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With the explosive growth of the data volume in modern applications such as web search and multimedia retrieval, hashing
is becoming increasingly important for e�cient nearest neighbor (similar item) search. Recently, a number of data-dependent
methods have been developed, re
ecting the great potential of learning for hashing. Inspired by the classic nonlinear dimensionality
reduction algorithm—maximumvariance unfolding, we propose a novel unsupervised hashingmethod, namedmaximumvariance
hashing, in this work.�e idea is tomaximize the total variance of the hash codes while preserving the local structure of the training
data. To solve the derived optimization problem,we propose a columngeneration algorithm,which directly learns the binary-valued
hash functions.We then extend it using anchor graphs to reduce the computational cost. Experiments on large-scale image datasets
demonstrate that the proposed method outperforms state-of-the-art hashing methods in many cases.

1. Introduction

Nearest neighbor search is a fundamental problem in many
applications concerned with information retrieval, including
content-based multimedia retrieval [1–3], object and scene
recognition [4], and image matching [5]. Due to the exciting
advancement of data acquisition techniques, more and more
data have been produced in recent years, leading these
applications to su�er from the expensive time and storage
demand. Recently, hashing has become a popular method
to address this issue in terms of storage and speed. �ese
methods convert a high-dimensional data item, for example,
an image, into a compact binary code so that more items can
be loaded into the main memory and the distance between
two items can be computed e�ciently by using bit XOR
operation of their binary codes, and therefore they have great
potential to solve complex problems.

Seminal work of hashing, such as locality-sensitive hash-
ing (LSH) [6], focuses on using random projection to gen-
erate random binary codes in the Hamming space. It is
then extended to accommodate more distance metrics [7, 8]
or kernelized to capture nonlinear relationships in the data
space [9, 10]. Without using any training data, LSH and its

variances canmap close data samples to similar binary codes,
and it is theoretically guaranteed that the original metrics are
asymptotically preserved in the Hamming space as the code
length increases. However, because of the randomprojection,
they need very long codes to achieve good precision in
practice.

Data-dependent hashing methods, instead, take advan-
tage of the available data to learn more impact codes for
speci�c tasks, leading to the recent endeavors in hashing.
For instance, PCA hashing (PCAH) [11] generates linear
hash functions through PCA projections of the training
data and is suggested for producing more impact codes
rather than random projections. PCAH can be considered
as the simplest data-dependent hashing method and can not
capture nonlinear similarity information that is available in
the training data. Alternatively, spectral hashing (SH) [12]
and self-taught hashing (STH) generate hash codes from
the low-energy spectrums of data neighborhood graphs to
seek nonlinear data representations. �e di�culty is how to
compute the code of an unseen item, which is known as
the problem of out-of-sample extension. As a result, SH has
to assume that the training data are uniformly distributed
in a hyper rectangle, which limits its practicabilities. STH
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Figure 1: From (a) to (d), a Swiss roll and its hash codes (embedded to 3D by PCA) a�er applying SH, STH, and MVH-CG, respectively.
MVH-CG can maintain the manifold of the Swiss roll in some sense. SH and STH fail to preserve the manifold.

addresses this problem in another way. By viewing the
binary codes of the training data as pseudo-labels, it learns
the hash functions via an extra pseudo-supervised learning
stage. Nevertheless, learning errors in the self-taught stage
may collapse the manifold structure of the learning data as
illustrated in Figure 1.

Indeed, all these mentioned data-dependent methods
aim at hashing the high-dimensional features of the training
data with low-dimensional binary codes while preserving the
underlying data structure. �ese methods normally su�er
from loss of local geometric structure of the training data.
However, by viewing this problem from a di�erent angle and

removing the constraint of Hamming space, it can be seen as
a variation of the traditional dimensionality reduction prob-
lem. Among the large number of dimensionality reduction
methods (see [13] for a survey),maximumvariance unfolding
(MVU) [14] can almost faithfully preserve the local geometric
structure of the training data (e.g., the distances and angles
between nearby samples in details).

Meanwhile, Liu et al. [15] recently proposed a scalable
graph-based hashing method, named anchor graph hashing
(AGH). �ey approximated the origin data by a small set
of anchors and learned the hash functions by using the
Nyström extension [16]. But the generalized eigenfunctions
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are derived only for the Laplacian eigenmaps embedding and
their performance may decline rapidly when their number
increases.

In summary, the main contributions of this work can
be described as follows. (i) Inspired by MVU, we propose
maximum variance hashing (MVH), which directly embeds
the high-dimensional data into a speci�ed low-dimensional
Hamming space and preserve the geometric properties of
local neighborhoods. �e idea is maximizing the total vari-
ance of the hash codes subject to the constraints imposed by
the rigid rods between � nearest neighbors (�NN). (ii) To
address the out-of-example extension di�culty, we propose
a column generation-based solution of the derived optimiza-
tion problem, named MVH-CG. As the size of training data
increases, the construction of neighborhood graphs become
infeasible. (iii) On the other hand, since the outputs ofMVH-
CG are a set of binary-valued functions, we can learn the
hash functions on the anchor set and then apply them to any
unseen data items directly. �is motivates us to propose the
anchor version of MVH (referred as MVH-A) to reduce the
computational cost.

We put forward our algorithms and present the main
results on several large-scale image datasets in the next sec-
tions.

2. Methodology

2.1. Notation. �e following notations will be used through-
out this paper:

(i) a bold lower-case letter (x): a column vector;

(ii) a bold upper-case letter (X): a matrix;

(iii) a calligraphic style upper-case letter (X): a set;

(iv) |X|: the number of elements inX;

(v) ℎ(⋅) or �(⋅, ⋅): a function with one or two inputs;

(vi) R�: the�-dimensional real number space;

(vii) (�, �): a pair of order numbers for two data samples.

2.2. Problem De�nition. Given a set of samples X = {x� ∈
R
�}��=1, wewould like tomap each point to a low-dimensional

binary code for fast nearest neighbor searching. Suppose that
the desired number of dimensions of the embedded binary
space is ℓ, the goal is to seek a transformation �(⋅) : R� →{0, 1}ℓ, where the pairwise relationship of x�, x� in R

� is

kept, in some sense, with their counterpart y�, y� in {0, 1}ℓ.
Here each code y� = [ℎ1(x�); . . . ; ℎℓ(x�)] is an ℓ-dimensional
binary vector projected from x� using a set of ℓ binary-valued
functionsH = {ℎ�(⋅)}ℓ�=1.

Formally, we denote the relationship of x�, x� as their
Euclidean distance (Any other metric can be chosen based
on the nature of X, though here we use Euclidean dis-

tance as a normal setting.) �(x�, x�) = √‖ x� − x�‖2.
Meanwhile, the relationship of y�, y� can be de�ned
as their Hamming distance �Hamming(y�, y�) naturally. We

minimize the following objective to keep the pairwise
relationship:

O (ℎ1, . . . , ℎℓ) = ∑
x� ,x�∈X

���(� (x�, x�) − ��Hamming (y�, y�))2,
(1)

where ���, depending on the speci�c application, is the weight
of how important the relationship of x� and x� should be
kept during the transformation and � is a constant scale
factor. Typically, it is reasonable to use the 0-1 adjacency
matrix of the training data’s �NN graph to de�ne ��� in order
to preserve the local structure of X. �at is, the distance
between x� and x� will be kept if and only if x� is a �NN
of x� or the other way around. �e �NN graph has been
successfully used in STH to represent the local similarity
structure, and the sparse nature of it greatly reduces the
computational demand of the next optimization process. In
addition, Weinberger and Saul [14] proved that if we add
a small number of edges over the �NN graph, both the
distances along the edges and the angles between edges in
the original graph are preserved. Accordingly, we de�ne��� as:

��� = {1, (�, �) ∈ N,0, otherwise, (2)

where (�, �) ∈ N if and only if x� and x� are � nearest
neighbors themselves or common � nearest neighbors of
another sample.

On the other hand, the Hamming distance used in{0, 1}ℓ may not be as descriptive as their counterpart in R
�,

especially when ℓ is small (which is desirable in practice).
We therefore relax the discrete Hamming distance to the real

weighted Hamming distance �̃(y�, y�) = ∑ℓ�=1 ��|ℎ�(x�) −ℎ�(x�)| = ∑ℓ�=1 ��ℎ��� , where�� is a nonnegative weight factor
associated with ℎ�(⋅) and ℎ��� is the shorthand symbol of|ℎ�(x�) − ℎ�(x�)|. Let ��� = �(x�, x�), �̃�� = �̃(y�, y�), and ��� =∑ℓ�=1 ��ℎ��� − ��� be the slack between them (we remove the
constant scale factor � by merging it into the weight factors);
the objective then is

O (ℎ1, . . . , ℎℓ, �1, . . . , �ℓ) = ∑(�,�)∈N�
2
��. (3)

As discussed in [14], by preserving the pairwise distances
in the extended �NN constraint setN, we faithfully preserve
the local manifold ofX. Direct optimization of (3), however,
tends to crowd points together in one location due to the
absence of pairs other than �NNs in the constraint, which is
also a problem in the research of manifold learning. Various
methods have been proposed in the literature to overcome
this problem. t-SNE [17], for instance, uses the long-tailed
Student’s-t-distribution to make all pairwise information in
use. But the constraint set is not sparse any more in t-SNE.
Weinberger and Saul [14], instead, proposed to maximize
the variance of the embedded codes. �at is, the mapping
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codes will be pulled apart as far as possible subject to
the �NN distance constraints in the embedded space. �e
maximum variance formulation has two advantages—it is (i)
a global formulation and (ii) economical in computation.�e
variance of {y�}��=1 measured by weighted Hamming distance

is ∑1≤�,�≤� �̃�� = ∑1≤�,�≤�∑ℓ�=1 ��ℎ��� = ∑ℓ�=1 ����. Here, �� =∑1≤�,�≤� ℎ��� is the variance of the �th bit. It is easy to see that�� = (� − �)�, where � = ∑��=1 ℎ�(x�) is the count of “1”s ℎ�(⋅)
produced onX. Combining them together, the optimization
object can be written as:

min
ℎ1(⋅),...,ℎℓ(⋅),�1,...,�ℓ

− ℓ∑
�=1

���� + �2 ∑(�,�)∈N�
2
��, �� ≥ 0,

s.t. ��� = ℓ∑
�=1

��ℎ��� − ���,
(4)

where � is the balancing parameter of the two terms. �e
introduced variable ��� here is nontrivial, which will play a
critical role in the derivation of (4)’s dual.

2.3. Column Generation Algorithm. �ere are two sets of
variables to be optimized in (4)—the binary-valued hash
functions ℎ1(⋅), . . . , ℎℓ(⋅) and their weights �1, . . .,�ℓ. It is
normally di�cult to optimize them simultaneously, and the
fact that the former one is a group of functions, even adds
to the di�culty of solving the problem. We can use the
column generation (CG) technique to �nd an approximate
solution of it iteratively. It has been successfully applied in
boosting algorithms [18, 19], which also have to generate a
series of binary-valued functions and optimize their weights
at the same time. Similar to the well-known expectation-
maximization (EM) algorithm, column generation has a two-
step iteration framework, where one set of variables are
treated as constant in each step.�e aimof columngeneration
is to reduce the gap between the primal and the dual solutions
iteratively.

We �rst consider ℎ�(⋅) in (4) as a known function and��� as a variable to be optimized. �en, the Lagrangian of
it is

L (��, ���, V�,  ��)
= − ℓ∑
�=1

���� + �2 ∑(�,�)∈X�
2
�� − ℓ∑
�=1

V���

+ ∑
(�,�)∈X

 ��( ℓ∑
�=1

��ℎ��� − ��� − ���) ,
(5)

where V� ≥ 0 and  �� are Lagrange multipliers. At optimum,
the �rst derivation of the Lagrangian w.r.t. the primal vari-
ables must vanish as follows:#L#�� = −�� − V� + ∑(�,�)∈N ��ℎ

��
�

= 0 $→ ∑(�,�)∈N ��ℎ
��
� − �� = V� ≥ 0, (6a)

#L#��� = ���� −  �� = 0 $→ ��� = �−1 ��. (6b)

�e Lagrange dual function is

inf
�� ,
��

L = inf
��,
��

ℓ∑
�=1

��(−�� − V� + ∑
(�,�)∈N

 ��ℎ���)
+ ∑
(�,�)∈N

(�2�2�� −  �����) − ∑
(�,�)∈N

 �����
= inf

��

∑
(�,�)∈N

(�2�2�� −  �����) − ∑
(�,�)∈N

 �����
= − �−12 ∑

(�,�)∈N
 2�� − ∑
(�,�)∈N

 �����.
(7)

�en, it is easy to obtain the Lagrange dual as follows:

max���
− �−12 ∑

(�,�)∈N
 2�� − ∑
(�,�)∈N

 �����
s.t. ∑
(�,�)∈N

 ��ℎ��� ≥ ��.
(8)

�e idea of CG is to iteratively add a variable by selecting
the most violated constraint of the dual, and then optimize
the related variables by solving a restricted version of the
origin optimization problem. It works on the basis that the
sequence of restrict primal problems all have the same dual
in which the most violated constraint indicates the steepest
ascent direction of the dual. For (8), the subproblem for
generating the most violated constraint is as follows:

ℎ∗ (⋅) = argmin
ℎ(⋅)∈B

∑
(�,�)∈N

 ��ℎ��ℎ(⋅) − �ℎ(⋅)
= argmin
ℎ(⋅)∈B

∑
(�,�)∈N

 �� -----ℎ (x�) − ℎ (x�)-----
− ∑
1≤�,�≤�

-----ℎ (x�) − ℎ (x�)----- ,
(9)

whereB is the class of the base binary-valued hash function.
Since there can be in�nitely many functions inB, we restrict
it to be the decision stumps (Since decision stump is a deter-
ministic model, the column generation process will converge
when all the constraints in the dual are satis�ed, which
means that no new hash function can be generated. �is
convergence, however, usually happens a�er the requiredℓ (typically less than 128) iterations in practice. Moreover,
if it is a nondeterministic model here, column generation
can produce new hash functions even a�er satisfying all
constraints. We, therefore, do not mention the convergence
in Algorithm 1.) [20], a machine learning model widely used
in ensemble learning techniques, on the training set X.
By the restriction of decision stump, (9) can be solved by
exhaustive search within reasonable time.
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Input: Training dataX = {x�}��=1; balancing parameter � > 0; length of hash codes ℓ.
(1) Initialize: w = 0;H = 0; assign a positive constant to each element of u.
(2) for 3 = 1, . . . , ℓ do
(3) Find a new binary hash function ℎ�(⋅) by solving (9); Add ℎ�(⋅) toH and the restricted

primal problem (10); Solve (10) by Mosek to obtain the updated w; update u by (11).
(4) MapX toY = {y�}��=1 usingH.
Output: �e learnt hash functionsH, their weights w and the binary codesY.

Algorithm 1: MVH-CG: Column generation for maximum variance hashing.

Input: Training dataX = {x�}��=1; balancing parameter � > 0; length of hash codes ℓ;
number of anchors 4 ≪ �.

(1) Generate the anchor setA by a clustering method (e.g. K-means) fromX;
(2) FindH via running Algorithm 1 onA with parameters � and ℓ.
(3) MapX toY = {y�}��=1 usingH.
Output: �e learnt hash functionsH and the binary codesY.

Algorithm 2: MVH-A: Maximum variance hashing with anchors.

We summarize ourMVH-CG framework in Algorithm 1.
In the 3th iteration, we add a new function ℎ�(⋅) = ℎ∗(⋅) to the
restricted primal problem. Let 6 = |X|; we use w = [��]�×1,
a = [��]�×1, d = [���]�×1, and u = [ ��]�×1 to, respectively,
gather the corresponded scalars, and let H ∈ R

�×� to denote
the learned hash functions’ response onN such that the �th
column of it is the gather of ℎ��� , (�, �) ∈ N.�en, the restricted
primal problem (without the introduced variables ���) can be
written as:

min
w

12w⊤H⊤Hw − (�−1�⊤ + �⊤H)w
s.t. w ⪰ 0. (10)

As a quadratic programming problem, (10) can be solved
e�ciently by the o�-the-shelf solver Mosek [21]. �e KKT
condition (6b) establishes the connection between the primal
variablesw∗ and the dual variablesu∗ at optimality as follows:

u
∗ = � (Hw

∗ − d) . (11)

�e outputs of Algorithm 1 are the learnt binary-valued hash
functionsH, their weights w, and the binary codesY of the
training set X. Given a new observation x ∈ R

�, H is used
to obtain its ℓ-bit binary code as follows:

y = � (x) = [ℎ1 (x) ; . . . ; ℎℓ (x)] . (12)

�e weight vector w is a result of the relaxation of the
di�cult discrete problem. We simply abandon it and use y
only in hash applications.

2.4. Anchor Hashing Using MVH. In MVH-CG, we use the�NN set N to preserve the manifold structure in X. �e
sparse nature of �NN matrix can reduce the number of
variables in (8). Yet the size of training setX can be large, for

example, the image dataset CIFAR-10 (http://www.cs.toronto
.edu/∼kriz/cifar.html) has 60,000 images, and the digits
recognition dataset MNIST (http://yann.lecun.com/exdb/
mnist/) has 70,000 samples. To solve the hashing problem
more e�ciently, Liu et al. [15] proposed to represent a data
point by a set of anchors, which are the cluster centers
obtained by running K-means on the whole (or a random
selected small subsample of the) database. As the number
of anchors are su�ciently small, the e�ective Laplacian
eigenvector-based hashing method [12] can be processed on
it in linear time. �e main di�culty is how to generate
hash codes for unseen points, which is known as out-of-
sample extension problem. For this reason, [15] has to use
the Nyströmmethod [16] to learn eigenfunctions for a kernel
matrix. Instead, ourMVH-CGmethod learns a set of binary-
valued hash functions, which can be directly applied to any
data points. As a result, we only need to run the MVH-CG
algorithmon the anchor set, and then apply the learnt binary-
valued functions to hash the whole dataset. �e anchor
version of MVH (referred as MVH-A) is summarized in
Algorithm 2.

3. Evaluation of the Algorithm

In this section, we evaluate the hashing behavior ofMVH-CG
and the in
uence of the parameters.

We �rst evaluate the hashing behavior of MVH-CG on
a Swiss roll toy data. �e Swiss roll is a 2D submanifold
embedded in a 3D space and can be thought of as curling
a piece of rectangular paper. We apply MVH-CG, spectral
hashing [12] (SH) and self-taught hashing (STH) [22] on it
with the same code length ℓ = 32, respectively. To visualize

the results, we embed the obtained hash codes into R
3 by

PCA.�e results are illustrated in Figure 1. It is shown that all
three methods tend to keep the neighborhood relationship
during the mapping. MVH-CG maps the Swiss roll into
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Figure 2: MAP results versus varying balancing parameter � ((a), �xing � = 20) and number of nearest neighbors � ((b), �xing � = 10) for
MVH-CG.�e comparison is conducted on a subset of the MNIST dataset.

a cube and can maintain the submanifold of it in some
sense. SH and STH fail in preserving the manifold. For SH,
one reason may be that it attempts to keep all pairwise
relationships during the mapping. Studies in dimensionality
reduction point out that �NN can achieve good approx-
imation of the original manifold, and a method built on�NN kernel (used in MVH-CG) can analyze data that lies
on a low-dimensional submanifold more faithfully than a
prede�ned global kernel (used in SH) [23]. For STH, the
failure may be due to the learning errors in its self-taught
stage.

We then take theMNISTdataset as an example to evaluate
the in
uence of the parameters. �e MNIST dataset consists
of 70,000 images of handwritten digits divided into 10 classes
of 28 × 28 pixel image. We use the original 784-dimension
pixel representation for the MNIST dataset. �ere are two
parameters, � and �, in MVH-CG. � is the �NN size, and �
is the balancing parameter between the two terms of object
function (4). To eliminate the scale di�erence of these two
terms, � ismultipliedwith a constant �2/6 in experiments.We
randomly generate 4,000 samples of the MNIST dataset, half
for training and the rest for test, to evaluate the in
uences of� and �. �e results are summarized in Figure 2. From (a), we
can see that the MAP curves rise a�er � = 1, which indicates
that the second term of (4) is somewhat more important;
from (b), we see that the performance of MVH-CG does not
change signi�cantly with the number of nearest neighbors �.
Based on the above observation, we set � = 10 and � = 20 for
the remainder of our experiments.

We also run an experiment to evaluate the in
uence of
anchor set size 4 of MVH-A based on theMNIST dataset. We
randomly select 1000 samples as test set and the others (which
are 69,000 samples) for training. As described inAlgorithm 2,
in this experiment, we �rst reduce the 69,000 training samples

250 500 1000 1500 2000
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0.35
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0.45
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M
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Base set size �
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Figure 3: MAP results versus anchor set size 4 on the MNIST
dataset.

into 4 anchors by K-means clustering and then run MVH-
CG on the anchor set. �e resulted MAP curves in Figure 3
basically remain stable from 4 = 250 to 4 = 2000. We, there-
fore, set 4 = 1000 for MVH-A.

4. Experiments

In this section, we evaluate the proposed hashing algorithm
on the large-scale image datasets MNIST and CIFAR-10. �e
MNIST dataset consists of 70,000 images of handwritten
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Figure 4: Comparison of di�erent methods using MAP for varying code lengths on CIFAR-10 (a) and MNIST (b).

digits. �e CIFAR-10 dataset consists of 60,000 images of
10 classes, which means that there are 6,000 samples for
each class. In our experiments, we use the original 784-
dimension pixel representation for the MNIST dataset and a
512-dimension GIST [24] feature for the CIFAR-10 dataset.
Both of them are split into a test set with 1,000 images and
a training set with all other samples. Since the proposed
MVH method is fully unsupervised, we compare it with
several unsupervised hashing algorithms including PCA-
based hashing (PCAH) [11], spectral hashing (SH) [12],
self-taught hashing (STH) [22], and anchor graph hashing
(AGH) [15]. �e performance of the comparison methods is
measured by Mean Average Precision (MAP) or precision-
recall curves for Hamming ranking.

4.1. Results on the MNIST Dataset. We report the experi-
mental results based on MAP for Hamming ranking with
code length from 32 to 128 bits in Figure 4(b). We can see
that AGH obtains a high score at very short code length. Its
performance, however, declines rapidly as ℓ increases and
is inferior to MVH-CG a�er ℓ = 48. �e performance
of PCAH and STH, similar to AGH, also drops down
with longer bit lengths. By contrast, MVH-A and MVH-CG
consistently improve their performance as code length grows.
�is property is important in very large-scale problems, when
a short hash code, with a length of 32 bits, for example,
is not enough to describe the whole dataset. MVH-CG is
consistently superior to MVH-A as more data are used in
the learning process. Yet, MVH-A also catches up with AGH
at ℓ = 64. We then plot the precision-recall curves for
the compared methods in Figure 5. It can be seen that the
curves of AGH are relatively high at the beginning, but they
drop rapidly when more samples are returned. We also see
that our MVH methods perform better at larger ℓ, which

con�rms the observation in Figure 4. PCAH performs worst
in this case since it simply generates the hash hyperplanes by
linear projects, which cannot capture the nonlinear similarity
information behind the training data. SH is slightly better,
but much worse than others, because it relies upon the strict
uniform data assumption.

4.2. Results on the CIFAR-10 Dataset. �e CIFAR-10 dataset
is a manually labeled subset of the well-known 80 million
tiny images dataset [4]. It consists of 60,000 images from 10
classes as in the examples shown in the top row of Figure 6.
Each image is represented by a 512-dimension GIST [24]
feature and then hashed by MVH-A. MVH-CG is not run
since decision stump on the whole dataset is expensive. �e
bottom rowof Figure 6 shows the returning list of the example
query, where the �rst 8 results are correct and the last 2
are false positives. �e MAP scores against code lengths are
plotted in Figure 4(a). On this dataset, we can see that MVH-
A yields rising performance as the number of bits increases.
It outperforms all its competitors from ℓ = 48 onward and
achieves the highest MAP score at ℓ = 128. PCAH and
SH perform worst again. Figure 7 shows the precision-recall
curves of hamming ranking for the compared methods with
di�erent code lengths. When ℓ = 32, MVH-A is inferior
to AGH. As the code length grows, the areas under the
precision-recall curves of MVH-A are much broader than
AGH and other methods. �is trend is consistent with the
MAP results.

5. Conclusion

�is paper has proposed a novel unsupervised hashing
method based on manifold learning theories, which can
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Figure 5: Precision-recall curves for competing methods on the MNIST dataset for di�erent code lengths.

(a)

(b)

Figure 6: (a) Samples from the CIFAR-10 dataset, one for each category. (b) �e results for a query of “horse” image returned by MVH-A
with 128 bits. �e last two returns are false positive.



Mathematical Problems in Engineering 9

0 0.2 0.4 0.6 0.8 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Recall

P
re

ci
si

o
n

CIFAR-10 at 32 bits

AGH

STH

SH

PCAH
MVH-A

(a)

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Recall

P
re

ci
si

o
n

CIFAR-10 at 64 bits

AGH

STH

SH

PCAH
MVH-A

(b)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
re

ci
si

o
n

0 0.2 0.4 0.6 0.8 1

Recall

CIFAR-10 at 96 bits

AGH

STH

SH

PCAH
MVH-A

(c)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
re

ci
si

o
n

CIFAR-10 at 128 bits

0 0.2 0.4 0.6 0.8 1

Recall

AGH

STH

SH

PCAH
MVH-A

(d)

Figure 7: Precision-recall curves for competing methods on the CIFAR-10 dataset for di�erent code lengths.

maximize the total variance of the hash codes while pre-
serving the local structure of the training data. Two algo-
rithms, MVH-CG and MVH-A, have been proposed to
solve the derived optimization problem. Both of them can
embed the input data into binary space while maintaining
the submanifold with very short hash codes. �e training
process of MVH-A is faster than MVH-CG, but the anchor
representation of MVH-A may degrade the retrieval perfor-
mance of the resulted hash codes. Experimental results on
large-scale image datasets show that, in the case of image
retrieval, the proposed algorithms are consistently superior to
the state-of-the-art unsupervised methods such as PCAH,

SH, and STH and outperform AGH with relatively longer
codes. �e idea of manifold learning has a great potential
for large-scale hashing. We are going to develop more
e�cient hashing method based on other manifold learning
approaches.
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