationary case and letting t ~ oe [Kleinrock, 1975]. []

The proof of Theorem 3.1 relies on the following technique we introduce, called

time hashing: Let K be an integer parameter to be specified later. We consider all

items that are alive at some time during [0, 1]. Stages k = 0, 1, 2 K of time

hashing are defined as follows: For 0 < k < K, all items (intervals) that have

lifespan in the range ((1/#)2 k- 1, (1/#)2 k] and that are born in either the unit interval

(0, 1] or one of the end intervals (- (1 /#)2 k, 0] and (1, [-#2-k7(1//~)2 k] are put into

stage k; in addition, for k = 0, the lifespan requirement is weakened so that the

lifespan must be in the range [0, 1/#]. Each stage consists of a hash table of

[-#2-k7 + 1 slots, as pictured in Figure 3.1. The j th slot, for 0 < j < [-#2-k-I,

stage O: - -
2..-

i i i i i L i i i ~ i i i ~ i h i

slot j ~-time
t=O t : l

m

stage I.
l i l l J l

t=O slot j ~-hme t=l

stage 2:
i l i i i i

sJotj
~-time t : I t = o

Fig. 3.1. Stages 0, 1, 2 of time hashing, used to bound E(maxt{Need(t)}). In the hash table for each

stage, some typical items (intervals) belonging to slot j are pictured.

Maximum Queue Size and Hashing with Lazy Deletion 609

represents the interval of time ((1/p)(j - 1)2 k, (1/#)j2k]. An item in stage k is placed

into the slot corresponding to its birthtime. We also define a special stage K + 1 as

follows: slot 0 consists of all items born in [0, 1] with lifespan > (1/~t)2t~+l; the

remaining [-#2 -(K+ 1) 7 slots are left empty.

We define Nk(j) to be the number of stage k items in slot j. The following

fundamental relation bounds maxo<,<l{Need(t)} by the sum of the expected

maximum slot occupancies in time hashing:

LEMMA 3.2. We have

max {Need(t)} g 2 ~ max {Nk(j)}.
0 _ t _ < l 0_<k_<K+l 0_<j_[-,u2 -k-]

PROOF. Let Needk(t) be the number of slots in stage k that are alive at time t:

max {Need(t)} <_ Z max {Needk(t)}
0__<t__<l 0_<k_<K+ 1 O__<t__<l

< ~ m a x {Nk(j) -k- Nk(j + 1)} + 2NK+ 1(0)
O<.k<_K 0 _ < j < [- a 2 - k 7

_< 2 ~ max {Nk(j) }.
O < k < K + l 0_<j_< [-/t2- k7

The middle line of the derivation is based upon the fact that the only overlap

possible between items in different slots in stage k, for 0 _< k _< K, is between items

in adjacent slots. For k = K + 1, it follows by symmetry that the total number of

items with lifespan >(l /p)2 K+I that are alive at some time in [0, 1] is at most

double the number of such items that are born in [0, 1]. The lemma follows

immediately. []

The M/M/oo Case. First we handle the M / M / ~ case, in which the lifetimes are

exponentially distributed with mean 1//~. The restriction on # in Theorem 3.1 is

slightly weaker in this case than in the general M/G/oo case. In this subsection we

assume that we are dealing with the M/M/oo model and that # = O(2/log 2). We

define the stage parameter K to be [-lg In p-].

LEMMA 3.3. The expected number of items in stage K + 1 is

/
E(NK+ 1 (0)) ~--- E(m a x

\O<_j<z[-,a2-kq

(j)}) 2 {NK+ 1 --< --.

PROOF. An item is in stage K + 1 if it is born in [0, 1] and if its lifespan is

> (1/#)2 K+I. For the M / M / ~ model the lifetimes are exponentially distributed

with mean 1//t, and the probability that an item has lifespan > (1//02 r+ 1 is e -2"+ '.

For our choice K = [-lg In #7, this probability is at most 1/#. Hence, the average

number of items in stage K + 1 is at most 2/p. []

610 C . M . Kenyon and J. S. Vitter

LEMMA 3.4. For 0 <_ k <_ K, let n be the average number of items in stage k, and let

m = [-#2 -k + 17 be the number of slots in the time hashing table of stage k. Then the

number Nk(j) of items in slot j of stage k is Poisson distributed with mean ~ = n/m,

where

PROOF. This follows immediately from independence and from the fact that the

birth rate is 2, the length of each slot is (1/~)2 k, the probability of a given item

having lifespan in the range [0, l /y] is 1 - e-1, and the probability of having
lifespan in the range ((1/#)2 k- 1, (1/#)2 k] is e -2k-t - e-2k. []

LEMMA 3.5. The expected maximum occupancy of the slots in stage k, 0 < k <<_ K, is

Before we prove Lemma 3.5, we turn our attention to the following lemma and

corollary, which we use in the proof. They give us an upper bound in an easy way

for the expected maximum slot occupancy in hashing. The lemma is phrased for

general slot occupancies Xj that are not assumed to be independent; when the

occupancies are independent or satisfy a certain property, the bound in the

corollary is obtained. Similar lemmas have been used, for example, to show that the

expected maximum occupancy in a hash table of load factor 1, under either the

Bernoulli or Poisson distribution, is at most 2 In m/ln In m(1 + o(1)), where m is the

number of table slots. The actual expected maximum occupancy is ~ In m/In In m,

which was proved by Gonnet [-1981] and Kolchin et al. [1978] by more

complicated calculations.

LEMMA 3.6. For random variables X 1 Xm, if Pr{Xj > b} _< 1/(nm), for all

1 <_ j <_ m, where n = E(~4Xj), then we have

(/ 'c [) E m a x { X j} _ < b + - E m a x { X j} m a x { X j } > b .
\ l <_j<_m / n \ l <_j<_m l <_j<_m

PROOF. By hypothesis we have

Pr{lmax b }

_< Pr{X 1 > b} + Pr{X2 > b} + ... + Pr{X,, > b} _< m - - - -
1 1

n m n

Maximum Queue Size and Hashing with Lazy Deletion 611

The rest of the derivation consists of conditioning on whether max1 <j<ra{Xj} is

_<bor > b :

+ ~(l~j~ma~ ,x~, l~j~mmax ~Xj~ b) Pr{ l~mmax ~X,~ ~}

1~ I) < _ b + - E max {Xi} m a x { X i) > b .
\ l <_<_j<m l <j<m []

The following corollary gives a bound that is easier to apply, at the cost of extra

restrictions on the random variables X1 Xm. The restrictions are satisfied, for

example, if the random variables are independent.

COROLLARY 3.1. If in addition to the assumption required for Lemma 3.6 we also
have

~max~l,~. ~j~m~x~)-~max~t~),~.

then

E(max {Xj} l<_b+l-E(max {Xj} X l > b) .
\ l < j < m / 1~ ~,,l<_j<m

PROOF OF LEMMA 3.5. Suppose that # < c2/ln2, for c > 2. Let d > 3 be a

constant to be specified later. We apply Corollary 3.1 to the random variables

Xj = Nk(j -- 1) with the parameters

d2
b -

#2 k'

n = [~[-~A~; 1 (1 _ e - 1)

m = [-#2-k~ + 1.

- - e - 2k) if I N k < K ,

if k = 0 ,

First we must show that the hypotheses in Corollary 3.1 are satisfied. It is clear that

the random variables Nk(j) are independent. What remains is to show that the

hypothesis carried over from Lemma 3.6 is true, namely, that

1
(3.1) Pr{Nk(j) > b} _ < - - .

nm

612 c.M. Kenyon and J. S. Vitter

By Lemma 3.4, Nk(j) is a Poisson random variable with mean ~ = n/m. We have

(X i ~/~

Pr{Nk(j) > b} = e-" ,>~b ~. < 2e-" ~"

By substituting the values of e and b and simplifying, we get the bound

(3.2)
2((4k ~112~,z;4~

Pr{Nk(j) > b} ___ \ \ ~ ,]] < 2(e-~ e~/".

We also have 1/(nrn)>_ 2/22. Combining this with (3.2), we can satisfy (3.1) if

(e-~ az/u <_ 1/22. By taking logarithms and simplifying, we find that a sufficient

condition is # _< �89 If we define d = 8.7c, then the sufficient condition
becomes/~ < 1.0005c2/ln1, which is satisfied by the hypothesis of Theorem 3.1,
given at the beginning of this proof.

Now we can apply Corollary 3.1:

(3.3) E(max {Nk(j)}l <_ b + E (max {Nk(j) } Nk(O) > b).
\ 0 < J'< F/a2 -k '] ,] 0 < j_< [-/~2 -k~

The second term on the right-hand side of (3.3) is negligible and can be easily

bounded: the values Nk(j) are independent with respect to j. We have

(3.4) E(\o<_j~ru2_~Tmax {Nk(j)} Nk(O) > b)

<E(l_<j_<ru2_~Tmax {Nk(j)})+/E(Nk(O)lNk(O)>b).

The first term on the right-hand side of (3.4) can be bounded coursely by the
expected total number of items n in stage k. The second term is

e-ao~ k [e-ao~ k

k>b

where c~ = n/m is the probability that a given item falls into slot O. Substituting
these bounds back into (3.4) and then into (3.3), we get

E(max {Nk(j)})=O(b)=O(-~).
\ 0 < j <[-p.2 - kq

This completes the proof of Lemma 3.5. []

The rest of the proof of Theorem3.1 for the M / M / ~ case consists of taking
expectations in the expression of Lemma 3.2 and substituting the bounds from
Lemmas 3.3 and 3.5, which gives a convergent geometric series.

Maximum Queue Size and Hashing with Lazy Deletion 613

The M/G/oo Case. In this subsection we assume that # = O(2/log 2 2). For the

case of the M / G / ~ model, the distribution of lifetimes is allowed to be an arbitrary

one with mean 1/#. So in particular the approach we used above for M/M/oo

(namely, Lemma 3.5) will not work; for each given value of k, stage k could

contribute as much as ~(2/#) to E(maxo<_j<_F~2-kq{Nk(j)}). Instead we use the

following important correspondence between the average slot occupancies and

E(Need):

LEMMA 3.7.

Then
Let o~ k = E(Nk(O)) be the average number of items in slot 0 of stage k.

Z, -<- . ff
I_<k_<K+I ~/

PROOF. An average of at most half the items in slot 0 are alive at time t = 0. The

total number of items alive at time t = 0 is 2/#. The lemma follows directly. []

We use time hashing as before, but with the stage parameter set to K = rig/{].

There are [-/~2-k7 + 1 < # + 2 slots in stage k, for each 0 < k < K. An easy

application of Corollary 3.1 gives us the following:

LEMMA3.8. We have

(_~ {Nk(j)}) = ~O(ak) /f ~k > In/~,
E\o _<jmax_< ru: [O(log #) /f c~ k _< In/~.

Substituting Lemmas 3.3 and 3.8 into Lemma 3.2 and taking expectations, we get

(3.5) E(max(Need(t)})<_2 ~ E(max {Nk(j)})
\O_<t_<l O_<k_<K+l \O<_j<_[-It2-k-1

= O ~ ~ i + ~ logp + - -
O<_k<_K O<.k<_K #

The last line in the derivation of (3.5) follows from Lemma 3.7 and the definition

K = [-lgktT. Quantity (3.5) is O(2/p) when p = O(2/log 2 2). This completes the proof

of Theorem 3.1 for the M / M / ~ case.

3.2. Optimal Bounds on the Waste in HwLD. To prove Theorem 3.2 we derive an

upper bound for E(maxt{Waste(t)}), where Waste(t)= Use(t)- Need(t) is the

number of dead items that are still in the HwLD data structure at time t. This

therefore gives an upper bound on E(max,{Use(t)} -- max,{Need(t)}). It is impor-

tant to note that the former quantity is usually larger than the latter, because Use(t)
and Need(t) typically do not attain their maxima at the same time t.

614 C.M. Kenyon and J. S. Vitter

l DZ~TZI DZ,TZ~DZ,TZI DZ(TZI DZ,TZt ..- I

t=O slotO s lo t l s lo t2 s lo t3 s l o t 4 t= l

2h+l-~-t ime
slot

occupancies: 3 I 0 2 0 ,..

Fig. 3.2. An example of typical items stored in a particular bucket h in the HwLD data structure; the
items are pictured above as intervals. The marks on the horizontal axis show the extents of the slots of
the time hashing table for bucket h, stage k, for some 1 < k < K; the death zones and twilight zones are
denoted DZ and TZ, respectively. The numbers given below show the slot occupancy Wh.k(j) for each
slot, which is equal to the number of deaths in the slot's death zone, provided that there are no births in
the twilight zone, or 0 otherwise. Note for example that there are no entries in slot 2 since there is a birth
in the twilight zone.

To bound the expected max imum waste, we use a time hashing of a different

nature than in Section 3.1. The stages are numbered k -- 0, 1 K + 1, and each

of the H buckets has i t sown set of stages. The hash table for each bucket for stage k

has F(2/H)2-(k + 1) 7 slots. The j th slot, for 0 <__ j _< [-(2/H)2-(k+ 1) 7 _ 1, represents

the time interval (j2 k+ 1(H/2), (j + 1)2 k+ t(H/2)] and is shown in Figure 3.2, The

first half of each slot is called the death zone, and the second half is called the

twilight zone. For each stage, one entry is put into its j th slot for every death in the

death zone of its j th slot, with the extra requirement that there are no births in the

twilight zone of the j th slot; if there is a birth in the twilight zone, no entries are

placed into the j th slot.

In addition, stages 0 and K + 1 are supplemented as follows: In stage 0 an entry

is put into the j th slot for every death in the death zone, regardless of whether there

have been no births in the twilight zone. In stage K + 1 we move all the entries into

slot 0 f rom the other slots.

We let wh, g(j) denote the slot occupancy for t he j t h slot in the time hashing table

for bucket h in the kth stage. The above description can be rephrased as

Wh,kU) =

deaths in the death

zone of slot j if k = 0,

deaths in the death

zone of s lo t j if l _ < k _ < K and ~ b i r t h s i n

the twilight zone of slot j,

0 if l _ < k < _ K and 3 births in the

twilight zone of slot j,

deaths in all death zones

for which ~' births in

the twilight zones if k = K + 1 and j = 0 ,

0 if k = K + l and j > 0 .

Maximum Queue Size and Hashing with Lazy Deletion 615

We define Wk(j) to be the total number of entries in the j th slots of the hash tables

for buckets 1, 2 H:

wh.k(j).
l < h < H

We set the stage parameter K to be K = Fig ln(2/H)-].

For completeness we should mention that there is a total of four instances of

time hashing, not just the one defined above. The second instance of time hashing is

defined in an identical way, except that the time intervals of the slots are offset

(11/2)2 k from the time intervals of the instance defined above. In addition to these

two instances, we consider two "reverse" instances, in which time is viewed

backward: we start at time t = 1 and end at time t = 0, and we process each death

as a birth and vice versa. Without loss of generality we discuss only the first

instance of time hashing, as defined in the previous paragraphs, and introduce an

extra factor of 4 into our bounds, where appropriate.

A key observation for the derivation is that the death rate in the M/G/oo model

is a Poisson process with the same intensity as the birth rate. This follows because

the M/G/oo model is symmetric and stationary, and thus also reversible [Kelly,

1979]. The following lemma is the basis for our proof of Theorem 3.2:

LEMMA 3.9. We have

max { Waste(t)} _< 4 ~ max { Wk(j) }.
O_<t_<l O<k__<K+ 10<j<_~-(~/H)2-(k+2)~

PROOF. Let us define the "waste" of an item to be the interval of time after its

death that it remains in the HwLD data structure. Each waste interval in bucket h,

for 1 < h < H, can be decomposed into individual segments, such that each

segment corresponds to an entry in one of the four instances of the time hashing,

and the entry is in a slot whose time interval completely contains the segment's time

interval. The factor of 4 appears because there are four instances of time hashing, as

mentioned above, whereas the random variables Wh, k(j) and Wk(j) are defined for

only the first instance. []

We prove Theorem 3.2 by bounding the sum in Lemma 3.9 by O(E(Waste)) =
O(H). A big difference between this application of time hashing and the ones we

used in Section 3.1 is that the random variables Wh, k(j) (and hence also Wk(j)) are

almost always 0 as k grows. We have Pr{Wh, k(j) = 0} ~ 1 -- e -zk. This causes the

maximum slot occupancy to behave wildly. In fact, to get our bound it is not

enough to bound E(maxj{Wh, k(j)}) and then multiply by H, because the result will

be too large: the load factor in the analysis of maxj{wn, k(j)} is too small, and the

ratio between the average maximum slot occupancy and the average slot occupan-

cy is no longer O(1). The solution is to consider the H buckets in toto and to bound

E(maxj{ Wk(j)}) directly. We do that by computing the moment generating function

of maxo<_j<V(~/n)2-~k§ and then applying Corollary 3.1 using Chernoffs
bound.

616 C . M . K e n y o n and J. S. Vit ter

LEMMA 3.10. The occupancy Wh.k(j) of the j th slot in the time hashing table for the
hth bucket and the kth stage, where l < h <_ H, O < k <_ K + 1, 0 < j <

F()~/H)2-~k+ 1~-] _ 1, is distributed as follows:

[" e - ct o~ l

l
e - a ~ . - if l > 1,

Pr{Wh, k(j) = l } = [1 - - e - a + e -(a+~) if l = 0 ,

where

o if k = 0 ,

f l = 2 k if l _ < k < K + l ,

= K + I 2 - (K + 2)

if O < k < _ K ,

if k = K + l , j = 0 ,

/f k = K + l , j > 0 .

PROOF. First let us consider stage k, where 1 ~ k < K. For I > 1, the probability

that there are 1 entries in slot j is the product of the probability e-~t / l ! that there

are I deaths in the death zone and the probability e -a that there are no births in

the twilight zone. The probabilities for l > 1 determine the probability for l = 0.

For stage K + 1, the entries for the [(2/H)2 -~K+2)-] slots are moved into slot 0,

which increases ~ by a factor of r(J./H)2 -cK+2r] for j = 0 and m a k e s , equal to 0

for the other slots. For stage 0, there is no ban on births in the twilight zone, so
[]

The rest of the derivation of Theorem 3.2 consists of the following two lemmas:

LEMMA 3.11. The expected number of entries in stage K + 1 is

E(WK+ 1(0))= E (max {WK+I(j)}) = O(H).
\ 0 < j < I-(A/H)2 - (k + 1)q

PROOF. It follows from Lemma 3.10 and the definition K = [-lg ln(2/H)-] that

E(Wh, K+ 1(0)) = O(1), and the lemma follows by summing on h. []

LEMMA 3.12. The expected maximum occupancy of the slots in stage k, 0 < k <<_ K,
is

O H

/ f H = f~((log 2) 1 + l/e).

Maximum Queue Size and Hashing with Lazy Deletion 617

PROOF.. Let us restrict ourselves to the harder case 1 _< k ___ K; the k = 0 case is

similar. We apply Corol lary 3.1 to the r andom variables Xj = Wk(j - 1) with the

parameters

(3.6) n = mH2ke- 2k,

H
b = - - -

2k/d '

where d is a positive constant. The r andom variables are independent, since the

deaths form a Poisson process, as ment ioned earlier. The remaining hypothesis of

Corol lary 3.1 to show is that

1
(3.7) Pr{ Wk(j) > b} _< - - .

n m

To do that, we use ChernolTs bound (see, for example, [-Kleinrock, 1975])

E(e sx)
(3.8) P r { X _ > u } < e s" ,

where s > 0, and we consider the moment generating function E(e~Wk~J)). By

independence we have

(3.9) E(e~W~(~)) = E(e~< (j)+... +w~,~j))) = (E(e (j)))H.

By Lemm a 3.10, we have

(3.10) E(e (J)) = ~ e~ZPr{wl,k(j) = l} = e~ = 0} + e-Z~E(e~r),

where Y is a Poisson r andom variable with mean 2*. Its momen t generat ion

function is given by

(3.11) E(e ~r) = e (e~- 1)2k.

Combining (3.9) and (3.11) with ChernolYs bound (3.8), we get

(1 + e(e~-mk) n
(3.12) Pr{Wk(j) > b} _<

e sb

We set s = 0.5. Fo r some constant c > 0, the r ight-hand side of(3.12) is bounded by

(3.13) O(e-m~c2k/")).

618 C.M. Kenyon and J. S. Vitter

The right-hand side of (3.7) can be bounded from below by 1/22 . Combining this

with (3.13) we find that (3.7) is satisfied if H = ~((log 2)1+1/d), which is true by

assumption.

Now that the hypotheses of Corollary 3.1 are satisfied, we apply it and get

(3.14) E(o < j < r(ma)x_ (~ + 1,1{ Wk(j)})

-I- n k,O<_j<_F(2./it)2-(k+l)] ~ "

Using Lemma 3.10, the same reasoning used in (3.4) gives us

E max {Wk(j)} Wk(0) > 2~7~ = O(H2k),
k,O<_j<[C2/H)2-(k+ 1)]

and hence by (3.14) and (3.6) and the fact that k < K =Flg ln(2/H)], we get

O H

(" = 0 H = 0 ~ + l o g ~g~ .

This completes the proof of Lemma 3.12. []

Theorem 3.2 follows by combining Lemmas 3.9, 3.11, and 3.12, and summing

on k.

4. Conclusions. The maximum size attained by a queue over time is a basic

notion in stochastic processes and queueing theory. In terms of data structures, if

we model the insertions and deletions of elements as the birth and death of items in

a queue, then the maximum queue size is the maximum size of the data structure.

Our conclusions come in two forms: First, we have used in a natural way a variety

of algebraic and analytical techniques to obtain exact formulas for the distribution

of the maximum size of queues for birth-and-death processes and for hashing with

lazy deletion (HwLD). Our solutions are amenable to numerical calculation and

some asymptotics. The formulas for several different models are related in that the

relevant transform in each case can be expressed as a ratio of classical orthogonal

polynomials.

Second, we have answered some open questions in queueing theory using

discrete, non-queueing-theory techniques. We have obtained optimal big-oh

bounds on the expected maximum queue size for the M/G/oe process and for

HwLD. We prove for HwLD that the expected maximum amount of needed space

(that is, the maximum size of the M/G/oo queue, on the average) and the expected

maximum amount of space used by HwLD above the optimal amount are within

Maximum Queue Size and Hashing with Lazy Deletion 619

small constant factors, respectively, of the average space needed and wasted at any

given time. Our techniques also appear to be applicable to the M/M/1 model,

which introduces several interesting new facets to the problem.

Current work is aimed at removing the condition H = f~(log 2) from Theorem

3.2. The proof technique, though, has to be different, because it is easy to show for

H = 1 that maxo<t<l{Waste(t)} has unbounded expectation. Another problem

being worked on is to determine the constant factors inherent in the big-oh bounds.

Preliminary results suggest that the constants in Theorems 3.l and 3.2 are

asymptotically 1 under general conditions.

Addendum. Since this paper was submitted, new results have been obtained in

which several of the big-oh results obtained in this paper have been shown to hold

with asymptotic equality; that is, the constants implicit in the big-oh bounds are

equal to 1 asymptotically [Kenyon and Vitter, 1991].

Acknowledgments. The authors would like to thank Frangois Baccelli, Guy

Fayolle, Philippe Flajolet, and Claude Puech for interesting discussions.

References

R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible Hashing--A Fast Access Method

for Dynamic Files, ACM Transactions on Database Systems, 4(3) (September 1979), 315-344.
P. Flajolet. Analyse d'algorithmes de manipulation d'arbres et de fichiers, Cahiers du Bureau Universi-

taire de Recherche Opdrationnelle, 34-35 (1981), 1-209.
P. Flajolet, J. Frangon, and J. Vuillemin. Sequence of Operations Analysis for Dynamic Data Structures,

Journal of Algorithms, 1(2) (June 1980), 111-141.

G. H. Gonnet. Expected Length of the Longest Probe Sequence in Hash Code Searching, Journal of the
ACM, 28(2) (April 1981), 289-304.

S. Karlin and J. M. McGregor. Linear Growth Birth and Death Processes, Journal of Mathematics and
Mechanics, 7(4) (1958).

F. P. Kelly. Reversibility and Stochastic Networks, Series in Probability and Mathematical Statistics,
Wiley, Chichester (1979).

C. M. Kenyon and J. S. Vitter. General Methods for the Analysis of the Maximum Size of Dynamic
Data Structures, SlAM Journal on Computing, 20(3) (June 1991).

L. Kleinrock, Queueing Systems, Vol. I, Wiley, New York (1975).

V. F. Kolchin, B. A. Sevast'yanov, and V. P. Chistyakov. Random Allocations, Winston, Washington
(1978).

J. Morrison, L. A. Shepp, and C. J. Van Wyk. A Queueing Analysis of Hashing with Lazy Deletion,
SIAM Journal on Computing, 16(6) (December 1987), 1155-1164.

T. Ottmann and D. Wood. Space-Economical Plane-Sweep Algorithms, Computer Vision, Graphics, and
Image Processing, 34 (1986), 35-51.

G. Szeg6. Orthogonal Polynomials, American Mathematical Society Colloquium Publication, Provi-
dence, RI (1939).

T. G. Szymanski and C. J. Van Wyk. Space-Efficient Algorithms for VLSI Artwork Analysis,
Proceedings of the 20th IEEE Design Automation Conference (June 1983), pp. 743-749.

C. J. Van Wyk and J. S. Vitter. The Complexity of Hashing with Lazy Deletion, Algorithmica, 1(1)
(March 1986), 1%29.

