
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-34, NO. 12, DECEMBER 1987 1535 

Maximum-Weight Markings in Marked 
Graphs: Algorithms and .Interpretatibns 

Based on the Simplex Method 
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Abstract -The problem of determining a maximum-weight marking in a 
marked graph is mathematically dual to the transshipment problem of 
operations research. The special structure of the transshipment problem 
facilitates efficient implementation of the simplex method of linear pro- 
gramming, for solving such problems. In this paper, we first show that the 
maximum-weight marking problem possesses as much structure as its dual, 
and then present an implementation of simplex for this problem in terms 
of marked graph concepts and operations. The pivoting operation in the 
simplex method is shown to correspond to the subgraph firing operation in 
marked graphs. A diakoptic reachability theorem is also proved. The 
formulations presented in this paper cover both live- and nonlive-marked 
graphs with or without capacity constraints. 

J. INTRODUCTION 

Petri net is a general algebraic structure originally 
developed by Carl Adam Petri as a model for infor- 

mation flow in systems exhibiting asynchronism and paral- 
lelism [l]. The generality of the Petri net makes modeling 
of complex networks possible. However, the feasibility of 
analysis becomes questionable and in many cases the 
problems are N&Complete. Marked graphs are a special 
class of Petri nets, which are more amenable to analysis; 
yet thiy retain enough generality to model systems. of 
parallel processing, queueing networks, resources alloca- 
tion schemes and many other related problems. In the 
theory of marked graphs, a main concern is the study of 
possible token distributions at markings which are reach- 
able from an initial marking. Various issues have been 
studied in this context [2]-[6]. In this paper, we formulate 
and study a maximization problem defined on a marked 
graph. 

In the following section, we review some of the results 
on marked graphs on which is based the remainder of this 
paper. In Section III, we define the maximization problem, 
namely, the maximum-weight marking problem and pro- 
vide an algorithmic solution to this problem. Our al- 
gorithm is based on the simplex method of linear program- 
ming [7]. As we develop our main algorithm, we offer 
interpretations of operations which one encounters in the 
theory of linear programming, in terms of marked graph 
concepts. In Section IV, we extend the results of Section 
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III to the capacitated case. In this section, we also provide 
an alternative formulation of the problem, suitable for 
studying the nonlive case which is presented in Sections V 
and VI. 

II. PRELUDE 

A marked graph [l] is defined as a directed graph 
G = (V, E) with vertex set V, edge set E, a nonnegative- 
integer column vector M associated with E called a mark- 
ing, state or token distribution of G, and a state-transition 
function Si( M) mapping M into a new marking M’ result- 
ing from firing vertex i E I/. The transition function sub- 
tracts one token from M on each edge incident into i and 
adds one token to M on each edge incident out of i, to 
obtain M’. Since M’ must be norinegative, Si( M) can only 
be applied if M has a positive token count on each edge 
incident into vertex i. Vertex i is said to be enabled if 
S,(M) can be applied. 

A marking M’ is reachable from a marking M if a 
sequence of legal transitions will transform M into M’. 
The reachability set R(M) of a marking M is defined as 
the set of all markings reachable from M. Since the null 
sequence is trivially legal, M E R(M). 

A marked graph is live under a marking M if each 
vertex i E G can be enabled through some legal firing 
sequence starting from M. Liveness is characterized in the 
following theorem [2]. 

Theorem 1: A marked graph G is live under a marking 
M if and only if G contains no token-free directed circuits 
under M. I 

Let G be a marked graph with an initial marking 2. 
and let M E R( MO). Then, the differential marking A, = 
M - MO satisfies Kirchoff’s voltage law in G [3]. If B, is a 
fundamental-circuit matrix of G then B,AM = 0. This sim- 
ple and elegant result, as profound as Tellegen’s theorem, 
is the basis of all the results presented in this paper. A 
token-free directed circuit of G under M,, is called a 
dead-circuit of G. In these terms, reachability is char- 
acterized in the following theorem [3]. 

Theorem 2 (Reachability Theorem): A marking M of a 
marked graph G is reachable from an initial marking MO 
of G if and only if B,AM = 0 and a, = 0 for each vertex v 
belonging to a dead-circuit of G, in the minimum non- 
negative solution of A’Z = A, where 

Z=[a,,u**-a,]’ 

and A is the incidence matrix of G. w 
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The ui’s referred to in the above theorem are called the 
firing numbers or firing counts of the corresponding vertices. 

A marked graph G is bounded under a marking M, if 
the token count on ,each edge, e E G, is finite in every 
marking in R( M,). Boundedness is guaranteed if and only 
if each edge of G belongs to a directed circuit with a finite 
token count [2]. The marked graph is called k-bounded if 
M’(e) < k, Ve E G, VM’ E R(M). A l-bounded marked 
graph is called safe. 

III. THE MAXIMUM-WEIGHT MARKING PROBLEM 

Given a marked graph G = (V, E) with an initial mark- 
ing M,,, we consider the problem of obtaining an M E 
R( M,) which is maximum or minimum in some sense. An 
obvious objective is simply Z,M(e), the token count of G 
under M. In fact, a solution to this problem for live, 
strongly connected marked graphs can be found in [2], 
where the authors employ a circulation-flow approach for 
solving its dual. A linear-programming formulation of a 
more general problem, namely, the maximum-weight 
marking problem and its dual was presented by Murata in 
[8]. In this paper, we focus on this generalized problem. 
Thus we introduce a per token weight W(e) associated 
with each edge e E E which represents the weight or cost 
of one token residing there and consider the maximum- 
weight marking problem 

maximize WM 
ME R(h) 

(1) 

where W is the row vector of edge weights. We would like 
to point out that the problem of determining a maximum 
weight marking in a marked graph is equivalent to the 
problem of determining a maximum marking in a compu- 
tation graph when the input quantum, the output quantum 
and the threshold of each edge of the computation graph 
are all equal [9]. 

Our discussion begins with a linear-programming formu- 
lation of the maximum-weight marking problem based on 
the reachability theorem, namely, Theorem 2. Let T be a 
spanning tree of G and let ?; be the corresponding cospan- 
ning tree of G. Let Br be the fundamental-circuit matrix of 
G with respect to the tree T. Let Z, be the vector BtM,. 
The reachability theorem provides a circuit-theoretic char- 
acterization of the reachability set of M, on G. If we relax 
or neglect the dead-circuit condition of the theorem by 
considering live-marked graphs only, then clearly, the max- 
imum-weight marking problem is equivalent to the linear 
program 

maximize WM 

subject to BtM = ZT (2) 

M>O. 

It is not obvious how to incorporate the dead-circut 
condition into this linear-program format since the dead- 
circuit condition involves the firing counts of the vertices 
of G and Program 2 is stated in M only. For this reason, 
we will focus first on the live class of problems char- 
acterized by (2). We consider in Section IV, an alternative 
formulation of Problem 1 in terms of the vertex firing 

numbers which is equivalent to (2) for the live class of 
problems and which captures the nature of the nonlive 
case presented in Section V. 

3.1. Basic Markings 

Central to the methods of linear programming, namely, 
the simplex method and its variants, is the concept of a 
basic solution to a consistent, underspecified system of 
independent, linear equations. For such systems, it is al- 
ways possible to express a subset of the variables, called 
basic variables, explicitly in terms of the remaining non- 
basic variables. If we specify zero values for the nonbasic 
variables then we obtain a basic solution-one in which 
only basic variables may have nonzero values. Any assign- 
ment of the variables in a linear program which satisfies all 
of its constraints constitutes a feasible solution. Besides the 
circuit equations, Program 2 has the nonnegativity con- 
straint M > 0. Thus, any nonnegative solution to B,M = ZT 
is a feasible solution of (2). The feasible solutions of (2) are 
in one-to-one correspondence with the elements of R( M,). 

The simplex method examines only basic feasible solu- 
tions during its search of an optimal one. Hence, we must 
define a basic marking. The canonical or echelon form of a 
fundamental-circuit circuit matrix implies that the cospan- 
ning-tree variables can be expressed in terms of the span- 
ning-tree variables and hence, the cospanning-tree vari- 
ables become the basic variables and the tree variables 
become the nonbasic variables. Thus we have. the following 
definition. 

A marking M of G is called a basic marking if there 
exists a token-free spanning tree of G under M. 

In order to apply the simplex method, we must obtain a 
basic feasible solution of (2). From the marked graph point 
of view, it is not even clear that there exists a basic 
marking M E R( M,,). Indeed, as can be easily seen, there 
may be no basic marking reachable from M,, if M, is not 
live on G. However, as we will soon prove, it is always 
possible to obtain a basic M E R(M,,) for the live class of 
problems. 

3.2. Optimality Criterion 

In the following, we study the structure of the maxi- 
mum-marking problem and derive the criterion for opti- 
mal&y. 

The vector ZT is an invariant of the equivalence class 
R(M,) with respect to T, for obvious reasons. Every 
M E R( M,) satisfies B,M = ZT. The kth component of 
ZT is an invariant of the kth fundamental circuit. It is 
simply the algebraic sum of the tokens in the k th funda- 
mental circuit when traversed in the direction of its defin- 
ing chord. This number must be the same for every M E 
R(M,,). It is easy to prove the following. 

Lemma 1: 27; > 0 when M,, is basic with tree T. n 

The cost or weight of a fundamental cutset is defined as 
the algebraic sum of its edge weights with respect to the 
forward orientation of the cutset. If K = K, U K- is a 
cutset with forward edge set K, and backward edge set 
K-, then we shall denote the weight of K under the 
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weighting W of E as 

W(K)= C W(e)- C W(e). 
t?EK, E?GK- 

Next, let us eliminate the chord (basic) variables from 
the-objective to obtain an equivalent objective in terms of 
the branch (nonbasic) variables only. To do this, we need 
the basic dictionary [7], which is readily available from the 
canonical form of the constraints. The partition is as 
follows: 

maximize J = [ W,, W,] 
MT 

[ I 
M = WFMT + W,M, 

T 

subject to 

bBfTl [ z;] = MT + BfTMT = ZT, M>O 

where the subscript T denotes the cospanning tree, the 
subscript T denotes the sparming tree, and 1~ is a unit or 
identity matrix of dimension IT]. The basic dictionary is 
simply 

MF = ZT - BfTM,. 

Replacing the cospanning tree marking MT with its dictio- 
nary, in the objective J, gives 

J=WT(ZT-B,TMT)+WTMT 

= WTZT + (w, - W+3fT)MT 

= WyZT + qTMT. 

The number WFZ, is the‘value of the original objective J 
under the marking M,, since the tree variables are all zero. 
Thus an equivalent objective for our optimization problem 
is 

where 

We see from the expressions for J and J” that we can 
increase their values by increasing, by an appropriate 
amount, the token count on any tree edge with a corre- 
sponding positive coefficient in @r.. The elements of I@ 
are the familiar relative-cost coefficients from the simplex 
method. It is easily seen that the objective J or J”cannot be 
increased by increasing values of tree variables if l&‘T < 0 
and hence, M is optimal if and only if m= Q 0. 

Theorem 3: The relative branch costs are the associated 
fundamental-cutset weights. 

Proof: The relative-cost vector of the tree is 

tiT = W, - WFBfT. 

Transposing, 

= ITW; - B&W+ 

1537 

= Q,W’. 

Transposing again, 

& = WQ; 

where Q, is the fundamental-cutset matrix of G with 
respect to the tree T. n 

This result enables us to translate the algebraic criterion 
for optimality, tiT < 0, into a structural criterion for opti- 
mality, namely, all fundamental cutsets of T have non- 
positive weight, and exploit this structural property of an 
optimal solution in an efficient graph algorithm. 

3.3. Diakoptic Transitions 

We now shall extend the concept of enablement to a 
subgraph of G and thus introduce the notion of a di- 
akoptic transition in a marked graph. 

Let S and S= V-S be a partition of V and let (S, S) 
denote the cut (S, S_) + U (S, S) _ consisting-of the for- 
ward cut edges (S, S) + directed from S to S and back- 
ward cut edges (S, 3) _ directed from S to S. L_et G(S) be 
the subgraph indu_ced on S by removing (S, S) from G. 
Similarly, let _G(S) be the subgraph induced on S by 
removing (S, S) from G. If G(S) and G(S) are both 
connected, t_hen (S, 5) is called a cutset of G. Let us 
assume (S, S) is an arbitrary cut of G. 

We define the enabling numbers of G(S) and G(S) as 

P@(S)) p $y {M(e)) 

and 

P@(S)) B eE~~j {M(e))- * + 

An elementary diakoptic firing of a vertex-induced sub- 
graph G( *) of a marked graph G is any legal firing 
sequence confined to vertices in G( *) which fires each 
vertex in G(a) exactly once. Note that this definition 
includes subgraphs G( .) consisting of disjoint components. 

Theorem 4 (Diakoptic-Transition Theorem): An elemen- 
tary diakoptic firing of a vertex-induced subgraph G(S) of 
a marked graph G is legal under a live marking M if and 
only if p(G(S)) > 0. 

Proof: First, we note that the markings of G(S) and 
G(S) are unaffected by the diakoptic firing of G(S) since 
vertices in S are not fired and each vertex in S is fired 
exactly once. The only edges of G whose markings change 
in an elementary diakoptic firing of G(S) are those 
of (S, S). Each edge of (S, 5) _ loses one token and each 



1538 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-34, NO. 12, DECEMBER 1987 

edge of (S, S) + gains one token. By hypothesis, p( G( S)) 
> 0 and so, each edge e E (S, S) _ has at least one token. 
Further, the edges of (S, 9) + play no role in determining 
the legality of a firing sequence confined to vertices in S. 
Hence, all edges in the cut (S, S) may be removed from G, 
isolating G(S) from G(S) and so, we need only show’ that 
there exists a legal firing sequence of any marked graph G 
from a live marking M which fires each vertex of G 
exactly once, returning to M. This question has already 
been resolved in [2]. However, we present an alternate 
proof which is easily extendable’for the capacitated case. 

Let G(E,) be the token-free subgraph of G under M 

induced by the token-free edge set E, = { el M( e) = O}. 

Property I: G(E,) is acyclic. 
Property 2: A source in G(Ef) is an enabled vertex in G 

under M. 
Property 1 follows from the liveness of M. That is, G 

has no token-free directed circuits under M. Property 2 
follows from the observation that a source of G(Ef) is 
either a source of G or a vertex of G with at least one 
token on each edge incident into it under M. In either case, 
a source of G(E,) is an enabled vertex of G under M. 
Since G(E,) is acyclic, it contains a source and hence, G 
contains an enabled vertex v under M. Firing this vertex v 
results in a new marking of G obtained by subtracting one 
token from each edge incident into v and adding one 
token to each edge incident out of v. Since v has been 
fired and each edge incident out of v has at least one 
token then v may be removed from G. The above argu- 
ment recursively applies to the resulting subgraph of G 
since it is another live marked graph for which an elemen- 
tary diakoptic-firing sequence is sought. n 

As noted in the proof of Theorem 4, an elementary 
diakoptic firing of a subgraph G(S) affects the marking of 
G only on edges of-the cut (S, 3). Specifically, one token 
is subtracted from all edges of (S, 5) incident into G(S) 
and one token is added to all edges of (S, S) incident out 
of G(S). Thus we may view the state-transition process 
diakoptically. That is, we may consider G(S) as a super- 
node of G. This is the essence of the above theorem. It tells 
us that we can move from marking to marking by firing 
supernodes or clusters at a time, ignoring the actual firing 
sequence involved within the cluster since the theorem 
guarantees its existence. 

3.4. A Diakoptic-Reachability Theorem 

The diakoptic-transition theorem for live-marked graphs 
provides us with a diakoptic-reachability theorem for such 
cases. The interesting aspect of this is that every reachable 
marking from an initial marking of a live-marked graph G 
defines its own unique diakoptic firing sequence leading 
from the initial marking to that marking. We now proceed 
to develop this result. 

Let G = (V, E) be a marked graph on vertex set V, edge 
set E and live initial marking M,. Let M, E R( MO) and, 
as in [3], let Z, = [ul,“, u-j’ * * . u,“]’ be the minimum non- 
negative solution to A’Z = Mf -. M,, where A is the inci- 
dence matrix of G. Identify the entities defined by the 

following algorithm: 
k+O 
While 2, A [ a,k, (I! * * * u,“]’ # 0 do 

begin 

s, + { VIU”” > 0) 

G, + G(h) 

x/c+ “3 bJ,“l 

ok+1 t 

i 

u&x k,QVESk 
” 

O,QVE,$ 
k+k+l 

end 
r+k 

Theorem 5 (Diakoptic-Reachability Theorem): The di- 
akoptic-firing sequence defined by the expression 

r-l 

)I0 W 

of length r & n - 1 legally transforms M, into M, on G, 
where Gik denotes xk successive elementary diakoptic 
firings of G,. 

Proof: First, let us recall that a diakoptic firing of a 
vertex-induced subgraph G(S) of a marked graph G af- 
fects the marking of G on edges of the cut (S, S) only. 
Also, for a live G, a diakoptic firing of G(S) is legal if and 
only if p( G( S)) > 0. Thus we need only show that xk Q 
p(G,J for 0 < k Q r -1. We demonstrate that xa 6 p(Gs) 
and then deduce that xk Q p(GIG) for 1 Q k d r - 1. 

LetS,=_V-SS,,forOgkdr-l.Further,let(Sk,g,)+ 
and (S,, S,) _ denote the forward and backward edge sets 
of the cut (S,, S,), respectively, for 0 < k Q r - 1, where 
“forward” is the direction from S, to Sk. From the state 
equation, we have it4Je) = MO(e)+ uio - ujo, for eac_h edge 
e = (i, j) E E. Now, by definition, uio =_O, Vi E So. So, 
Mf(e) = M,(e)- ujo, Ve = (i, j) E (So, So)-. Imposing 
nonnegativity on Mr., we obtain ujo < MO(e), Ve = (i, j) E 

_ 

(So, So) _. By defmition, xi< ujo, VIE So, and, thus’ it 
follows that x0 < MO(e), Vt E (So, Fo) _. The enabling 
number of Go is simply 

and it follows that x0 6 p(G,). To deduce that the (k + 1)th 
diakoptic firing is legal given that the first k .diakoptic 
firings are legal, we need merely note that Z, is the 
minimum nonnegative solution to A’Z = M, - Mk, where 
Mk is the marking of G after the first k diakoptic firings. 
Thus, the above argument is true when So, x0, MO, and Z, 
are replaced with S,, xk, Mk, and Z,, respectively. n 

3.5. Obtaining a Basic Marking in R(M,,) 

With the notion of a diakoptic transition established, we 
describe an algorithm for obtaining a basic M E R(M,) 
when MO is live on G. We assume that G is connected. 

Suppose that, by some means, we have obtained an 
M E R( MO) such that the subgraph G(S), induced over 
some subset of vertices S, has a token-free spanning tree T 
under M. Since G is connected, (S, s> # 0. Since G is live 
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under M, G(S) is also live under M. If (S, S) _ # 0 then 
fire G(S) diakoptically p = p(G(S)) times..This transition 
is legal and results in a marking M’ obtained from M by 
subtracting ~1 tokens from each edge in (S, S) _ and 
adding p tokens to each edge in (S, S) +. If p is not equal 
to zero, then at least one edge e = (i, j) E (S, s) _ is 
token-free under M’ and since the marking of G(S) is 
unaffected by the diakoptic firing of G(S), then T is also 
token-free under M’. Clearly, this is the case when p = 0. 
Thus the tree T U { e} is a token-free spanning tree of 
G(SU{i}) under M’E R(M,). If (S,S)-=0 then 
(S,J) + # 0 and, so, by similar reasoning, we may fire 
G(S), diakoptically, p(G(S)) times. This transition is also 
legal and results in the marking M’ obtained from M by 
subtracting p(G( S)) tokens from each edge in (S, S) +. At 
least one edge e = (i, j) E (S, S) + is token-free under M’ 
and so, T U {e} is a token-free spanning-tree of G(S U 

{ j}) under M’ E R( MO). Hence, we have an algorithm. 
We simply start with S = {v} for any vertex v E G and 
with T=0. 

The following algorithm will generate a basic marking 
M, reachable from a live marking MO, for a connected 
marked graph G. 

1) SetT=0, M=M,andS={v},foranyv~V. 
2) While ISI_< IV1 do 

if (S,S)-#0 
then 

begin 
Compute p p p(G(S)) under M. 
Fire G(S) p times, updating M. 
T+TU{e} and S+SU{i}, 
where e = (i, j) is a token-free edge of 
(S, S) _ under M. 

end 
else 

begin 
Compute p p p(G(S)) under M 
Fire G(S) p times, updating M. 

T+TU{e} and S+SU{j}, 

where e = (i, j) is a token-free edge of 

(SY 9, under M. 

end 
3) Stop. M is a basic marking in R(M,) with the 

token-free spanning tree T. 
We may modify this algorithm by including as many 

token-free edges as possible at each iteration, so long as a 
circuit does not form. 

3.6. Pivoting and Diakoptic Firing 

Next, let us interpret the fundamental operation of 
simplex, pivoting, in terms of vertex firing. 

Each pivot of simplex selects one nonbasic variable (tree 
branch) with a corresponding positive relative cost (funda- 
mental-cutset weight), and exchanges it with one basic 
variable (cospanning-tree chord). If no such exchange is 
possible (all relative branch costs are nonpositive) then we 
have an optimal marking. Let us examine the details of 
this branch-chord exchange. 

Let b = (u, v) be the branch of T that has been selected 
to enter the basis (cospanning tree), where b is incident 
out of vertex u and into vertex v. Now, breaking the 
branch b splits T into exactly two fragments, T, and T,, 
where u E T, and v E T,. Let S be the set of vertices that 
T, spans and then T, spans $= V - S. The fundamental 
cutset of G that b defines is simply (S, S). Thus since b 
has been selected to leave the tree and enter the cotree, 
then W(( S, 9)) > 0 because the relative cost of branch b is 
the weight of (S, S). 

Let this first pivot move the state from MO to, say, Ml. 
Simplex moves from one basic feasible solution to another 
basic feasible solution with each pivot. Thus for Ml to be 
basic, it must also possess a token-free spanning tree Tl. 
To ensure Ml is a basic marking, we must select a chord 
from F so as to reconnect the fragments T, and T,. The 
only edges of G which connect vertices in T, to vertices in 
T, are edges of (S, S). Hence, we must exchange b with 
one of the chords in its fundamental cutset. When the 
exchange is made, the cutset associated with the new tree 
branch is the same cutset associated with b in the original 
tree, but its orientation is now defined by the new branch. 
Now, we must determine a selection rule and the update 
procedure. 

This is where the d&optic property of the state-transi- 
tion process is useful in explaining the pivot operation. Let 
p = p(G(S)). We know that G(S) can be legally, diakopti- 
tally fired p times and this subtracts p tokens from each 
edge- of (S, S) _ and adds p tokens to each edge of 
(S, S) +. This operation incr_eases the objective function 
WM by an amount pW((S, S)). This is exactly the pivot 
operation of simplex. If p = 0 then we are experiencing 
degeneracy. 

Now, at least one edge d E (S, S) _ is token-free under 
Ml. If there are more, then each token-free edge in (S, s) _ 
is a candidate for leaving the basis. Let us disregard the 
possibility of more than one leaving candidate, for now, by 
assuming that d is unique in each pivot. Then, the basis 
exchange is denoted by the expressions !?i = T + { b} - { d } 
and T,=T-{b}+(d). 

Instead of computing the relative branch costs associ- 
ated with the branches of Tl from scratch, we would rather 
have a method that transforms the relative cost vector of T 
into the relative branch costs of Tl. This could be compu- 
tationally efficient if the relative costs of Tl can be ob- 
tained from those of T through a reasonably simple trans- 
formation. This looks like a fruitful approach since T and 
Tl differ in only two edges. Indeed, this is the case, as the 
next theorem illustrates. 

Since the relative branch costs are the corresponding 
fundamental-cutset weights, we must transform the funda- 
mental-cutset weights of T into those of T,. Now, T + {d } 
contains exactly one circuit C, whose orientation is defined 
by the orientation of chord d. The branch b is a member 
of C and follows the circuit direction. It can be easily seen 
that the only fundamental cutsets affected by the transfor- 
mation 

T,=T+{d}-{b} 
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are those associated with edges of C (think of the column 
associated with d in Q,). Therefore, we need only update 
the relative costs associated with C, in moving from T 
to Tl, 

Theorem, 6: The relative-cost vector @i of, Tl = T - { b} 
+ {d } is equal to the relative-cost vector W of T minus 
W( (s, s)) on all forward edges of C plus W((S, ,?)) on all 
backward edges of C. 

Proof: The result is true for edges b and d since they 
are in the same direction with respect to C and the relative 
costs of both b and d decrease by W((S, g)) when they 
exchange roles. Let (x, y) be an edge of C other than b 
and d, let (S,, SX) denote its fundamental cutset in T and 
let (S$ g:) denote its fundamental cutset in Tl. There are 
four cases to consider. 

. 

Case 1: (x, y) E T, and follows the orientation of C. 
In this case, S c S, and Si = S, - S. Therefore, we may 

write the weight of the new cutset as 

w((s~‘,~>)=w((s,-s,(v-s,)us)) 

= W((S, - s, vi- S,)) + W((S, - s, S)) 

= W(S,, v- SJ) - W((S, v- S,)) 

--w(s,s,-s)) 

= w((s,, $2) - w((s, Sj). 

Case 2: (x, y) E TV-and opposes the orientation of C. 
In this case, S, c S and S,’ = S, U S. Clearly, this will 

lead to 

W((S,>$>) =W(&s,))+W((S,~)). 

Case 3: (x, y) E T, and follows the orientation of C. 
Here S, c S and S.j = S, U s, which will yield 

W((S,,Q>) =w((s,,s,))+w((~,s)) 

=W((Sx,s,))-W((S,S)). 

Case 4: (x, y) cz-Tu and opposes the orientation of C. 
Now, we have S c S, and .Sz = S, - S, which leads to 

the expression 

w((s,l,&) =w((sx,S,))+w((s,s)). n 

This theorem implies that we may treat the relative costs 
as currents or flows, because, as we move from tree to tree 
or more appropriately from one cospanning tree to another, 
the relative costs always satisfy the same nodal equations. 
Thus we may now state the basic step of our algorithm. 
First, compute the n - 1 fundamental-cutset weights by 
inspection, and establish a current I,(b) on each branch b 
of the initial spanning tree To = T, equal to its correspond- 
ing fundamental-cutset weight W((S, s)). >et b(d) = 0, 
for all chords of the initial cospanning tree To = T. Assum- 
ing degeneracy is not present, then the k th basic step of 
the algorithm is 

A: Locate a branch b E Tk with a positive current I,(b). 
If no such branch exists, then .Mk is optimal; * 

B: Compute p = p(G(S)) under Mk; 
\ 

MO 
(a) 

hs 
(4 

Fig. 1. 

C: Fire G(S), p times. That @, subtract p tokens from 
all backward edges of (S, S) and add p tokens to all 
forward edges of (S, S), to yield Mk+ 1; 

D: Augment the current flowing in C. That is, subtract 
I,(b) flow units from all forward edges of C and 
add I,(b) flow units to all backward edges of C to 
yield Ik+i; _ 

E: Let ?;k+l=Tk+{b}-{d}, Tk+l=Tk-{b}+{d}. 
As an example, to illustrate our maximum-weight mark- 

ing algorithm, consider the marked graph with mark- 
ing MO shown in Fig. l(a). In Fig. l(b) is shown a 
basic marking Ml reachable from MO. Ml is obtained 
from MO through the sequence of diakoptic firings 
G~G~G~G~GfG~GfG~, where the subgraphs are induced on 
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the vertex sets 

s1= (11 

s* = (179) 

s, = (1~9) 

S,= {LUV} 

S, = {LQV,9} 

S, = {L2,M8,9} 

i, = {1,2,4,5,7,8,9} 

s, = {1,2,3,4%7,8,9) 

respectively. 
The relative costs associated with the branches defining 

MI are as shown in Fig. l(b). Note the relative costs for 
the chords are all zero. 

It can be seen that the relative cost for the branch (8,9) 
is greater than zero. One chord (5,6) in the fundamental 
cutset of this branch has a minimum marking. Thus we 
have to exchange (8,9) with (5,6). This requires firing the 
subgraph on the vertex set {6,7, S} 4 times and we get the 
new basic marking M, shown in Fig. l(c) which may be 
seen to be a degenerate marking. Updating the relative 
costs as described in Section 3.6, we get the’relative costs 
of the branches defined by M2 as shown in Fig. l(c). 

Continuing the algorithm, we obtain the maxi- 
mum-weight marking M3 shown in Fig. l(d). This. is 
achieved through the sequence of d&optic firings 
G0({7})G4({1,2,3,4,5,6,7,9}):1t may be noted from Fig. 
l(d) that all of the relative costs are nonpositive indicating 
that M3 is an optimum marking. The weight of this 
optimum. marking is 50. 

3.7. Boundedness 

The conditions governing boundedness follow easily. 
Suppose that simplex encounters a directed cutset (S, S), 

defined by branch b of spanning tree T, at some pivot, for 
some instance of a maximum-weight marking problem. 
Then the enabling number of G(S) is undefined. G(S) is a 
d&optic source. That is, G(S) can be diakoptically fired 
an indefinite number of times. Every diakoptic firing of 
G(S) increases the marking on each edge of (S, S). Since 

b has been selected to enter the basis W((S, s>) > 0. 
Thus, the problem is unbounded. Boundedness of the 
maximum-weight marking problem is, thus characterized 
in the following theorem. 

Theorem 7: The weight WM of a marking is bounded 
on R(M,) if and only if G does not contain a positive- 
weight directed cutset. 

Note that the boundedness condition given in [2], for the 
marking M of a marked graph, follows as a- special case of 
Theorem 7 when W = [l, 1,. . . ,l]. Thus we have the fol- 
lowing corollary. 

Corollary 7.1: The marking of a marked graph G is 
bounded over R( MO) if and only if G is strongly con- 
nected. n 

IV. MAXIMUM-WEIGHT MARKING FOR A 
CAPACITATED MARKED GRAPH 

The results of the previous sections are now extended to 
cover capacitated marked graphs. 

We define a capacitated marked graph as a marked 
graph G = (V, E) with the following extension. For each 
edge e E E, a lower bound L(e) and upper bound U(e) 
are specified on the token count M(e). 

The introduction of lower bounds puts the problem in 
its most general form and does not complicate matters 
significantly. The definition reduces to the usual definition 
when L(e) = 0 and U(e) = cc for all e E E. We make the 
usual consistency assumption L(e) < u(e), Ve E E which 
we denote in vector format as L Q U. We make the further 
assumption L < U since if L(e) = U(e) for some edge 
e = (i, j) E E then vertices i and j are dead in every 
marking of G. In other words, the vertices i and j are not 
enabled under any marking reachable from MO. 

As before, let us relax the dead-circuit condition in the 
reachability theorem by considering live problems only. 
Then, for capacitated marked graphs, Program (1) is equiv- 
alent to the linear program 

maximize WM 

subject to BfM = 27: 

L<M<U. 

We need only outline the extensions from this point. 

4.1. Basic Markings 

A cospanmng tree still constitutes a basis since the 
equation constraints are circuit equations of G. However, 
we must modify our definition of a basic marking. To this 
end, let M E R( MO). An edge e E E is called depleted 
under the marking M if M(e) = L(e). Similarly, an edge 
e E E is saturated under M if M(e) = U(e). So, we define 
a basic marking in these terms. 

A marking M of G is called a basic marking if there 
exists a spanning tree of G composed solely of branches 
that are either depleted or saturated under M. 

4.2. Diakoptic Transitions 

We must establish a diakoptic-transition theorem for the 
class of live problems on capacitated-marked graphs. We 
define the enabling number of a vertex induced subgraph 
G(S) of G under M as 

P@(S)) A fin eEps)- {M(e)-L(e)h i 

which reduces to the usual definition when L(e) = 0 and 
U(e) = 60, for all e E E. 

Theorem 8: An elementary diakoptic firing of G(S) is 
legal if and only if p(G(s)) > 0. 

Proof: Again, the proof follows from the reachabil- 
ity theorem for capacitated marked graphs [6]. However, 
we can provide a constructive procedure similar to that in 
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the proof of Theorem 4. As in the proof of Theorem 4, we 
need only prove that there exists a legal firing sequence of 
any capacitated marked graph G from a live marking M 
which fires each vertex of G exactly once, returning to M. 

Construct a graph G’ from G by open-circuiting all 
edges of G which are neither depleted nor saturated under 
M and reversing the direction of all saturated edges 
under M. 

Property 1: G’ is acyclic. 
Property 2: A source in G’ is an enabled vertex in G 

under M. 
Property 1 follows from the liveness assumption since, 

by definition, a dead-circuit in G under M is represented 
by a directed circuit in G’. Property 2 follows from the 
observation that any source of G” is a vertex of G with no 
depleted input edges and no saturated output edges under 
M. Properties 1 and 2 imply that G has an enabled vertex 
u under M. After vertex u fires, it has no depleted output 
edges and no saturated input edges and hence, it may be 
removed from G since the edges incident on it do not 
restrict the remaining sequence. As in the proof of Theo- 
rem 4, the above argument applies to the remaining sub- 
graph and proof is established by recursion. W 

4.3. Obtaining a Basic Marking in R(M,,) 

We show, by construction, that it is possible to obtain a 
basic marking M E R(M,), as defined for a capacitated 
marked graph, using the notion of a diakoptic transition. 

If G is connected and U is finite then it is clear from the 
definition that the enabling number of any subgraph G(S) 
of G is always defined. However, to present the result in 
its most general form, we assume that U may have infinite 
entries. 

To simplify the algorithm description, we define the 
input and output enabling numbers of a subgraph G(S) 
under M as 

pi(G(S)) p O”’ 

i ’ 

if (S,S)-=0 

eEp5)- { M(e)-L(e)}, otherwise 

and 

i 

if (S,S)+=0 

~cJ(~(~)) A O”‘min {U(e)- M(e)}, otherwise 
e E (S, S), 

respectively. Then, p(G(S)) p min{pi(G(S)), &G(S))}. 
Using these definitions, the following algorithm constructs 
a basic marking M E R(M,), for a capacitated marked 
graph G = (V, E). 

l),Set M=M,, T=0 andS={u}foranyuEV. 
2) While ISI < [VI do 

begin 

Pi + Pi(G(S)), CL, + CL~(G(S)) and 
p + min{~i,~L.} under M 
Up<00 

then 
begin 

Fire G(S) p times, updating M. 

if Pi <PO 
then T+TU{e} and S+SU{i}, 
where e = (i, j) E (S, s> _ with 
M(e) = L(e). 
else T+TU{e} and S+SU{j}, 

where e = (i, j) E (S, S) + with 
M(e) = U(e). 

end 

begin 
p + p(G(s)) under M. 
Fire G(S) p times, updating M. 
T+TU{e} and S+SU{j}, 

where e = (i, j) E (S, s) + with 
M(e) = L(e). 

end 
else 

end 
3) Stop. M is a basic marking in R( M,) with 

spanning tree T. 

4.4. Conditions for Optimality 

As usual, (S, s) denotes the fundamental cutset defined 
by branch b E T. Optimality is characterized in the follow- 
ing definition, 

A basic marking M E R(M,) with basis T is maximum 
over R( M,) if and only if W( (S, S)) 2 0 for every 
saturated branch b = (i, j) E T and W((S, S)) < 0 for ev- 
ery depleted branch b E T, where i E S and j E 5 

To establish that this is indeed a sufficient condition for 
optimality of a basic marking M E R( M,), we need only 
substitute the corresponding basic dictionary into the ob- 
jective from which we conclude that the objective cannot 
be increased by effecting a change in the marking M(b.) of 
any branch b E T and that the current value of the objec- 
tive is an upperbound on WM over R(M,). Hence such a 
basic marking is optimal. 

4.5. Pivoting and Diakoptic Firing 

We may restate the optimality condition as follows. 
A basic marking M E R( M,) is maximum over R( M,) 

if and only if T contains no depleted branch b = (i, j) 
with W((S, 5)) > 0 and no saturated br_anch b = (i, j) 
with W((S, S)) < 0, where i E S and j E S. 

Hence, we may use the method described in Section 3.6 
to achieve an optimal basic marking with some slight 
modifications. From the above condition, a branch b E T 
is a candidate for entering the basis if it is dyleted and 
W(( S, ,?)) > 0 or if it is saturated and W((S, S)) < 0. 

Now, if the entering branch b is depleted, then 
W((S, S)) > 0 indicates that firing G(S) will increase the 
objective. Similarly, for a saturated branch b, W((S, s)) 
< 0 indicates that firing G(S) will increase the objective, 
Hence, the pivot operation follows. If the entering branch 
b is depleted then G(S) is fired &G(S)) times. Otherwise, 
G( 5) is fired p( G( S)) times. The progress achieved in the 
pivot -is p(G(S))W((S, s)) > 0 if b is depleted or 
p(G(S))W((S, S)) > 0 if b is saturated. 
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The basis exchange is easily seen. The greedy diakoptic 
firing of G(S) or G(S) either depletes or saturates at least 
one chord d E (S, S). Each depleted or saturated chord 
d E (S, S), after a pivot, is a candidate for leaving the 
basis. In general, there may be multiple depleted chords 
and/or multiple saturated chords competing for the leav- 
ing variable. This represents a degenerate basis and we 
cannot simply ignore the multiplicity by selecting any 
candidate at random, as this can lead to cycling in the 
algorithm. However, since the details of degeneracy are 
subtle, we shall assume that simplex will not encounter a 
degenerate basis and note that there exists a number of 
anticycling techniques which ‘are applicable to general LP 
problems. Hence, the assumption uniquely specifies a chord 
dE(S,@ hih w c is either depleted or saturated after the 
pivot. Again, the basis exchange is denoted as T c T + { b 1 

be stated with the alternative linear program 

maximize OZ 

subjecttoL-M,gA’Z<U-M,,. (4) 

The special case of Program 4 when L(e) = 0 and 
U(e) = cc, for all e E E, namely. 

maximize ti2z 

subject to A’Z 2 - M,, 

represents the uncapacitated problem. 
Note that Z is not explicitly restricted in either of these 

programs and that for any solution Z, we can obtain the 
minimum nonnegative solution Z,, as in [3]. 

V. MAXIMUM-WEIGHT MARKINGS FOR NONLIVE 
MARKED GRAPHS 

-{d}, or equivalently, T+T-{b}+(d). 
. , 

The relative-cost coefficients are updated in exactly the 
It should be easy to see that the dead-circuit condition 

same manner as in the uncapacitated case. This is intui- 
in the reachability theorem can be incorporated into the 

tively obvious since the capacities restrict the markings of 
alternative formulation of the maximum-weight marking 

G and are in no relation with the weights. 
problem as follows. Let D be the set of all vertices in G 
belonging to a dead-circuit at MO. By definition, no vertex 

4.6. Boundedness 
in D can fire at any M E R( MO): Thus we need merely fix 
the firing count of each vertex i E D at zero. Then, for any 

The boundedness condition follows from arguments sim- marked graph G, the maximum-weight marking problem 
ilar to those used in the uncapacitated case and is sum- may be stated as 
marized in the following theorem. maximize s1Z 

Theorem 9: The objective WM is bounded over R(M,,) 
if and only if G contains no positive-weight directed cutset 

subject to L - M,, < A’Z < U - MO (5) 

(S, S) with U(e) = cx for all e E (S, S). W a, = 0, Vi E D. 

4.7. Alternative Formulation of the Problem 

We now present an alternative formulation of the maxi- 
mum-weight marking problem, which is suitable for study- 
ing the nonlive case. 

Let wi A W(({ i}, V- { i})) denote the weight of vertex 
i E V. The row vector of vertex weights D = [oil is then 

ClAWA’ 

where A is the incidence matrix of G. The number wi 
represents the gain achieved in the objective WM each 
time vertex i is fired. Thus if the initial marking M,, has 
an objective value J, = WM, and vertex i is fired ui times, 
resulting in a marking M with an objective value J = WM, 
then the number wiui is the increase, J- JO, achieved in 
the objective, in moving from MO to M. Since JO is fixed, 
then maximizing J - JO is equivalent to maximizing J. In 
fact, multiplying the state equation by W gives 

WM=WM,,+Q 

where Z is the firing-count vector realizing M from M,. 
Hence, we may replace the objective WM with the equiv- 
alent relative objective !XX. 

Using the state equation, M = MO + A*& we may pose 
the feasibility condition for a marking M of Gin terms of 
the firing numbers. That is, L Q M < U means L < MO + 

A’2 < U. Thus the maximum-weight marking problem may 

The above program can be simplified as follows. Con- 
sider the subgraph G(D) of G. Since each vertex i E D is 
dead then the marking of G(D) cannot change in any legal 
firing sequence of G from M,,. That is, M(e) = M,,(e), 
Ve E G(D), VM E R( MO). Thus all vertices in D may be 
short-circuited together into a single dead vertex d and 
then the self-loops induced on vertex d may be removed. 
To incorporate the dead-circuit condition, we simply fix 
ad = 0 and solve the problem for the reduced graph. The 
set D is easy to identify. 

VI. STRUCTURE OF THE ALTERNATE FORMULATION 

Program 5 is formulated in terms of the firing counts 
and not in terms of markings as in the previous sections. 
We now demonstrate that the maximum-weight marking 
problem for a nonlive marked graph can be formulated as 
an auxiliary capacitated maximum-yeight marking prob- 
lem and that the methods discussed thus far are applicable 
to nonlive problems as well. 

To simplify our presentation, we consider only the maxi- 
mum-weight marking problem for nonlive uncapacitated 
marked graphs. The capacitated case can be studied in a 
similar way. The linear program form of this problem is 
the special case of Program 5, namely, 

maximize 02 

subject to A’? 2 - MO (6) 

ui = 0 Vi E D. 
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where 

Ui P 0, ifiED 

00, if iED&;-D. 

Define a weighting l$‘of & as 

ifeEE 

The first step in solving this problem with simplex is to 
convert the inequality constraints to equality constraints 
by introducing slack variables. It is easy to see that the 
column vector of slack variables for Program 6 is the final 
marking M that Z realizes from M,. Thus incorporating 
slack variables in Program 6 yields the equivalent program 

maximize Q2z 

subject to M - A’Z = M, (7) 

ui = 0, V’D. 

Using the unit or identity matrix I, of dimension m, we 
may then organize Program 7 as 

maximize &?2z 

if e=p and e= (i,r) 

or simply, 

subjectto[I,-A’][~]=M,, (8) 

We define the auxiliary program associated with Program 
6 as 

q=o, Vi E D. 

NOW, construct an auxiliary graph G from the original 
graph G by introducing an artificial reference vertex exter- 
nal to G and then connecting each vertex in G to this 
reference vertex with, an prt$iciaZ edge. Formally, define 
the auxiliary graph G = (V, E) for the original graph G = 
(V, E) according to 

t3sYU{r} 

~A:uTT* 

maximize I$32 

subject to &,M = M,, 

o<tiQJ 

(9) 

where M is a marking of 6. 
We proceed to demonstrate that Programs 8 and 9 are 

equivalent. 
Let fi(&,) denote the solution space of the constraints 

in Program 9 and, as usual, let R(M,) denote the reach- 
ability set of M, 09 G. * 

where r is an artificial reference vertex external to G and 

PA {ele=(i,r), iEV} 

is a star tree consisting of artificial edges directed into the 
artificial reference. In fact, p is a spanning tree of 8, and 
consequently, E is a cospantig tree of G. Hence, each 
edge of G defines a fundamental circuit of G. Let & be 
the fundamental-circuit matrix of G defined by its cospan- 
ning tree E. Then, the canonical form of & is [Z&J. It is 
easy to see that 

Consider any M E R(M,,l. Clearly, M is a feasible 
solution to Program 9. Let 2 A [8i, 4; . *, I$,, 13~1’ be any 
solution to d’e = M - A&,, where a is the incidence matrix 
o,f 6. We have M(e) = A&(e) + ei - &,, Ve E T*. Since 
M,,(e) = 0, Ve E T*, then* M(e) = 4 - s,.,, Ve E T*. Impos- 
ing nonnegativity on M yields Gi- $> 0, Ve ETC or 
ar < si, Vi E V. Hence, 6,’ = 0 in the minimum nonnegative 
solution 2, = [gk.- &,, 4 - 9,. . . , I?,, -,&Ol’ of 2’2 = M 
- MO and 15: = M(e), Ve E r. Since M 4 17, then 6: d ui, 
ViEVor t$‘=O,ViED. 

If we let 

jfn = - A’ 

and hence, [I, - A’] is the fundamental-circuit matrix $ 
of G with respect to the tree/cotree partition (T*, E) of G. 
We may construct an auxiliary problem for any instance of 
Program 6 as follows. 

x0& [8~,$;,*..,6~]t 

then we can see that 

Of-9 

A’Z,=fi(E)-do(E) =d(E)- MO. 

Define an initial marking A&, of G according to 

This means that M = it?(E) and Z, as defined in (10) 
constitutes a feasible solution of Program 8. Furthermore, 
this solution of (8) corresponding to M is unique since 
6;’ = 0 for at least one value of i E V. Thus it follows that 
each feasible solution M of (9) defines a unique feasible 
solution of (8). Further, the objective values corresponding 
to these solutions are both equal to Q2z,. And, $22, = J&5?. 

ifeEE 

if e E T* 

or simply, 

n;i,( E) p M,, 

tio(rc) A 0 

where A&,,< E) is the restriction of M,, to E. Note that M0 
is a basic marking of G with basis E and cobasis T*. 

Define an upperbound fi on the marking M of G 
according to 

ifeEE 
if eGTC and e= (i,r) 

Starting from any feasible solution of (8) and retracing 
the above arguments, we can show that each such feasible 
solution defines a unique feasible solution of (9), and the 
corresponding objectives are both equal. These discussions 
prove the following. 

Theorem IO: Programs 8 and 9 are equivalent. W 

The equivalence proved in the above theorem demon- 
strates that the maximum-weight marking problem for 
nonlive marked graphs possesses the same structure as that _ _ _. 
for the live marked graphs. 
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VII. SUMMARY AND CONCLUSION 

In this paper, we first presented a linear programming 
formulation of the maximum-weight marking problem on 
live marked graphs. We have described the details of an 
algorithm (based on the simplex method) to obtain a 
maximum-weight marking. The concepts of basic markings 
and d&optic firings have been defined. It is shown that 
each pivot in the simplex method corresponds to a di- 
akoptic firing. An algorithm requiring only vertex firings is 
given to construct a basic feasible marking from a given 
initial marking. In addition to constructing a maximum- 
weight marking, our algorithm, as it progresses, constructs 
a diakoptic firing sequence leading from the initial mark- 
ing to a maximum-weight marking. We have also intro- 
duced the concept of diakoptic firing and established the 
diakoptic-reachability theorem. 

We have given details of an algorithm to construct a 
maximum-weight marking in the case of capacitated 
marked graphs. Finally, a formulation of the problem is 
given in terms of firing counts only. Using this formula- 
tion, we have studied the maximum-weight marking prob- 
lem for the nonlive class of problems. We have shown that 
the maximum-weight marking problem has the same struc- 
ture in the cases of both live and nonlive graphs. 

We conclude by again pointing out that the problem of 
determining the maximum resource requirements in the 
computation graph model of Karp and Miller [9] reduces 
to the maximum-weight marking problem in the case where 
the input and the output quanta as well as the threshold of 
each edge of the computation graph are equal. 

PI 

PI 
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141 
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WI 

171 
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