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Abstract. The various formulations of the maximum recoverable work used in the
literature are proved to be equivalent. Then an explicit formula of the minimum free
energy is derived, starting from the formulation of the maximum recoverable work given
by Day. The resulting expression is equivalent to that found by Golden and other authors.
However, the particular formulation allows us to prove that the domain of definition of
minimum free energy is the whole state space. Finally, the maximum recoverable work
is shown to be put as the basis of the thermodynamics of viscoelastic materials under
isothermal conditions. In this context the usual relation between the Clausius-Duhem
inequality and the dissipation of the material is restored.

1. Introduction. All the definitions of Helmholtz free energy for a viscoelastic ma-
terial (for instance, the one given by Grafh [11, 18, 19, 20] and that stated by Coleman
and Owen [3, 7, 8]) do not identify a unique functional. Moreover, it has been shown [23]
that in the convex set of all free energies there exist maximum and minimum elements.
An explicit form of the maximum free energy, according to GrafR's definition, has been
given by Fabrizio, Giorgi and Morro in [11]. Instead the minimum free energy, according
to both Graffi's and Coleman-Owen's definitions, has been proved to be obtained by
maximizing the recoverable work.

For this reason, in the literature we can find many papers discussing the expression of
the maximum recoverable work in linear viscoelasticity.

However, the procedure for finding such an expression, and hence an explicit form of
the minimum free energy, is nothing but easy.

The most important work in this sense is due to Day [4, 5]. Nevertheless, he gave
an interesting characterization of the maximum recoverable work, but not an explicit
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formula. Recently an expression for the maximum recoverable work, and the minimum
free energy, was found by Golden [17] in the scalar case and then extended to the general
isothermal case [9, 13].

However, some questions seem to be still open.
For instance, although the definition of maximum recoverable work is clear, some

different formulations have been used to obtain the above quoted results. So, the question
whether such formulations are equivalent arises.

Secondly, it is worth recalling that the space of definition of any free energy in general is
a proper subset of the whole state space. In other words, a free energy may be unbounded
in correspondence with some strain history. On the other hand, it is reasonable to think
that the domain of the minimum free energy is wider than the one corresponding to any
other free energy. As a consequence we should expect that such a space does coincide
with the whole state space if properly defined.

In this paper we try to answer the above questions.
First of all, we give an alternative definition of the state space based on the bounded-

ness of the work rather than the stress (Sec. 3).
Secondly, we give a rigorous proof that all the formulations of the maximum recover-

able work present in the literature are equivalent (Sec. 4). What is more, this is proved
avoiding any topology on the state space. In materials with memory and in particular in
viscoelasticity, this is important because many different and unequivalent topologies may
be given, but the objective characteristics of the material, as well as thermodynamics
and its implications, must be unaffected by the particular choice of the topology.

Then (Sec. 5), thanks to previous results given in [17, 9], we are able to prove that the
point of view of Day leads to an explicit expression of the minimum free energy that is
perfectly equivalent to that found in [17] and [9] . Moreover (Sec. 6), such an expression
allows us to prove that the domain of definition of the minimum free energy is the whole
state space as defined in Sec. 3.

Finally (Sec. 7), we show that the existence and the boundedness of the maximum
recoverable work on the whole state space can be put as a basis of the thermodynamics
of viscoelastic materials under isothermal conditions, as already drafted by Fabrizio,
Giorgi and Morro. Such an approach allows us to formulate the dissipativity properties
of the material without reference to any particular topology. Moreover, in describing the
properties of the maximum recoverable work and identifying it with the minimum free
energy, we are led to an interesting physical consideration that enables us to go deep
into the connection between the Clausius-Duhem inequality and the dissipation of the
material. In fact, some authors (see, e.g., [23]) claimed that they are unrelated when
memory effects occur because of the nonuniqueness of the free energy functional. On the
contrary, we prove that such a relation is restored whenever the free energy involved in
the Clausius-Duhem inequality is the minimum one.

2. Notation and basic assumptions for a linear viscoelastic solid. Let Sym
be the space of symmetric second-order tensors acting on TZ3 endowed with the inner
product A B := ir(ABT) and norm |A| = (A ■ A) /2 where "T" denotes the transpose.
Also let Lin(Sym) denote the space of the fourth-order tensors operating on Sym.. For
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any EC G Lin(Sym), the transpose KT is such that KTA-B = KB-A, VA, B G Sym. The
reason for this notation is clear by recalling that Sym is isomorphic to 1Z6. Therefore,
Ci, i = 1,6 is an orthonormal basis of Sym so that

6 6 6

A = Y.AiCu B = AB = Y/AlBl.
1=1 2=1 1=1

Analogously any tensor K G Lin(Sym) will be identified with an element of Lin(1Z6) by
the representation

6

K = ^ KijCi ® CJ
i,i=1

and KT is the transpose of K as an element of Lin(TZ6). According to that, the norm
|K| of KG Lin(Sym) may be given by

( 6|K|2 = tr (KKt) = KvKi
y,j=i

In the sequel we deal with complex-valued tensors. Denoting by Q the complex plane and
by Sym(Q) and Lin(Sym(i})) respectively the tensors represented by the above forms
with A{, Bi, Kij G fi, then the norms |A| and |K| of A G Sym(Vl) and K £ Lin(Sym(£l))
will be given respectively by

|A|2=(A-A), |K|2 = tr(KK*) =

where the overhead bar indicates complex conjugate and K* = K ' . The above represen-
tations allow all results of [16] to be easily extended to tensors belonging to Lin{Sym(p.)).

For any function / G Lx(7l,V) U L2(1Z,V), where V is a finite-dimensional vector
space (in the present context Sym or Lin(Sym)), let fp denote its Fourier transform
viz. /f(w) = f^°oof(s)e~tu'sds. Also, we define

roo nO

/+M=/ f(s) e~iujsds, /_ (w) = f(s) e~iusds,
J 0 J —cooo

oopoo r OO

fs(to)= / f(s)smujsds, fc{u>) = / f(s)cosu>sds.
Jo Jo

(2.1)

All these relations are to be understood as applying to each component of the tensor
quantities involved.

In the sequel, we need to consider the Fourier transform of functions that do not
vanish at large times and thus do not belong to L2 for the appropriate domain. The
standard procedure is adopted of introducing an exponential decay factor, calculating
the Fourier transform and letting the time decay constant tend to infinity. Thus, if / is
a function defined on 1Z+ such that lims^+00 /(s) = /oo, and g ■ Ti+ —► V, defined by
9(s) — f(s) ~~ /oo, belongs to L1(1Z+, V) D L2(1Z+, V), then

/fM = gF(u) - = lim (u + ia).
IU)+ a—>0+
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Henceforth f2+ and denote the following sets:

(]+ = {(eO: 3mc > 0}, n(+) = {c e n ■. 3mc > 0}
and analogous meaning is stated for f2~ and The quantities f±(z) defined in (2.1)
are analytic for z £

A linear viscoelastic material is described by the classical Boltzmann-Volterra con-
stitutive equation between the stress tensor T(f) g Sym and the strain history tensor
E : (—oo, f] —> Sym of the form:

rOO

T (t) = G0E(t) + / G(s)Et{s)ds, (2.2)
Jo

where E(f) € Sym is the instantaneous value of the strain and E( : (0, +00) —> Sym
denotes the past history defined as

El{s) :=E{t- s), s e K++ := (0,+00) .

Henceforth for simplicity we identify the strain history with the couple (E(t), Ef) and use
the term "history" just to indicate the past history E'. Since G € L1(1Z+, Lin(Sym)),
its primitive, the relaxation function G : (0, +00) —> Lin(Sym) such that

G(£) = Go + f G(s) ds
J 0

is well defined. The quantity Go = G(0) is named as the instantaneous elastic modulus.
Moreover, there exists the limit

Goo := lim G(t) £ Lin(Sym) ,
t—>00

where Gqq is named as the equilibrium elastic modulus.
We also assume that G : (0, +00) —► Lin(Sym), defined as

G(t) = G(t) - Goo , (2-3)

is symmetric, integrable and its integral does not vanish, viz.

G(t) = GT(t), 0 <
poo

/ G(^0
s) ds < 00. (2.4)

The thermodynamic properties of a linear viscoelastic material imply (see [15, 14])

Goo=G^o, Gs(w)E • E < 0 VE € Sym \ {0} Vw € (0, +00) . (2.5)

Note that (2.5)2 may be written in terms of the Fourier transform of G by virtue of
the identity

Gs{u) = -wGc(«) . (2.6)

Moreover, (2.4)2 and (2.5)2 imply

Gc(w)E • E > 0 VE e Sym \ {0} Vw G TZ . (2.7)
Moreover, on the basis of physical arguments, the equilibrium elastic modulus of a

viscoelastic solid is assumed to be positive definite, namely

G00E • E > 0, VE e Sym \ {0} . (2.8)
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Further, we assume

G(0)E ■ E < 0, VEe V\{0}, (2.9)

whereas inequality (2.5)2 just implies that G(0) is negative semidefinite (see [15]).
If we define the vectorial space

F := |e4 : (0, +oo) —> Sym ; J G(s + r)Et(s) ds < oo Vt > 0 | , (2.10)

whose definition depends on the relaxation function, the Boltzman-Volterra equation
(2.2) defines the linear functional T : Sym xf^ Sym such that

f(E(t),E4) = G0E(i)-
roc

/ <G(s)Et{s)ds. (2.11)
Jo

Given the strain (E(i),E4) continued with E(i + a) = E(f), a £ 1Z+, it is easy to check
that the yielded stress is given by

/•OO

T{t + a) = G(a)E{t)+ / G{s + a)El(s) ds .
Jo

It has been shown (see [9], Proposition 2.2, (ii)), that the fading memory property G £ L1
ensures that for every e > 0 there exists a(e, E4) sufficiently large such that

fJo
G(s + a)E (s) ds <e, Va>a(e,Et). (2-12)

3. A new definition of the space of the processes and of the state space.
The notions of the state and the process for a linear viscoelastic solid have been discussed
by various authors (see [10, 8, 21, 24]). They can be resumed as follows.

Remark 3.1. According to the definition given in [6] and [15], a process P of duration
d < +oo is given by Ep : [0, d) —> Sym. For simplicity, given the strain (E(f),E() 6
Sym x r, we relate P to

Ep : [0, d) —> Sym, Ep(r) = E(£) + [ E p(s')ds', re (0, d]. (3.1)
Jo

Thus the strain E/(r') = (Ep * E)(r'), t' < t + d, yielded by E4 and Ep, is related to
the couple (Ep(d), (Ep * E)t+d) and is given by

Ef(t + d — s) = (Ep * E)(t + d — s) := |
EP{d-s) for 0 < s < d, , ,
E(t + d — s) for s > d.

In the sequel we use the symbol " * " to denote both the continuation of histories and
the continuation of processes (see [8]).

Definition 3.2. (see [10]) Two strain histories (Ei,Ej) and (E2,E|) are said to be
equivalent if for every Ep : (0, r) —♦ Sym and for every r > 0, they satisfy

T(EP(r), (Ep * E!)t+T) = f(EP(r), (EP * E2)t+T). (3.3)
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As a consequence, it is easy to show that (0,E4) is equivalent to the zero history
(0,0+) if

/oo roc
G(s)Et+T(s) ds = J G(s + T)Et{s)ds = 0 Vr > 0 . (3.4)

Equality (3.4) represents an equivalence relation, i.e., two past histories Ej and Ej
are said to be equivalent if their difference Et = Ej — E2 satisfies (3.4).

According to the definition of state a given by Noll [24], two couples (Ei(f),E*) and
(E2(f),E2) such that Ei(i) = E2(t) and E' — E2 satisfies (3.4) are represented by the
same state cr(t). In this sense a(t) may be thought as the "minimum" set of variables
allowing a univocal relation between Ep : (0, r) —> Sym and the stress T(£ + r) =
T(Ep(t), (Ep * E)t+T) for every r > 0.

In other words (see [8, 21]), denoting by r0 the set of all the past histories of F
satisfying (3.4), and by F/ro the usual quotient space, the state a of a linear viscoelastic
material may be identified by a couple (E, h) with E G Sym and h E F/r0 and the state
space may be identified as

£ = Sym x (r/r0) . (3.5)

In this paper we present a different point of view in defining the state space. Roughly
speaking, if S = Sym x (F/ro) is related to the boundedness of the stress (see, e.g.,
(2.10)), we now construct a new state space related to the boundedness of the work.
Such a procedure also induces a suitable definition of the space of the processes.

Given the initial strain described by the pair (Ej(i),E*) and the process P given by
Ep : (0,d] —> Sym, the work done on P, is denoted by VF(Ej(i), E*; Ep), viz.

~ . rd _
VF(Et(*),E^;Ep) := / T(EP(r), (EP * E2)t+T) • EP(r) dr

Jo
t+d

T(E(r), Et) • E(r)dr (3.6)1:
= ^G(0)E(f + d) ■ E(f + d)~ ^G(0)E(t) • E(t)

/t+d pooJ G(s)ET(s) • E(r)dr, (3.7)

where E = EP * Es as defined in (3.2).
Given a process Ep : [0, d) —> Sym and the null strain history (0,0^), where 0' (s) = 0,

Vs > 0, let (Eo(f), Eq) denote the ensuing strain given by (for simplicity we now take the
initial instant as t = 0)

Eo«) := jf Ep(r) dr. E'M := j f dr br 0 < S < (, (M)

Definition 3.3. A process Ep : [0,d) —> Sym (d < oo) is said to be a finite work
process if

~ . rd -
W(0. 0^; Ep) = / T(E0(i), Eq) • EP(£) dt < oo,
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where (E0(£),Eq) is defined by (3.8).
Observe that W(0,0+; Ep) > 0 by virtue of the Dissipation Principle stated by Gurtin

and Herrera (see [22]); however, it can also be derived as a consequence of (2.5)2 and

(2.8).
When d < oo we can consider Ep : 1Z+ —> Sym with Ep(£) = 0 for t > d so that

W(0,0f; Ep) =

IIJo Jo

GoE0(r) + / G(s)E0(t - s) ds
Jo

t — s)Ep(s) ■ Ep(r) ds dr

Ep(r)dr

0 JO
OO f OOi poo poo

= o/ / G(|r-s|)Ep(s) ■ Ep(r)dsdr, (3.9)
1 Jo Jo

where G(t) = Go + fg G(,s) d,s. Using the function G € L1 (TZ+, Lin(Sym)) such that
G(£) = G(t) — Goo, we have

  1 1 poo poo

W(0,0t;EP) = -GooE0(d)-E0(d) + - / / G(|t — s|)EP(s) • Ep(r) ds dr
lo Jo

i i r°° -   
— ^GooEo(d) ■ Eo(d) + — / Gc(w)Ep+(w) • Ep+(w) dto. (3.10)

J — OO

Therefore, the set of the finite work processes can be characterised by the following set:

Hg{T^+, Sym) := |<p : 1Z+ —> Sym : J Gc(u)ip+(uj) ■ <p+(uj) cLu < ooj . (3.11)

Observe that, since Gc(lj) is positive definite Vw G 7Z, 'Hq{TZ+ , Sym) may be endowed
with the inner product (•, •) defined as

/OO

Gc(w)v>1 + (w) ■ ip2+(uj)duj
-OO

and the norm || • ||g such that ||<p||q = (ip,<p)a- Therefore, we can define the space
of the processes as the Hilbert space 7ic{TZ+, Sym) obtained by the completion of
Hg(TZ+ , Sym) with respect to the norm || • ||g.

Definition 3.4. The set of admissible strain histories is defined as the set of all
the couples (E(t),E4) such that the work W(E(t), E*; Ep) is finite for every Ep 6
HG(1Z+,Sym).

Thus, the domain of definition of the stress is the set of all those strain histories
rendering the work well defined when the process belongs to Hg{TZ+ , Sym).
Observe that

W(E(t), E(; Ep)
rr poo

• Ep(t)dr
pOO pT pOO

= / GoE(i + r) + / G(s)Ep(r — s) ds + / G(s)E(£ + r - 5) ds
J 0 L JO Jr

pOO pT pOO
= / G(r)E(£) + / G(r — s)Ep(s) ds + / G(r + s)E*(s) ds

Jo Jo Jo
p00 " 1 poo

= JQ 2 I G(|r-S|)Ep(s)ds-I(T,E(i),E<)

■ Ep(r) dr

E p(r)dr, (3-12)
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where
rOO

I(r, E(i), E4) = —G(r)E(i) — / G(r + s)Et{s) ds, r > 0. (3.13)
Jo

Let E'(s) = E4(s) — E(t) be the history relative to the instantaneous value. It is ob-
vious that a strain history can be described equivalently by the couple (E(i),Ef) or by
(E(i),E4). Let I(-,E') : 1Z+ —> Sym be defined by

fOO
I(r, Ef) = — / G(r + s)E4(s) ds, r > 0; (3.14)

Jo
we have

I(r,E(i), E4) = -GooE(t) + I(r, E(), r > 0, (3.15)

and
~ ■ i i r°° f°° ~ ■ ■
W(E(0,Ef;EP) = -GooE0(d)-E0(d)+-^ j G(|r - s|)EP(a) ■ EP(r) ds dr

t'OO

+ GooE(^) • Eo(d) — / I(r,E4)-Ep(r)dr, (3.16)
Jo

where Eo is given by (3.8)i. Expression (3.16) shows how the work may be written
in terms of the couple (E(£),E() and the process Ep. We denote W(E(i), Ef; Ep) =
W(E(t), E4; Ep ). Moreover, by means of Plancherel's theorem we have

  1 i r°° . .   
W(E(t)lEt;EP) = -<GooE0(d)-E0(d) + — Gc(w)Ep+(w) • EP+(w) du

^ 27r J — OO

1 C°° - W   
+ GooE(i) • E0(d) - — / I+(w, E4) • EP+(u) duj, (3.17)

J — oo

where I+(w, E4) = J0°° I(r, Et)e~lUTdT and

/oc 2 r°°  f(t) ■ ip{t) dt = — J f+M • y+M du ,

provided the integral is finite.
Therefore, the set of admissible strain histories can be thought of as the set of all

the couples (E(£),E4) such that E(i) € Sym and the quantity I(-,E4), related to E* by
(3.14), belongs to the dual of Hg(TI+ , Sym), namely to

H'G{1l+, Sym) := {f : 7Z+ -> Sym : |(f, <p)| < oo , Vy> G Hg(K+ , Sym)} .

Remark 3.5. The quantity I(r, E4) is related to the stress associated to the static
continuation of E' defined as

Er w = f 5!> 'or*£ Ti - > o.
(_ E'(s — r) for s > r,

In fact in this case, we have
rOO

T(E4+r) = G(r)E(t) + / G(r + s)E<(s) ds = G^E(t) - I(r, E4) .
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Therefore, the requested regularity on I(t, Ef) is the regularity of

f(E*+-) = T(E*+T) - G^E(t) .

In particular, the fading memory property implies that limT_,oo T(E^,+r) = 0.
In the previous section we called as equivalent two strain histories (Ei(t),E*) and

(E2(t),E|) that yield the same stress when subjected to the same process. The analogous
equivalence relation may be done by means of the work.

Definition 3.6. Two strain histories (Ei(t),E^) and (E2(i),E2) are said to be w-
equivalent if for every Ep : (0, r) —> Sym and for every r > 0, they satisfy

I?(E1(i),Et1;Ep) = I?(E2(t),Et2;Ep). (3.18)

It is easy to check the following proposition.

PROPOSITION 3.7. For every viscoelastic material described by the constitutive equation
(2.2), two strain histories are w-equivalent if and only if they are equivalent in the sense
of Definition 3.2.

Proof. It is obvious that if (EX(£),E^) and (E2(t),E2) satisfy Definition 3.2, then
they are w-equivalent, namely (Ei(t),E£) and (E2(i),E2) satisfy (3.18) for every Ep :
(0, d) —> Sym and for every d > 0, since we have

/Jo
T(Ep1(r), (Ep! * E!)t+T) • EP(r)dr = [ T(EP2(r), (EP2 * Ex)t+T) • EP(T)dr,

the left [right] hand side being the definition of the work done by Ep starting from
(EjW.Ei) [(E2(t),E|)]. On the other hand, by virtue of (3.16) and of the arbitrariness
of Ep and d, if (Ei(t),E') and (E2(t),E2) are ^-equivalent, then they satisfy

E1(<) = E2(t), I(r, Ej) = I(t,E2) Vr > 0. (3.19)

By virtue of (3.13) and (3.15), equalities (3.19) imply
poo pOO

/ G(r + s)Ej(s) ds = / G(r + s)E2(s) ds Vr > 0,
Jo Jo

namely, the difference Ef = Ej — E, satisfies (3.4). □
Therefore, if and T,„o denote respectively

Tw = {e4 : 1Z+ - Sym : I(-, E4) € H'G{H+, Sym)} ,

r™o = {E4 eVw :I(r,Et) = 0, Vr > o} ,

then the new state space may be defined as

Y,w = Sym x (I^/I^o) • (3-21)

As a consequence of Definition 3.2, the work is a function of the state and the process.
Therefore henceforth we also use the notation

W(a(t), P) = W(E(t), E(; Ep) = W(E(t), E*; EP)

(3.20)
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and view a process as a function P : Hw —► H,w that associates with an initial state
a% G Su, a final state Per1 = <7^6 S„,. The set of finite work processes P will be denoted
by fl, namely P G II if the related Ep satisfies Definition 3.3.

4. Equivalent formulations of the maximum recoverable work. The maxi-
mum recoverable work is defined as follows

Definition 4.1. Given a state a € Hw, the maximum recoverable work WR starting
from a is defined as

WR{a) :=sup{-W(a,P) : P £11} . (4.1)

The name of "maximum recoverable work" for WR(ct) is to indicate that it is the
maximum quantity of work we can "extract" from the material at the given state a; in
other words, it is the amount of energy that is available at a.

Note that WR(o) is a function of state and it is nonnegative, since the null process
belongs to IT and yields a null work.

Even if (4.1) is widely recognized as the definition of the maximum recoverable work,
nevertheless in the literature alternative formulations have been used in order to obtain
its expression in terms of the past histories, and consequently the explicit formula of the
minimum free energy. Usually such alternative formulations are motivated by reasonable
arguments, but not rigorously proved. For instance, Breuer and Onat in [1, 2] implicitly
assume that WR is obtained by means of processes such that the final strain vanishes,
namely,

WR(a) = sup { — W(cr, P) : P £ U0(a) }, (4.2)

where

n0(fr) := {P £ n : Pa — (0, h) for some suitable h £ F^/F^o} • (4-3)

On the other hand, Day ([4, 5]) obtains WR by using processes such that the final strain
has the same value as the initial one, viz.

WR(a) = ^GooE ■ E + sup {-W(a(t), P) , P e n° } , (4.4)

where

n° := |p e n : ̂  eP(t) dt = o j , (4.5)

and d is the duration of the process.1 Finally, Golden in [17] finds the minimum free
energy by maximizing the recoverable work in the form

WR{o) = sup {^(oo) - W(a(t),P) , Pen}, (4.6)

where S(oo) = lim^oo S(t), and

S(t) = T(t) • E(f) - ^GoE(t) • E(t) (4.7)

turns out to be the opposite of the work done by a jump from E(f) to 0 (see also [9]).

1Actually, Day's statement is slightly different. Nevertheless, for our purpose it can be resumed to
Eqs. (4.4-4.5). This will be made precise before Corollary 4.6.
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Since such formulations are quite different and since they must be related to the
minimum free energy, which is supposed to be unique, one can ask whether they are
equivalent.

A first proof, showing the equivalence between (4.1) , (4.2) and (4.6), has been given
in [9]. Here we extend such results to prove the equivalence between (4.4) and (4.1).
Moreover, this result leads to a generalization of (4.4) that has been used in [13].

The proofs will be given without involving any topology or norm, so that the results
are not affected by the choice of the topology for the description of the state space.

Theorem 4.2. For every state <j G T,w, the maximum recoverable work Wr(ct) defined
in (4.1) is given by

WR{a) = sup P) , PeU0(a)} , (4.8)

where n0(cr) is given by (4.3).

Before giving the proof we need a preliminary lemma.

Lemma 4.3. Given a state a(t) related to the couple (E(t), Ef), with E(£) = E, for every
s > 0 there exist two suitable parameters a, r, such that the process PaiT G no(c), of
duration a + r related to

T? (t\ - J E for r G (0, a), , .
p( ^ i E-f(r-a) for rG (a, a + r], ( ^

yields a work W(a(t), Pa,r) satisfying

< e. (4.10)WXi),P„,r) + ^G00E-E

Proof.
fr E

-W(cr(t),Pa,r) = / T(t + a + t)dr ■ —
Jo r

Jg0e-e+ r r&(s)
1 Jo Jo

rr rT+a _ tt

+ / / G(s)dsdrE • —

E-|(r-s)
E

dsdr ■ —
r

+ I I G(s)E4(s — a — r)dsdr ■ —.
0 J r+a r

Integrating and making use of (2.3), i.e., G(t) = G(t) — Gqo, we have

E E
r r

-W((T{t),Pa,r)-\G0E-E+^G0E-E= / [ G{s)dsdT]
2 2 Jo Jo '

fr E /*r f°° E
+ / [G(r + a) — G(t)] drE •—b / / G(s + r + a)'Et(s)dsdT ■ —. (4.11)

Jo r Jo Jo r
Observe that

Pa<r) - ^GqE • E + ^GoE • E = -W(<r(t),Pa,r) - ^G^E • E. (4.12)
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Moreover, by virtue of (2.4),

f f G(s)dsdT-- b f [G(t + a) — G(t)] drEi ■ —
Jo Jo r r J o r

for some M < oo. Moreover, by virtue of (3.1), we have

< - (4-13)
r

pOO
/ G(s + t + a)Eil(s)ds

Jo
<5, V(t + a) > a(S, E*)

so that
rr roo tp

< <5|E|, Va>a(<5,E<). (4.14)
rr n OO

/ / G(s + t + a)'Et(s)dsdT ■ —
Jo Jo r

Choosing r = S = and a > a(S, E(), (4.11)-(4.14) yield (4.10). □
Proof of Theorem 4-2. Obviously, since IIo(<t) C n, it follows that

WR(a) = sup {-W(a, P) : P £ U} > sup P) : P e n0(a)} . (4.15)

In view of our hypothesis W.r(ct) < oo, for every e > 0 there exists a process Pe G II, of
duration d < oo, such that

WR{a)-£-<-W{a,Pe). (4.16)

Suppose that Pea = (Ee,h) for some suitable h G rto/r^o and continue Pe with a
process Pa,r described by (4.9). Then, by virtue of (4.16) and Lemma 4.3, there exist
two values of a and r such that

-W(a, Pa,r * Pe) = Pe) - W{PEo, P0>r) > WR{o) + ^GooEj • E, - e. (4.17)

Finally, observe that (Pa,r * Pe) G no(cr) so that (4.17) and (2.8) imply

WR{a) < sup {-W(cr, P) : P G n0(cr)} . (4.18)

Inequalities (4.15) and (4.18) ensure (4.8). □
An interesting alternative formulation of the maximum recoverable work is the follow-

ing.

THEOREM 4.4. For every state a G T*w, and for any fixed E G Sym, the maximum
recoverable work WR(a) defined in (4.1) is given by

WR(a) = ^GooE • E + sup {-W(a, P) , P G IIE(a) } , (4.19)

where

IlE(cr) := {P G II : Pa = (E, h) for some suitable h G T^/r^o} • (4.20)

The proof will be given with the aid of the following lemma.

LEMMA 4.5. Given a state related to the couple (0, Ef), for every e > 0 and every
fixed strain E G Sym there exist two suitable parameters 6, r, such that the process
Pb,r G nE(cr), of duration b + r related to

v r

for r G (0,6),
— (r — b) for r G (b, b + r]
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yields a work W(cr(t), Pb,r) satisfying

< £. (4.22)W(a(t),Pb,r)-^ GocE-E

Proof.

W{a(t),Pb,,
fr E
/ T(i + b + r)dr ■ —

Jo r
1 rr i-oo xp

= -G0E • E + / / G(*)E(t + 6 + t - «)dadr • -
2 Jo Jo r

= -GoE • E + [ [ G(s) —(r — s) dsdr • —
2 Jo Jo r t

fr r°° ■ e
+ / / G(s + b + T)Et(s)dsdr ■ —. (4.23)

o Jo r

Integrating (4.23) and making use of (2.3), we have

WX^n.rO-^GooE-E
EE fr f°° • E

G{s)dsdr—  b / / G(s + r + a)'Et(s)dsdT ■ —. (4.24)
'o Jo r r Jo J0 r

Observe that, by virtue of (2.4),

(.s)dsdr~ ■ -
r r>o Jo

for some M < oo. Moreover, by virtue of (3.1), we have

M
< — (4.25)

r

poo

/ ®JO
G(s + r + b)E*(s)ds < S, V(t + b) > a{5, E()

so that
fr pOO

<<J|E|, V6 > a(S, E*). (4.26)
E

G(s + r + b)^ (s)ds dr • —
/o Jo r

Choosing r = S = jpy and a > a(S, E4), (4.24)-(4.26) yield (4.19). □
Proof of Theorem 4-4- Denoting by Wo(<r) and We(c) the following sets:

W0(a) := {-W(a,P)-,Pen0(a)} , (4.27)

WE(a) := j^GooE • E - VF(er,P);.P e nE(o-)| , (4.28)

observe that, for every Pe G nE(cr), there exists a sequence of Pn e ITo(cr) such that

- lim W(a, Pn) = Jg^E • E - W{a, PE) . (4.29)
n—>oo z

In fact, if we continue any process Pe G I1e(<x), yielding a work W(er, Pe), with the
process Pa,r given by (4.9), we obtain a process Pa,r * Pe 6 n0(cr). Moreover, (4.10) and
the following

W(<r, Pa,r * PE) = W(a, PE) + W(PEa, P0,r)
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imply that for any e > 0, there exists a process Pa>r * Pe G n0(cr) such that

< £ ,

from which the limit (4.29) follows. This implies that

W(<T, Pa,r * Pe) - W((T, PE) + ^E • E

WE(a) C W0(cr). (4.30)

On the other hand, for every Pq G Ilo(cr), there exists a sequence of Pn G IIe(<t) such
that

JGooE-E- lim W(a,Pn) = -W(a,P0).
Z n—>oo

In fact, if we continue any process Pq G n0((j), yielding a work W(a,Po), with the
process Pb,r given by (4.21), we obtain Pb,r * Pq £ IIe(o')- Moreover, relation (4.22) and
the following

W{a, Pb)r * P0) = W(a, P0) + W(P0a, Pb,r)

imply that for any £ > 0, there exists a process p,ir. * Pq G IIe^) such that

W(a, P6,r * Pq) - W(a, P0) - ^G^E • E < £.

This implies that

Wo(<t) C We(ct). (4.31)

Equations (4.30) and (4.31) imply Wo(cr) = We(ct) so that supWo((r) = supWe(<t). By
virtue of Theorem 4.2 the thesis follows. □

Theorem 4.4 is a generalization of the formulation of the maximum recoverable work
given by Day. For sake of precision, the maximum recoverable work defined by
Day is just the quantity W^\a(t)) = sup { — W(cr(t), P) , PgII0} . However, since
any free energy ip evaluated at the constant strain history (E, E^) gives ip = ^GooE ■ E,
he stated that the minimum free energy ipm relative to the strain history (E(i),E4) is

given by %pm(t) = |GooE(i) • E(£) + Therefore, for our purpose (see (5.1)),
Day's point of view can be stated as follows.

COROLLARY 4.6. For every state a G T,w, and for any fixed E G Sym, the maximum
recoverable work Wr(<j) defined in (4.1) is also given by

WR(a) = ^GooE(t) ■ E(t) + sup {-W(cr, P) , P G n° } , (4.32)

where II0 is defined by (4.5).

Moreover, Theorem 4.4 may be generalized in the following form that has been used
by Fabrizio and Golden [13]. Let <p(t) = |GooE(i) • E(£) and </>(oo) = limt_oo0(i).
Observe that in our context the limit </>(oo) does exist, since any process P G II has finite
duration. Therefore, by continuing any process P of duration d with the null process,
the work done does not change and the ensuing strain is such that E(£) = E(d), Vi > d.
Thus the limit Eoo = lim^oo E(t) exists and corresponds to the final strain yielded by
P, whereas <j>(oo) = ^GooE^ • E^ .
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Corollary 4.7. For every state a € the maximum recoverable work Wr(ct) defined
in (4.1) is given by

Wr(ct) = sup {<?!>(oo) — W(a,P), P £ II } . (4.33)

Proof. First observe that P G n0(cr), of duration d < oo, continued with the null
process yields a strain that vanishes at infinity, i.e., Eoo = 0, so that <fi(oo) = 0. Therefore,
letting Wo(er) and Woo(cr) be defined by (4.27) and by

Woo(<T):={0(oo)-M/(a,P);P£n}, (4.34)

we have

Wo(<t) C Wx{a) . (4.35)

Now fix a state a(t) and a process P G II yielding a final strain such that

lim E(t) = Eqo ± 0 .
T—>00

Let Pd be the truncation of P up to the time d, i.e., the process of duration d continuing
a(t) with the strain Ed such that E<f(r) = E(r), r (E [t,t + d). Then since

lim W{a,Pd) = W(a, P), lim ^GooEd ■ Ed = ^G^E^ • Eoo
d—>oo d—>oo Z Z

for every e, there exists a suitable de such that

■ F,, -
2\W(a,Pd)Mw(a,P)\ < ^Goo Ed • Ed — -GooEqq ■ Eqo < | (4-36)

holds for every d > de.
Now we consider a process Pd,a,r = Pa,r * Pd G no(cr(f)), with d such that (4.36) is

satisfied and Pa r is described in Lemma 4.3, related to the strain (4.9) with E = Ed and
a, r such that Pa>r satisfies (4.10) with £ replaced by |e.
Then, for every e > 0, there exists a process PE e IIo(f (£)) such that

\tj)(oo)-W(a,P) + W(cr,Pe)\<£. (4.37)

In fact, considering P£ — Pd,a,r we have

W(a, P£) = W(a, Pa,r * Pd) = W(a, Pd) + W(Pda, P0,r)

and

\<j>(oo) - W(a, P) + W(cr, Pe)\ = \cp{oo) - W(a, P) + W(a, Pd) + W(Pda, Pa<r)\

< |0(oo) - ^ Goo Ed • Ed| + | W(a, P) - W{cr, Pd)\

+ \ W(PdCT,Pa,r) + -GooEd • Ed I < £.

Estimate (4.37) means that for each fixed a G T,w and P G II yielding a work W(cr, P),
there exists a sequence of processes Pd„,a„,rn £ n0((j) yielding works W(a, Pdn,an,rn) £
Wo (a) such that

lim W(a,Pdn,an,rn) = W(a, P) - 0(oo)
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and hence

Woo (a) C Wo (a) . (4.38)

Inclusions (4.35) and (4.38) imply that

sup Woo(c) = sup W0(a).

By virtue of definitions (4.34) and Lemma 4.3, the thesis is proved. □
We conclude this section by recalling the equivalent formulation for Wr used by Golden

in [17]. Such a formulation may be resumed as follows.

Theorem 4.8. The maximum recoverable work Wn(cr(t)) is given by

WR(a(t)) = sup {S( oo) - W(a(t), P), Pell}, (4.39)

where S(oo) = lim^oo S(t) and S(t) is defined by (4.7).

Proof. Any process P 6 I To(cr) yields a final strain Eoo = 0, so that S(oo) = 0.
Therefore, letting Wo(<r) and W^0(<r) be defined by (4.27) and by

WM := {5(oo) — W(a, P); P € 11} ,

we have

Wo(tr) C WM . (4.40)

Now consider the strain E(r), r £ TZ, related to a(t) continued with a process P G II
and such that limT^oo E(r) = Eoo 7^ 0. Let E^- denote the truncation of E at the time
d > t, continued with the "jump"-process yielding

lim Ed(r) = E(d), Ed(r) = 0 , r > d , (4.41)
r—*d~

and call Pd the related process. The work done on Pd is

W(cr(t), Pd) = j\(r)-E(r)dT-l-[T(d+) + T(d-)}-E(d)

T(r) • E(r) dr — S(d). (4.42)
/

Since

lim W(a(t), Pd) = W(a(t), P) — S(oo) , (4-43)
d—»oo

for every P £ II we can find a family of processes Pd € n0(cr(i)) such that

lim W(a(t),Pd) = W{a{t),P) - S(00) .
d—>00

Therefore

WMt)) C Wo(4.44)

(4.40) and (4.44) imply (4.39). □
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5. An expression for the minimum free energy. The minimum free energy has
been shown to be given by the maximum recoverable work, viz.

= WR(a) . (5.1)

The problem of finding an expression for the maximum recoverable work, and hence
for the minimum free energy, in the general case for a viscoelastic material has been
considered first by Day in [4]. However, such works do not completely solve the problem
because the exhibited final expression is not in terms of the given strain, but in terms of
the "reversible extension", that is, the "optimal future continuation" of the strain yielding
the maximum recoverable work. Now, such a reversible extension can be written in terms
of the given strain by solving a Wiener-Hopf equation of the first kind. Unfortunately, this
type of integral equation is not solvable unless particular properties of the integral kernel
are specified. Therefore, Day's formula remains an interesting characterization, but not
an explicit formula for the minimum free energy. Recently Golden [17] has provided an
explicit expression for the minimum free energy in the scalar case by using a variational
technique. Such a method has been extended to the tensorial case in [9]. However, the
results on factorization for the memory kernel, which turn out to be crucial both in [17]
and [9], may also be applied to Day formulation to yield an explicit formula for the
maximum recoverable work in terms of the given strain, and hence for the minimum free
energy. This is just the aim of this section, namely, to give an explicit characterization
of Hp(er), and hence of starting from relation (4.19) of Corollary 4.6.

Consider a fixed time instant t and a strain history (E(£),Ef) represented by a state
a(t) € T,w. The work done on a process P £ n°, related to the strain Ep : (0, oo) —> Sym,
is given by (3.16) with Eo(d) = 0. viz.

iy(E(£),Ef;EP) =
poo r I roc

/ o/ G(\r-s\)EP(s)ds -I(r,Ef)
■Jo lz JO

E p{t)(1t. (5.2)

The "optimal process" will be the one related to the future strain E(m) : (0, oo) —>
Sym providing the maximum recoverable work, namely, such that

WR(a(t)) = iG^E(t) ■ E(t) - W(E(t),E<m>) . (5.3)

For each Ep we put Ep(s) = E(m^(s) + h(s) for a suitable h : 1Z~ —» Sym. Therefore
W(E(i), E*; Ep) is minimized in correspondence of E'm' satisfying

rJo
G(|r — s|)E(m'(s) ds = I(r, Ef), r G 7Z+. (5.4)

Such an equation turns out to be a Wiener-Hopf equation of the first kind, which is not
solvable in the general case. Nevertheless, the thermodynamic properties of the integral
kernel and some theorems on factorization will allow us to determine the solution E^"1^
of (5.4).

Let us introduce a new function r : 1Z~ —> Sym, defined as

pOG

r r = G(\T-s\)E{m)(s)ds, re K~,
' —oo
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which, added to (5.4), yields
)
G(|T-s|)E(m>(s)<2s = I(T,E')+r(T), r e K, (5.5)

/J — (

where supp(E^m^) C 7£+, supp(I(-, E()) C 1Z+ and supp(r) C TZ . The Fourier transform
of (5.5) gives

2Gc(w)E^m)(u;) = f^w) + r_(w), (5.6)

where I*.(w) = I+(w,E4) = /0°°I(r,E^e^dr.
It is worth recalling that we can apply results of [16] to fourth-order tensor-valued

functions (see Appendix). In particular, the tensor K(w) = (1 + lj2)Gc(uj) can be factor-
ized as

K(w) = K(+)(w)K(_)(w) ,

where henceforth the subscript indicates that the function f(±)(z) has zeroes and
singularities only for z € ft . In particular, K(a>) has no zero for every real u>, —oo <
lu < oo. Moreover, Gc(a>) can be factorized too as follows:

Gc(w) = G(+)(w)G(_)(u;), G(±)(o;) = ——— K±(w) . (5.7)
1 ± iw

Factorization (5.7) allows us to rewrite (5.6) as follows:

G(+)MEim)M =

Applying the Plemelj formulae, the quantity G^(w)I^_(w) may be rewritten as

= P(_)M - P(+)(w), (5.8)

where pj±)(z) has zeroes and singularities for 2 G 0± and they are defined by

1 r°° G7\(w)i+(w)
p'(z) := — / —  duj, P(+)M := lim p\u) + ia). (5.9)

4711 J_OQ z — U) K ' q-^OT

Therefore, we obtain

G(+)(w)E+n)(w) = -P(+)(w) + P(_}(w) + ^G("_1)(w)r_(w). (5.10)

Observe that the quantities G(+)(z)E^(,z) and p\+){z) are analytic for z € fi_,

whereas pj_}(z) and G^ (aj)r_(w) are analytic for 2 £ Q+. Therefore, the quantity

J(w) = G(+)(w)E<fm)(w) + P(+)(w) = p|_)H + ^G^_1)(w)r_(w)

has analytic extension on the whole complex plane. Since J vanishes at infinity it must
be zero so that

E^u;) = -G(+) (w) _1P(+) (uj), (5.11)

P(_)(w) = -^G"_1)(o;)r_(u;).
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It is worth noting that the process related to does not belong to IT1' but may
be constructed as the limit of a sequence of processes Pn of II0.

Remark 5.1. Since P(+)(w) = 0( 1/w) as |w| —»■ oo and lima;_>00 G(+)(w) =
r • -i i/2
—G(0) , it follows that

lim Ejm)(w) + 0 .
UJ—> OO

Therefore E(m\r) has an initial singularity as r —> 0+. This agrees with the property of
the optimal continuation that must have an initial discontinuity as r —> 0+.

Remark 5.2. Observe that G(+)(0) ^ 0, so that
POO

E(m)(oo) -E(m)(0) = / E^m)(r)dr = E(|m)(0) = -G(+)(0)_1P(+)(0).
Jo

Therefore, the solution E^m) of (5.4) tends to the finite limit

lim E^r) = E<m>(oo) = E(t) - G(+)(0)~1p(+)(0).
r—>oo

The substitution of (5.11) into (3), taking account of (4.36), yields
i i r°° roo

WR{o) = -GooE(t) ■ E(i) + - / / G(|r — s|)E^m^(s) • E(-m^(r) ds dr
/ 0 Jo

2 w 2
-j -| /»oo  

= -GooEW • E(t) + — I GeHE^M-E
1 1 f°°
-GooE^-E |p|+)MI 2du. (5.12)2

Therefore, in view of (5.1), the minimum free energy takes the form
fOO

tTpm(cr(t)) = ipm{E(t),p[+)) = iGooE(t) ■ E(t) + ~ j |p^+)(u;)|2cL>. (5.13)

Actually, expression (5.13) suggests that the couple (E(t),p|+^) provides an explicit
representation of the state a(t) £ this question will be considered in the next section.

Now we conclude the section by comparing expression (5.13) for the minimum free
energy with the ones already found in [17] and [9]. Let us exploit the relation between
P/_|n(w) and E4. We identify E4 with its causal extension (viz. E4(r) = 0 for r < 0) and

consider the odd extension G'd^ of G, viz.

G(0 for £ > 0 Md).
-G(-{) for f < 0 ' ""'ha' GfM = "2~G,M-GM(f) = {

Then (3.14) can be rewritten as

/OO

G(d)(r + s)Et(s)rfs , r > 0. (5.14)
-OO

Moreover, let l(n)(-,E4) : 1Z~ —* Sym be defined as
pOO

i(«)(r,Et) = - / G{d)(r + s)Et(s)ds , r<0, (5.15)
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and consider the extension I(fl)(-, E*) : TZ —» Sym of I(r, E') to the real line as follows:

K*(r.fi = + '"III'- ^
Introducing the variable E^(s) = E4(— s), s < 0 and the ensuing extension E^(s) = 0

for s > 0, we have

/OO

G(d)(T-s)Ej1(s)ds ,
-OO

so that

ly^w.E4) = 2iGs{io)Etn_(oj) = 2iGs{u)Et+(uj). (5.17)

By virtue of (5.16), we have the property

i^)(o;,Et)=I+(ct;,E4)+lL")(^Et),

so that

^G^MI^w.E') = ^MM^E*) + ^G^MI^Ve').
By virtue of (5.8) we have

ic-^Hi^VE') = P(_)(o;) - p[+)H + itfi^r^E').

On the other hand, the quantity IG^^)]^ (uj, E') may be written by using the
Plemelj formulae as follows:

^MiyVE4) = P'(_)(w) - P'|+)M,

where p'^^z) has zeroes and singularities for z £ S7± and they are defined analogously
to (5.9). Thus, we have

p'(-)(w) - p'(+)(w) = p'_)(u;) - P(+)(w) + -G(_1j(w)I^!^(a;, E') .

Observe that the quantity

1-(
2

is analytic on il~ by virtue of the first relation of (5.18), and it is analytic on Q+ by
virtue of the rightmost relation of (5.18). So J'(w) = 0 and

P(+)M = P'(+)M .
In particular, when it is possible to use (5.17)2 it follows that

^G^MI^w.E4) = iG-^HGsME'+M = -iu;G(+)(u;)6t>), (5.19)

so that

J'(w) = P(+)(w) - p'(+)M = P(_)(w) - p'[_)(w) + -G^M^^E') (5.18)

f ,t 1 f°° iw'G(+)(o;')EV(u>') ,p(+)M = p j+)M = Jm — J ^ _7 do; . (5.20)
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The quantity E^ can be written in terms of the Fourier transform of E4 as

1EVM = EVM - —E (t),
IbJ

so that

Since

we have

= i j-
K(+)v ' z~>u>+ 2iri J-oo u'-z y '

G(_)(w)= lim f
a-*0+ 2m J_OQ u>' —

G(-,M ^
(u> + ia)

where

P(+)H = G(-)(w)E(i) + (5.22)

1 f°° GuWEi(^') ,
qf±1(o;) = lim -— /  j    —dio . (5.23)

> q->o=f 27ri J_oa u'-(uj + ia) v ;

It is worth noting that q'±j(u;) are the same quantity defined in [9] as q±(u;), since

H(w) = -wGs(w) = uj2Gc(ui) and hence wG(±)(w) correspond to H±(to>) of the factoriza-
tion of H (see (5.11) of [9]). Substitution of (5.22) into (5.13) yields

1 1 r°° ~
ipm{(r(t)) = -GooE(t) • E(f) + — J |G(_)(w)E(<)+iq(_)(w)|2da;

1 1 f°° ~= -G0E{t) ■ E(t) + -3? / iG(+)Hq(_)(w)rfw ■ E(t)
^ n J-oo

i r°°+ — J |q(_)(^)|2 du) . (5.24)

On the other hand, observe that the convolutive part of the stress may be written in
terms of such quantities. In fact,

noo /•oo ^ r oo

/ G(s)Et(s)ds=— / iGs(w)E+(u;) dio = / Gc(o;)(iu;E+(u;)) dio
Jo T J_oa T 7T J_OQ

1 f°° -- / G(+)(w)(q^+)(u>) - q'.jH) du.
^ J — OO7r

Moreover, since both G(_j_)(2) and q*+)(z) are analytic on Q we have

/oo G(+)Mq(+)(w)dw = 0,
-OO

f°° • i r°° „
/ G(s)E*(s) ds = — / G(+)(w)q(_)(w) duo. (5.25)

Since

5ft/OO /»oo
iG(+)(a;)q(_)(a;) do; = / iG(+)(a;)q(_)(a;) dw,

-oo J —oo
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substitution of (5.25) into (5.24) and the position
1 r°° . 1

S(t) = -G0E(t) ■ E(f) + / G(s)Et(s) ds ■ E(t) = T(t) ■ E(t) - -G0E(t) • E(<)
2 Jo 2

leads to
1 r°°

ipm{t) = S(t) + — j |q(_}(w)|2 du>, (5.26)

that is, the expression for the minimum free energy found in [9], As a consequence, all
the properties shown in [9] for (5.26) are satisfied by (5.13) too. In particular, it satisfies
the definition of the free energy stated by Graffi and the one stated by Coleman and
Owen.

However, the method used here to find expression (5.13) will be useful in the next
section to show that the domain of definition of the minimum free energy is the whole
space of the admissible states defined in Sec. 3.

6. The space of definition of the minimum free energy. The minimum free
energy ipm is a function of the state a 6 Hw. Moreover, since may be thought as
an element of (r^/T^o), (E(£),p|+^) is a direct representation of the state u(t) £ T.w =
Syyn x (r^/r^o)'

This can be proved by recalling (3.19)2 and by showing that I(r, Ef) = 0, Vr > 0 if
and only if p'+)(u>) = 0, Vo; e 1Z. To this aim, observe that (5.5) can be rewritten as

/OO

G(s)Ef(s — t) ds , t> 0.

A causal extension of E4 and an odd extension of G provide the following representation
of I in the frequency domain:

1 f°° .    . If00 - —  ■
I(t, E4) = — / iGs(w)E+ (uj)elu'T dui = / ju;Gc(w)EL(uj)elUT du , r > 0.

^ J — oo ^ J—oc

Moreover, representation (5.20) ensures that, the Plemelj formula for iwG(+) (w)Et|_(w)
may be given by

iwG(+)(w)E(+(w) = P(+)H - p"(_)H, (6.1)

where p"|_)(w) is a suitable function analytic on Sl+. Then

i(r,E4) = -1 /°°G(_)M(p|+)H-p";_)(a;))e<WTdu;
^ J — OO

1
' —oo

r oo
G(_)(w)p elu,T du;-,, t> 0,

the second equality holding since G(_)(u>), p"(_)(aj), and elu'T are analytic in the half-
plane f2+. Consider now the following function:

lt(r) = / G(_)(w)p|+^(w) eluJT du)-,, r e 1Z. (6.2)
J — oo
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This characterization of I4 allows us to prove the following theorem.

Theorem 6.1. For every viscoelastic material with a symmetric relaxation function, a
given strain history E4 is equivalent to the zero history 0* in the sense of (3.19)2 if and
only if the quantity p[+), related to E4 by (6.1), is such that

P(+)(w)=0, VweK. (6.3)

Proof. Using representation (6.2), the theorem in effect states that

lt(r) = 0 Vr > 0 «=> p4+)(w)=0 Vw e 71. (6.4)

The statement relating to the left arrow of (6.4) follows trivially from (6.2). In order
to prove the statement relating to the right arrow, we can consider (6.2) as the inverted
Fourier transform of

/OO

jt(T)e~iwTdT . (6.5)
-OO

If I4(r) = 0 Vr > 0, it follows from (6.5) that f4 is analytic in Q+. The zeros of G(_)
cannot cancel singularities of p|+^ since all such zeros are by construction in fn. Thus
p4+) must be analytic in f2+ and therefore in ft. Since it goes to zero at infinity, by
Liouville's theorem, it must vanish and (6.3) is proved. □

Theorem 6.1 ensures that (E(£),p*+v) is a direct representation of the state cr(t) G Ew

and hence ipm(E(t), pf+j) = is a function of the state. More precisely, we
should have to say that (E(t),p4+^) describes a state a(t) G Sm C Ew where

Sm := {a G Tiw : ipm{o~) < oo} . (6.6)

Actually, any free energy is defined in a proper subset of namely

S := {a £ Tjw : ip(a) < oo} C H,w , (6.7)

where ip is any free energy such that ip = 0 when evaluated at the zero history (0, 0^).
Moreover, since 0 < tpm(cr) < tp(cr), it follows that S C Sm C STO.

Moreover, we can prove the following important result that ensures that every state
of T.w has a bounded minimum free energy.

Theorem 6.2. The space of definition of the minimum free energy is the whole state
space, viz. Sm = J2W.

Proof. Observe that a crucial equation in determining the expression of the mnimum
free energy is (5.4), viz.

nOO

/ G(|r-sj)E(m)(s)ds = I(r,E4), r G TZ+ . (6.8)
Jo

Substitution of (6.8) in (5.2) and (5.3) yields

-GooE(t) ■ E(t) + -
i i r°° f°°

WR(a) = -G00E(t) • E(t) + - / / G(|r — s|)E^TO^(s) • E^m^(r) dsdr

i 1 roo  

iGooE(«)-E W + GcHE<ra)(W).E f\u)du>. (6.9)



176 G. GENTILI

Therefore, Wr((t) induces a natural norm and a natural functional space for the
processes P t 11", namely,

Hq(TZ+, Sym) := |<p G Hg(TZ+, Sym) : J <p{r) dr ()| . (6.10)

Moreover, it is worth noting that (6.9) and Theorems 4.2 and 4.4 ensure that Hq(7Z+,
Sym) is dense in Hg{TZ+, Sym) with respect to the norm || ■ ||(j. In fact, considering the
fixed value of Theorem 4.4, equations (4.30) and (4.31) and Theorem 4.2 imply

sup { U'(rr. />), /' c II} sup j* G x E(/) • E[l) U (n. /'), P G n° J . (6.11)

Equations (6.9) and (6.11), jointly with definitions (4.1) and (3.12), ensure that 7-Iq(TZ+ ,
Sym) and 7^g(7^+, Sym) admit the same completion with respect to the norm || ■ ||g-

As a consequence, every state a(t), whose representative strain history (E(i)Ef) is
such that E(i) G Sym and i(-.E') G H'G(TZ+, Sym), belongs to Sm, so that T,w C Sm.
Since definition (6.6) implies Sm C Ew, the thesis is proved. □

We conclude the section by characterizing the states of STO and, in particular, analyzing
the type of past strain histories Ef belonging to r^/T^o. Remember that an element of
Twjrmv can be directly represented by p[+) as a consequence of Theorem 6.1.

Proposition 6.3. Given a past strain history E' , then I(i, E') G Ti'G(TZ+, Sym) if and
only if p'+.j £ L2(1Z, Sym(i})).

Proof. For every ip G H.g{TI+ ■ Sym) we have
„or, „r>r, ^

/ Gc(u>)ip+(u;) ■ <p+(uj) cluj = / |G(+)(w)¥'+(w)| duj.
J — DO J — OG

Consider now Lp G Hg(71+ , Sym) and the duality product
r oo

HI. K') • <p{!)dt ^ I Il+(uj)-ip+(u))dw

1
2n
1

2n

[°° G-^ioj)!^) ■ (g^Mv+M) dcu
J —oo

o

The Plemelj formulae (5.8) and the fact that

P(_)H • (G(+)(w)<p+(u;)) duj = 0
fOC

' — OO

lead to
f°°" 1 f°° /- \/ I(i,E4) ■ <p{t)dt. = — / P(+)M ' (G(+)Mv+MJ duj

-oo
nOO1 f°° 1 f „

-4nj IP(+)(W)|2°'W+ I lG(+)Mv+MI2d^-

Therefore, if p[+^ G L2(1Z, Sym(w))t then !(-, E') G Hq(Tl+, Sym).
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On the other hand, if I(-,E4) £ H.'G(1Z+, Sym), Theorem 6.2 ensures that the maxi-
mum recoverable work is finite and the optimal process £ Hg{71+, Sym). Thus we
have

/OO   1

Gc(u;)E^m)H-E[™\uj)<Lj = -GooE(i) • E{t) - WR(a) <00. (6.12)
-OO ^

Substitution of (5.11) in (6.12), jointly with (5.7) and the property , yield
poo

P(+)( ui du> < 00.

Therefore, I(-,E') e H'G(TZ+, Sym) implies 6 L2{1Z,Sym(u>)). □

7. Recoverable work and thermodynamics in viscoelasticity. The maximum
recoverable work and its properties may be taken as the basis for the thermodynamics
of a viscoelastic material under isothermal conditions. From this point of view, it is of
interest to recall the Dissipation Principle of the Mechanical Energy in the form stated
by Fabrizio, Giorgi and Morro in [11] that reads:

Dissipation Principle. For any state a € Ew, the set of works done starting from
<7 is bounded from below, viz.

N(a) := inf {W(a, P) : P e 11 } > -00. (7.1)

In our context, we do not need to assume such a Principle. In fact, we can prove it by
virtue of Theorem 6.2 and of a " Weak Dissipation Principle" that is actually a definition
of a new state space, called "space of admissible statesv and that reads:

Weak Dissipation Principle. There exists a suitable state space Ejv C Em, named
as the set of admissible state, whose elements are all a,nd only those states a £ Ew
satisfying (7.1).

In other words,

Ejv := {cr e T,w : N(a) > -00} . (7.2)

Observe that, comparing (7.1) with (4.1), it is clear that

WR(a) = —N(a) < 00 . (7.3)

Thus Definition 4.1 and comparison (7.3) clarify the physical meaning of the name
"admissible state" for a state a satisfying (7.1). In fact, if (7.1) does not hold, we might
have a state that could provide infinite energy, and this is not physically admissible.

Moreover, by virtue of (5.1), it is easy to note that the spaces Sm and defined
respectively by (6.6) and (7.2), coincide. As a consequence, Theorem 6.2, which ensures
Sm = E™, proves the Dissipation Principle too.

Such a thermodynamic principle, in the form introduced in [11] or in the weaker form
shown above, agrees with the general theory of dissipative dynamical systems proposed
by Willems in [25]. In fact, when a viscoelastic material under isothermal conditions is
considered, the general "supply rate" of [25] corresponds to the mechanical power, the
general "storage function" S of [25] is the free energy and the "available storage" S of
[25] is the maximum recoverable work (i.e., the minimum free energy). From this point
of view it is worth quoting Theorem 1 of [25] that reads as follows.
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Theorem 7.1 (Willems). The available storage (i.e., the maximum recoverable work)
WR{a) is finite for every a G E if and only if the material is dissipative. Moreover,
0 < Wr{cf) < ip{cr) (Ver G E) and WR(a) is itself a possible storage function (free
energy).

This theorem points out how Theorem 4.2 is crucial. In other words, Theorem 7.1
asserts that assuming the dissipative property of the material is equivalent to state that
the domain of definition of the minimum free energy coincides with the whole state space.

Let us recall how (7.1) leads to the Clausius-Duhem inequality. Remember that WR
satisfies the following property.

Proposition 7.2. The maximum recoverable work WR(a) is nonnegative for every a €
Em.

The proof is an immediate consequence of (4.1), recalling that at every state a it is
possible to apply the null process yielding a null work.

We recall the following assumption that is quite natural at least for simple materials
and, in particular, for viscoelastic materials (see [11]).

Assumption 7.3. There exists a "zero state" o$, such that Wr(<jq) = 0.

Actually, as pointed out in [11], for viscoelastic materials, ao is the state related to
the identically vanishing strain (0,0^).

The fundamental principles of thermodynamics follow from the Dissipation Principle
and Assumption 7.3. In fact, from (7.1) and (4.1) it follows that for each fixed pair
a G Tjw, Pi G IT, we have IT := {P = P' * Pi , P' G 11} C II so that

WR(a) > sup {—W(a, P' * Pi) , P' G II }

= —W(a, Pi) + sup {-W(P1(r, /") . P' 6 11 } = -W(a, Pi) + WR(Pa).

Therefore, for any o~i,cr2 e £w and P e II such that Peri = (J2, we have

W„(*2) - WR(tn) <W(auP). (7.4)

As a consequence, for every cycle, that is, a pair a G E^, and P G II such that Pa = a,
(7.4) implies

W(a,P)> 0, (7.5)

that is, the Second Principle of Thermodynamics in the formulation of Clausius. Instead,
Assumption 7.3 implies the Dissipation Principle of Gurtin and Herrera [22]. In fact, from
Assumption 7.3 and (4.1) it follows that

W{a0,P)> 0 VP Gil,

as stated by the above-mentioned Principle.
Inequality (7.5) implies that there exists a function of state ipi*7), called free energy,

that is a lower potential such that

lK*2)-^(<n)<W>i,P), (7.6)
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that is, the integrated Clausius -Duhem inequality for isothermal processes.2 Comparing
(7.4) with (7.6), it is clear that Wr is a free energy.

We conclude the section by discussing the physical meaning of the quantity

D(<ji,P) := W(a1,P) - ip(a2) + ip(ai) > 0 . (7.7)

In fact, D is usually called as the dissipation of the material, so that a process P, acting
on a, should be reversible (i.e., nondissipative) if and only if D(a, P) = 0 and a material
should be nondissipative if and only if D(a, P) = 0 for every a € £ and P E II.

However, this way of relating the dissipation to the Clausius-Duhem inequality (7.6)
fails when memory effects occur, as pointed out in [12]. This is substantially due to the
nonuniqueness of the free energy as a functional satisfying (7.6), whereas the dissipation
should be an observable uniquely determined. Moreover, we can find a counterexample
of a suitable free energy satisfying (7.6) and (7.7) as an equality even if the material with
memory is dissipative. This is the case for the maximum free energy defined in [11].

Even in this situation the maximum recoverable work shows an interesting property.
In fact, inequality (7.4), unlike (7.6), is uniquely fixed and it represents the dissipation of
the material by virtue of the definition of the maximum recoverable work as the amount
of available energy. In fact, (7.4) can be interpreted as follows: the sum given by the
energy provided to the material by means of the work W(<ti , P) added to the available
energy at the state o\ is not less than the available energy at the state Po\ = <72- The
difference is the part of W(<Ji,P) that cannot be utilized anymore, that is, the dissipated
energy. Therefore, denoting by Di the function defined in (7.7) when ipi is the free energy
involved, and calling ipm the free energy given by the maximum recoverable work, viz.

VU<7) = WR(a) , (7.8)

in view of (7.4), (7.7) and (7.8) the quantity

Dm(vi,P) ■= W{oi,P) ~ tpmfa) +4>m(v l) > 0

represents the dissipation of the material in the sense outlined above.
Thus, when memory effects occur, the Clausius-Duhem inequality is still related to

the dissipation of the material provided the involved free energy is the one given by the
maximum recoverable work.

Appendix: Factorization of the integral kernel. The solution of the Wiener-
Hopf equation (5.4) relies crucially on the factorization of the integral kernel. The aim
of this appendix is to recall the results of Gohberg and Krem [16] and Deseri, Gentili
and Golden [9], which ensure such a factorization. The results in [16] apply to Hermitian
matrices of arbitrary finite dimension but we state them for the case of 6 x 6 matrices;
moreover, as recalled in Sec. 2, they can be easily extended to tensors belonging to
Lin(Sym(fl)). The result in [9] shows sufficient conditions for the factorization of the
integral kernel G.

"However, inequality (7.6) allows many functionals to be a free energy, especially for a material with
memory, and they do not differ just for an additive constant.
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Definition A.l. A nonsingular continuous function K : 1Z —» Lin(Sym(Cl)) has a
left [right] factorization if, for every u> £ TZ, it can be represented in the form

IK(q^) = (cj)IK(_)(u?) [K(w) = (cj)j , (A.l)

where the matrix functions K(±) admit analytic continuations, holomorphic in the interior
and continuous up to the boundary of the corresponding complex half planes O , and
are such that

det K(±}(C) 7^ 0, (A.2)
Definition A.2. A nonsingular continuous function K : 1Z ̂  Lin(Sym,(Q)) belongs

to 5?6x6> [^6x6]' [[^6x6]] there exists a constant matrix Co and a matrix function F(t)
such that

/OO

F(t)eiuidt , VweK, (A.3)
-oc

r°° i r r r®
) = C0 + / F(t)eiuidt , K(w) - C0 + / F{t)eiuidt

JO _ . . J—oo
(A.4)

Note that if K £ ^6x6' h lias the analytic properties ascribed to K(±\ above. The
main result we use is Theorem 8.2 of [16], that can be stated in our context as follows:

Theorem A.3 (Gohberg Krein). In order that the nonsingular (Hermitian) matrix
function IK £ 3?6x6 possess a representation of the form

K(w) = K(+)(w)lK*+)(w), (A.5)

in which the matrix function K(+) £ 3?gx6 and satisfies det K(+)(C) 0 for ( £ f2+, it is
necessary and sufficient that K(w) be positive definite for every —oo < lo < oo.

Comparison of (A.5) with the first relation of (A.l) yields

K(_)M = iq+)M. (A.6)
Recalling that any fourth-order symmetric tensor maps into a 6 x 6 matrix under the

isomorphism discussed at the beginning of Section 2, let us consider for each given lo £ 1Z
the fourth-order tensor Gc(w) £ Lin(Sym) defined by (2.6). By virtue of (2.7) and the
assumption that G(t) is symmetric, it follows that Gc(u>) is a real-valued, symmetric,
positive definite tensor. Moreover, since

lim lo2Gc(lo) — — lim a;Gs(<x>) = —G(0), (A.7)
UJ—>OC UJ—+OC

it follows from (2.9) that the tensor

K(w) := (1+u2)Gc(u>) (A.8)

is symmetric and positive definite for every — oo < lo < oo.
The result in [9] ensures that IK £ 5R6x6, i.e., that the representation (A.3) applies to

K.

Proposition A.4 (Deseri-Gentili-Golden). If G and G are integrable tensor-valued func-
tions, and the tensor G(0) is finite and nonsingular, the tensor-valued function IK, related
to G through (A.8), belongs to 5Rex6-
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Proof. Observe that integration by parts yields

(x^Gc(uj) = —^'Gs(u?) = —G(0) — Gc(uj) , (A.9)

so that (A.8) becomes

K(w) = [-G(O) - Gc(u>) + Gc(w)1 . (A.10)

Consider now the tensors

Co = -G(0), = 5 -G(t)+6(t) , tell, (A.11)

where G and G are extended on the real line as even functions, so that Gf = 2GC and
Gp = 2Gc. Then, in view of (A.11), (A.10) is equivalent to (A.3) and the assertion is
proved. □

Theorem A.3, Proposition A.4, and suitable hypotheses on G ensure that K(w) has a
representation of the form (left factorization)

K(w) = K(+)(w)K(_)(w) (A.12)

with K(_)(w) = K*+^(w), K(+)(w) E 5?^~x6 and

detK(+)(C)^0 for (eS]+. (A.13)

Moreover, such a factorization is unique up to a post-multiplication on the right by a
constant unitary tensor (see Remark on p. 253 of [16]).

As a consequence Gc(w) can be factorized too. In fact, we have

Gc(w) = G(+)(a;)G(_)(u;), (A.14)

where

G(±)M = —^-K(±)M . (A.15)V 1 ±ILU

Observe that, following the convention used in [17], both for K(±) and for G(±) the
sign indicates the half-plane where any singularities of the tensors K(±)(£) and <S(±)(C)>
(£ f! and any zeros in the determinant of the corresponding matrices may occur.
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