
MAXPLAN: A New Approach to Probabilistic Planning

Stephen M. Majercik and Michael L. Littman

Department of Computer Science
Duke University

Durham, NC 27708-0129
{majercik ,mlittman} @cs. duke. edu

Abstract

Classical artificial intelligence planning techniques can
operate in large domains but traditionally assume a
deterministic universe. Operations research planning
techniques can operate in probabilistic domains but
break when the domains approach realistic sizes. MAX-
PLAN is a new probabilistic planning technique that
aims at combining the best of these two ~rlds. MAX-
PLAN converts a planning instance into an E-MAJSAT
instance, and then draws on techniques from Boolean
satisfiability and dynamic programming to solve the

PPE-MAJSA’r instance. E-MAJSAT is an NP -complete
problem that is essentially a probabilistic version of
SAT. MAXPLAN performs as much as an order of mag-
nitude better on some standard stochastic test prob-
lems than BURIDAN--a state-of-the-art probabilistic
planner--and scales better on one test problem than
two algorithms based on dynamic programming.

INTRODUCTION

Classical artificial intelligence planning techniques can
operate in large domains but, traditionally, assume a
deterministic universe. Operations research planning
techniques can operate in probabilistic domains, but al-
gorithms for solving Markov decision processes (MDPS)
and partially observable bIDPs are capable of solving
problems only in relatively small domains. Research in
probabilistic planning alms to explore a middle ground
between these two well-studied extremes with the hope
of developing systems that can reason efficiently about
plans in complex, uncertain domains.

In this paper we introduce MAXPLAN, a new approach
to probabilistic planning. MAXPLAN converts a plan-
ning problem into an E-MAJSAT problem, an NPPP-

complete problem that is essentially a probabilistic ver-
sion of SAT. We draw on techniques from Boolean satis-
fiability and dynamic programming to solve the result-
ing E-MAJSAT problem. In the first section, we discuss
complexity results that motivated our research strategy,
and compare MAXPLAN to SATPLAN, a similar planning
technique for deterministic domains. The next three
sections contain the details of MAXPLAN’S operation:

Copyright {~1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

the planning domain representation, the conversion of
problems to E-MAJSAT form, the solution of E-MAJSAT
problems and results. The next section compares MAX-
PLAN tO three other planning techniques and the final
sections discuss future work and conclusions.

COMPLEXITY RESULTS
A probabilistic planning domain is specified by a set
of states: a set of actions, an initial state, and a set of
goal states. The output of a planning algorithm is a
controller for the planning domain whose objective is
to reach a goal state with sufficiently high probability.
In its most general form, a plan is a program that takes
as input observable aspects of the environment and pro-
duces actions as output. We classify plans by their size
(the number of internal states) and horizon (the num-
ber of actions produced en route to a goal state). In
a propositional planning domain, states are specified as
assignments to a set of propositional variables.

If we place reasonable bounds--polynomial in the size
of the planning problem--on both plan size and plan
horizon, the planning problem is NPPP-complete (Gold-
smith, Littman, & Mundhenk 1997) (perhaps eas-
ier than PSPACE-complete) and may be amenable
to heuristics. For a survey of relevant results, see
(Littman, Goldsmith, & Mundhenk 1997). Member-
ship in this complexity class suggests a solution strat-
egy analogous to that of SATPLAN (Kautz & Selman
1996), a successful deterministic planner that converts
a planning problem into a satisfiability (SAT) prob-
lem and solves the SAT problem instead. In the
same way that deterministic planning can be expressed
as the NP-complete problem SAT, probabilistic plan-
ning can be expressed as the NPPP-complete problem
E-MAJSAT (Littman, Goldsmith, & Mundhenk 1997):

Given a Boolean formula with choice variables
(variables whose truth status can be arbitrarily set)
and chance variables (variables whose truth status
is determined by a set of independent probabili-
ties), find the setting of the choice variables that
maximizes the probability of a satisfying assigli-
ment with respect to the chance variables.

As we will discuss below, the choice variables can be

86 Decision-Theoretic Planning

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

dig-moat erect-castle

h moat 2: castle 1: castle 2: moat
moat castle castle moat

[-~ moat castle ~[_~

e4

Figure 1: The sequential-effects-tree representation of
SAND-CASTLE-67 consists of a set of decision trees.

made to correspond to a possible plan, while the chance
variables can be made to correspond to the uncertainty
in the planning domain. Thus, our research strategy is
to show that we can efficiently turn planning problems
into E-MAJSAT problems, and then focus our efforts on
finding algorithms to solve E-MAJSAT.

PROBLEM REPRESENTATION
A planning domain M = (S, s0,~4, g) is characterized
by a finite set of states ~q, an initial state So E ~q, a
finite set of operators or actions .4, and a set of goal
states 0 C_ ~q. The application of an action a in a state
s results in a probabilistic transition to a new state st.

The objective is to choose actions, one after another, to
move from the initial state 80 to one of the goal states
with probability above some threshold 0.

In this work, we assume a completely unobservable
domain--the effects of previous actions cannot be used
in selecting the current action. This is a special case of
the partially observable MDP formulation of the prob-
lem (which can be viewed as the control form of a hid-
den Markov model). Because no information is gained
during plan execution, optimal plans are sequences of
actions. A future direction is to extend our approach
to completely or partially observable domains, in which
more complex plan structures will be needed.

MAXPLAN represents planning domains in the
sequential-effects-tree (ST) representation (Littman
1997), which is a syntactic variant of two-time-slice
Bayes nets (2TBNs) with conditional probability tables
represented as trees (Boutilier, Dearden, & Goldszmidt
1995). This representation is expressively equivalent to
2TBNs and probabilistic state-space operators, so it is
likely that a similar planner could be built based on any
of these representations.

In ST, the effect of each action on each proposition is
represented as a separate decision tree. For a given ac-
tion a, each of the decision trees for the different propo-
sitions is ordered, so the decision tree for one proposi-
tion can refer to both the new and old values of previous
propositions. The leaves of a decision tree describe how

the associated proposition changes as a function of the
state and action, perhaps probabilistically. A formal
description of ST is available elsewhere (Littman 1997);
for brevity, we present the representation in the form of
an example (see Figure 1).

SAND-CASTLE-67, a simple probabilistic planning
domain, is concerned with building a sand castle.
There are four states, described by combinations of two
Boolean propositions, moat and castle (propositions
appear in boldface). The proposition moat signifies
that a moat has been dug, and the proposition castle
signifies that the castle has been built. In the initial
state, both moat and castle are False, and the goal
set is {castle) (a goal state is any state in which all the
propositions in the goal set are True).

There are two actions: dig-moat and erect-castle (ac-
tions appear in sans serif). The first decision tree in
the dig-moat action describes the effect of this action
on the proposition moat. If moat is already True (left
branch), dig-moat leaves it unchanged; if moat is False
(right branch), dig-moat causes moat to become True
with probability 0.5. The second decision tree in the
dig-moat action indicates that this action has no im-
pact on the proposition castle.

The second action is erect-castle. Note that here the
first decision tree describes the impact of this action
on the proposition castle rather than the proposition
moat; this is necessary because the new value of cas-
tle affects the new value of moat (as explained below).
The proposition castle does not change value if it is
already True when erect-castle is executed. Otherwise,
the probability that it becomes True is dependent on
whether moat is True; the castle is built with proba-
bility 0.67 if moat is True and only probability 0.25 if
it is not. The idea here is that building a moat protects
the castle from being destroyed prematurely by waves.

The second decision tree describes the effect of the
erect-castle action on the proposition moat. The idea
here is that the process of erecting the castle, whether
successful or not, may destroy an existing moat. Thus,
the moat decision tree indicates that if the castle was
already built when erect-castle was selected, the moat
remains intact with probability 0.75. If the castle had
not been built, but erect-castle successfully builds it (the
label castle:new in the diagram refers to the value of
the castle proposition after the first decision tree is
evaluated) moat remains True. If erect-castle falls to
build a castle, moat remains True with probability 0.5.
Finally, because erect-castle cannot cause a moat to be
dug, there is no effect when moat is False.

PROBLEM CONVERSION
The problem conversion unit of MAXPLAN is a LISP
program that takes as input an ST representation of a
planning problem and converts it into an E-MAJSAT
formula with the property that, given an assignment to
the choice variables (the plan), the probability of a sat-
isfying assignment with respect to the chance variables
is the probability of success for the plan specified by the

Majercik 87

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

(not(moat-0)) A (not(castle-0)) A (castle-I)
(dig-moat-1 V erect-castle-I) A (not(dig-moat-i) V not(erect-castle-i))
(not(dig-moat-I) V not(moat-0) V moat-l) A (not(dig-moat-I) V moat-0 V not(dr-I) V moat-l)
(not(dig-moat-l)
(not(erect-castle-I)
(not (erect-castle-I)
(not (erect-castle-
(not (erect-castle-I)
(not(erect-castle-I)
(not (erect-castle-
(not(dig-moat-I)
(not(erect-castle-I)
(not(erect-castle-I)
(not(erect-castle-I)
(not (erect-castle-

moat-0 V dl-1 V not(moat-I))
V not(moat-0) V not(castle-0) V not(e3-1) V moat-l)
V not(moat-0) V not(castle-0) V e3-1 V not(moat-I))
V not(moat-0) castle-0 V not(castle-i) V moat-l) A
V not(moat-0) V castle-0 V castle-1 V not(e4-1) V moat-l)
V not(moat-0) V castle-0 V castled V e4-1 V not(moat-I))
V moat-0 V not(moat-I)) A (not(dig-moat-I) V not(castle-0) V castled)
castle-0 V not(castle-I)) A (not(erect-castle-I) V not(castle-0) castled)
V castle-0 V not(moat-0) V not(el-i) V castled)
V castle-0 V not(moat-0) V et-1 V not(castled))
V castle-0 V moat-0 V not(e2-1) V castle-I)
V castle-0 V moat-0 V e2-1 V not(castle-I))

Figure 2: The CNF formula for a 1-step SAND-CASTLE-67 plan constrains the variable assignments.

choice variables. The converter does this by selecting
a plan horizon N, time-indexing each proposition and
action so the planner can reason about what happens
when, and then making satisfiability equivalent to the
enforcement of the following conditions:

¯ the initial conditions hold at time 0 and the goal con-
ditions at time N,

¯ actions at time t are mutually exclusive (1 < t < N),

¯ proposition p is True at time t if it was True at time
t-- 1 and the action taken at t does not make it False,
or the action at t makes p True (1 < t < N).

The first two conditions are not probabilistic and can
be encoded in a straightforward manner (Blum & Furst
1997), but the third condition is complicated by the
fact that chance variables sometimes intervene between
actions and their effects on propositions. We will illus-
trate the conversion process by describing the construc-
tion of the CNF formula corresponding to a one-step
plan for SAND-CASTLE-67.

Variables

We first introduce a set of propositions that capture the
randomness is the domain. For each decision-tree leaf
! labeled with a probability ~rt that is strictly between
0.0 and 1.0, we create a random proposition rz that
is true with probability 7ft. For example, in the first
decision tree of the dig-moat action (Figure 1), dl is
random proposition that is True with probability 0.5.
We then replace the leaf I with a node labeled rl with
a left leaf of 1.0 and a right leaf of 0.0. This has the
effect of slightly increasing the size of decision trees and
the number of propositions, but also of simplifying the
decision trees so that all leaves are labeled with either
0.0 or 1.0 probabilities.

We create variables to record the status of actions
and propositions in an N-step plan by taking three
cross products: actions and time steps 1 through N,
propositions and time steps 0 through N, and random

propositions and time steps 1 through N. The total
number of variables in the CNF formula is

V = (A+P+R)N+P,

where A, P, and R are the number of actions, proposi-
tions, and random propositions, respectively.

The variables generated by the actions are the choice
~riables. In our example, these are the variables dig-
moat-1 and erect-castle-1. The variables generated by
the random propositions are the chance variables. In
our example, we have five random propositions (dl, el,
e2, es, and e4) and the variables generated are d1-1,
e1-1, e2-1, es-1, and e4-1.

The variables generated by the propositions for time
steps 1 through N must also be chance variables, since
their values are not completely determined by the plan.
The probability associated with each of these variables
is 0.5 so that all possible assignments to these variables
have the same probability mass. Note that this low-
ers the probability of any choice variable setting by a
factor of 0.5vN and, thus, a suitable adjustment to the
probabilities calculated by the solver must be made.

Clauses
Each initial condition and goal condition in the prob-
lem generates a unit clause in the CNF formula. The
initial conditions in our example generate the clauses
(not(moat-0)) and (not(castle-0)) and the goal
dition generates the clause (castle-I). The number
clauses thus generated is bounded by 2P.

Mutual exclusivity of actions for each time step gen-
erates one clause containing all actions (one action must
be taken) and (A) clauses that enforce the requirement
that two actions not be taken simultaneously. In our
example, the clauses generated are (dig-moat-1 V erect-
castle-I) and (not(dig-moat-I) V not(erect-castle-I)).

The third condition--effects of actions on
propositions--generates a clause for each path
through each decision tree in each action. For example,
the right-most path in the moat decision tree of the

88 Decision-Theoretic Planning

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

action dig-moat (Figure 1) specifies that if we take the
dig-moat action and we do not already have a moat,
then we will have a moat at the next time step with
probability 0.5. This generates the implication:

dig-moat-I A not(moat-O) dl -I -- + moat-l,

Note that a chance variable has the same time index as
the action it modifies. This yields the disjunction:

not(dig-moat-I) v moat-0 V not(d1-1) V moat-1.

Figure 2 shows the complete formula for a 1-step plan.
The total number of clauses generated by the third

condition is bounded by 2N ~-:~=i Li where Li is the
number of leaves in the decision trees of action i, so the
total number of clauses C is bounded by

A

2P+((A2)+I)N+2N~_~L,,
i=l

which is a low-order polynomial in the size of the prob-
lem. The average clause size is dominated by the aver-
age path length of all the decision trees.

SOLUTION AND RESULTS
We next describe an algorithm for solving the
E-MAJSAT problem produced by the conversion de-
scribed above. We need to find the assignment to the
choice variables that maximizes the probability of a sat-
isfying assignment; for plan-generated formulas, such
an assignment is directly interpretable as an optimal
straight-line plan. Our algorithm is based on an exten-
sion of the Davis-Putnam-Logemann-Loveland (DPLL)
procedure for determining satisfiability (Davis, Loge-
mann, & Loveland 1962). To our knowledge, DPLL
(and its variants) is the best systematic satisfiability
solver known. As such, DPLL was the obvious choice as
a basis for the E-MAJSAT solver, which needs to deter-
mine all possible satisfying assignments, sum the prob-
abilities of the satisfying assignments for each possible
choice-variable assignment, and then return the choice-
variable assignment (plan) with the highest probability
of producing a satisfying assignment (goal satisfaction).
Although we eventually modified the DPLL algorithm
significantly, these modifications provides insight into
the operation of the E-MAJSAT solver.

Determining all the satisfying assignments can be en-
visioned as constructing a binary tree in which each
node represents a choice (chance) variable and the sub-
trees represent the subproblems given the two possible
assignments (outcomes) to the parent choice (chance)
variable. It is critical to construct an efficient tree to
avoid evaluating an exponential number of assignments.
In the process of constructing this tree:

¯ an active variable is one that has not yet been as-
signed a truth value,

¯ an active clause is one that has not yet been satisfied
by assigned variables,

¯ the current CNF sub]ormula is uniquely specified by
the current set of active clauses and the set of vari-
ables that appear in those clauses, and

¯ the value of a CNF subformula is

where D is the set of all possible assignments to the
active choice variables, S is the set of all satisfying
assignments to the active chance variables, CH is the
set of all chance variables, and 7rl is the probability
that chance variable i is True.

To prune the number of assignments that must be con-
sidered, we do the following, whenever possible:

¯ select an active variable that no longer appears in
any active clause and assign True to that variable
(irrelevant variable elimination, IRR),

¯ select a variable that appears alone in an active clause
and assign the appropriate value (unit propagation,
UNIT), t or

¯ select an active choice variable that appears in only
one sense---always negated or always not negated--
in all active clauses and assign the appropriate value
(purification, PURE).

Each of these actions can be shown to leave the value
of the current CNF formula unchanged.

When there are no more irrelevant variables, unit
clauses, or pure variables, we must select and split on
an active variable (always preferring choice variables).
If we split on a choice (chance) variable, we return the
maximum (probability weighted average) of assigning
True to the variable and recursing or assigning False
and recursing. The splitting heuristic used is critical to
the efficiency of the algorithm (Hooker & Vinay 1994).
The possibilities we tested were:

¯ Choose the next active variable from an initially ran-
dom ordering of the variables,

¯ Choose the active variable that would satisfy the
most active clauses,

¯ Choose the active variable that would appear earliest
in the plan (time-ordered),

The graph in Figure 3 compares the performance
of these heuristics on the following SAND-CASTLE-67
problem: Given a plan that alternates dig-moat and
erect-castle (with erect-castle as the last action), evalu-
ate its probability of success. Although they all scale
exponentially with the plan horizon, the time-ordered
splitting heuristic, given a fixed amount of time, is able
to evaluate longer plans than the other two heuristics.

To verify the importance of the individual elements
of DPLL, we compared performance on the same plan-
evaluation problem of the following:

tNote that for chance variable i, this decreases the suc-
cess probability by a factor of 7ri or 1 - 7r~.

Majercik 89

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

t~

o
u)
Q
zO

600-

400-

200-

, i i
! RANDOM -- .

5ATS MOS’~I CLAUSES !
TIME-ORDERED; !

/
/ i-

i
i

!-

i i-
i ,,,,

i
i
i /o*

j:’
/ .,

i/.::;i.
0 I I

0 2 4 6 8 10 12 14 16 18 20
LENGTH OF PLAN

Figure 3: For DPLL on plan evaluation, the time-
ordered splitting heuristic works best.

¯ full DPLL with time-ordered splitting,

¯ PURE and UNIT with time-ordered splitting,

¯ UNIT with time-ordered splitting, and

¯ time-ordered splitting alone.

As the graph in Figure 4 shows, removal of these
DPLL elements degrades performance, preventing fea-
sible evaluation of plans longer than about 4 steps.

This exponential behavior was surprising given the
fact that a simple dynamic-programming algorithm
(called "ENUM" in the next section) scales linearly with
the plan horizon for plan evaluation. This observation
led us to incorporate dynamic programming into the
solver in the form of memoization: the algorithm caches
the values of solved subformulas for possible use later.
Memoization greatly extends the size of the plan we
can feasibly evaluate (Figure 5). With memoization,
we can evaluate a 110-step plan in less time than it
took to evaluate an 18-step plan previously.

The behavior of the algorithm suggested, however,
that DPLL was hindering efficient subproblem reuse,
so we gradually removed the DPLL elements as we had
done before. This time we found that removing DPLL
elements greatly improved performance. As the graph
in Figure 6 indicates, best performance is achieved with
unit propagation and time-ordered splitting, or time-
ordered splitting alone. Tests on other problems indi-
cate that, in general, unit propagation and time-ordered
splitting provide the best performance.

Having identified a set of promising algorithmic com-
ponents, we tested the resulting system on the full plan-
generation problem in SAND-CASTLE-67 for plan hori-
zons ranging from I to 10. Optimal plans found by

90 Decision-Theoretic Planning

uJ

o
z
Oo
u)

9OOO

8000-

7000-

6000-

5000-

4000-

3000-

2000-

1000-

0
0

| , i | ,
DPLL (IRR/PURE/UNIT/nME)

PURE/UNIT/TIME
UNIT/TIME

TIME -

J

f~

iii.
hi

-

F

2 4 8 8 10 12 14 16 18 20
LENGTH OF PLAN

Figure 4: Full DPLL on plan evaluation without mem-
oization performs better than DPLL with various ele-
ments removed.

1200

1000-

i
WITHOUT MEMOIZATION --

WITH MEMOIZATION

z
< 800-d
tu

o

4oo-
u)

200-

0 ; I ~r’t I I "°"°’°"’’’’’’’’"I
0 20 40 60 80 100 120

LENGTH OF PLAN

Figure 5: Full DPLL on plan evaluation runs faster with
memoization.

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

2O0

180-

160-

140 -

UJ
120-

100-

2
U)r~ 80-

40-

20-

0
0

i i i i i
DI:M.L (IRR/PURE/UNIT/TIME)

PURE/UNIT/TIME
UNIT/TIMEt-~.[-

///./

20 40 60 80 100 120
LENGTH OF PLAN

Figure 6: Full DPLL on plan evaluation with memoiza-
tion performs worse than DPLL with various elements
removed.

MAXPLAN exhibit a rich structure: beyond length 3, the
plan of length i is not a subplan of the plan of length
i + 1. The optimal 10-step plan is D-E-D-E-E-D-E-D-
E-F., where D indicates dig-moat and E indicates erect-
castle. This plan succeeds with near certainty (proba-
bility 0.9669) and MAXPLAN finds this plan in approx-
imately 12 seconds on a Sun Ultra-1 Model 140 with
128 Mbytes of memory.

COMPARISON TO OTHER

PLANNING TECHNIQUES

We compared MAXPLAN to three other planning tech-
niques:

¯ BURIDAN (Kushmerick, Hanks, & Weld 1995), a clas-
sical AI planning technique that extends partial-order
planning to probabilistic domains,

¯ Plan enumeration with dynamic programming for
plan evaluation (ENUM), and

¯ Dynamic programming (incremental pruning)
solve the corresponding finite-horizon partially ob-
servable MDP (POMDP) (Cassandra, Littman, &
Zhang 1997).

These comparisons were motivated by a desire to com-
pare MAXPLAN to other algorithms that can determine
the best plan in a probabilistic domain, including do-
mains in which no plan is certain of succeeding (thus
ruling out lower complexity minimax planners).

A comparison of MAXPLAN and BURIDAN on BOMB-
IN-TOILET, a problem described by Kushmerick,
Hanks, & Weld (1995) is complicated by two facts.

MAXPLAN BURIDAN

Solution Method ¢~PU sm]~lJJiJd~fl~t~d CPU st~

UNIT/TIME 0.3 FORWARD 6.9
I

FULL DPLL : 0.3 QUERY 64.9

PURE/UNITfrlME 0.3 NETWORK 152.0

TIME-ORDERED 0.7 REVERSE 6736.0

AVERAGE 0.4 AVERAGE 1740.0

Figure 7: MAXPLAN outperforms BURIDAN on BOMB-
IN-TOILET.

First, BURIDAN’S performance, as reported by Kush-
merick, Hanks, & Weld (1995) varies from a low of 6.9
CPU seconds to a high of 6736.0 CPU seconds depend-
ing on which of four plan-evaluation methods it uses
(see Figure 7). Since there exist problems for which
each method is best and since it is not possible, in gen-
eral, to determine beforehand which method will pro-
vide the best performance, none of these figures seems
appropriate for a comparison (although they do estab-
lish a range). Second, the BURIDAN results are likely to
be somewhat slower due to machine differences.

The performance of MAXPLAN (Figure 7) depends
which elements of DPLL we include, ranging from a
low of 0.3 CPU seconds (for all methods except time-
ordered splitting alone) to a high of 0.7 CPU seconds
(time-ordered splitting alone). All times are 5-run av-
erages. Unlike BURIDAN, however, we found that one
variation (unit propagation with time-ordered splitting)
consistently outperforms the others in all our trials.
Comparing MAXPLAN’S best time to BURIDAN’S (prob-
lematic) best time, we see that MAXPLAN has an order
of magnitude advantage.

We next compared the scaling behavior of
MAXPLAN--rather than its performance on a sin-
gle problem--to that of ENUM and POMDP. Since
ENUM and POMDP require that all 2P problem states
be explicitly enumerated, these methods necessarily
scale exponentially in the size of the state space even
in the best case (in the worst case, all methods are
expected to be exponential). ENUM necessarily scales
exponentially in the plan horizon as well, since all AN

plans are evaluated.
MAXPLAN tries to explore only as much of the prob-

lem space as is necessary to determine the best plan,
and does not necessarily scale exponentially in either
the size of the state space or the plan horizon. This
effort is not always successful; Figure 8 shows perfor-
mance results for MAXPLAN, ENUMI and POMDP as the
horizon increases in SAND-CASTLE-67. ENUM, as ex-
pected, scales exponentially, but so does MAXPLAN. We
might expect POMDP, which can solve arbitrary par-
tiaUy observable Markov decision processes, to perform
poorly here. But POMDP is able to take advantage of the
unobservability in the domain and, remarkably, scales

Majercik 91

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

MAXPLAN --
E~IUM

:>OMDP

R .

a -

4 -

.~ .~~ ̄
m BBB BBm

/
!

0 2 4 6 8 10 12 14 t6 18
LENGTH OF PLAN

20

Figure 8: MAXPLAN solves SAND-CASTLE-67 more

slowly than two dynamic programming-based ap-
proaches as plan length is increased.

linearly as the horizon increases.
We see much different behavior in a problem that

allows us to enlarge the state space without increasing
the length of the optimal plan. DISARMING-MULTIPLE-
BOMBS is a planning domain that presents us with some
number of packages, any or all of which contain bombs.
The disarm action allows us to disarm all the bombs at
once, but it requires that we know where the bombs
are. The scan action gives us this knowledge. Thus,
even as the state space scales exponentially with the
number of packages, there is always a successful 2-step
plan. Figure 9 shows performance results for MAXPLAN,
ENUM, and POMDP as the number of packages is in-
creased. Both ENUM and POMDP scale exponentially,
while MAXPLAN remains constant over the same range,
solving each problem in less than 0.1 seconds.

FUTURE WORK
In addition to the problems described above, we have
tested MAXPLAN on the slippery gripper problem de-
scribed by Kushmerick, Hanks, & Weld (1995), and
several variants of BOMB-IN-TOILET (with clogging and
asymmetric actions). But the scaling behavior of MAX-
PLAN with respect to the size of the state space and
the number of actions in the planing domain is largely
unexplored. DISARMING-MULTIPLE-BOMBS shows that
MAXPLAN Can find simple solutions efficiently even as
the state space grows, but we need to test our planner
on more complicated domains.

Although our improvements have increased the effi-
ciency of MAXPLAN by orders of magnitude over our
initial implementation, more work needs to be done in

92 Decision-Theoretic Planning

0.8-

/
/
t

/

POMDP
¯MUM ---

MAI~LAN --

0.6-

p ~

0.4 - ...; /
./ /

/ /
J /

/ /
0.2 " "" /

...’" /
!

///
..-~

~ ~-~’~
0

2 3 4 5 6 7 8 9 10
NUMBER OF PACKAGES

Figure 9: MAXPLAN solves DISARMING-MULTIPLE-
BOMBS faster than two dynamic programming-based
approaches as number of packages is increased.

many areas before MAXPLAN Can be successfully ap-
plied to larg~-scale probabilistic planning problems. Ef-
ficiency could probably be improved by using a better
CNF encoding of the planning problem (Ernst, Mill-
stein, & Weld 1997; Kautz, McAllester, & Selman 1996)
and by using more sophisticated data structures for
storing the CNF formulas (Zhang & Stickel 1994).

Another promising area is splitting heuristics. Our
time-ordered splitting heuristic does not specify an or-
dering for variables associated with the same time step.
A heuristic that addresses this issue could provide a sig-
nificant performance gain in real-world problems with a
large number of variables at each time step. An entirely
different splitting strategy could be developed based
on the structure of the]~,-I~,~AJSAT problems that re-
sult from planning problems. The clauses associated
with each time step form a natural cluster whose vari-
ables appear only in those clauses and in the clauses
associated with the immediately preceding and follow-
ing time steps. A divide-and-conquer splitting strategy
that forces a decomposition of the problem into these
natural subformulas could yield performance gains.

Memoization could be more efficient. Memoizing
every subformula solved is both impractical--we ex-
haust memory searching for plans with more than 15
steps in the SAND-CASTLE-67 domain--and probably
unnecessary---memoizing every subformula is redun-
dant. One approach is to treat a fixed amount of mem-
ory as a cache for subformulas and their values and
create a good replacement policy for this cache. Such a
policy might be based on many attributes of thc cached
subformulas, including size, difficulty, and frequency of

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

use. Some initial results from caching experiments are
reported by Majercik & Littman (1998).

Reinforcement learning could potentially be used to
learn better splitting heuristics and cache replacement
policies. With the exception of very large planning
problems, however, a sufficiently long training period
will not be attainable in the course of solving a single
problem. Thus, the problem becomes one of finding a
set of "typical" problems to train the system on, the re-
sults of which will transfer to the solution of problems
the system has not seen yet.

Approximation techniques need to be explored. Per-
haps we can solve an approximate version of the prob-
lem quickly and then explore plan improvements in
the remaining available time, sacrificing optimality for
"anytime" planning and performance bounds. This
does not improve worst-case complexity, but is likely
to help for typical problems.

The variables generated by the current problem con-
version process can be thought of as the nodes in a
belief network. The planning problem, recast as a be-
lief net problem, becomes one of finding the setting the
choice nodes that maximizes the probability of the goal
condition nodes having the desired setting, and tech-
niques for solving this belief network problem are likely
to be applicable to our E-MAJSAT problem.

Finally, the current planner assumes complete unob-
servability and produces an optimal straight-line plan; a
practical planner must be able to represent and reason
about more complex plans, such as conditional plans,
which can take advantage of circumstances as they
evolve, and looping plans, which can express repeated
actions compactly.

CONCLUSIONS

We have described MAXPLAN, a new approach to proba-
bilistic planning that converts the planning problem to
an equivalent E-MAJSAT problem--a type of Boolean
satisfiability problem--and then solves that problem.
We have shown that the conversion can be performed
efficiently and we have described a solution method for
the resulting E-MAJSAT problem. MAXPLAN performs
significantly better on some standard stochastic test
problems than the state-of-the-art probabilistic planner
BURIDAN. Furthermore, although MAXPLAN’S scaling
behavior is problem dependent, MAXPLAN scales signif-
icantly better than two algorithms based on dynamic
programming on one test problem.

Acknowledgments

This work was supported in part by grant NSF-IRI-97-
02576-CAREER.

References

Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelli-
gence 90(1-2):279-298.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995.
Exploiting structure in policy construction. In Pro-
ceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, 1104-1113.

Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997.
Incremental Pruning: A simple, fast, exact method
for partially observable Markov decision processes. In
Proceedings of the Thirteenth Annual Conference on
Uncertainty in Artificial Intelligence (UAI-gT), 54--61.
San Francisco, CA: Morgan Kaufmann Publishers.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. Communica-
tions of the ACM 5:394-397.
Ernst, M. D.; Millstein, T. D.; and Weld, D. S. 1997.
Automatic SAT-compilation of planning problems. In
Proceedings of the Fifteenth International Joint Con-
ference on Artificial Intelligence, 1169-1176.

Goldsmith, J.; Littman, M. L.; and Mundhenk, M.
1997. The complexity of plan existence and evalua-
tion in probabilistic domains. In Proceedings of the
Thirteenth Annual Conference on Uncertainty in Ar-
tificial Intelligence (UAI-97), 182-189. San Francisco,
CA: Morgan Kaufmann Publishers.
Hooker, J. N., and Vinay, V. 1994. Branching rules for
satisfiability. Technical Report GSIA Working Paper
1994-09, Carnegie Mellon University. Revised January
1995.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, 1194-1201. AAAI Press/The
MIT Press.

Kautz, H.; McAllester, D.; and Selman, B. 1996. En-
coding plans in propositional logic. In Proceedings
of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning (KR-96).

Kushrnerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. Artificial Intelli-
gence 76(1-2):239-286.

Littman, M. L.; Goldsmith, J.; and Mundhenk, M.
1997. The computational complexity of probabilistic
plan existence and evaluation. Submitted.
Littman, M. L. 1997. Probabilistic propositional plan-
ning: Representations and complexity. In Proceedings
of the Fourteenth National Conference on Artificial In-
telligence, 748-754. AAAI Press/The MIT Press.

Majercik, S. M., and Littman, M. L. 1998. Using
caching to solve larger probabilistic planning prob-
lems. To appear in the proceedings of the Fifteenth
National Conference on Artificial Intelligence.
Zhang, H., and Stickel, M. E. 1994. Implement-
ing the Davis-Putnam algorithm by tries. Technical
report, Computer Science Department, University of
Iowa, Iowa City, IA.

Majercik 93

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

