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Abstract

In this paper, we address the problem of video object seg-

mentation, which is to automatically identify the primary

object and segment the object out in every frame. We pro-

pose a novel formulation of selecting object region candi-

dates simultaneously in all frames as finding a maximum

weight clique in a weighted region graph. The selected

regions are expected to have high objectness score (unary

potential) as well as share similar appearance (binary po-

tential). Since both unary and binary potentials are unre-

liable, we introduce two types of mutex (mutual exclusion)

constraints on regions in the same clique: intra-frame and

inter-frame constraints. Both types of constraints are ex-

pressed in a single quadratic form. We propose a novel

algorithm to compute the maximal weight cliques that sat-

isfy the constraints. We apply our method to challenging

benchmark videos and obtain very competitive results that

outperform state-of-the-art methods.

1. Introduction and Related Work

Given an unannotated video, our task is to automatically

identify the primary object, and segment that object out in

every frame. Unsupervised video object segmentation is

important for many potential applications, such as activity

recognition and video retrieval. Existing methods explore

tracking of regions or keypoints over time [4, 6, 22] or per-

form low-level grouping of pixels from all frames using ap-

pearance and motions cues [12, 10]. However, as pointed

out in [15], these methods lack an explicit notion of what

a foreground object should look like in video,and therefore,

an ”over-segmentation” result is usually obtained.

Recently, exploring object-centered segmentation in

static image has become a very attractive topic, where sig-

nificant progress has been achieved [9, 7, 1]. In those meth-

ods, multiple object hypotheses in form of binary figure-

ground segmentation are generated. And the ranking of hy-

potheses based on their scores implies how plausible these

hypotheses are. Using several image cues such as color, tex-

ture, and boundary, the model is learned for a generic fore-

ground object, which is then object category independent.

An example of object hypothesis produced by the approach

[9] is shown in Fig. 2.

By utilizing those figure-ground segmentations with ob-

jectness measure, Vicente et al. [27] obtain ”object co-

segmentation” from several static images. In contrast to im-

age co-segmentation methods like [24, 26, 14], their method

focus more on segmenting objects (such as bird or a car).

Lee et al. extend similar idea to video object segmenta-

tion in [15]. Instead of only using static objectness measure

from [9], dynamic cue is also used to measure how likely

a region contains a moving object. They point out that an

object region in video should move differently from its sur-

roundings. Specially, their measure compares the optical

flow histogram of the region to its surroundings. This does

not require any assumptions about camera motion, while

being sensitive to different magnitudes of motion. Given

the scored regions, top K highest-scoring regions in each

frame are collected together to form a region candidate pool

C. While many regions in C belonging to the foreground

object, C may also contain other regions. Similarity based

on un-normalized color histogram is computed for every

pair of the regions in the pool. Finally, spectral clustering

is performed to obtain multiple binary inliers and outliers

partitions of the pool. Each cluster (inlier) corresponds to

a hypothesis of foreground object regions. Then the ob-

tained clusters are ranked according to the average object-

ness score of its member regions. The larger is the average

score, the more likely a cluster is to contain the primary ob-

ject in video.

We observe that the region candidate pool C combines

regions across all frames together and discards valuable in-

formation of which frame each region originates from and

where it is located in this frame. The proposed approach

aims to leverage these information to obtain a better region

selection result. We do this by utilizing binary appearance

relation between regions in different frames and by enforc-

ing mutual exclusion (mutex) constraints on selected re-
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gions. For fair comparison, we adopt the same definition

of region objectness in video as [15].

We have the following three insights about selecting pri-

mary object regions in video, which make our approach

very different from [15]: (1) The selected regions in a clus-

ter should have high objectness score (unary potential) as

well as share similar appearance (binary potential) across

video frames. This implies the optimal way to select re-

gions is to maximize binary and unary potentials simulta-

neously, as apposed to [15] in which only binary potentials

are considered during spectral clustering. (2) The location

of the object in two neighboring frames should be relatively

close, considering that the movement of the object is usually

smooth. This information is extremely important consid-

ering there may be overlap between foreground and back-

ground color, which makes the similarity between regions

very noisy. (3) We also utilize the common assumption in

video segmentation that the primary object appears in ev-

ery frame. It may change its appearance and shape, due to

partial occlusion or self-occlusion, but it is present in each

video frame. Therefore, we select exactly one region in ev-

ery frame as the object region. This prevents the region

cluster to be dominated by regions from the same frame,

which is very likely to happen, since overlapping regions

in a single frame are much more likely to have similar ap-

pearance than true object regions in two different frames.

Hence, this constraint guarantees that the region selection

will not bias to regions in one frame, and pushes the re-

gion selection process to discover the true object regions

even under significant variations of shape and illumination

across the entire video.

We observe that insights (2) and (3) can be expressed

as mutex constraints on the object region selection process.

They strictly prohibit some regions to appear in the same

clique. In particular, insight (3) prohibits two regions from

the same frame from belonging to the same clique, and in-

sight (2) prevents two regions from adjacent frames that

are relatively far away from belonging to the same clique.

We observe that these two constraints cannot be enforced in

spectral clustering [21] used in [15].

For our approach to be successful, it is of primary im-

portance that these constraints are strictly enforced. To en-

sure that this is the case, we propose a novel optimization

method. Two example results of our system are shown in

Fig. 1. We express the region selection problem as the

problem of finding constrained Maximum Weight Cliques

(MWCs) in a weighted graph G, where each region corre-

sponds to a node. The diagonal entries of the affinity matrix

A of G hold the objectness score of each node. The off di-

agonal entries represent the appearance similarity between

two regions. The maximum weight clique in graph G is

the clique with the largest sum of its weights, which means

unary potentials and binary potentials are both considered.

In our framework, we also constrain the maximum weight

clique to satisfy the nonlinear, mutex constraints.

In 1965, Motzkin and Straus [19] established a connec-

tion between maximal cliques and the local maximizers of a

certain standard quadratic function. Since then, many meth-

ods compute MWCs as solutions of the quadratic function

relaxed to a simplex. In particular, the approach in [20]

has been proven to be a powerful model for many vision

problems, such as common pattern discovery [18] and find-

ing stereo correspondence [11]. These approaches compute

cliques with the maximum average weight. However, they

cannot guarantee that mutex constraints are satisfied.

Recently, [16] introduced a new optimization method

that can be interpreted as finding MWCs that satisfy linear

equality constraints. This algorithm has built in preference

for discrete solutions, and most of the time it converges at

a discrete solution which is locally optimal. However, con-

straints (2) cannot be expressed in a linear equality form,

which means that the algorithm in [16] cannot be applied to

solve our problem.

To the best of our knowledge, this is the first time video

object segmentation is formulated as finding constrained

MWCs. Single static image segmentation has been for-

mulated as finding maximal cliques in a very recent paper

[13], where maximal cliques are used to compose multiple

figure-ground hypotheses into larger interpretations (tilings)

of the entire image. Their algorithm adopts a two step solu-

tion: step 1 is sequential greedy heuristic, and step 2 is lo-

cal search heuristic. A similar approach is proposed in [5],

where image segmentation is formulated as finding maxi-

mum independent set, which is a dual problem to finding

maximal cliques. However, in this paper only unary poten-

tials (node weights) are considered.

In Sections 2, 3, and 4, we introduce the edge weights

in the region graph, the mutex constraints on regions, and

express region selection as finding constrained MWCs, re-

spectively. In Section 5, we utilize the regions selected in

Section 4 to achieve a more accurate pixel-level foreground

object segmentation. A description of our algorithm for

solving constrained MWCs is presented in Section 6, fol-

lowed by the experimental results in Section 7.

2. Region Graph Construction

Our goal is to segment a foreground object in video with-

out any model of the target. Since we assume no prior

knowledge on the size, location, shape or appearance of the

target object, we first produce a bag of object ”proposals” in

each frame using [9]. The model used in [9] is learned for a

generic object from Berkeley Segmentation data, and there-

fore, it is category independent. Each proposal is a region

in the image, an example is shown in Fig 2.

For each frame in the video, we retrieve K regions. (We

set K = 300 in all experiments.) Given a video consist-



Figure 1. Our object segmentation results on two videos Yu-Na Kim and Waterski from [10].

Figure 2. Object proposals produced by [9]. (a) A video frame (b) Proposals ranked in order of ”objectness”.

ing of N frames, we have K × N regions in total. Our

goal is to discover a small subset of regions that contain the

same foreground object across all the frames. We construct

a weighted graph G = (V,A), in which each node corre-

sponds to one of the K ×N regions, and A is its adjacency

matrix. The weight A(u, u) of the node u represents the

”objectness” of the region u, while the weight A(u, v) be-

tween two nodes u and v represents the similarity between

the two regions. Both are defined below.

We follow the computation of the region ”objectness” in

[15]. Specifically, for a region u

A(u, u) = ob(u) = sob(u) +mob(u), (1)

combines its static intra-frame objectness score sob(u) and

motion inter-frame objectness score mob(u). The static

score sob(u) is computed using [9]. It reflects the confi-

dence that a region contains a generic object. Several static

cues are used to compute this score, such as the probability

of a surrounding occlusion boundary, and color differences

with nearby pixels.

In [15], the motion objectness mob(u) is introduced to

complement to the static score in the case of videos. It mea-

sures the confidence that region u corresponds to a coher-

ently moving object in the video. Optical flow histograms

are computed for the region u and the pixels u around it

within a loosely fit bounding box. The score is computed

as:

mob(u) = 1− exp(−χ2
flow(u, u)), (2)

where χ2
flow(u, u) is the χ2-distance between L1-

normalized optical flow histograms. The motion score es-

sentially describes how the motion of the region differs from

its closest surrounding regions. Both static score and mo-

tion score are normalized using the distributions of scores

across all regions in the video.

Each region is also described using its Lab color his-

togram. The similarity between two regions u and v is com-

puted as:

A(u, v) = exp(−
1

Ω
χ2
color(u, v)), (3)

whereχ2
color(u, v) is the χ2-distance between unnormalized

color histograms of u and v, and Ω denotes the mean of the

χ2-distance among all the regions. Consequently, if two

regions have similar color and similar size, their affinity is

high.

3. Mutex Constraints between Regions

One of the key contributions of the proposed work to

video segmentation lies in the utilization of hard, mu-

tex (short for mutual exclusion) constraints. They specify

which regions cannot be simultaneously selected as part of

the segmentation solution. They allow us to eliminate un-

reasonable configurations of regions, which otherwise have

large joint potentials, since both the unary A(u, u) and bi-

nary potentials A(u, v) are unreliable. Furthermore, the uti-

lized inference framework allows us to enforce that the so-

lutions satisfy all the constraints. The proposed mutex con-

straints are based on the following two insights.

Intra-frame mutex constraint: We assume that a true ob-

ject should appear in every frame, and within each frame,

only one proposal region should be selected. However, the

object may be partially occluded or self occluded. This con-

straint implies that only one object regions candidate pro-

duced by [9] is selected for each frame. The same constraint

is also utilized in the problem of object co-segmentation

from static images [27]. The fact that exactly one object

region candidate is selected in each frame is essential for

a good selection of candidates mainly for two reasons: 1)



Since many regions in the same frame overlap, their affini-

ties are usually much higher than affinities of true object re-

gions in different frames due to inter-frame variations, such

as illumination change. Hence, by excluding affinities of

regions from the same frame from consideration in a single

clique, the comparison of affinities from different frames

becomes more informative. 2) Since we guarantee to select

one region for every frame, the region selected can be fur-

ther used as location prior.

Inter-frame proximity constraint: two regions selected

in two neighboring frames should be not spatially far away

from each other, since the change of the location of the same

object in adjacent frames should be smooth.

We encode these two constraints through a binary mutex

matrix M defined over all vertices of graph G as

M(u, v) =















1, if u and v are in the same frame

or (if u and v are in adjacent frames

and d(C(u), C(v)) > τ )
0, otherwise.

(4)

where C(u) and C(v) are the centroid of two regions, and d

is their Euclidean distance in pixels. τ reflects the maximum

spatial displacement allowed between u and v. We set τ =
100 for all the experiments in order to allow for fast moving

objects.

4. Finding Objects as Constrained MWCs

We formulate a region selection problem as finding con-

strained maximum weight cliques in graph. The input is

a weighted graph G = (V,A), where V = {v1, . . . , vn} is

the set of nodes representing the regions in all video frames,

n is the number of nodes, and A is a symmetric n×n affin-

ity matrix with all nonnegative entries, i.e., Aij ≥ 0 for all

i, j = 1, . . . , n.

The selected regions are identified with an indicator vec-

tor x = (x1, . . . , xn) ∈ {0, 1}n, where a given region vi is

selected if and only if xi = 1.

We are also given a symmetric relation M ⊆ V × V be-

tween vertices of the graph. We call M a mutex (short for

mutual exclusion) relation and represent as binary matrix

M ∈ {0, 1}n×n. If M(i, j) = 1 then the two vertices i, j

cannot belong to the same maximum clique. M(i, i) = 0
for all vertices i. In other words, mutex represents in-

compatible vertices that cannot be selected together. For-

mally, this requirement can be expressed as a constraint on

the indicator vector x ∈ {0, 1}n: if M(i, j) = 1, then

xi + xj ≤ 1. This formulation is equivalent to the require-

ment xTMx = 0.

We obtain the regions of primary object in a given video

by solving the following maximization problem

maximize f(x) = xTAx

s.t. x ∈ {0, 1}n and xTMx = 0.
(5)

The goal of (5) is to select a subset of vertices of graph G

such that f is maximized and the mutex constraints are sat-

isfied. Since f is the sum of unary and binary affinities of

the elements of the selected subset, the larger is the subset,

the larger is the value of f . However, the size of the sub-

set is limited by mutex constraints. The problem (5) is a

combinatorial optimization problem and is NP-hard [2].

By setting W = A− γM with a sufficiently large γ, we

reformulate problem (5) into the following dual form:

maximize xTWx = xTAx− γxTMx

s.t. x ∈ {0, 1}n.
(6)

Finally, we relax (6) to

maximize xTWx = xTAx− γxTMx

s.t. x ∈ [0, 1]n.
(7)

In Section 6 an algorithm to solve problem (7) is described.

In all video segmentation experiments, we obtained discrete

solutions that satisfy all mutex constraints.

Since the maximal clique seeking algorithm we use con-

verges to a local optimum, multiple initializations are re-

quired to promise a better performance. We rank the regions

in graph G according to their unary score A(u, u), and find

the top-L best regions. Each time, we use one region u

selected from those top-L best regions to initialize the max-

imal clique seeking algorithm. We denote the initialization

as x(0), then we set (x(0))u = 1 and (x(0))i = 0 for all

i 6= u. Starting from the x(0), we obtain a maximal clique

indicated by a binary vector x∗. x∗ is a local maximizer of

xTAx while satisfying x∗TMx∗ = 0.

Therefore, we obtain L maximal cliques in total. We se-

lect the best one according to xTAx. We find the selected

regions as one entries in the indicator vector of this solution.

Since the solution satisfies the constraints M defined in Sec

3, we select only one region in each frame, and guarantee

every two regions selected in neighboring frames are rela-

tively close to each other. These regions reflect the rough

appearance and location of the object in each frame.

5. Foreground Object Segmentation

The obtained segmentation of the object in video in form

of selected regions is not very precise. In particular, the

segmentation error is lower-bounded by the object region

candidates produced by [9]. The error may come from the

inaccuracy of the original superpixel extraction or merging.

Therefore, we follow the strategy of utilizing the selected



regions to learn the appearance model for both foreground

and background, e.g., [15, 27]. In addition, we also utilize

the location priors. It is particularly easy in our framework,

since we have exactly one object region in each frame. Fi-

nally, we use GrabCut [23] to infer a more accurate pixel-

level object segmentation. For efficiency, rather than label-

ing pixels in three consecutive frames at once by construct-

ing a space-time graph as in [15], we simply run the Grab-

Cut [23] for each frame separately. This is possible in our

framework, since the data term, defined below, which is ob-

tained by our constrained MWCs is very informative.

We denote the pixels in each frame as S = {p1, . . . , pn},

and their labels f = {f1, . . . , fn}, fi ∈ {0, 1} with 0 for

background and 1 for foreground. Then the energy function

for minimization is:

E(f) =
∑

i∈S

Di(fi) + δ
∑

i,j∈N

Vi,j(fi, fj) (8)

where N consists of 8 spatially neighboring pixels.

For the smoothness term V , we use the standard contrast-

dependent function defined in [23], which favors assigning

the same label to neighboring pixels that have similar color.

Similar to [15], our data term Di(fi) defines the cost of

labeling pixel pi with label fi as:

Di(fi) = − log(1− P c
i (fi) · P

l
i (fi)) (9)

where P c
i (fi) is the probability of labeling pixel pi with

label fi based on the appearance (color) cues, P l
i (fi) is the

probability based on location prior. Both are defined below.

To compute P c
i (fi), we first estimate two Gaussian Mix-

ture Models (GMM) in RGB color space to model the fore-

ground (fg) and background (bg) appearance. Since the

color may vary significantly over the video frames, we

need to learn the color models over all video frames, which

is an easy task since we have the object regions inferred

as the constrained MWCs. The foreground GMM model

fgcolor is learned from pixels in the regions selected in the

constrained MWCs computation. The background GMM

model bgcolor is learned from pixels contained in the com-

plement of selected regions in all the frames. Then given

these two color distributions fgcolor and bgcolor, we define

for each pixel pi:

P c
i (fi) =

{

P (pi|fg
color), if fi = 1

P (pi|bgcolor), if fi = 0
(10)

For the computation of location probability P l
i (fi), we

utilize the object regions selected in the constrained MWCs.

Given the selected region (we have only one region per

frame), we first compute its distance transform. Let d(pi)
denotes the distance of pixel pi to the selected object region.

We compute

P l
i (fi) =

{

exp(− d(pi)
σ

), if fi = 1

1− exp(− d(pi)
σ

), if fi = 0
(11)

Figure 3. (a) A single frame and the probabilities of the foreground

object fi = 1. (b) Color prob. P c

i (fi). (c) Location prob. P l

i (fi).
(d) The joint foreground prob. P c

i (fi) · P
l

i (fi)

where σ indicates the confidence of the location prior, the

larger is σ, the lower is the confidence. We compute

P c
i (fi) ·P

l
i (fi) as the probability of foreground (fi = 1) and

background (fi = 0). As illustrated in Fig 3(b), the color

probability is not particularly informative in a global scale

of the whole frame, and the main information comes from

the possibilty map of the location shown in Fig. 3(c). How-

ever, the color information is informative if constrained by

the location probability as illustrated by the joint probability

shown in Fig 3(d).

After obtaining the data term D and smoothness term

V , we use the popular method in [3] to find the optimal f

that minimizes the energy function (8), and obtain the final

foreground objects in each video frame.

6. Algorithm Description

In this section, we introduce a novel algorithm for find-

ing the constrained MWCs. f(x) = xTWx denotes the

objective function of Eq. (7).

Our algorithm visits a sequence of continuous points

{y(k) ∈ [0, 1]n}k=1,2,.... In each iteration k, we have two

steps. First, given y(k), for any point y ∈ [0, 1]n in its

neighborhood, we compute the first-order Taylor approxi-

mation of f(y) as

f(y) ≈ f(y(k)) + 2(y − y(k))
TWy(k)

= 2yWy(k) − f(y(k))
(12)

Since the second term f(y(k)) in (12) does not depend on y,

the first-order Taylor approximation of f(y) only depends

on yWy(k), which is a linear function of y. This fact allows

an easy computation of a discrete maximizer

x̃(k) = argmax
y∈[0,1]n

yTWy(k) (13)

as

(x̃(k))i =

{

1, if (Wy(k))i > 0
0, otherwise

(14)

In the second step of iteration k, we want to verify

whether the obtained x̃(k) can be accepted as a valid dis-

crete solution that increases f . In the case that f(x̃(k)) >



f(y(k)), we let y(k+1) = x̃(k). In the case that f(x̃(k)) ≤
f(y(k)), we estimate the local maximizer of f in the contin-

uous domain by performing a line search, i.e., by maximiz-

ing one dimensional function h(α) = f(y(k) + α(x̃(k) −
y(k))) over the line segment from x̃(k) to y(k). It is easy to

show that h(α) obtains its maximum at α defined in (15). It

can also be shown that 0 < α < 1, which guarantees that

line search will not reach outside the cube.

α = −
(x̃(k) − y(k))

TWy(k)

(x̃(k) − y(k))TW (x̃(k) − y(k))
(15)

Then we set y(k+1) = y(k) + α(x̃(k) − y(k))
Our algorithm stops when the following stop condition

holds for all coordinates i of vector x∗ = y(k+1):

if (Wx∗)i > 0, then x∗
i = 1

if (Wx∗)i < 0, then x∗
i = 0

(16)

We observe that Wx∗ = 1
2∇f(x∗). Hence (Wx∗)i > 0

means that the direction of the increase of f coincides the

direction of ith coordinate, while (Wx∗)i < 0 means that

the direction of the increase of f is opposite to the direction

of ith coordinate. Therefore, the stop condition tells us that

f(x∗) already has the maximum possible value for every

increase direction of f . In other words, we cannot increase

f without leaving our domain [0, 1]n, meaning that x∗ is a

local maximum of f over [0, 1]n.

We assume that the initial assignment y(0) satisfies the

mutex constraints, i.e., y(0)
T
My(0) = 0. This implies

that f(y(0)) ≥ 0, since all entries in A are non-negative.

The proposed algorithm is summarized in the following

pseudo code:

Algorithm 1
Input: Matrix W , f(y(0)) ≥ 0, and ǫ > 0

1: repeat
2: Use (14) to find x̃(k) = argmaxy∈[0,1]n yWy(k)

3: if x̃(k) = y(k) then
4: y(k+1) = x̃(k)

5: else if f(x̃(k)) > f(y(k)) then
6: y(k+1) = x̃(k)

7: else
8: Use (15) to compute α.

9: y(k+1) = y(k) + α(x̃(k) − y(k))
10: end if
11: until y(k+1) satisfies (16) or f(y(k+1))− f(y(k)) < ǫ

Output: y(k+1)

In all experimental results in the next section, all solu-

tions are discrete. Thus, the proposed algorithm does not

require any postprocessing to obtain discrete solutions. We

have also verified experimentally that all obtained solutions

satisfy the mutex constraints.

7. Experimental Results

We first examine our method on the SegTrack dataset

[25]. There are six videos (monkeydog, bird, girl, birdfall,

parachutte, penguin). For each video, a pixel-level segmen-

tation ground-truth is provided for the primary foreground

object. This enables a statistical evaluation of our method.

Object segmentation in these videos are extremely challeng-

ing due to several facts, such as the primary object are with

large shape deformation and foreground and background

color has overlap. Same as [15], we do not evaluate our

method on penguin video since only a single penguin is la-

beled as the foreground object among a group of penguins.

Given a video, we first produce [9] 300 object candidate

regions per frame. We use Lab space histograms to describe

color for each region. Each Lab channel has 20 bins. For

the color model of the foreground and background, we use

RGB color space, and two GMMs with 5 component are

learned. Same as [15], we describe motion using optical

flow histograms computed from [17] with 60 bins per x and

y direction. The region’s bounding box is dilated by 30 pix-

els when computing the background histograms. To initial-

ize the maximal clique computation, each time we select

one from the best 50 object regions candidates according to

A(u, u) = ob(u). We set σ = 20 for the computation of

P l
i (fi). In the graph cut energy function (8), δ = 1 in all

our experiments.

Due to the efficiency of the proposed constrained MWCs

algorithm, on a PC with 3.4Ghz and 8GB RAM, it only

takes 2 minutes to select regions by constrained MWCs with

50 different initializations. The binary graph cut on single

frame takes about 0.1s in average.

We compare the results with three state-of-the-art meth-

ods [15], [25] and [8]. The method in [15] and our method

are unsupervised. They automatically discover the primary

object in image as well as segment the object out. The meth-

ods in [25] and [8] require minor supervision with the object

labeled in the first frame. The results are shown in Table 1.

Our method has the lowest average per frame segmentation

error over the 5 test videos. It also achieves the lowest seg-

mentation error on 3 out of 5 videos. Compared to [15],

which also does not require manual object initialization, we

achieve better results on 4 out of 5 videos. Some segmenta-

tion results are shown in Fig. 4.

The results in Table 1 report the average per-frame, pixel

error rate computed in comparison to the ground-truth seg-

mentation. Specially, it is computed as [25]:

error =
XOR(f,GT )

F
(17)

where f is the label for every pixel in a given video, GT is

the ground-truth label, and F is the total number of frames

in a given video. Since all videos are roughly of the same

size, the average error rate over the 5 videos is computed



Video (No. frames) Ours [15] [25] [8]

birdfall (30) 189 288 252 454

cheetah (29) 806 905 1142 1217

girl (21) 1698 1785 1304 1755

monkeydog (71) 472 521 563 683

parachute (51) 221 201 235 502

Average 542 592 594 791

Manual seg.: No No Yes Yes

Table 1. Segmentation error as measured by the average number

of incorrect pixels per frame. Lower values are better.

Figure 4. Segmentation results. Best viewed in color.

as average over all frames in all videos, i.e., we treat all 5

videos as a single video and apply (17).

As we mentioned above, even without the pixel-based

object segmentation described in Secion 5, the object re-

gions selected by constrained MWCs in Section 4 alone can

be regarded as the segmentation result. In Table 2, we report

the pixel error of the constrained MWCs regions segmenta-

tion results, although it is lower-bounded by the accuracy of

the region candidates produced by [9]. The lower-bound er-

ror is computed as the error of the region candidate with the

lowest error as compared to the ground-truth pixels. This re-

flects the lowest segmentation pixel error we could achieve

Ours constrained MWC Lower bound

birdfall 189 311 295

cheetah 806 1258 700

girl 1698 3063 2973

monkeydog 472 497 493

parachute 221 803 680

Table 2. Segmentation error comparison. We compare our entire

proposed method (Ours) to the region segmentation results ob-

tained by the region selection as constrained MWCs. The lower

bound error is the lowest possible error of regions produced by

[9].

constrained MWC w/o constraints

birdfall 311 589

cheetah 1258 1772

girl 3063 3742

monkeydog 497 2024

parachute 803 883

Table 3. Segmentation error comparison of the constrained MWCs

optimization with and without the mutex constraints.

Figure 5. The trajectories of centroids of selected regions, green

dots connected with red lines, overlaid over the first frame: (a)

when inter-frame mutex constraints are used and (b) when inter-

frame mutex constraints are not used.

by only selecting regions from computing the constrained

MWCs.

We can see that, for videos birdfall, monkeydog, the re-

sults are very good merely using regions selected by con-

strained MWCs. Moreover, with the exception of chee-

tah, the pixel error is rather close to the lower bound. This

demonstrates that the proposed region selection scheme as

constrained MWCs is a powerful tool for video segmenta-

tion.

As shown in Table 3, the segmentation error increases

significantly if inter-frame proximity mutex constraints,

which express spatiotemporal coherency, are not taken as

input to the constrained MWC optimization. We also pro-

vide a visual illustration of the importance of these mu-

tex constraints in Fig. 5. We compare the trajectories of

the constrained MWCs region centroids computed with and



without this mutex constraints. They are shown overlaid

over the first video frame. We can see that with the con-

straints, the trajectory of the centroid is very smooth, and

the selected regions are always focusing on the primary ob-

ject, i.e., the monkey in the example video. This shows

that the mutex constraints significantly increase the robust-

ness of the constrained MWCs optimization. They allow

us to eliminate unreasonable region selection hypotheses,

which result from unreliable region affinity relations, and

consequently, play a critical role in selecting correct object

regions.

We also examine our method on two videos Yu-Na Kim

and Waterski from [10]. While [10] focus on labeling every

pixel in image using motion and appearance cues, we au-

tomatically identify the primary object, i.e., ice skater and

water skier, and segment them out in every frame. Qualita-

tive results are shown in Fig 1.

8. Conclusions

We present a novel method for video object segmenta-

tion. It utilizes mutex constraints in order to obtain reliable

segmentations of foreground object under large variations

of shape, appearance, and illumination. The selection of

object regions is performed simultaneously for all frames

of the video. The computation is cast as finding maximum

weight cliques in the region graph. We propose a novel al-

gorithm for solving this problem. Since it yields discrete

solutions in all presented experimental results, it did not re-

quire any postprocessing to obtain discrete solutions. We

have also verified experimentally that all obtained solutions

satisfy the mutex constraints.
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