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ABSTRACT: Diversity selection is a common task in early drug discovery. One
drawback of current approaches is that usually only the structural diversity is taken
into account, therefore, activity information is ignored. In this article, we present a
modified version of diversity selection, which we term Maximum-Score Diversity
Selection, that additionally takes the estimated or predicted activities of the
molecules into account. We show that finding an optimal solution to this problem
is computationally very expensive (it is NP-hard), and therefore, heuristic
approaches are needed. After a discussion of existing approaches, we present our
new method, which is computationally far more efficient but at the same time
produces comparable results. We conclude by validating these theoretical differ-
ences on several data sets.

’ INTRODUCTION

The task of diversity selection means choosing a predefined
number p of items from a set of items of size n so that the
elements in the selected set are as diverse as possible. A prom-
inent example of diversity selection can be found in early drug
discovery. Usually, when a new drug is designed, so-called HTS
(high-throughput screening) is performed, where several hun-
dreds of thousands of compounds are automatically tested for
their activities. This process is quite time-consuming and ex-
pensive; therefore, it is desirable to filter out redundant com-
pounds and focus on a diverse subset of molecules, thus avoiding
the retesting of duplicates.1

In HTS, an additional constraint is added: maximization of the
selected molecules’ activity. In this context, it is particularly
apparent that both objectives are in conflict with each other
because of the one fundamental principle underlying most of
today’s research in chemoinformatics, the so-called structure-
activity relationship (SAR).2 This means that molecules with a
similar structure (in 2-D or 3-D) also show similar activities, and
this makes it hard to select structurally diverse molecules that are
also highly active. Therefore, taking both objectives together—
maximizing diversity while maximizing (potential) activity—
leads to Maximum-Score Diversity Selection (MSDS), which is
a classical multiobjective optimization (MO) problem.

Before presenting several approaches to find good solutions
forMSDS, this article first discusses the problem of pure diversity
selection and how diversity can be measured. Unfortunately,
most (if not all) sensible diversity definitions lead to NP-hard
problems when it comes to finding optimal subsets. We provide a
short formalization of MSDS and show that by adding a second
objective for activity the hardness of the problem remains.
Therefore, we present several heuristic approaches, among them
a novel algorithm specially developed for MSDS. We compare
them both in terms of solution quality and speed on several
molecular and artificial data sets.

’DIVERSITY SELECTION

Considering both of the involved objectives, the maximization
of the subset’s diversity is by far the more complicated option.
Not only is the problem of finding an optimal subset computa-
tionally infeasible, as we show in the next section, but a proper
definition of diversity is not straightforward. Although users,
especially in chemoinformatics, tend to be able to provide a good
estimation of what a diverse subset should look like, this is of
course not suitable for implementation in a computer program.

Inmost cases, diversity is defined based on the distances d(u,v)
between the objects under consideration. The further two points
are apart, themore dissimilar they are. The challenge is to employ
the pairwise distance relation between two objects for a whole set
of objects.

We will not discuss the problem of a suitable distance or
dissimilarity measure d here. One can think of quite a few possible
choices,3 such as theTanimoto or Soergel distance on fingerprints4

or measures based on the structural overlap of two molecules
(we will show an example in the Experiments section). The choice
of d may certainly affect the final results but is, in many cases,
dependent on the specific circumstances.
The Hypercube Coverage Measure. As we already men-

tioned in the Introduction, selecting diverse subsets of molecules
has been performed for quite some time in the chemoinformatics
community. A very intuitive and sensible definition of molecular
diversity has been formally defined by Agrafiotis5 (although it
was already used more informally in an earlier publication6).
Each molecule from the complete set I, |I| = n is described by a
numeric vector of length d that contains several attributes (e.g.,
molecular weight, charge, volume, etc.). All these vectors span a
d-dimensional hypervolume, and each molecule corresponds to
one point in this space. A diverse subset should then cover the
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space optimally. For this purpose, the hypervolume is partitioned
into a set H of k hypercubes h ∈ H of equal size

h :¼ x∈Rd
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where z is the center of each hypercube, and r is the length of the
hypercube’s edges (which is assumed to be the same in all
dimensions). A subset’s S ⊆ I diversity is then defined as the
fraction of hypercubes that contain at least one object from S

δhcðSÞ ¼
jfh∈H : S ∩ h 6¼0egj

k
ð2Þ

Intuitively this makes sense. Themore hypercubes are covered
by the same amount of molecules, the better they are distributed
over the whole space thus forming a diverse subset. Figure 1
shows two numerical attributes for a set of molecules. In terms of
the above definition, the selected molecules in the right 2-D plot
constitute a more diverse subset than those in the left plot. This
hypercube-based definition of diversity also allows for a very easy
selection of a diverse subset (compared to the other definitions
below). As δhc is directly influenced by the numbers of occupied
hypercubes, a simple approach to find an optimal subset is to
select a molecule from each hypercube, preferably molecules
near their centers, and repeat this process (if necessary) until p
molecules have been selected.
However, one drawback of this definition is that it only works

in vector spaces where the molecules can be arranged in such a
way that their positions are in accordance with their original
distances. Unfortunately, there are various distance definitions
that do not have this property, especially with regard to mole-
cules. One example is a substructure-based distance, where the
size of the common substructure of a pair of molecules is a
measure of their distance (the larger the common substructure,
the smaller the distance and vice versa; more details in the
Experiments section). Because only the distances between two
structures are known, there is no obvious and easy way to arrange
them in a (low-dimensional) vector space so that the distances
inside this space are the same as the original substructure-based
distances. Thus, for the general case of diversity selection, a
definition is required that does not need a vector space, but works
solely with the pairwise distances between objects.
The p-Dispersion Measure. A more general diversity defini-

tion is motivated by the p-dispersion ormax-min problem.7-9The
goal is to disperse a set of facilities so that the minimum distance
between a pair of facilities is maximized

δdðSÞ ¼ min
1ei < jep

fdðui, ujÞ : ui, uj∈Sg ð3Þ

It is easy to see that only the distances between all pairs of
objects are required, regardless of whether they form a vector
space or not. Figure 2 shows 2000 randomly distributed points in
a 2-D space, where the points’ distance is their Euclidean distance.
The marked points form a subset of 200 objects, which repre-
sents a near optimal solution for eq 3. This is not necessarily the
optimal solution because this cannot be computed efficiently—
as we show below—but one that is presumably near the optimum.
Whereas this definition may be perfect for application scenar-

ios where a large minimum distance is crucial, for our case of
MSDS in molecules, a single pair of (highly active) molecules
that are very close to each other will result in a very low diversity,
even if the remaining molecules cover the molecule space quite
evenly.
The p-Dispersion-SumMeasure. A similar definition, which

is used even more often, is the p-dispersion-sum ormaximum edge
weight clique problem.7,10-12 Instead of the minimum distance,
the sum of all pairwise distances is maximized (which is equiva-
lent to maximizing the average distance)

δdsðSÞ ¼
X

p

i¼ 1

X

i- 1

j¼ 1

dðui, ujÞ, ui, uj ∈ S ð4Þ

Intuitively, when optimizing this objective, the selected objects
are forced away from each other. If a pair of selected objects
happens to be quite close, this only slightly affects overall
diversity, in contrast to the p-dispersion case. However, it seems
that in many cases this definition leads to undesirable distribu-
tions of points in the space. Figure 3 shows the same 2000 points
as above, but now 200 points are selected to optimize eq 4. It is
obvious that the selected points are concentrated on the corners

Figure 1. Both plots show the same set of molecules, characterized by two numerical attributes. The selected subset in the left plot is clearly less diverse
than the one in the right plot because its selected points cover substantially less space.

Figure 2. Subset of 200 points taken from a set of 2000 randomly
distributed points, which represent a near-optimal solution for the p-
dispersion problem.
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of the space, and the interior is almost void of any selected point.
This is obviously not a diverse distribution. Although the average
distance is quite large (about 0.693 in the example), variance is also
quite high: inside the corners, the distances are very small, whereas
the intercorner distances are very large. Even though this is an
example in 2-D space, which may not be directly transferable into
molecule space, it is not so unreasonable for molecules close to the
borders of the space (supposedly outliers) to be selected. There-
fore, the p-dispersion-summeasure may not be very suitable either.
The p-Center Measure. A different diversity measure can be

derived from the p-center problem.13,14 The function to optimize
is the following

δcðSÞ ¼ 1- max
1eien

min
1ejep, i 6¼ j

dðui, ujÞ, ui∈I, uj ∈ S ð5Þ

In contrast to the other definitions so far, the p-center function
cannot be solely computed with the selected objects, rather the
whole set of objects I needs to be available. First, all available
objects are divided into two sets of selected and unselected objects.
Next, the minimum distance from each object (selected or not) to
any selected object is computed. Because the goal of the p-center
problem is to minimize the largest of these minimal distances, we
define the diversity as 1 minus the maximum. Optimizing the p-
center problem means choosing the selected objects in such a way
that each object (from the set of all objects!) is as close as possible to
at least one selected object. Using the 2-D example from above, this
leads to a very even distribution of selected points over the whole
space (Figure 4). One important difference to the other general
diversity measures is the complexity of computing the diversity.
Whereas the former requireO(p2) computation (because they are a
function of the selected objects only), p-center requires O(pn)
computations, which become significantly larger, if p, n (the
standard case in at least the application in vHTS).
The p-Dispersion-Min-Sum Measure. A number of prob-

lems can be encountered when applying p-dispersion: a single
small distance can ruin diversity; in the p-dispersion-sum mea-
sure, many small distances can occur; and the p-center measure is
more complex to compute. However, there is a fourth definition,
which involves maximizing the sum of minimal distances to
circumvent the above-mentioned deficiencies

δdmsðSÞ ¼
X

p

i¼ 1

min
1ejep, i 6¼ j

dðui, ujÞ, ui, uj ∈ S ð6Þ

This means that the distances from each object to its nearest
neighbor are summed. We refer to this as the p-dispersion-min-
sum problem.
Not only is the influence of few small distances reduced, but

alsomany small distances will heavily influence diversity, as in the
corners of Figure 3, and indeed, optimizing the same distribution
as before but for eq 6 results in much better coverage of the space
(Figure 5). This definition of diversity has already been used in
the well-known OptiSim program4 and was mentioned in the
article about the hypercube approach5 as a replacement for non-
vector spaces.
One can think of quite a lot of other diversity measures, but we

will continue with the ones presented above because they are
either commonly used and/or are easily motivated.

’SCORE ESTIMATION

Not only is a diversity measure needed for MSDS, but also a
score for each molecule. This can either be a real measured value
or, more likely, a prediction of the molecule’s activity. We will not
go into detail here because the estimation of activity is a huge
research area of its own (detailed overviews can be found in refs
15-17). For all later experiments, we use the measured activities
as scores, although this cannot be performed in pratice of course.
However, this does not (or only slightly) influence the validation

Figure 3. Subset of 200 points taken from a set of 2000 randomly distri-
buted points, representing a near-optimal solution for the p-dispersion-sum
problem.

Figure 4. Subset of 200 points taken from a set of 2000 randomly
distributed points, representing a near-optimal solution for the p-center
problem.

Figure 5. Subset of 200 points taken from a set of 2000 randomly
distributed points, which represent a near-optimal solution for the p-
dispersion-min-sum problem.
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of the presented methods, given that the chosen score estimation
is sufficiently reliable.

’MULTIOBJECTIVE DIVERSITY SELECTION

As already mentioned, Maximum-Score Diversity Selection
is not only the selection of a maximally diverse subset but is
also extended by adding a second objective of maximizing the
score of the selected molecules. In contrast to the diversity
objective, which is based on a pairwise relation, this objective is
easier to address because the score is a property of each single
molecule.

MSDS can be formulated as follows: On the one hand, there is
a score for each molecule, and ideally the highest-scoring mole-
cules are selected. On the other hand, there are pairwise distances
between all molecules, and the selected molecules should max-
imize the chosen diversity measure. The number of selected
molecules is fixed beforehand. Formally, this is written as

Maximize f1ðSÞ ¼
X

u∈S

σðuÞ ð7Þ

Maximize f2ðSÞ ¼ δðSÞ ð8Þ

where |S| = p, σ returns the score of an object, and δ is any
reasonable diversity function. This is the formulation of a classical
multiobjective optimization (MO) problem. Because there is
usually no single “optimal’’ solution in MO, the terms non-
dominated or Pareto optimal solution are commonly used. Both
describe a solution that is optimal in the sense that all other
solutions are worse in at least one objective. All non-dominated
solutions form the so-called Pareto front. The user can then
select the preferred solution from the front, emphasizing one
(or more) of the objectives. He may, for example, prefer more
active subsets over more diverse subsets or vice versa.

Various approaches can be used to solve MO problems,18

the most simple probably being evolutionary approaches such
as genetic algorithms (GA). Usual GA implementations can
only deal with a single objective function, but there are also
special algorithms for MO problems that evolve a set of non-
dominated solutions in one run. Examples are SPEA2,19

NPGA20, and NSGA-II.21 In the Algorithms for MSDS section,
we briefly describe our implementation with NGSA-II for
solving MSDS.

Another way of solving MO problems is to determine a
weighting for the different objectives beforehand and build a
single objective function. On the one hand, this yields only a
single solution for the chosen weighting, and therefore, many
solutions with different weightings usually have to be calcu-
lated in order to find a set of nondominated solutions. On the
other hand, it is possible to use a wide range of single-objective
algorithms without having to modify them. The weights on
each objective let the user indicate preferences for the corre-
sponding objectives. For MSDS, the combined function is the
following

maximize fcðSÞ ¼ ð1-RÞ 3δðSÞ þ R 3

X

u∈S

σðuÞ ð9Þ

where R is a user-defined parameter in the range of [0,1]. Large
R lead to subsets with more highly scored molecules, whereas
smallR emphasize more diverse subsets. Using this single objective
function makes it possible to apply special algorithms.

Maximum-Score Diversity Selection Is NP-Hard. One may
wonder whywementioned genetic algorithms above. The reason
for this is that the optimization of all general diversity measures
presented above, i.e., selecting a subset that maximizes the
function, is an NP-hard problem. The well-known maximum
clique problem22 easily reduces to all three dispersion-problems8,
and the dominating set problem reduces to p-center14 (we omit
details for the proofs). This essentially means that exact solutions
can only be computed for very small problems. Current state-of-
the art exact algorithms for, for example, the p-dispersion-sum
problem currently find solutions for less than 100 objects23 only.
However, in the real world, scenarios such as chemoinformatics
selections range from a few hundred molecules out of a few
thousand up to 500000 out of 5000000 molecules.
The above results only hold for the task of pure diversity

selection, i.e., without taking the activity objective into account.
However, it is easy to reduce any of the “pure’’ problems to the
multiobjective MSDS. For example, we take the NP-hard p-
dispersion-sum problem, which is also known as the maximum
edge-weight clique problem. As the name indicates, the diversity
selection problem is modelled as a graph problem: Each mole-
cule is a node in the graph, and there are edges between all pairs
of nodes labeled with the corresponding molecules’ distances.
Thus, we have a complete graph for which a clique of size p is
searched. Finding a clique of size p in a complete graph is easy,
but finding the clique with the largest sum of edge labels is an
NP-hard optimization problem. By also assigning a label to each
node (the score of the molecule) and selecting a clique that has
the largest sum of both edge and node labels, we end up with the
MSDS problem. If all node labels are equal, the original p-
dispersion-sum problem is a special case of MSDS, proving that
MSDS is no easier than p-dispersion-sum. Thus MSDS is also an
NP-hard optimization problem. Please note, that this does not
imply, that all instances ofMSDS are hard to solve (e.g., instances
where node labels are much larger than edge labels are easy
because only the node labels have an impact on the target
function), but MSDS in general is NP-hard.
Therefore, heuristics are needed to find good or near-optimal

solutions. In both refs 8 and 14, special heuristics are presented
that find good solutions for p-dispersion and p-center, respec-
tively. The algorithm for p-dispersion can easily be modified
to solve p-dispersion-sum as well. The heuristic for p-center
even gives an approximation bound, in that its solutions are
at most a factor of 2 from the optimal solution. No special
heuristics are currently known for p-dispersion-min-sum. In any
case, meta-heuristics, such as the already mentioned genetic
algorithms or simulated annealing,5 can be applied to find
suitable subsets.

’ALGORITHMS FOR MSDS

Now that we have discussed several measures for diversity and
motivated the use of heuristic approaches, we present several
algorithms that can be applied to MSDS. The first two heuristics
were designed to optimize the respective diversity measures only.
In order to be applicable to MSDS, the input data, which is
essentially the complete distancematrix of all molecules, needs to
be preprocessed. Because the distance matrix is the same as a
complete edge-labeled graph, we decided to incorporate the
node labels, i.e., the molecules’ score values, into the adjacent
edge labels. By using a weighting parameter R, the focus between
activity and diversity can be adapted. By automatically running
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the algorithm multiple times with varying values of R, a set of
solutions, similar to an approximated Pareto front, is created. The
modified distances are determined by

dnewðui, ujÞ ¼ ð1-RÞ½σðuiÞ þ σðujÞ� þ Rdðui, ujÞ ð10Þ

Erkut’s Heuristic for p-Dispersion and p-Dispersion-Sum.
In his paper on the p-dispersion problem,8 Erkut presented a
heuristic approach. Starting with the complete set of all n nodes
in the graph, nodes are iteratively deleted until only p nodes
remain. The decision of which nodes to remove is based on a list
of all edges in the graph, sorted in ascending order by their labels
(i.e., distance). The shortest edge is removed from the list, and
one of its two nodes (the choice is arbitrary) is deleted from the
set. This process is repeated until only p nodes remain. This set is
the starting point for the second phase, in which a local search is
performed. Each node currently included in the solution set is
exchanged with all currently unselected nodes, one at a time. If
any such swap improves the objective function δ (either p-
dispersion or p-dispersion-sum), it is accepted, otherwise it
is rejected. The algorithm in Table 1 shows this procedure in
pseudocode.
Both construction and local improvement take at most

O(n2log n) time. In practice about half the time is usually spent
in fully sorting the list of edges, which offers slight potential for
improvement because only about half the edges (for our data
sets) are actually needed. The experiments show that this simple
heuristic performs surprisingly well for both p-dispersion and the
p-dispersion-sum measures.
Hochbaumand ShmoysHeuristic for p-Center. In addition

to the NP-hardness proof of the p-center problem, Hochbaum and
Shmoys developed an approximate algorithm, which guarantees
that its solutions are twice the optimal solution at most.14

The algorithm itself is as simple as the one for p-dispersion, see
Algorithm 2 in Table 2. However, the reason why it works is
much harder to understand as it is motivated by the complexity
proof, which includes transformations into the dominating set
and the maximum independent set problem. Therefore, here we
only present the algorithm and refer to the original publication
for details.
The runtime of this algorithm is O(n2log n), the same as for

Erkut’s p-dispersion heuristics.

Genetic Algorithms. Genetic algorithms in general are an
easy and simple way of solving optimization problems, as only a
suitable genetic representation of solutions is needed, plus a
function, which is subsequently optimized. Fortunately, multi-
objective genetic algorithms only differ from the single-objective
variants in the way individuals/solutions are selected for the next
generation. The encoding of potential solutions as chromo-
somes, genetic operators such as crossover and mutation and
fitness functions (for each single objective) can be used without
any modifications.
For the experiments NSGA-II (Nondominated Sorting Ge-

netic Algorithm II21) was used. With the exception of problems
with many objectives, where it is usually outperformed by
SPEA2,19 it is still one of the best (and simplest) multiobjective
genetic algorithms. The main challenge of multiobjective GAs is
the selection of individuals for reproduction because in contrast
to single objective problems there is no global ranking of all
individuals on the basis of which selection could occur. Instead,
NSGA-II partitions the whole population into several fronts.
The first front is formed by all nondominated individuals, which
are removed. The second front consists of all remaining
individuals that are now nondominated, and so on. The front,
in which an individual has been placed, is then used as a rank
during selection. In unbiased tournament selection,24 which is
used in our implementation, if two individuals compete in a
tournament, the one with the lower rank is chosen. If both have
the same rank, the so-called crowding distance, which measures
the density of individuals, is used to break ties. In order to
maintain a good spread of solutions, individuals in less dense
regions of the search space are preferred over ones with many
close neighbors. However, in the Experiments section, it
becomes clear that even this technique cannot prevent the

Table 1. Algorithm 1: p-Dispersion Optimization Heuristics

Input: A complete edge-labeled graph G, the number of elements to select k

Output: A subset of objects optimizing the p-dispersion(-sum) measure

E0 rE sorted in ascending order by labels;

Sel r VG;

while |Sel| >k do

{u,v} r pop(E0);

if u ∈ Sel then Sel r Sel - {u};

else if v ∈ Sel then Sel r Sel - {v};

end

for each u ∈ Sel do

for each v ∈ VG — Sel do

Sel0 r Sel - {u} þ {v};

if δ(Sel0) > δ(Sel) then Sel r Sel0;

end

end

return Sel

Table 2. Algorithm 2: p-Center Optimization Heuristics

Input: A complete edge-labeled graph G, the number of elements to select k

Output: A subset of objects optimizing the p-center measure

low r 1;

high r|VG| � (|VG| - 1)/2;

while high >low þ1 do

mid r (high þ low)/2;

max r length of midshortest edge in G;

G0
r G without edges longer than max;

Sel r 0e;

Avail r VG;

for each u ∈ Avail do

SelrSel ∪ {u};

for each {u, v} ∈ EG0 do

Avail r Avail — {v};

for each {v, w} ∈ EG0 do

Avail r Avail — {w};

end

end

end

if | Sel| e k then

high r mid;

Sel0 r Sel;

else low r mid;

end

return Sel0
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solutions from concentrating on only a limited region of the
search space.
An individual in the current case is a combination (in mathe-

matical terms) of p distinct items from the complete set of n.
They can either be represented as a bit string of length n,
where exactly p bits are set corresponding to the selected items
or as an integer array of length p containing the indices of
the selected items. Genetic operators exist for both representa-
tions.25 The fitness function for the score objective simply sums
the scores of all selected items, whereas for the diversity
objective, δ(S) is evaluated. It is easy to see that usually δ(S)
has a different value range than the score sum (e.g., p-dispersion
is much smaller, p-dispersion-sum is much greater). Therefore, it
is evenmore desirable to present a set of nondominated solutions
to the user becausee the parameter R in a combined objective
function does not only need to control the balance between the
two objectives but would also have to level out the different value
ranges of the two objectives. When using multiobjective evolu-
tionary algorithms, the parameter R is not needed at all because
they compare each objective independently and only use the
nondominated relation between possible solutions for ranking
and selection.
Score Erosion. Because the complexityofErkut’s andHochbaum

and Shmoys’ heuristic is at least quadratic in the number of
items, it is still quite time-consuming to process data sets with
several thousands of objects. Therefore, we propose a much
faster algorithm for MSDS.
Themotivation for the algorithm comes from its application in

HTS but is equally applicable to any other MSDS problem. In
virtual HTS, once the molecules’ scores have been calculated by
various virtual screening programs, the molecules are sorted
according to their scores. The usual approach would be to select
the “top p’’ molecules; however, this completely ignores the
diversity objective. Therefore, reasoning suggests reducing the
score of all molecules i that are similar to the just selected mole-
cule s, by a certain amount after each molecule. The force of this
erosion depends on the distance between i and s and a parameter β

σt þ 1ðuiÞ ¼ ð1- e- δðui, sÞ = βÞ 3σtðuiÞ ð11Þ

Algorithm 3 in Table 3 shows the pseudocode for this
approach.
First, the highest ranked molecule is selected. Next the dis-

tance to all remaining molecules is computed, and the scores of
all molecules are decreased in proportion to the distance. The
user-defined factor β controls how much the score is eroded.
Using a large value for β decreases the scores of similar molecules
quite extensively; therefore, the diversity objective is favored,
whereas a small β focuses more on the activity objective. After the
erosion step, the molecules are reranked on the basis of the
changed score values. These operations are iteratively performed
until p elements have been selected. The experiments demon-
strate that this algorithm performs as well as the other heuristics
for some diversity definitions and has a better complexity of only
O(pn) compared to O(n2log n).
In another article,26 an algorithm similar to Score Erosion is

presented. The greedy algorithm the authors developed uses a
similar update formula as eq 11 but instead of multiplying the old
value with the redundancy value (� diversity) to the selected
pattern, they subtract it from the significance value (� score)

σt þ 1ðuiÞ ¼ σtðuiÞ- β� dðui, usÞ ð12Þ

At first glance, this seems a little odd because activity and
distance are two different concepts, and subtracting one from
the other does not have have an intuitive meaning. However,
we also tried this update rule in our experiments, and as we
describe in the next section, it appears to work quite well in
some cases.

’EXPERIMENTS

Several experiments were carried out in order to show how
good the solutions are that are produced by the different approa-
ches described in the previous sections. Two tests were perfor-
med with publicly available data sets: a small one from Bin-
dingDB.org and a larger one from PubChem. For the third test,
an in-house data set from Nycomed was used. All experiments
were performed on an eight-core Xeon workstation inside the
KNIME data analysis framework.27

Before a detailed discussion on the experiments, we want to
mention an important fact about the genetic algorithm. In the
very first experiments, the generated Pareto fronts had very poor
coverage compared to that of the other heuristics. Only a very
small part in the middle was discovered, and solutions to both
borders (high activity/high diversity) were lacking completely.
We partially solved this problem by adding the solution with the
highest activity to the initial population. Because this is a Pareto-
optimal solution, it will survive in all generations and help in
better covering the activity-accentuated part of the front. How-
ever, diverse solutions are still lacking in most cases, as we show
below.
CDK2 Data Set. The first data set that was used is publicly

available from BindingDB.org,28,29 consisting of 1376 molecules,
which have been tested for their activity against the CDK-2
protein. The data set contains the molecules’ activities as IC50

values and their 2-D structure. In our experiments, we set the
subset size to 137 (10% of the database), resulting in a search
space of about 1.8 3 10

193 possible solutions.
One crucial parameter on molecular data sets is the choice of

the distance function. For the experiments, the size of the
maximum common substructure MCSS was used as a measure
of distance/similarity. The distance between two molecules u
and v is 1 minus the squared size (sum of nodes and edges) of
their maximum common substructure mcss divided by the product

Table 3. Algorithm 3: Score Erosion

Input: A list with activities A, the complete distance matrix D, the number of

items to select k, and the weighting parameter β

Output:A subset of objects that, depending on β, is a good trade-off between

activity and diversity

Sel = 0e;

best r maxkA [k];

for i r 1 to k do

Sel r Sel ∪ {best};

A [best] = -¥;

best0 = best;

for j r 1 to n do

A[j] r A[j] 3 (l - e-(D[best,j]/β));

if A [j] > A [best0] then best0 r j;

end

best r best0;

end

return Sel



243 dx.doi.org/10.1021/ci100426r |J. Chem. Inf. Model. 2011, 51, 237–247

Journal of Chemical Information and Modeling ARTICLE

of the sizes of both molecules

δðu, vÞ ¼ 1-
sizeðMCSSðu, vÞÞ2

sizeðuÞ � sizeðvÞ
ð13Þ

The MCSS was computed with the substructure miner
MoSS.30,31 Searching for frequent substructures in two mole-
cules is equivalent to computing (one of) their MCSS.
The remaining settings for the different algorithms are as

follows:
Multiobjective GA: Population size = 300, 2000 generations,

mutation rate = 10%, uniform crossover
p-center: 100 samples with R uniformly sampled from 0 to 1

(inclusive)
Score Erosion: 100 samples, with β uniformly sampled from 0

to 1 (inclusive)
Erkut: 100 samples with R uniformly sampled from 0 to 1

(inclusive)

Figure 6 shows the results on the CDK2 data set. Several
important conclusions can be drawn from the diagrams:
• The approximated Pareto fronts for p-dispersion and p-
center are very scarcely populated. This is not a big surprise
because the minimum or maximum functions inside their
definitions evaluate to the same value formany different sub-
sets, as long as the oneminimal/maximal pair of molecules is
the same.

• In p-dispersion, Erkut’s heuristic and Score Erosion (with
the product update rule) are able to find good solutions,
whereas all other algorithms fail to do so. Except for the
genetic algorithm, this is not remarkable, as they are not
designed to do so. The poor quality of the GA’s solutions is a
bit disappointing, though.

• In p-dispersion-sum, both Erkut’s heuristic and Score Ero-
sion (with the difference update rule) find a good approx-
imation of the front, with the GA following closely behind.

• p-dispersion-min-sum is best solved by Erkut’s heuristic for
the p-dispersion problem, with Score Erosion and in parts
the genetic algorithm taking second place.

• Except for the genetic algorithm, neither heuristic is able to
find any good solutions to the p-center problem, not even its
special heuristic.

The main motivation for MSDS was that an optimized subset
is more diverse than pure “top-p’’ selection and is more active
than a random or purely diverse subset. In HTS, one is usually
interested in the number of molecule clusters that are covered.
The more the better because each cluster is a potential indepen-
dent starting point for further optimization. Therefore, all mole-
cules in the CDK2 data set were assigned to clusters (or single-
tons) in the same way as for all real projects at Nycomed (aided
by the ClassPharmer program32), yielding 73 clusters and 31
singletons. Then, for each generated subset, the number of clus-
ters that are covered by its molecules was determined. Figure 7
shows the subsets’s normalized activity plotted against the clus-
ters count.
These results are quite interesting, since the Hochbaum and

Shmoys heuristics discovers the most clusters by far, although
with very low scores. However, this does not imply that the p-
center measure is best suited for molecules: First, the p-center
values computed by the heuristics were rather low compared to,
for example, the genetic algorithm. Second, the subsets generated
by the GA with the p-center measure cover far fewer clusters,
although its p-center values are highest. However, one has to
keep in mind that this behavior is dependent on the chosen
clustering approach, and there may exist other sensible cluster-
ings for which the coverage is different. The remaining observa-
tions are similar to what was already discussed above: Score

Figure 6. Approximations of the Pareto front on the CDK2 data set for
the different algorithms and diversity measures.

Figure 7. Number of covered clusters on the CDK2 data set plotted
against the activity value of all generated subsets.
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Erosion with the product update rule works fairly well as does
Erkut’s p-dispersion heuristic.
AID 884 Data Set. The second publicly available data set is

PubChem’s AID 884 bioassay. It consists of 13082 tested
molecules. We filtered out all molecules that did not have a
value for the activity at 0.457 μM, which we took as score values
for the molecules (because the most molecules had a value
there). For the remaining 12156 molecules, we computed their
pairwise distances in the same way as for the CDK2 data set and
performedMSDS with mostly the same settings. Only the subset
size p was set to 1000, and the number of generations for the
genetic algorithm was reduced to 33 because otherwise the
runtimes would have been too long (several days per run).
Figure 8 shows the results on the AID 884 data set. The results

are qualitatively comparable to the CDK2 data set; however,
some facts are noteworthy. First, the genetic algorithm’s approx-
imation of the Pareto front is significantly worse. This can be due

to the much larger number of possible subsets (6.77 3 10
1498)

because the AID 884 data set is about 10 times the size of the
CDK2 data set. Also, the results from the p-center measure
appear to be a little unusual, as only about five classes of subsets
with different p-center values are found. Also, the curves repre-
senting the approximated Pareto fronts have degenerated. Still,
the genetic algorithm finds the best solutions in this case, too.
We also investigated cluster coverage on the AID 884 data set

following the same procedure as above. As shown in Figure 9, the
results are different in comparison to the CDK2 data set. As
opposed to the Hochbaum and Shmoys heuristic, this time Score
Erosion and Erkut’s heuristics cover significantly more clusters
than any other approach. The fact that for Score Erosion the
number of clusters decreases below an activity value of about 0.58
is due to an inappropriate choice of the β parameter’s range. The
same holds for almost all other heuristics. Concerning the genetic
algorithm, optimizing the p-dispersion-min-sum measure gives
the best results, which is again a clear indication that this measure
is the preferred one for molecular data sets.
In-House Data Set. The third data set is an in-house data set

from Nycomed consisting of 1572 molecules with IC50 values.
The protocol was identical to the AID 884 data sets, except for a
subset size of 150; however, the difference lies in the way the clus-
ters have been defined. Whereas for the former two, the results
from ClassPharmer were used directly, for this data set they were
refined by the project group leading to 86 clusters (including 13
singletons). The approximatedPareto fronts are shown inFigure 10.
It can be seen that qualitatively the results are comparable to

the other data sets. More interesting is the analysis of the cluster
coverage, which is shown in Figure 11. It is apparent that in this
case as well, the p-dispersion-min-sum measure correlates the
best with the number of covered clusters as can be seen from the
solutions found by the genetic algorithm with the corresponding
diversity measure. Even better coverage is obtained by Score
Erosion. The reason that this algorithm also produces many
inferior solutions is once again attributed to the choice of the β
parameter. It was steadily increased from 0 to 1, and higher values
of β seem to lead to worse solutions. In practice, this is not a real
problem because this effect is easily noticeable and can be com-
pensated by an appropriate choice of sampling β. Because Score
Erosion is by far the fastest heuristic, as shown in the next section,
it is easy to experiment with different parameter settings.
Performance Analysis. Looking at the absolutes runtimes of

the above experiments, one can already see that Score Erosion is
the fast algorithm: It takes about 47 s per iteration on the AID
884 data set, whereas Hochbaum and Shmoys heuristic takes
114 s per iteration and Erkut’s heuristic even 470 s (all experi-
ments were performed on an eight-core Intel system running at

Figure 8. Approximations of the Pareto front on the AID 884 data set
for the different algorithms and diversity measures.

Figure 9. Number of covered clusters on the AID 884 data set plotted
against the activity value of all generated subsets.
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1.83 GHz with 16GB of main memory). Also on the much
smaller CDK2 data set the numbers are likewise: 0.15 s for Score
Erosion, 0.53 s for Hochbaum and Shmoys heuristics, and 0.94 s

for Erkut’s heuristic per iteration. The runtimes for the genetic
algorithm were considerably higher and also depend heavily on
the selected number of generations.
In order to systematically verify the claimed runtime complex-

ities of the three problem-specific heuristics, we performed
additional experiments on artificial data sets of sizes 1000-
10000. We did not use real world data sets here because it is
relatively difficult to select a subset from a real world molecular
data set that does not change the search space structure. This is
quite a simple process with artificial data sets because three
activity spots are created with the same parameters (location and
width) each time. This ensures that the structure remains almost
the same for all experiments, and only the number of objects
varies. The results are depicted in Figure 12. The reported run-
times for the genetic algorithm result from 8 parallel threads;
therefore, they are not directly comparable to the other heuristics.
It is however quite clear that the p-center measure is muchmore
time-consuming to evaluate than the other measures (which
are identical in complexity). Erkut’s heuristic nicely shows
the claimed quadratic increase [in fact O(n2log n)] in runtime.
In addition the runtimes for Hochbaum and Shmoys’ heuristic
and for Score Erosion increase quadratically in the number
of objects but at a much lower rate. The fact that Score Erosion
also shows a quadratic increase lies in the fact that its complex-
ity is O(pn), and because p was chosen to be 0.1n, this also
yields O(n2).
The second part of the runtime analysis investigates the effect

of p, the number of selected items, on a constant-sized data set of
2000 objects. For Score Erosion, linear increase in runtime over
the whole range of the experiment is expected, whereas for the
p-center heuristic, the runtimes should stay almost constant as it
examines all edges in any case, regardless of howmany objects are
to be selected. Erkut’s algorithm has to be examined more
thoroughly. For small p, substantial time is spent creating the
sorted list of edges, which requires O(elog e) = O(n2log n) time.
During the optimization step, each currently selected node is
interchanged with each nonselected node, and the win (or loss)
of this exchange has to be computed by looking at the weights of
all adjacent edges. This leads to a complexity of O(p(n- p)p) =
O(p2n - p3). This means that by increasing p the increase of
runtime should slow down or even reverse. Figure 13 clearly
demonstrates that our conjectures are correct. Still, Score Ero-
sion and the Hochbaum and Shmoys heuristic are much faster

Figure 10. Approximations of the Pareto front on the in-house data set
for the different algorithms and diversity measures.

Figure 11. Number of covered clusters in the in-house data set plotted
against the activity value of all generated subsets.

Figure 12. Runtime behavior of the heuristics with increasing data set
sizes and a fixed percentage of selected objects.
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than Erkut’s, and in practice, the selection of almost all objects
from the complete set is rather uninteresting.

’RELATED WORK

As we already mentioned, diversity selection has a long
tradition in chemoinformatics. Early approaches applied cluster-
ing techniques on descriptors for the molecules.33 The cluster
centers were then used as a set of divers molecules. Already then
it was observed that genetic algorithms in general do not find the
best solutions compared to specialized algorithms. Nevertheless,
they were successively used in several other articles about denovo
design of diverse libraries.34,35 However, the evolved individuals
are not molecules by themselves but rather several building
blocks that are later on synthesized to molecules. In the latter
publication, diversity selection has even been combined with
other objectives rendering it a multiobjective optimization prob-
lem. Another approach to diversity selection are greedy algo-
rithms that iteratively choose new molecules that have the grea-
test distance to all already selected molecules.4,36 Many diversity
selection approaches bear the problem that it is unclear which
specific diversity funtions they are optimizing, i.e., they are not
relying on a formula that can be used to score the diversity of any
subset of molecules. Exceptions are the hypercube measure5,6

and the p-dispersion-min-sum measure.4

’CONCLUSIONS

In this article, we have introduced the concept of Maximum-
Score Diversity Selection and motivated its usefulness in early
drug discovery. The experiments on several molecular data sets
have shown that when a subset of molecules is carefully selected
(and does not simply consist of the top-pmolecules) many more
clusters are able to be covered. With respect to the selection of
more diverse subsets, we discussed several measures for diversity,
with p-dispersion-min-sum being the most intuitive and pre-
sumably also the most appropriate measure for molecular data
sets.We have presented several approaches for finding high-score
but diverse subsets, among which our novel Score Erosion
algorithm is clearly the fastest heuristic and finds solutions of
comparable quality. We also showed that using genetic algo-
rithms, which are quite popular especially for multiobjective pro-
blems, can lead to insufficient coverage of the solution space,
even if several tweaks are applied.
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