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Abstract We address the statistical issue of determining the maximal spaces
(maxisets) where model selection procedures attain a given rate of convergence. By
considering first general dictionaries, then orthonormal bases, we characterize these
maxisets in terms of approximation spaces. These results are illustrated by classical
choices of wavelet model collections. For each of them, the maxisets are described in
terms of functional spaces. We give special attention to the issue of calculability and
measure the induced loss of performance in terms of maxisets.
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1 Introduction

The topic of this paper lies on the frontier between statistics and approximation the-
ory. Our goal is to characterize the functions well estimated by a special class of esti-
mation procedures: the model selection rules. Our purpose is not to build new model
selection estimators but to determine thoroughly the functions for which well-known
model selection procedures achieve good performances. Of course, approximation
theory plays a crucial role in our setting, but surprisingly, its role is even more impor-
tant than that of statistical tools. This statement will be emphasized by the use of the
maxiset approach, which illustrates the well-known fact that “well estimating is well
approximating.”

More precisely, we consider the classical Gaussian white noise model

dYn,t = s(t) dt + 1√
n

dWt, t ∈ D,

where D ⊂ R, s is the unknown function, W is the Brownian motion in R, and n ∈
N

∗ = {1,2, . . . }. This model means that for any u ∈ L2(D),

Yn(u) =
∫

D
u(t) dYn,t =

∫
D

u(t)s(t) dt + 1√
n
Wu

is observable where Wu = ∫
D u(t) dWt is a centered Gaussian process such that for

all functions u and u′,

E[WuWu′ ] =
∫

D
u(t)u′(t) dt.

We take a noise level of the form 1/
√

n to refer to the asymptotic equivalence between
the Gaussian white noise model and the classical regression model with n equispaced
observations (see [24]).

Two questions naturally arise: how to construct an estimator ŝ of s based on the
observation dYn,t , and how to measure its performance. Many estimators have been
proposed in this setting, including wavelet thresholding, kernel rules, and Bayesian
procedures. In this paper, we only focus on model selection techniques described
precisely in the next paragraph.

1.1 Model Selection Procedures

The model selection methodology consists in constructing an estimator by minimiz-
ing an empirical contrast γn over a given set, called a model. The pioneer work in
model selection goes back to the 1970’s with Mallows [18] and Akaike [1]. Birgé
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and Massart develop the whole modern theory of model selection in [9–11] or [7],
for instance. Estimation of a regression function with model selection estimators is
considered by Baraud in [5, 6], while inverse problems are tackled by Loubes and
Ludeña [16, 17]. Finally model selection techniques nowadays provide valuable tools
in statistical learning (see Boucheron et al. [12]).

In nonparametric estimation, performances of estimators are usually measured by
using the quadratic norm, which gives rise to the following empirical quadratic con-
trast:

γn(u) = −2Yn(u) + ‖u‖2

for any function u, where ‖ · ‖ denotes the norm associated to L2(D). We assume
that we are given a dictionary of functions of L2(D), denoted by Φ = (ϕi)i∈I , where
I is a countable set, and we consider Mn, a collection of models spanned by some
functions of Φ . For any m ∈ Mn, we denote by Im the subset of I such that

m = span{ϕi : i ∈ Im}

and Dm ≤ |Im| the dimension of m. Let ŝm be the function that minimizes the
quadratic empirical criterion γn(u) with respect to u ∈ m. A straightforward com-
putation shows that the estimator ŝm is the projection of the data onto the space m.
So, if {em

1 , . . . , em
Dm

} is an orthonormal basis (not necessarily related to Φ) of m, and

β̂m
i = Yn

(
em
i

) =
∫

D
em
i (t) dYn,t ,

then

ŝm =
∑
i∈Im

β̂m
i em

i , and γn(ŝm) = −
∑
i∈Im

(
β̂m

i

)2
.

Now the issue is the selection of the best model m̂ from the data which gives rise
to the model selection estimator ŝm̂. For this purpose, a penalized rule is considered,
which aims at selecting an estimator close enough to the data but still lying in a small
space to avoid overfitting issues. Let penn(m) be a penalty function which increases
when Dm increases. The model m̂ is selected using the following penalized criterion:

m̂ = argmin
m∈Mn

{
γn(ŝm) + penn(m)

}
. (1.1)

The choice of the model collection and the associated penalty are then the key is-
sues handled by model selection theory. We point out that the choices of both the
model collection and the penalty function should depend on the noise level. This is
emphasized by the subscript n for Mn and penn(m).

The asymptotic behavior of model selection estimators has been studied by many
authors. We refer to Massart [19] for general references and recall hereafter the main
oracle-type inequality. Such an oracle inequality provides a non-asymptotic control
on the estimation error with respect to a bias term ‖s − sm‖, where sm stands for the



198 Constr Approx (2010) 31: 195–229

best approximation (in the L2 sense) of the function s by a function of m. In other
words, sm is the orthogonal projection of s onto m, defined by

sm =
∑
i∈Im

βm
i em

i , βm
i =

∫
D

em
i (t)s(t) dt.

Theorem 1 (Theorem 4.2 of [19]) Let n ∈ N
� be fixed, and let (xm)m∈Mn

be some
family of positive numbers such that

∑
m∈Mn

exp(−xm) = Σn < ∞. (1.2)

Let κ > 1, and assume that

penn(m) ≥ κ

n

(√
Dm + √

2xm

)2
. (1.3)

Then, almost surely, there exists some minimizer m̂ of the penalized least-squares
criterion

γn(ŝm) + penn(m)

over m ∈ Mn. Moreover, the corresponding penalized least-squares estimator ŝm̂ is
unique, and the following inequality is valid:

E
[‖ŝm̂ − s‖2] ≤ C

[
inf

m∈Mn

{‖sm − s‖2 + penn(m)
} + 1 + Σn

n

]
, (1.4)

where C depends only on κ .

Equation (1.4) is the key result to establish optimality of penalized estimators
under oracle or minimax points of view. In this paper, we focus on an alternative to
these approaches: the maxiset point of view.

1.2 The Maxiset Point of View

Before describing the maxiset approach, let us briefly recall that for a given procedure
s∗ = (s∗

n)n, the minimax study of s∗ consists in comparing the rate of convergence of
s∗ achieved on a given functional space F with the best possible rate achieved by any
estimator. More precisely, let F (R) be the ball of radius R associated with F ; then
the procedure s∗ = (s∗

n)n achieves the rate ρ∗ = (ρ∗
n)n on F (R) if

sup
n

{
(ρ∗

n)−2 sup
s∈F (R)

E
[‖s∗

n − s‖2]} < ∞.

To check that a procedure is optimal from the minimax point of view (said to be min-
imax), it must be proved that its rate of convergence achieves the best rate among any
procedure on each ball of the class. This minimax approach is extensively used, and
many methods cited above are proved to be minimax in different statistical frame-
works.
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However, the choice of the function class is subjective and, in the minimax frame-
work, statisticians have no idea whether there are other functions well-estimated at
the rate ρ∗ by their procedure. A different point of view is to consider the procedure
s∗ as given and search all the functions s that are well estimated at a given rate ρ∗: this
is the maxiset approach, which has been proposed by Kerkyacharian and Picard [15].
The maximal space, or maxiset, of the procedure s∗ for this rate ρ∗ is defined as the
set of all these functions. Obviously, the larger the maxiset, the better the procedure.
We set the following definition:

Definition 1 Let ρ∗ = (ρ∗
n)n be a decreasing sequence of positive real numbers, and

let s∗ = (s∗
n)n be an estimation procedure. The maxiset of s∗ associated with the rate

ρ∗ is

MS(s∗, ρ∗) =
{
s ∈ L2(D) : sup

n

{
(ρ∗

n)−2
E

[‖s∗
n − s‖2]} < ∞

}
,

and the ball of radius R > 0 of the maxiset is defined by

MS(s∗, ρ∗)(R) =
{
s ∈ L2(D) : sup

n

{
(ρ∗

n)−2
E

[‖s∗
n − s‖2]}≤ R2

}
.

Of course, there exist connections between maxiset and minimax points of view:
s∗ achieves the rate ρ∗ on F if and only if

F ⊂ MS(s∗, ρ∗).

In the white noise setting, the maxiset theory has been investigated for a wide range
of estimation procedures, including kernel, thresholding and Lepski procedures, and
Bayesian or linear rules. We refer to [3, 4, 8, 13, 15, 21], and [22] for general results.
Maxisets have also been investigated for other statistical models, see [2] and [23].

1.3 Overview of the Paper

The goal of this paper is to investigate maxisets of model selection procedures. Fol-
lowing the classical model selection literature, we only use penalties proportional to
the dimension Dm of m:

penn(m) = λn

n
Dm, (1.5)

with λn to be specified. Our main result characterizes these maxisets in terms of
approximation spaces. More precisely, we establish an equivalence between the sta-
tistical performance of ŝm̂ and the approximation properties of the model collections
Mn. With

ρn,α =
(

λn

n

) α
1+2α

(1.6)

for any α > 0, Theorem 2, combined with Theorem 1, proves that, for a given func-
tion s, the quadratic risk E[‖s − ŝm̂‖2] decays at the rate ρ2

n,α if and only if the
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deterministic quantity

Q(s,n) = inf
m∈Mn

{
‖sm − s‖2 + λn

n
Dm

}
(1.7)

decays at the rate ρ2
n,α as well. This result holds with mild assumptions on λn and

under an embedding assumption on the model collections (Mn ⊂ Mn+1). Once we
impose additional structure on the model collections, the deterministic condition can
be rephrased as a linear approximation property and a non-linear one as stated in
Theorem 3. We illustrate these results for three different model collections based on
wavelet bases. The first one deals with sieves in which all the models are embedded,
the second one with the collection of all subspaces spanned by vectors of a given
basis. For these examples, we handle the issue of calculability and give explicit char-
acterizations of the maxisets. In the third example, we provide an intermediate choice
of model collections and use the fact that the embedding condition on the model col-
lections can be relaxed. Finally, performances of these estimators are compared and
discussed.

The paper is organized as follows. Section 2 describes the main general results
established in this paper. More precisely, we specify results valid for general dictio-
naries in Sect. 2.1. In Sect. 2.2, we focus on the case where Φ is an orthonormal
family. Section 3 is devoted to the illustrations of these results for some model se-
lection estimators associated with wavelet methods. In particular, a comparison of
maxiset performances are provided and discussed. Section 4 gives the proofs of our
results.

2 Main Results

As explained in the introduction, our goal is to investigate maxisets associated with
model selection estimators ŝm̂ where the penalty function is defined in (1.5), and with
the rate ρα = (ρn,α)n where ρn,α is specified in (1.6). Observe that ρn,α depends on
the choice of λn. It can, for instance, be polynomial, or can take the classical form

ρn,α =
(

logn

n

) α
1+2α

.

So we wish to determine

MS(ŝm̂, ρα) =
{
s ∈ L2(D) : sup

n

{
ρ−2

n,αE
[‖ŝm̂ − s‖2]}< ∞

}
.

In the sequel, we use the following notation: if F is a given space,

MS(ŝm̂, ρα) :=: F

means that for any R > 0, there exists R′ > 0 such that

MS(ŝm̂, ρα)(R) ⊂ F (R′) (2.1)
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and for any R′ > 0, there exists R > 0 such that

F (R′) ⊂ MS(ŝm̂, ρα)(R). (2.2)

2.1 The Case of General Dictionaries

In this section, we make no assumption on Φ . Theorem 1 is a non-asymptotic result,
while maxiset results deal with rates of convergence (with asymptotics in n). There-
fore, obtaining maxiset results for model selection estimators requires a structure on
the sequence of model collections. We first focus on the case of nested model collec-
tions (Mn ⊂ Mn+1). Note that this does not imply a strong structure on the model
collection for a given n. In particular, this does not imply that the models are nested.
Identifying the maxiset MS(ŝm̂, ρα) is a two-step procedure. We need to establish
inclusion (2.1) and inclusion (2.2). Recall that we have previously introduced:

Q(s,n) = inf
m∈Mn

{
‖sm − s‖2 + λn

n
Dm

}
.

Roughly speaking, Theorem 1 established by Massart proves that any function s sat-
isfying

sup
n

{
ρ−2

n,αQ(s,n)
}≤ (R′)2

belongs to the maxiset MS(ŝm̂, ρα) and thus provides inclusion (2.2). The following
theorem establishes inclusion (2.1) and highlights the fact that Q(s,n) plays a capital
role:

Theorem 2 Let 0 < α0 < ∞ be fixed. Let us assume that for any n, the sequence of
model collections satisfies

Mn ⊂ Mn+1, (2.3)

and that the sequence of positive numbers (λn)n is non-decreasing and satisfies

lim
n→+∞n−1λn = 0, (2.4)

and there exist n0 ∈ N
∗ and two constants 0 < δ ≤ 1

2 and 0 < p < 1 such that for
n ≥ n0,

λ2n ≤ 2(1 − δ)λn, (2.5)

∑
m∈Mn

e− (
√

λn−1)2Dm
2 ≤ √

1 − p, (2.6)

and

λn0 ≥ Υ (δ,p,α0), (2.7)
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where Υ (δ,p,α0) is a positive constant depending only on α0, p and δ defined in
(4.3) of Sect. 4. Then, the penalized rule ŝm̂ is such that for any α ∈ (0, α0], for any
R > 0, there exists R′ > 0 such that for s ∈ L2(D),

sup
n

{
ρ−2

n,αE
[‖ŝm̂ − s‖2]}≤ R2 ⇒ sup

n

{
ρ−2

n,αQ(s,n)
}≤ (R′)2.

Technical Assumptions (2.4), (2.5), (2.6), and (2.7) are very mild and could be partly
relaxed while preserving the results. Assumption (2.4) is necessary to deal with rates
converging to 0. Note that the classical cases λn = λ0 or λn = λ0 log(n) satisfy (2.4)
and (2.5). Furthermore, Assumption (2.7) is always satisfied when λn = λ0 log(n)

or when λn = λ0 with λ0 large enough. Assumption (2.6) is very close to Assump-
tions (1.2)–(1.3). In particular, if there exist two constants κ > 1 and 0 < p < 1 such
that for any n,

∑
m∈Mn

e− (
√

κ−1λn−1)2Dm
2 ≤ √

1 − p, (2.8)

then, since

penn(m) = λn

n
Dm,

Conditions (1.2), (1.3) and (2.6) are all satisfied. The assumption α ∈ (0, α0] can be
relaxed for particular model collections, which will be highlighted in Proposition 2
of Sect. 3.1. Finally, Assumption (2.3) can be removed for some special choice of
model collection Mn at the price of a slight over-penalization, as shall be shown in
Proposition 1 and Sect. 3.3.

Combining Theorems 1 and 2 gives a first characterization of the maxiset of the
model selection procedure ŝm̂:

Corollary 1 Let α0 < ∞ be fixed. Assume that Assumptions (2.3), (2.4), (2.5), (2.7),
and (2.8) are satisfied. Then for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=:
{
s ∈ L2(D) : sup

n

{
ρ−2

n,αQ(s,n)
}
< ∞

}
.

The maxiset of ŝm̂ is characterized by a deterministic approximation property of
s with respect to the models Mn. It can be related to some classical approximation
properties of s in terms of approximation rates if the functions of Φ are orthonormal.

2.2 The Case of Orthonormal Bases

From now on, Φ = {ϕi}i∈I is assumed to be an orthonormal basis (for the L2 scalar
product). We also assume that the model collections Mn are constructed through
restrictions of a single model collection M. Namely, given a collection of models M
we introduce a sequence Jn of increasing subsets of the indices set I , and we define
the intermediate collection M′

n as

M′
n = {

m′ = span{ϕi : i ∈ Im ∩ Jn} : m ∈ M
}
. (2.9)
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The model collections M′
n do not necessarily satisfy the embedding condition (2.3).

Thus, we define

Mn =
⋃
k≤n

M′
k

so Mn ⊂ Mn+1. The assumptions on Φ and on the model collections allow to give
an explicit characterization of the maxisets. We set M̃ = ⋃

n Mn = ⋃
n M′

n. Note
that without any further assumption, M̃ can be a larger model collection than M.
Now let us denote by V = (Vn)n the sequence of approximation spaces defined by

Vn = span{ϕi : i ∈ Jn}
and consider the corresponding approximation space

Lα
V =

{
s ∈ L2(D) : sup

n

{
ρ−1

n,α‖PVns − s‖}< ∞
}
,

where PVns is the projection of s onto Vn. Define also another kind of approximation
set:

Aα

M̃
=

{
s ∈ L2(D) : sup

M>0

{
Mα inf

{m∈M̃: Dm≤M}
‖sm − s‖

}
< ∞

}
.

The corresponding balls of radius R > 0 are defined, as usual, by replacing ∞ by R

in the previous definitions. We have the following result:

Theorem 3 Let α0 < ∞ be fixed. Assume that (2.4), (2.5), (2.7), and (2.8) are satis-
fied. Then, the penalized rule ŝm̂ satisfies the following result: for any α ∈ (0, α0],

MS(ŝm̂, ρα) :=: Aα

M̃
∩ Lα

V .

The result pointed out in Theorem 3 links the performance of the estimator to an
approximation property for the estimated function. This approximation property is
decomposed into a linear approximation measured by Lα

V and a non-linear approxi-
mation measured by Aα

M̃
. The linear condition is due to the use of the reduced model

collection Mn instead of M, which is often necessary to ensure either the calcula-
bility of the estimator or Condition (2.8). It plays the role of a minimum regularity
property that is easily satisfied.

Observe that if we have one model collection, that is, for any k and k′, Mk =
Mk′ = M, Jn = I for any n and thus M̃ = M. Then

Lα
V = span{ϕi : i ∈ I},

and Theorem 3 gives

MS(ŝm̂, ρα) :=: Aα
M .

The spaces Aα

M̃
and Lα

V depend highly on the models and the approximation space.
At first glance, the best choice seems to be Vn = L2(D) and

M = {m : Im ⊂ I},



204 Constr Approx (2010) 31: 195–229

since the infimum in the definition of Aα

M̃
becomes smaller when the collection is

enriched. There is, however, a price to pay when enlarging the model collection:
the penalty has to be larger to satisfy (2.8), which deteriorates the convergence rate.
A second issue comes from the tractability of the minimization (1.1) itself which will
further limit the size of the model collection.

To avoid considering the union of M′
k , which can dramatically increase the num-

ber of models considered for a fixed n, leading to large penalties, we can relax the
assumption that the penalty is proportional to the dimension. Namely, for any n and
for any m ∈ M′

n, there exists m̃ ∈ M such that

m = span{ϕi : i ∈ Im̃ ∩ Jn}.
Then for any model m ∈ M′

n, we replace the dimension Dm by the larger dimension
Dm̃, and we set

p̃enn(m) = λn

n
Dm̃.

The minimization of the corresponding penalized criterion over all model in M′
n

leads to a result similar to Theorem 3. Mimicking its proof, we can state the following
proposition that will be used in Sect. 3.3:

Proposition 1 Let α0 < ∞ be fixed. Assume (2.4), (2.5), (2.7), and (2.8) are satisfied.
Then the penalized estimator ŝm̃, where

m̃ = argmin
m∈M′

n

{
γn(ŝm) + p̃enn(m)

}
,

satisfies the following result: for any α ∈ (0, α0],
MS(s̃m̃, ρα) :=: Aα

M ∩ Lα
V .

Note that Mn, Lα
V , and Aα

M̃
can be defined in a similar fashion for any arbitrary

dictionary Φ . However, one can only obtain the inclusion MS(ŝm̂, ρα) ⊂ Aα

M̃
∩ Lα

V

in the general case.

3 Comparisons of Model Selection Estimators

The aim of this section is twofold. First, we propose to illustrate our previous maxiset
results to different model selection estimators built with wavelet methods by identi-
fying precisely the spaces Aα

M̃
and Lα

V . Second, comparisons between the perfor-
mances of these estimators are provided and discussed.

We briefly recall the construction of periodic wavelet bases of the interval
[0,1]. Let φ and ψ be two compactly supported functions of L2(R), and denote
for all j ∈ N, all k ∈ Z, and all x ∈ R, φjk(x) = 2

j/2
φ(2

j
x − k) and ψjk(x) =

2
j/2

ψ(2
j
x − k). Those functions can be periodized in such a way that

Ψ = {
φ00,ψjk : j ≥ 0, k ∈ {

0, . . . ,2j − 1
}}



Constr Approx (2010) 31: 195–229 205

constitutes an orthonormal basis of L2([0,1]). Some popular examples of such bases
are given in [14]. The function φ is called the scaling function and ψ the correspond-
ing wavelet. Any periodic function s ∈ L2([0,1]) can be represented as:

s = α00φ00 +
∞∑

j=0

2j −1∑
k=0

βjkψjk,

where

α00 =
∫

[0,1]
s(t)φ00(t) dt,

and for any j ∈ N and for any k ∈ {0, . . . ,2j − 1},

βjk =
∫

[0,1]
s(t)ψjk(t) dt.

Finally, we recall the characterization of Besov spaces using wavelets. Such spaces
will play an important role in the following. In this section we assume that the multi-
resolution analysis associated with the basis Ψ is r-regular with r ≥ 1 as defined
in [20]. In this case, for any 0 < α < r and any 1 ≤ p,q ≤ ∞, the periodic function
s belongs to the Besov space Bα

p,q if and only if |α00| < ∞ and

∞∑
j=0

2jq(α+ 1
2 − 1

p
)‖βj.‖q

�p
< ∞ if q < ∞,

sup
j∈N

2j (α+ 1
2 − 1

p
)‖βj.‖�p < ∞ if q = ∞,

where (βj.) = (βjk)k . This characterization allows us to recall the following embed-
dings:

Bα
p,q � Bα′

p′,q ′ as soon as α − 1

p
≥ α′ − 1

p′ , p < p′ and q ≤ q ′

and

Bα
p,∞ � Bα

2,∞ as soon as p > 2.

3.1 Collection of Sieves

We first consider a single model collection corresponding to a class of nested models

M(s) = {
m = span

{
φ00,ψjk : j < Nm,0 ≤ k < 2j

}: Nm ∈ N
}
.

For such a model collection, Theorem 3 could be applied with Vn = L2. One can even
remove Assumption (2.7), which imposes a minimum value on λn0 that depends on
the rate ρα :
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Proposition 2 Let 0 < α < r , and let ŝ
(s)

m̂
be the model selection estimator associated

with the model collection M(s). Then, under Assumptions (2.4), (2.5), and (2.8),

MS
(
ŝ
(s)

m̂
, ρα

) :=: Bα
2,∞.

Note that it suffices to choose λn ≥ λ0 with λ0, independent of α, large enough to
ensure Condition (2.8).

It is important to notice that the estimator ŝ
(s)

m̂
cannot be computed in practice

because to determine the best model m̂ one needs to consider an infinite number
of models, which cannot be done without computing an infinite number of wavelet
coefficients. To overcome this issue, we specify a maximum resolution level j0(n)

for estimation where n �→ j0(n) is non-decreasing. This modification is also in the
scope of Theorem 3: it corresponds to

Vn = span
{
φ00,ψjk : 0 ≤ j < j0(n), 0 ≤ k < 2j

}

and the model collection M(s)
n defined as follows:

M(s)
n = M′ (s)

n = {
m ∈ M(s) : Nm < j0(n)

}
.

For the specific choice

2j0(n) ≤ nλ−1
n < 2j0(n)+1, (3.1)

we obtain:

Lα
V =

{
s = α00φ00 +

∞∑
j=0

2j −1∑
k=0

βjkψjk ∈ L2 : sup
n∈N∗

2
2j0(n)α

1+2α ‖s − PVns‖2 < ∞
}

=
{

s = α00φ00 +
∞∑

j=0

2j −1∑
k=0

βjkψjk ∈ L2 : sup
n∈N∗

2
2j0(n)α

1+2α

∑
j≥j0(n)

∑
k

β2
jk < ∞

}

= B
α

1+2α

2,∞ .

Since B
α

1+2α

2,∞ ∩ Bα
2,∞ reduces to Bα

2,∞, arguments of the proofs of Theorem 3 and
Proposition 2 give:

Proposition 3 Let 0 < α < r , and let ŝ
(st)

m̂
be the model selection estimator associ-

ated with the model collection M(s)
n . Then, under Assumptions (2.4), (2.5), and (2.8),

MS
(
ŝ
(st)

m̂
, ρα

) :=: Bα
2,∞.

This tractable procedure is thus as efficient as the original one. We obtain the
maxiset behavior of the non-adaptive linear wavelet procedure pointed out in [21],
but here the procedure is completely data-driven.
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3.2 The Largest Model Collections

In this paragraph we enlarge the model collections in order to obtain much larger
maxisets. We start with the following model collection:

M(l) = {
m = span

{
φ00,ψjk : (j, k) ∈ Im

}: Im ∈ P (I)
}
,

where

I =
⋃
j≥0

{
(j, k) : k ∈ {

0,1, . . . ,2j − 1
}}

and P (I) is the set of all subsets of I . This model collection is so rich that whatever
the sequence (λn)n, Condition (2.8) (or even Condition (1.2)) is not satisfied. To
reduce the cardinality of the collection, we restrict the maximum resolution level to
the resolution level j0(n) defined in (3.1) and consider the collections M(l)

n defined
from M(l) by

M(l)
n = M′ (l)

n = {
m ∈ M(l) : Im ∈ P

(
I j0

)}
,

where

I j0 =
⋃

0≤j<j0(n)

{
(j, k) : k ∈ {

0,1, . . . ,2j − 1
}}

.

Note that this corresponds to the same choice of Vn as in the previous paragraph and
that the corresponding estimator fits perfectly within the framework of Theorem 3.

The classical logarithmic penalty

penn(m) = λ0 log(n)Dm

n
,

which corresponds to λn = λ0 log(n), is sufficient to ensure Condition (2.8) as soon
as λ0 is a constant large enough (the choice λn = λ0 is not sufficient). The identi-
fication of the corresponding maxiset focuses on the characterization of the space

Aα
M(l) since, as previously, Lα

V = B
α

1+2α

2,∞ . We rely on sparsity properties of Aα
M(l) . In

our context, sparsity means that there is a small proportion of large coefficients of a
signal. We introduce, for n ∈ N

∗, the notation

|β|(n) = inf
{
u : card

{
(j, k) ∈ N × {

0,1, . . . ,2j − 1
}: |βjk| > u

}
< n

}

to represent the non-increasing rearrangement of the wavelet coefficient of a periodic
signal s:

|β|(1) ≥ |β|(2) ≥ · · · ≥ |β|(n) ≥ · · · .

As the best model m ∈ M(l) of prescribed dimension M is obtained by choosing
the subset of index corresponding to the M largest wavelet coefficients, a simple
identification of the space Aα

M(l) is

Aα
M(l) =

{
s = α00φ00 +

∞∑
j=0

2j −1∑
k=0

βjkψjk ∈ L2 : sup
M∈N∗

M2α

∞∑
i=M+1

|β|2(i) < ∞
}

.
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Theorem 2.1 of [15] provides a characterization of this space as a weak Besov space:

Aα
M(l) = W 2

1+2α

with, for any q ∈]0,2[,

Wq =
{

s = α00φ00 +
∞∑

j=0

2j −1∑
k=0

βjkψjk ∈ L2 : sup
n∈N∗

n1/q |β|(n) < ∞
}

.

Following their definitions, the larger α, the smaller q = 2/(1 + 2α) and the sparser
the sequence (βjk)j,k . Lemma 2.2 of [15] shows that the spaces Wq (0 < q < 2) have
other characterizations in terms of wavelet coefficients:

Wq =
{

s = α00φ00 +
∞∑

j=0

2j −1∑
k=0

βjkψjk ∈ L2 : sup
u>0

uq−2
∑
j

∑
k

β2
jk1|βjk |≤u < ∞

}

=
{

s = α00φ00 +
∞∑

j=0

2j −1∑
k=0

βjkψjk ∈ L2 : sup
u>0

uq
∑
j

∑
k

1|βjk |>u < ∞
}

.

We thus obtain the following proposition:

Proposition 4 Let α0 < r be fixed, let 0 < α ≤ α0, and let ŝ
(l)

m̂
be the model selection

estimator associated with the model collection M(s)
n . Then under Assumptions (2.4),

(2.5), (2.7), and (2.8):

MS
(
ŝ
(l)

m̂
, ρα

) :=: B
α

1+2α

2,∞ ∩ W 2
1+2α

.

Observe that the estimator ŝ
(l)

m̂
is easily tractable from a computational point of

view, as the minimization can be rewritten coefficientwise:

m̂(n) = argmin
m∈M(l)

n

{
γn(ŝm) + λn

n
Dm

}

= argmin
m∈M(l)

n

{
j0(n)−1∑

j=0

2j −1∑
k=0

(
β̂2

jk1(j,k)/∈Im
+ λn

n
1(j,k)∈Im

)}
.

The best subset Im̂ is thus the set {(j, k) ∈ I j0 : |β̂jk| > √
λn/n}, and ŝ

(l)

m̂
corresponds

to the well-known hard thresholding estimator

ŝ
(l)

m̂
= α̂00φ00 +

j0(n)−1∑
j=0

2j −1∑
k=0

β̂jk1
|β̂jk |>

√
λn
n

ψjk.

Proposition 4 thus corresponds to the maxiset result established by Kerkyacharian
and Picard [15].
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3.3 A Special Strategy for Besov Spaces

We now consider the model collection proposed by Massart [19]. This collection can
be viewed as a hybrid collection between the collections of Sects. 3.1 and 3.2. This
strategy turns out to be minimax for all Besov spaces Bα

p,∞ when α > max(1/p −
1/2,0) and 1 ≤ p ≤ ∞.

More precisely, for a chosen θ > 2, define the model collection by

M(h) = {
m = span

{
φ00,ψjk : (j, k) ∈ Im

}: J ∈ N, Im ∈ PJ (I)
}
,

where for any J ∈ N, PJ (I) is the set of all subsets Im of I that can be written

Im ={
(j, k) : 0 ≤ j < J,0 ≤ k < 2j

}

∪
⋃
j≥J

{
(j, k) : k ∈ Aj , |Aj | =

⌊
2J (j − J + 1)−θ

⌋}

with �x� := max{n ∈ N : n ≤ x}.
As remarked in [19], for any J ∈ N and any Im ∈ PJ (I), the dimension Dm of

the corresponding model m depends only on J and is such that

2J ≤ Dm ≤ 2J

(
1 +

∑
n≥1

n−θ

)
.

We denote by DJ this common dimension. Note that the model collection M(h) does
not vary with n. Using Theorem 3 with Vn = L2, we have the following proposition:

Proposition 5 Let α0 < r be fixed, let 0 < α ≤ α0, and let ŝ
(h)

m̂
be the model selection

estimator associated with the model collection M(h). Then under Assumptions (2.4),
(2.5), (2.7), and (2.8):

MS
(
ŝ
(h)

m̂
, ρα

) :=: Aα

M(h)
,

with

Aα

M(h)
=

{
s = α00φ00 +

∑
j≥0

2j −1∑
k=0

βjkψjk ∈ L2 :

sup
J≥0

22Jα
∑
j≥J

∑
k≥�2J (j−J+1)−θ �

|βj |2(k) < ∞
}

,

where (|βj |(k))k is the reordered sequence of coefficients (βjk)k :

|βj |(1) ≥ |βj |(2) · · · |βj |(k) ≥ · · · ≥ |βj |(2j ).

Note that, as in Sect. 3.1, as soon as λn ≥ λ0 with λ0 large enough, Condition (2.8)
holds.
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This large set cannot be characterized in terms of classical spaces. Nevertheless it
is undoubtedly a large functional space, since as proved in Sect. 4.4, for every α > 0
and every p ≥ 1 satisfying p > 2/(2α + 1), we get

Bα
p,∞ � Aα

M(h) . (3.2)

This new procedure is not computable, since one needs an infinite number of wavelet
coefficients to perform it. The problem of calculability can be solved by introducing,
as previously, a maximum scale j0(n) as defined in (3.1). We consider the class of
collection models (M(h)

n )n defined as follows:

M(h)
n = {

m = span
{
φ00,ψjk : (j, k) ∈ Im, j < j0(n)

}: J ∈ N, Im ∈ PJ (I)
}
.

This model collection does not satisfy the embedding condition M(h)
n ⊂ M(h)

n+1. Nev-
ertheless, we can use Proposition 1 with

p̃enn(m) = λn

n
DJ

if m is obtained from an index subset Im in PJ (I). This slight over-penalization leads
to the following result:

Proposition 6 Let α0 < r be fixed, let 0 < α ≤ α0, and let ŝ
(ht)

m̃
be the model selection

estimator associated with the model collection M(h)
n . Then under Assumptions (2.4),

(2.5), (2.7), and (2.8):

MS
(
ŝ
(ht)

m̃
, ρα

) :=: B
α

1+2α

2,∞ ∩ Aα

M(h)
.

Modifying Massart’s strategy in order to obtain a practical estimator changes
the maxiset performance. The previous set Aα

M(h)
is intersected with the strong

Besov space Bα/(1+2α)

2,∞ . Nevertheless, as will be proved in Sect. 4.4, the maxiset

MS(ŝ
(ht)

m̃
, ρα) is still a large functional space. Indeed, for every α > 0 and every p

satisfying p ≥ max(1,2( 1
1+2α

+ 2α)−1),

Bα
p,∞ ⊆ B

α
1+2α

2,∞ ∩ Aα
M(h) . (3.3)

3.4 Comparisons of Model Selection Estimators

In this paragraph, we compare the maxiset performances of the different model selec-
tion procedures described previously. For a chosen rate of convergence, let us recall
that the larger the maxiset, the better the estimator. To begin, we propose to focus on
the model selection estimators which are tractable from the computational point of
view. Gathering Propositions 3, 4, and 6, we obtain the following comparison:
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Proposition 7 Let 0 < α < r.

– If for every n, λn = λ0 log(n) with λ0 large enough, then

MS
(
ŝ
(st)

m̂
, ρα

)
� MS

(
ŝ
(ht)

m̃
, ρα

)
� MS

(
ŝ
(l)

m̂
, ρα

)
. (3.4)

– If for every n, λn = λ0 with λ0 large enough, then

MS
(
ŝ
(st)

m̂
, ρα

)
� MS

(
ŝ
(ht)

m̃
, ρα

)
. (3.5)

This means the following:

– If for every n, λn = λ0 log(n) with λ0 large enough, then, according to the maxiset
point of view, the estimator ŝ

(l)

m̂
strictly outperforms the estimator ŝ

(ht)

m̃
, which

strictly outperforms the estimator ŝ
(st)

m̂
.

– If for every n, λn = λ0 or λn = λ0 log(n) with λ0 large enough, then, according
to the maxiset point of view, the estimator ŝ

(ht)

m̃
strictly outperforms the estimator

ŝ
(st)

m̂
.

The corresponding embeddings of functional spaces are proved in Sect. 4.4. The hard
thresholding estimator ŝ

(l)

m̂
appears as the best estimator when λn grows logarithmi-

cally, while estimator ŝ
(ht)

m̃
is the best estimator when λn is constant. In both cases,

those estimators perform very well, since their maxiset contains all the Besov spaces

B
α

1+2α
p,∞ with p ≥ max(1, ( 1

1+2α
+ 2α)−1).

We forget now the calculability issues and consider the maxiset of the original
procedure proposed by Massart. Propositions 4, 5, and 6 lead then to the following
result:

Proposition 8 Let 0 < α < r .

– If for any n, λn = λ0 log(n) with λ0 large enough, then

MS
(
ŝ
(h)

m̂
, ρα

) �⊂ MS
(
ŝ
(l)

m̂
, ρα

)
and MS

(
ŝ
(l)

m̂
, ρα

) �⊂ MS
(
ŝ
(h)

m̂
, ρα

)
. (3.6)

– If for any n, λn = λ0 or λn = λ0 log(n) with λ0 large enough, then

MS
(
ŝ
(ht)

m̃
, ρα

)
� MS

(
ŝ
(h)

m̂
, ρα

)
. (3.7)

Hence within the maxiset framework, the estimator ŝ
(h)

m̂
strictly outperforms the

estimator ŝ
(ht)

m̃
, while the estimators ŝ

(h)

m̂
and ŝ

(l)

m̂
are not comparable. Note that we did

not consider the maxisets of the estimator ŝ
(s)

m̂
in this section, as they are identical to

the ones of the tractable estimator ŝ
(st)

m̂
. We summarize all those embeddings in Fig. 1

and Fig. 2: Fig. 1 represents these maxiset embeddings for the choice λn = λ0 log(n),
while Fig. 2 represents these maxiset embeddings for the choice λn = λ0.
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Fig. 1 Maxiset embeddings when λn = λ0 log(n) and max(1,2( 1
1+2α

+ 2α)−1) ≤ p ≤ 2

Fig. 2 Maxiset embeddings when λn = λ0 and max(1,2( 1
1+2α

+ 2α)−1) ≤ p ≤ 2

4 Proofs

For any functions u and u′ of L2(D), we denote by 〈u,u′〉 the L2-scalar product
between u and u′:

〈u,u′〉 =
∫

D
u(t)u′(t) dt.

We denote by C a constant whose value may change at each line.

4.1 Proof of Theorem 2

Without loss of generality, we assume that n0 = 1. We start by constructing a differ-
ent representation of the white noise model. For any model m, we define Wm, the
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projection of the noise on m, by

Wm =
Dm∑
i=1

Wem
i
em
i , Wem

i
=

∫
D

em
i (t) dWt ,

where {em
i }Dm

i=1 is any orthonormal basis of m. For any function s ∈ m, we have:

Ws =
∫

D
s(t) dWt =

Dm∑
i=1

〈
s, em

i

〉
Wem

i
= 〈Wm, s〉.

The key observation is now that with high probability, ‖Wm‖2 can be controlled
simultaneously over all models. More precisely, for any m,m′ ∈ Mn, we define the
space m + m′ as the space spanned by the functions of m and m′, and control the
norm of ‖Wm+m′‖2.

Lemma 1 Let n be fixed and

An =
{

sup
m∈Mn

sup
m′∈Mn

{
(Dm + Dm′)−1‖Wm+m′ ‖2}≤ λn

}
.

Then under Assumption (2.6), we have P{An} ≥ p.

Proof The Cirelson–Ibragimov–Sudakov inequality (see [19], page 10) implies that
for any t > 0, any m ∈ Mn, and any m′ ∈ Mn,

P
{‖Wm+m′‖ ≥ E

[‖Wm+m′‖] + t
}≤ e− t2

2 .

Since

E
[‖Wm+m′ ‖] ≤

√
E

[‖Wm+m′ ‖2
] ≤ √

Dm + Dm′,

with t = √
λn(Dm + Dm′) − √

Dm + Dm′ , we obtain

P
{‖Wm+m′ ‖2 ≥ λn(Dm + Dm′)

}≤ e− (
√

λn−1)2(Dm+D
m′ )

2 .

Assumption (2.6) thus implies that

1 − P{An} ≤
∑

m∈Mn

∑
m′∈Mn

P
{‖Wm+m′ ‖2 ≥ λn(Dm + D′

m)
}

≤
∑

m∈Mn

∑
m′∈Mn

e− (
√

λn−1)2(Dm+D
m′ )

2

≤
( ∑

m∈Mn

e− (
√

λn−1)2Dm
2

)2

≤ 1 − p.

�
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We define m0(n) (denoted m0 when there is no ambiguity), the model that mini-
mizes a quantity close to Q(s,n):

m0(n) = argmin
m∈Mn

{
‖sm − s‖2 + λn

Kn
Dm

}
,

where K is an absolute constant larger than 1 specified later. The proof of the theorem
begins by a bound on ‖sm0 − s‖2:

Lemma 2 For any 0 < γ < 1,

‖sm0 − s‖2 ≤ K̃ + 4γ −1

K̃P{An}
E

[‖ŝm̂ − s‖2] +
(

K(2γ −1 + 1)

K̃P{An}
+ 2Kγλn

K̃

)
Dm0

Kn
(4.1)

if the constant K̃ = K(1 − γ ) − 2γ −1 − 1 satisfies K̃ > 0.

Proof By definition,

γn(ŝm̂) + λn

Dm̂

n
≤ γn(ŝm0) + λn

Dm0

n
.

Thus,

λn

Dm̂ − Dm0

n
≤ γn(ŝm0) − γn(ŝm̂)

≤ −2Yn(ŝm0) + ‖ŝm0‖2 + 2Yn(ŝm̂) − ‖ŝm̂‖2

≤ −2〈ŝm0, s〉 + ‖ŝm0‖2 + 2〈ŝm̂, s〉 − ‖ŝm̂‖2 + 2√
n
Wŝm̂−ŝm0

≤ ‖ŝm0 − s‖2 − ‖ŝm̂ − s‖2 + 2√
n
Wŝm̂−ŝm0

.

Let 0 < γ < 1. As ŝm̂ − ŝm0 is supported by the space m̂ + m0 spanned by the func-
tions of m̂ and m0, we obtain with the previous definition:

λn

Dm̂ − Dm0

n
≤ ‖ŝm0 − s‖2 − ‖ŝm̂ − s‖2 + 2√

n
〈Wm̂+m0, ŝm̂ − ŝm0〉

≤ ‖ŝm0 − s‖2 − ‖ŝm̂ − s‖2 + γ

n
‖Wm̂+m0‖2

+ 2

γ

(‖ŝm0 − s‖2 + ‖ŝm̂ − s‖2)

≤
(

2

γ
+ 1

)
‖ŝm0 − s‖2 +

(
2

γ
− 1

)
‖ŝm̂ − s‖2 + γ

n
‖Wm̂+m0‖2.

We multiply now by 1An to obtain

λn1An

Dm̂ − Dm0

n
≤

(
2

γ
+ 1

)
1An‖ŝm0 − s‖2 +

(
2

γ
− 1

)
1An‖ŝm̂ − s‖2

+ 1An

γ

n
‖Wm̂+m0‖2.
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Now using the definition of An and Lemma 1, this yields

λn1An

Dm̂ − Dm0

n
≤

(
2

γ
+ 1

)
1An‖ŝm0 − s‖2 +

(
2

γ
− 1

)
1An‖ŝm̂ − s‖2

+ γ λn1An

Dm̂ + Dm0

n
,

and thus

(1 − γ )λn1An

Dm̂ − Dm0

n
≤

(
2

γ
+ 1

)
1An‖ŝm0 − s‖2

+
(

2

γ
− 1

)
1An‖ŝm̂ − s‖2 + 2γ λn1An

Dm0

n
.

One obtains

λn1An

Dm̂ − Dm0

n
≤

2
γ

+ 1

1 − γ
1An‖ŝm0 − s‖2 +

2
γ

− 1

1 − γ
1An‖ŝm̂ − s‖2

+ 2γ

1 − γ
λn1An

Dm0

n
. (4.2)

We derive now a bound on ‖sm0 − s‖2. By definition,

‖sm0 − s‖2 + λn

Dm0

Kn
≤ ‖sm̂ − s‖2 + λn

Dm̂

Kn
,

and thus

‖sm0 − s‖2 ≤ ‖sm̂ − s‖2 + λn

Dm̂ − Dm0

Kn
.

By multiplying by 1An and plugging in the bound (4.2), we have:

1An‖sm0 − s‖2 ≤ 1An‖sm̂ − s‖2 + λn1An

Dm̂ − Dm0

Kn

≤ 1An‖sm̂ − s‖2 +
2
γ

+ 1

K(1 − γ )
1An‖ŝm0 − s‖2

+
2
γ

− 1

K(1 − γ )
1An‖ŝm̂ − s‖2 + 2γ

K(1 − γ )
λn1An

Dm0

n

≤
(

1 +
2
γ

− 1

K(1 − γ )

)
1An‖ŝm̂ − s‖2

+
2
γ

+ 1

K(1 − γ )
1An

(
‖sm0 − s‖2 + 1

n
‖Wm0‖2

)

+ 2γ

K(1 − γ )
λn1An

Dm0

n
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≤
(

1 +
2
γ

− 1

K(1 − γ )

)
‖ŝm̂ − s‖2 +

2
γ

+ 1

K(1 − γ )
1An‖sm0 − s‖2

+
2
γ

+ 1

K(1 − γ )

1

n
‖Wm0‖2 + 2γ

K(1 − γ )
λn1An

Dm0

n
,

and thus

(
1 −

2
γ

+ 1

K(1 − γ )

)
1An‖sm0 − s‖2

≤
(

1 +
2
γ

− 1

K(1 − γ )

)
‖ŝm̂ − s‖2

+
2
γ

+ 1

K(1 − γ )

1

n
‖Wm0‖2 + 2γ

K(1 − γ )
λn1An

Dm0

n
.

Taking the expectation on both sides yields:

(
1 −

2
γ

+ 1

K(1 − γ )

)
P{An}‖sm0 − s‖2

≤
(

1 +
2
γ

− 1

K(1 − γ )

)
E

[‖ŝm̂ − s‖2]

+
( 2

γ
+ 1

K(1 − γ )
+ 2γ

K(1 − γ )
P{An}λn

)
Dm0

n
,

and thus as soon as 1 −
2
γ

+1

K(1−γ )
> 0,

‖sm0 − s‖2 ≤ 1 +
2
γ

−1

K(1−γ )(
1 −

2
γ

+1

K(1−γ )

)
P{An}

E
[‖ŝm̂ − s‖2]

+
2
γ

+1

K(1−γ )
+ 2γ

K(1−γ )
P{An}λn

(
1 −

2
γ

+1

K(1−γ )

)
P{An}

Dm0

n

≤ K(1 − γ ) + 2
γ

− 1(
K(1 − γ ) − 2

γ
− 1

)
P{An}

E
[‖ŝm̂ − s‖2]

+
2
γ

+ 1 + 2γ P{An}λn(
K(1 − γ ) − 2

γ
− 1

)
P{An}

Dm0

n

≤ K̃ + 4
γ

K̃P{An}
E

[‖ŝm̂ − s‖2] +
2
γ

+ 1 + 2γ P{An}λn

K̃P{An}
Dm0

n
,
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which yields:

‖sm0 − s‖2 ≤ K̃ + 4
γ

K̃P{An}
E

[‖ŝm̂ − s‖2] +
(

K
( 2

γ
+ 1

)
K̃P{An}

+ 2Kγλn

K̃

)
Dm0

Kn

with K̃ = K(1 − γ ) − 2
γ

− 1. �

Now, let us specify the constants. We set

g(δ,α0) = inf
α∈(0,α0]

inf
x∈[ 1

2 ,1−δ]
{
x

2α
2α+1 − x

}= (1 − δ)
2α0

2α0+1 − 1 + δ ∈ (0,1).

Then we put

γ = 1

8
g(δ,α0) and K =

2
γ

+ 1
1
2 − γ

.

This implies K̃ = K
2 , and assumptions of the previous lemma are satisfied. We

consider now the dependency of m0 on n and prove by induction the following
lemma:

Lemma 3 If there exists C1 > 0 such that for any n,

E
[‖ŝm̂(n/2) − s‖2] ≤ C1

(
2λn/2

n

) 2α
2α+1

,

then, provided λ1 ≥ Υ (δ,p,α0), where

Υ (δ,p,α0) = 8

pg(δ,α0)

(
16

g(δ,α0)
+ 1

)
, (4.3)

there exists a constant C2 such that for any n,

‖sm0(n) − s‖2 + λn

Dm0(n)

Kn
≤ C2

(
λn

n

) 2α
2α+1

.

Proof By using Mn/2 ⊂ Mn and (4.1), for any β ∈ [0,1], if we set

A = ‖sm0(n) − s‖2 + λn

Dm0(n)

Kn
,

we have

A ≤ ‖sm0(n/2) − s‖2 + λn

Dm0(n/2)

Kn

≤ β‖sm0(n/2) − s‖2 + (1 − β)‖sm0(n/2) − s‖2 + λn

2λn/2
λn/2

2Dm0(n/2)

Kn
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≤ β
K̃ + 4

γ

K̃P{An/2}
E

[‖ŝm̂(n/2) − s‖2] + (1 − β)‖sm0(n/2) − s‖2

+
(

β

(
K

( 2
γ

+ 1
)

K̃P{An/2}λn/2
+ 2Kγ

K̃

)
+ λn

2λn/2

)
2λn/2Dm0(n/2)

Kn
.

As λn ≤ 2λn/2, there exists βn ∈ [0,1] such that

1 − βn = βn

(
K

( 2
γ

+ 1
)

K̃P{An/2}λn/2
+ 2Kγ

K̃

)
+ λn

2λn/2
,

so that

A ≤ βn

K̃ + 4
γ

K̃P{An/2}
E

[‖ŝm̂(n/2) − s‖2]

+ (1 − βn)

(
‖sm0(n/2) − s‖2 + 2λn/2Dm0(n/2)

Kn

)
.

The induction can now be started. We assume now that for all n′ ≤ n − 1,

‖sm0(n
′) − s‖2 + λn′

Dm0(n
′)

Kn′ ≤ C2

(
λn′

n′

) 2α
2α+1

.

By assumption,

E
[‖ŝm̂(n/2) − s‖2] ≤ C1

(
2λn/2

n

) 2α
2α+1

,

so that

A ≤ βn

K̃ + 4
γ

K̃P{An/2}
C1

(
2λn/2

n

) 2α
2α+1 + (1 − βn)C2

(
2λn/2

n

) 2α
2α+1

≤
(

βn

K̃ + 4
γ

K̃P{An/2}
C1

C2
+ 1 − βn

)(
2λn/2

λn

) 2α
2α+1

C2

(
λn

n

) 2α
2α+1

.

So, we have to prove that

(
βn

K̃ + 4
γ

K̃P{An/2}
C1

C2
+ 1 − βn

)(
2λn/2

λn

) 2α
2α+1 ≤ 1

or equivalently,

(
βn

(
K̃ + 4

γ

K̃P{An/2}
C1

C2
+ K

( 2
γ

+ 1
)

K̃P{An/2}λn/2
+ 2Kγ

K̃

)
+ λn

2λn/2

)(
2λn/2

λn

) 2α
2α+1 ≤ 1.
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This condition can be rewritten as

βn

(
K̃ + 4

γ

K̃P{An/2}
C1

C2
+ K

( 2
γ

+ 1
)

K̃P{An/2}λn/2
+ 2Kγ

K̃

)(
2λn/2

λn

) 2α
2α+1 ≤ 1 −

(
λn

2λn/2

) 1
2α+1

or

λn/2 ≥ K
( 2

γ
+ 1

)
K̃P{An/2}

[
1

βn

((
λn

2λn/2

) 2α
2α+1 − λn

2λn/2

)
− K̃ + 4

γ

K̃P{An/2}
C1

C2
− 2Kγ

K̃

]−1

provided the right member is positive. Under the very mild assumption 2(1 −
δ)λn/2 ≥ λn ≥ λn/2, it is sufficient to ensure that (4.3) is true. Indeed, λn/2 ≥ λ1,
and using values of the constants, we have:

K
( 2

γ
+ 1

)
K̃P{An/2}

[
1

βn

((
λn

2λn/2

) 2α
2α+1 − λn

2λn/2

)
− K̃ + 4

γ

K̃P{An/2}
C1

C2
− 2Kγ

K̃

]−1

≤ 2
( 2

γ
+ 1

)
p

[
g(δ,α0)

2
− K̃ + 4

γ

K̃p

C1

C2

]−1

≤ 8
( 2

γ
+ 1

)
pg(δ,α0)

≤ 8

pg(δ,α0)

(
16

g(δ,α0)
+ 1

)

if

C2 ≥ 4K̃ + 16
γ

K̃p

C1

g(δ,α0)
. �

Finally, Theorem 2 follows from the previous lemma that gives the following in-
equality:

Q(s,n)

K
≤ inf

m∈Mn

{
‖s − sm‖2 + λn

Kn
Dm

}

≤ ‖sm0(n) − s‖2 + λn

Kn
Dm0(n)

≤ C2

(
λn

n

) 2α
2α+1

.

4.2 Proofs of Theorem 3 and Proposition 1

Theorem 2 implies that for any s ∈ MS(ŝm̂, ρα),

sup
n

{
ρ−2

n,αQ(s,n)
}
< ∞,
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or, equivalently, there exists C > 0 such that for any n,

inf
m∈Mn

{
‖sm − s‖2 + λn

n
Dm

}
≤ Cρ2

n,α. (4.4)

By the definition of Vn, any function sm with m ∈ Mn belongs to Vn, and thus In-
equality (4.4) implies:

‖PVns − s‖2 ≤ Cρ2
n,α, (4.5)

that is, s ∈ Lα
V . By definition, M̃ is a larger collection than Mn, and thus Inequal-

ity (4.4) also implies that for any n,

inf
m∈M̃

{
‖sm − s‖2 + λn

n
Dm

}
≤ Cρ2

n,α,

which turns out to be a characterization of Aα

M̃ when ρn,α = ( λn

n
)

α
2α+1 as a conse-

quence of the following lemma:

Lemma 4 Under assumptions of Theorem 3,

sup
n

{(
λn

n

)− 2α
2α+1

inf
m∈M̃

{
‖sm − s‖2 + λn

n
Dm

}}
< ∞ ⇔ s ∈ Aα

M̃. (4.6)

Proof We set

m̃(n) = arg min
m∈M̃

{
‖sm − s‖2 + λn

n
Dm

}
.

First, let us assume that for any n,

‖sm̃(n) − s‖2 + λn

n
Dm̃(n) ≤ C1

(
λn

n

) 2α
2α+1

,

where C1 is a constant. Then

Dm̃(n) ≤ C1

(
λn

n

)− 1
1+2α

.

Using λn ≤ λ2n ≤ 2λn, for M ∈ N
∗, as soon as M ≥ C1(λ1)

− 1
1+2α , there exists n ∈ N

∗
such that

C1

(
λn

n

)− 1
1+2α ≤ M < C1

(
λ2n

2n

)− 1
1+2α ≤ C12

1
1+2α

(
λn

n

)− 1
1+2α

. (4.7)
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Then

inf
{m∈M̃: Dm≤M}

‖sm − s‖2 ≤ inf
{m∈M̃: Dm≤M}

{
‖sm − s‖2 + λn

n
Dm

}

≤ inf
{m∈M̃: Dm≤C1(

λn
n

)
− 1

1+2α }

{
‖sm − s‖2 + λn

n
Dm

}

≤ C1

(
λn

n

) 2α
1+2α

≤ C2α+1
1 2

2α
1+2α M−2α.

Conversely, assume that there exists C̃1 satisfying

inf
{m∈M̃: Dm≤M}

‖sm − s‖2 ≤ C̃1M
−2α.

Then for any T > 0,

inf
m∈M̃

{‖sm − s‖2 + T 2Dm

} = inf
M∈N∗ inf

{m∈M̃: Dm=M}
{‖sm − s‖2 + T 2M

}

≤ inf
M∈N∗

{
C̃1M

−2α + T 2M
}

≤ inf
x∈R

∗+

{
C̃1x

−2α + T 2(x + 1)
}

≤ C̃1

(
T 2

2αC̃1

) 2α
1+2α + T 2

((
T 2

2αC̃1

)− 1
1+2α + 1

)

≤ C1(T
2)

2α
1+2α ,

where C1 is a constant. �

We have proved so far that MS(ŝm̂, ρα) ⊂ Lα
V ∩ Aα

M̃. It remains to prove the con-

verse inclusion. Corollary 1 and the previous lemma imply that it suffices to prove
that inequalities (4.5) and (4.6) imply inequality (4.4) (possibly with a different con-
stant C).

Let s ∈ Lα
V ∩ Aα

M̃. By inequality (4.6), for every n, there exists a model m ∈ M̃
such that

‖sm − s‖2 + λn

n
Dm ≤ Cρ2

n,α.

By the definition of M̃, there exists k such that m ∈ M′
k .

If k ≤ n, then m ∈ Mn, and thus

inf
m∈Mn

{
‖sm − s‖2 + λn

n
Dm

}
≤ Cρ2

n,α.
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Otherwise k > n, and let m′ ∈ M be the model such that Im = Im′ ∩ Jk as defined
in Sect. 2.2. We define m′′ ∈ Mn by its index set Im′′ = Im′ ∩ Jn. Note that m′′ ⊂ m

and sm − sm′′ ∈ V ⊥
n , so

‖sm′′ − s‖2 + λn

n
Dm′′ = ‖sm′′ − sm‖2 + ‖sm − s‖2 + λn

n
Dm′′

≤ ‖PVns − s‖2 + ‖sm − s‖2 + λn

n
Dm

≤ Cρ2
n,α.

Theorem 3 is proved.
The proof of Proposition 1 relies on the definition of p̃enn(m). Recall that for any

model m ∈ M′
n there is a model m̃ ∈ M such that

m = span{ϕi : i ∈ Im̃ ∩ Jn},
and that

p̃enn(m) = λn

n
Dm̃.

One deduces

‖sm − s‖2 + p̃enn(m) = ‖sm − s‖2 + λn

n
Dm̃ ≥ ‖sm̃ − s‖2 + λn

n
Dm̃,

and thus

inf
m∈Mn

{‖sm − s‖2 + p̃enn(m)
}≤ Cρ2

n,α =⇒ inf
m∈M

{
‖sm − s‖2 + λn

n
Dm

}
≤ Cρ2

n,α.

Mimicking the proof of Theorem 3, one obtains Proposition 1.

4.3 Proof of Proposition 2

In the same spirit as in the proof of Theorem 2, for any n, we write:

m0(n) = arg min
m∈M

{
‖sm − s‖2 + pen(m)

4

}
= arg min

m∈M

{
‖sm − s‖2 + λnDm

4n

}
(4.8)

(we have set K = 4), and

m̂(n) = arg min
m∈M

{−‖ŝm‖2 + pen(m)
}= arg min

m∈M

{
−‖ŝm‖2 + λnDm

n

}
. (4.9)

In the nested case, Lemma 2 becomes the following much stronger lemma:

Lemma 5 For any n, almost surely

‖sm0(n) − s‖2 ≤ ‖ŝm̂(n) − s‖2. (4.10)
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Proof As the models are embedded, either m̂(n) ⊂ m0(n) or m0(n) ⊂ m̂(n).
In the first case, ‖sm0(n) − s‖2 ≤ ‖sm̂(n) − s‖2 ≤ ‖ŝm̂(n) − s‖2, and thus (4.10)

holds.
Otherwise, by construction,

{
‖sm0(n) − s‖2 + λnDm0(n)

4n
≤ ‖sm̂(n) − s‖2 + λnDm̂(n)

4n
,

−‖ŝm̂(n)‖2 + λnDm̂(n)

n
≤ −‖ŝm0(n)‖2 + λnDm0(n)

n
,

and thus as m0(n) ⊂ m̂(n),

{
‖sm̂(n)\m0(n)‖2 ≤ λnDm̂(n)

4n
− λnDm0(n)

4n
,

λnDm̂(n)

n
− λnDm0(n)

n
≤ ‖ŝm̂(n)\m0(n)‖2.

Combining these two inequalities yields:

‖sm̂(n)\m0(n)‖2 ≤ 1

4
‖ŝm̂(n)\m0(n)‖2

≤ 1

2

(‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2 + ‖sm̂(n)\m0(n)‖2),

and thus

‖sm̂(n)\m0(n)‖2 ≤ ‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2.

Now, (4.10) holds as

‖sm0(n) − s‖2 = ‖sm̂(n) − s‖2 + ‖sm̂(n)\m0(n)‖2

≤ ‖sm̂(n) − s‖2 + ‖ŝm̂(n)\m0(n) − sm̂(n)\m0(n)‖2

≤ ‖sm̂(n) − s‖2 + ‖ŝm̂(n) − sm̂(n)‖2 = ‖ŝm̂(n) − s‖2. �

Now we can conclude the proof of Proposition 2 with an induction similar to the
one used in the proof of Lemma 3. Indeed, let

A = ‖sm0(n) − s‖2 + λnDm0(n)

4n
,

A ≤ ‖sm0(n/2) − s‖2 + λnDm0(n/2)

4n

≤ βnE
(‖ŝm̂(n/2) − s‖2) + (1 − βn)‖sm0(n/2) − s‖2 + λn

2λn/2

λn/2Dm0(n/2)

4(n/2)
.

The choice βn = 1 − λn

2λn/2
is such that δ ≤ βn ≤ 1

2 , and it implies:

A ≤ βnE
(‖ŝm̂(n/2) − s‖2) + (1 − βn)

(
‖sm0(n/2) − s‖2 + λn/2Dm0(n/2)

4(n/2)

)
.
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Now using almost the same induction as in Theorem 2, we obtain:

A ≤ βnC
2
1

(
2λn/2

n

) 2α
1+2α + (1 − βn)C2

(
2λn/2

n

) 2α
1+2α

≤
(

2λn/2

λn

) 2α
1+2α (

C2
1βnC

−1
2 + (1 − βn)

)
C2

(
λn

n

) 2α
1+2α

,

where C1 is a constant. It thus suffices to verify that

(
2λn/2

λn

) 2α
1+2α (

C2
1βnC

−1
2 + (1 − βn)

) ≤ 1,

which is the case as soon as C2 ≥ C2
1

2g(δ,α)
.

4.4 Space Embeddings

In this paragraph we provide many embedding properties between the functional
spaces considered in Sect. 3. Let us recall the following definitions:

Bα
p,∞ =

{
s ∈ L2

([0,1]) : sup
J∈N

2J (α− 1
p

+ 1
2 )p

2j −1∑
k=0

|βjk|p < ∞
}

;

B
α

1+2α

2,∞ =
{

s ∈ L2
([0,1]) : sup

J∈N

2
2Jα

1+2α

∑
j≥J

2j −1∑
k=0

β2
jk < ∞

}
;

Aα

M(h)
=

{
s ∈ L2

([0,1]) : sup
J∈N

22Jα
∑
j≥J

2j∑
k=�2J (j−J+1)−θ �

|βj |2(k) < ∞
}

;

W 2
1+2α

=
{

s ∈ L2
([0,1]) : sup

u>0
u

2
1+2α

∞∑
j=0

2j −1∑
k=0

1|βjk |>u
< ∞

}
.

4.4.1 Space Embeddings: Part I

⋃
p≥1,p> 2

1+2α

Bα
p,∞

(i)
� Aα

M(h)

(ii)
� W 2

1+2α
.

Proof of (i) Let s belong to Bα
p,∞ with p ≥ 1 and p > 2

1+2α
, and, for any scale j ∈

N, let us denote by (|βj |(k))k the sequence of the non-decreasing reordered wavelet
coefficients of any level j . Then there exists a non-negative constant C such that for
any j ∈ N,

2j∑
k=1

|βj |p(k) ≤ C2−jp(α+1/2−1/p).
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Fix J ∈ N. If p < 2, according to Lemma 4.16 of [19], for all j larger than J ,

2j∑
k=�2J (j−J+1)−θ �+1

|βj |2(k) ≤ C2/p 2−2j (α+1/2−1/p)
(⌊

2J (j − J + 1)−θ
⌋)1−2/p

≤ C2/p 2−2Jα2−2(j−J )(α+1/2−1/p)(j − J + 1)θ(2/p−1).

Summing over the indices j larger than J yields:

∑
j≥J

2j∑
k=�2J (j−J+1)−θ �

|βj |2(k) ≤ C2/p2−2Jα
∑
j ′≥0

2−2j ′(α+1/2−1/p)(j ′ + 1)θ(2/p−1),

and thus

sup
J≥0

22Jα
∑
j≥J

2j∑
k=�2J (j−J+1)−θ �

|βj |2(k)

≤ C2/p
∑
j ′≥0

2−2j ′(α+1/2−1/p)(j ′ + 1)θ(2/p−1) < ∞.

So s belongs to Aα
M(h) .

For the case p = 2,

∑
j≥J

2j∑
k=�2J (j−J+1)−θ �

|βj |2(k) ≤
∑
j≥J

2j∑
k=1

|βj |2(k) ≤
∑
j≥J

C2−2jα ≤ C
2−2Jα

1 − 2−2α
.

Thus,

sup
J∈N

22Jα
∑
j≥J

2j∑
k=�2J (j−J+1)−θ �

|βj |2(k) < ∞.

So s also belongs to Aα
M(h) .

We conclude that for any p ≥ 1 satisfying p > 2
1+2α

, Bα
p,∞ ⊆ Aα

M(h) .

Let us now prove the strict inclusion by considering the function s0 defined as
follows:

s0 =
∑
j≥0

2j −1∑
k=0

βjkψjk =
∑
j≥0

2−√
jψj,0.

For any (α′,p) such that α′ > max( 1
p

− 1
2 ,0),

2(α′− 1
p
+ 1

2 )pj
2j −1∑
k=0

|βj,k|p = 2(α′− 1
p

+ 1
2 )pj 2−√

jp
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and thus goes to +∞ when j goes to +∞. This implies that s0 does not belong to
Bα

p,∞ for any p > 2
1+2α

.
Now for any J ∈ N,

22Jα
∑
j≥J

2j∑
k≥�2J (j−J+1)−θ �

|βj |2(k) = 22Jα
∑

j≥min{j ′≥J :2J (j ′−J+1)−θ<1}
2−2

√
j

≤ 22Jα
∑

j≥2J/θ+J

2−2
√

j ,

which implies:

sup
J≥0

22Jα
∑
j≥J

2j∑
k≥�2J (j−J+1)−θ �

|βj |2(k) < ∞,

and thus s0 ∈ Aα
M(h) . Hence (i) is proved. �

Proof of (ii) There is no doubt that Aα

M(h)
⊆ W 2

1+2α
, since W 2

1+2α
= Aα

M(l)
. The strict

inclusion is a direct consequence of (iv), just below. �

4.4.2 Space Embeddings: Part II

⋃
p≥max(1, 2

(1+2α)−1+2α
)

Bα
p,∞

(iii)⊆ B
α

1+2α

2,∞ ∩ Aα

M(h)

(iv)

� B
α

1+2α

2,∞ ∩ W 2
1+2α

.

Proof of (iii) Let α > 0 and p ≥ 1 satisfying p ≥ 2((1 + 2α)−1 + 2α)−1. Using the

classical Besov embeddings Bα
p,∞ ⊆ B

α
1+2α

2,∞ , and, according to (i), we have Bα
p,∞ �

Aα

M(h)
. Hence Bα

p,∞ ⊆ B
α

1+2α

2,∞ ∩ Aα

M(h)
, and (iii) is proved. �

Proof of (iv) We already know that B
α

1+2α

2,∞ ∩ Aα

M(h)
⊆ B

α
1+2α

2,∞ ∩ W 2
1+2α

. The strict

inclusion is a direct consequence of (iv) proved in the next subsection. �

4.4.3 A Non-embedded Case

Aα

M(h)

(v)�⊂ B
α

1+2α

2,∞ ∩ W 2
1+2α

and B
α

1+2α

2,∞ ∩ W 2
1+2α

(vi)�⊂ Aα

M(h)
.

Proof of (v) Let us consider the function s0 ∈ Aα

M(h)
defined in the proof of (i). We

already know that it does not belong to Bα′
p,∞ for any (α′,p) satisfying α′ > max( 1

p
−

1
2 ,0). As a consequence for the case (α′,p) = ( α

1+2α
,2), where α > 0, we deduce

that s0 does not belong to B
α

1+2α

2,∞ .
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Moreover, we immediately deduce that Aα

M(h)
�⊂ B

α
1+2α

2,∞ ∩ W 2
1+2α

. �

Proof of (vi) Let s1 ∈ L
2([0,1]) whose wavelet expansion is given by

s1 =
∞∑

j=0

2j −1∑
k=0

βjkψjk.

We set

βjk =
{

2− j
2 if k < 2

j
1+2α ,

0 otherwise.

We are going to prove that s1 ∈ B
α

1+2α

2,∞ ∩ W 2
1+2α

, while s1 /∈ Aα
M(h) . Summing at a

given scale j yields:

2j −1∑
k=0

β2
jk = 2

j
1+2α 2−j = 2− 2αj

1+2α ,

and thus s1 ∈ B
α

1+2α

2,∞ .

Let 0 < u < 1 and ju be the real number such that 2ju = u−2. Then

u
2

1+2α

∞∑
j=0

2j −1∑
k=0

1|βjk |>u
= u

2
1+2α

∑
j<ju

2j −1∑
k=0

1|βjk |>u

= u
2

1+2α

∑
j<ju

2
j

1+2α

≤ 2
1

1+2α
(
2

1
1+2α − 1

)−1
.

So

sup
u>0

u
2

1+2α

∞∑
j=0

2j −1∑
k=0

1|βjk |>u
< ∞,

and s1 ∈ W 2
1+2α

.

Let us now prove that s1 does not belong to Aα
M(h) . Fix J ∈ N large enough. Then

EJ =
∑
j≥J

2j −1∑
k=�2J (j−J+1)−θ �

|βj |2(k)

=
∑
j≥J

max

(
0,2j/(2α+1) − 2J

(j − J + 1)θ

)
2−j .
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Let J � be the real number such that 2
J�

1+2α = 2J

(J �−J+1)θ
.

From J � = (2α + 1)J − (2α + 1)θ log2(J
� − J + 1), one thus deduces J � ≤

(2α + 1)J , which implies J � ≥ (2α + 1)J − (2α + 1)θ log2(2αJ + 1), and finally
J � ≤ (2α + 1)J − (2α + 1)θ log2(2αJ + 1 − (2α + 1)θ log2(2αJ + 1)). So,

EJ =
∑
j>J �

(
2j/(2α+1) − 2J

(j − J + 1)θ

)
2−j

≥
∑
j>J �

(
2j/(2α+1) − 2J �/(2α+1)

)
2−j

≥ C 2−2J �α/(2α+1)

≥ C (log)2αθ 2−2Jα.

So,

sup
J≥0

22Jα
∑
j≥J

2j −1∑
k≥�2J (j−J+1)−θ �

|βj |2(k) = ∞.

This implies that s1 /∈ Aα
M(h) . Finally (vi) is proved. �
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