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Abstract 
We present the initial results from the FHPCA 
Supercomputer project at the University of Edinburgh.  
The project has successfully built a general-purpose 64 
FPGA computer and ported to it three demonstration 
applications from the oil, medical and finance sectors.  
This paper describes the machine itself – Maxwell – its 
hardware and software environment and presents very 
early benchmark results from runs of the demonstrators. 

 
 

1. Introduction 
 
Against the background of possibilities in the emerging 

area of high-performance reconfigurable computing [1] 
the FPGA High Performance Computing Alliance 
(FHPCA [2]) was founded in early 2005 to take forward 
the ideas of an FPGA-based supercomputer.  The alliance 
partners are Algotronix, Alpha Data, EPCC at the 
University of Edinburgh, the Institute for System Level 
Integration, Nallatech and Xilinx.  The project was 
facilitated and part funded by the Scottish Enterprise 
Industries team and had two main goals: 

• design and build a 64-FPGA supercomputer from 
commodity parts and “plug-in” FPGA cards; 

• demonstrate its effectiveness (or otherwise) for 
real-world high-performance computing (HPC) 
applications. 

We describe here the results of the first of these goals 
and report some early results of the second. 

The machine itself – Maxwell – was completed in the 
first part of this year.  We describe its architecture in 
Section 3; interestingly it shares a number of similarities 
with the proposed petascale Reconfigurable Computing 
Cluster described by Sass et al in [3].   

This paper is structured as follows.  Section 2 describes 
the motivation behind Maxwell.  Section 3 delves into the 
details of the machine’s hardware while Section 4 

describes the software environment and programming 
methodology used in porting a number of demonstration 
applications.  Section 5 discusses three key demonstration 
applications from the fields of financial services, medical 
imaging and oil and gas exploration., and Section 6 
presents early performance results from these applications 
on Maxwell.   Finally Section 7 offers thoughts for the 
future. 

 

2. Motivation 
 
Maxwell is designed as a proof-of-concept general-

purpose FPGA supercomputer.  Given the specialized 
nature of hardware acceleration the very concept of 
‘general-purpose’ for high-performance reconfigurable 
computing (HPRC) is worth investigating in its own right.  
Can a machine built to be as broadly applicable as 
possible deliver enough FPGA performance to be worth 
the cost? 

Our real interest in building Maxwell was not to test 
whether FPGA hardware can be used to accelerate 
segments of a standard HPC application, but to explore 
whether standard HPC applications can be run almost 
entirely on FPGA hardware, parallel communications and 
all.  We take the same view as Bennett et al [4] in 
regarding the FPGAs as the primary compute platform 
rather than co-processors to a CPU.  To this end we 
constructed a machine capable in principle of parallel 
operation across a network of large FPGAs linked directly 
together. 

 

3. Hardware 
 
Maxwell is essentially an IBM BladeCentre Cluster 

with FPGA acceleration.  Altogether it comprises 32 blade 
servers each with one Intel Xeon CPU and two Xilinx 
Virtex-4 FPGAs.  The CPUs are connected to the FPGAs 
with a standard IBM PCI-X Expansion Module. 



3.1 BladeCentre chassis 
 
Physically Maxwell comprises two 19-inch racks and 

five IBM BladeCentres.  Four of the BladeCentres have 
seven IBM Intel Xeon blades and the fifth has four.  Each 
blade is a diskless 2.8 GHz Intel Xeon with 1 GB main 
memory.  The blades are connected over gigabit Ethernet 
through a single 48-way Netgear switch with 40 Gb/s 
throughput.  The blades are booted over the network from 
the headnode, a plain old Dell Precision 670 with 4 GB 
main memory and over 1 TB of local SATA disk. 

The chassis is thus a fairly standard commodity setup – 
deliberately so since our intention was to investigate the 
viability of building a high-performance cluster from 
standard parts and plug-in FPGA cards from two 
independent vendors – Nallatech and Alpha Data. 

Logically we regard Maxwell as a collection of 64 
nodes, where a node is defined as a software process 
running on a host CPU, together with some FPGA 
acceleration hardware.  In full operation each blade CPU 
thus hosts two software processes, each of which 
‘manages’ one FPGA during runtime. 

One obvious drawback to Maxwell’s architecture is the 
diskless nature of the blades; all disk i/o traffic routes 
through the Ethernet switch, offering an instant 
performance bottleneck for data intensive applications.  
However, Maxwell is intended as a demonstration and 
exploration platform for FPGA-to-FPGA computing 
rather than a production system, so this is a design 
compromise we can live with just now. 

 
3.2 FPGAs 

 
The FPGAs in Maxwell are Xilinx Virtex-4 devices in 

two flavours.  Those on the Alpha Data cards are 
XC4VFX100 parts, while those on the Nallatech cards are 
XC4VLX160.  The reasons for this are more logistical 
and political than technical. 

The LX flavours of Xilinx’s Virtex range offer the 
greatest number of logic cells, while the FX flavours 
include embedded PowerPC cores and multigigabit serial 
transceivers (MGTs) (“RocketIO”) for off-chip 
communications [5].  The V4LX160s each have 152,064 
logic cells against the V4FX100s’ 94,896.  This makes 
them pretty large by current FPGA device standards, 
allowing room to implement significant pieces of HPC 
code on them.  Given the mixed nature of devices in the 
machine we have so far not used the PowerPC cores on 
the FX100s. 

These two flavours of Virtex-4 are built into two 
flavours of plug-in PCI card: the Nallatech H101 and the 
Alpha Data ADM-XRC-4FX.   

Both types of card connect using a PCI/PCI-X bridge, 
capable of 64 bit, 133MHz operation in PCI-X mode – a 

peak bandwidth of 600 MB/s.  PCI-X is by no means an 
ideal connection technology to use – PCI Express is 
capable of 8 GB/s on a 32-lane connection – and is 
another potential performance bottleneck on Maxwell – 
indeed on many PCI/PCI-X based FPGA cards.  However, 
our approach to programming Maxwell aims to remove 
the CPU-FPGA connection from critical code paths by 
performing the bulk of calculations purely on the FPGA, 
so again we regard this as an acceptable design tradeoff. 

 
3.3 Nallatech H101 

 
The cards in one half of Maxwell are a slight variant on 

Nallatech’s off-the-shelf H101-PCIXM [6].  The standard 
card uses V4100LX devices; Maxwell uses the 60% 
bigger V4160LX versions, with a peak clock speed of 200 
MHz.  There are 32 of these cards, occupying PCI slots in 
16 of the blades. 

Along with the V4LX160 the H101 has 16 MB of 
DDR-II SRAM in four banks, and one 512 MB bank of 
DDR-II SDRAM.  The four SRAM banks deliver a peak 
bandwidth of 6.4 GB/s, while the SDRAM delivers 3.2 
GB/s. 

Observant readers will have noticed that the V4LX 
devices in the H101s have no serial MGTs and thus no 
means of accessing the outside world.  Quite so.  
Communication links from the Nallatech cards are 
achieved through a separate comms chip, a small Virtex-II 
Pro FX device with an embedded router core.  Each H101 
card thus has four MGT links capable of running at 2.5 
Gb/s. 

 
3.4 Alpha Data ADM-XRC-4FX 

 
The other 16 blades in Maxwell host 32 Alpha Data 

ADM-XRC-4FX cards [7].  The ADM-XRC-4FX is a 
high performance reconfigurable PMC/PMC-X/XMC 
(PCI Mezzanine Card) based on the Xilinx Virtex-4-FX 
range.  The Maxwell cards are the V4FX100 variant. 

As with the Nallatech cards the ADM-XRC-4FX have 
16 MB of SRAM but double the SDRAM at 1,024 MB of 
DDR-II in four banks.  This gives a peak memory 
bandwidth on 8.4 GB/s to the SDRAM. 

Off-chip communication is direct from the V4FX 
devices – again, four RocketIO MGTs each with a 
maximum possible bandwidth of 3.125 GB/s. 

 
3.5 Communications networks 

 
As suggested thus far, Maxwell has two independent 

communications networks.  The blade CPUs are 
networked over standard gigabit Ethernet via a single 
switch; the CPUs thus have an all-to-all connectivity.  
This is contrasted with the FPGA network which consists 



of point-to-point links between the MGT connectors of 
adjacent FPGAs, as illustrated in Figure 1.  The FPGA 
pairs hosted on a single CPU form “east-west” pairs in the 
network. 

Figure 1.  FPGA connectivity in Maxwell 
 
The MGTs are connected with standard HSSDC2 1x-

1x Infiband cables of 50cm and 100cm lengths, kept as 
short as possible.   

The FPGA connections are purely point-to-point – we 
do not implement routing logic in the FPGA devices.  
Maxwell’s FPGAs thus form a two-dimensional torus, 
making the RocketIO network highly suitable for nearest-
neighbour communication patterns but less than ideal for 
reduction operations such as global sums.  For these, 
applications call back to the host CPUs for MPI reduction 
operations to be performed over Ethernet. 

Our general approach is to use the Ethernet network 
purely as a control network and to perform parallel 
communications over RocketIO.  The Ethernet is also 
used for any explicit MPI calls that remain in the 
application – for instance for start-up data distribution or 
finalizing data marshalling on completion. 

The hard-wired nature of the FPGA communications 
network contrasted with the implicit all-to-all CPU 
network means that care is required in constructing 
application configuration and acceleration components in 
software.  This is one thing we have tried to address in the 
Parallel Toolkit software environment (Section 4 below). 

 

4. Software environment 
 
Our aim with the environment on Maxwell was to 

make it as ‘HPC-system-like’ as possible.  Uptake of 
FPGA and related technologies in HPC will be hindered if 
the machines require a whole different approach to that of 
‘mainstream’ HPC. 

In the early days of parallel computing every vendor 
had their own way of doing things and progress for 
application developers was slow.  One vendor’s 
communication protocols did not map onto another’s  and 
machine environments were very different.  Today, 
parallel environments are much more standardized and 
there is a lot of ‘legacy’ software built using libraries like 
MPI, BLAS and SCALAPACK.  Machines requiring 
significantly different approaches will not find much 
traction. 

Thus Maxwell looks very much like any other parallel 
cluster.  It runs the Linux variant CentOS and all standard 
Gnu/Linux tools.  It offers Sun Grid Engine as a batch 
scheduling system and MPI for inter-process 
communication. 

The one novel innovation is the Parallel Toolkit 
(PTK).  The PTK has been developed as part of the 
overall design of Maxwell and provides an attempt to 
enforce top-down standardization on application codes 
across the different ‘flavours’ of hardware.  Unfortunately 
we do not have space here to go into detail, but the PTK is 
described in [8].  Suffice to say that it is a set of practices 
and infrastructure intended to address key issues in 
hardware acceleration such as associating processes with 
FPGA resources, associating FPGAs with bitstreams, 
managing contention for FPGA resources within a process 
and managing code dependencies to facilitate re-use. 

 
4.1 FPGA programming 

 
While providing a useful, common way of configuring 

FPGAs from software the PTK does not address the 
deeper portability issues for running applications on 
different flavours of FPGA hardware.  Maxwell still 
requires developers to build their FPGA bitstreams against 
either Nallatech H101 or Alpha Data ADM-XRC-4FX 
cards offline and copy the bitfiles across to the system.  
We do not mandate any particular tool approach for 
FPGA developers – any tool capable of targeting the two 
card types will produce a bitstream that can be run on 
Maxwell. 

 

5. Demonstration applications 
 
As part of the overall project we have ported three 

demonstration applications to run on Maxwell.  Each of 
these has been produced in two hardware ‘flavours’ for 
the two halves of the machine, with a common high-level 
interface to software captured in the Parallel Toolkit. 

Two criteria were used to select these applications.   
Firstly they were chosen from the application areas of 
financial engineering, medical imaging and oil and gas, 
three areas judged generally to have most to gain from 
hardware acceleration solutions of one form or another.  



Secondly they were chosen to illustrate progressively 
more complex parallel application features, from trivial 
parallelism and simple data requirements to full-scale 
distributed-memory parallelism. 

In all three cases we adopted the methodology of the 
PTK: identify the application hotspot; define an abstract 
object-oriented interface that encapsulates the hotspot; 
refactor the code against this interface; generate 
accelerated versions of the hotspot code underneath the 
interface.  In each case we also produced a ‘pure software’ 
version of the hotspot against the same PTK interface, 
providing a direct point of comparison for both testing 
and benchmarking purposes. 

 
5.1 MCopt – Monte Carlo option pricing 

 
Financial engineering is a mathematical branch of 

economics that deals with the modeling of asset prices and 
their associated derivatives.  One of the cornerstones of 
financial engineering is the Black-Schole model of prices 
[9], essentially a recasting of the equations of physical 
heat diffusion and Brownian motion. 

The assumptions of the Black-Scholes model imply 
that for a given stock price at time t, simulated changes in 
the stock price at a future time t + dt can be generated by 
the following formula:  

dS = S rc  dt + S σ ε √dt 
where S is the current stock price, dS is the change in the 
stock price, rc 

is the continuously compounded risk-free 
interest rate, σ is the volatility of the stock, dt is the length 
of the time interval over which the stock price change 
occurs and ε is a random number generated from a 
standard Gaussian probability distribution.  

The pricing of stock options follows the Black-Scholes 
model, and simple stock options (so-called ‘European’ 
options) can be priced with a simple closed-form formula 
called, unsurprisingly, the Black-Scholes formula.  More 
complex options such as those whose final price depends 
on a time-average or other path-dependent price 
calculations have no closed form and are typically priced 
using stochastic or Monte Carlo modeling. 

Our first demonstration applications supposes you 
wanted to price an ‘Asian’ option, an option in which the 
final stock price is replaced with the average price of the 
asset over a period of time, computed by collecting the 
daily closing price over the life of the option.  The price 
can be modeled as a series of dSs over the option’s 
lifetime (say Ntimesteps).  The formula for each dS is based 
on the previous day’s closing price, and the average of the 
Ntimesteps stock prices would determine the value of the 
option at expiration.   

The above gives you one possible future for the stock 
price; repeating the model Nruns times allows the process 

to converge on the ‘right’ option price.  Nruns  here is of 
order 10,000 – 50,000. 

Based on the above model, a serial code would be as 
follows: 

 
for i = 1, Nruns 
  for n = 1, Ntimesteps 
    ε = gaussianRandomNumber() 
    S[n][i] = S[n-1][i] (1 + rc dt + σ ε √dt) 
  endfor n 
  Sav[i] = 1/Ntimesteps �n S[n][i]   
  c[i] = max(Sav[i] – K, 0) 
  p[i] = max(K – Sav[i], 0) 
endfor i 
Sbar = 1/Nruns �i Sav[i] 
cfinal = 1/Nruns �i c[i] 
pfinal = 1/Nruns �i p[i] 

 
K here is the strike price of the option, the price 

defined in the option contract; rc and σ are as defined 
above. 

Pricing a single Asian option thus requires Nruns × 
Ntimesteps Gaussian random numbers (plus four multiplies 
and three adds each). 

Our demonstration captures this whole core, 
parameterized, on FPGA, and batches similar pricing 
calculations for different stocks/assets across the whole 64 
FPGAs.  In fact the demonstrator core is so compact that 
it can be replicated 10 times or more across a single 
FPGA device, providing an additional order of magnitude 
in possible speedup. 

This demonstrator – MCopt – is the simplest of the 
three applications, having a simple, compact 
computational core and very limited data requirements. 

 
5.2 DI3D – three and four-D facial imaging 

 
 The second demonstration application was produced 

in collaboration with Dimensional Imaging 3D ltd, a firm 
specializing in three and four-dimensional facial imaging 
for medical applications such as maxilo-facial surgery 
[10]. 

The principle here is that a digital camera rig is used to 
capture pairs of still (for 3D) or video (for 4D) images.  
Each stereo pair is then combined to produce a depth map 
which contains full three-dimensional information and is 
used to create a 3D software model, or a 3D video in the 
case of 4D capture. 

Image combination is an expensive business and is an 
ideal application for FPGA acceleration, playing well to 
the devices’ strengths in image processing.  Our 
demonstrator thus takes a key part of Dimensional 
Imaging’s own software and accelerates it using FPGA 
hardware.  Two versions of the demonstrator were 
produced – an embedded version which can connect to a 
live camera rig and provide on-the-fly image combination, 



and a batch version designed to process large numbers of 
image pairs from video frames. 

This latter version is designed to run across all 64 
FPGAs of Maxwell and provides the next step-up in 
complexity.  While as trivially parallel as the MCopt 
application this demonstrator has real data requirements – 
large digital images must be managed and streamed 
through the FPGAs in an efficient manner to ensure 
overall performance. 

 
5.3 OHM3D – CSEM modeling 

 
Our final demonstrator is another commercial code, 

this time in the area of oil and gas exploration.  OHM plc 
are an Aberdeen-based consultancy offering services to 
the oil and gas industry [11].  OHM specializes in a form 
of simulation called controlled source electromagnetic 
modeling, a technique which uses the conductive 
properties of materials to analyse pieces of the seabed in 
the search for oil or gas reserves [12]. 

OHM’s three-dimensional CSEM code provides the 
basis for our final demonstrator.  Already parallelized 
using MPI, this is a ‘classic’ HPC application involving 
large data sets representing physical spaces and fields, 
double-precision arithmetic and iterative numerical 
methods for performing linear algebra operations on large 
matrices and vectors. 

 

6. Initial performance results 
 
This section presents our preliminary results from early 

tests of the three demonstrator applications on Maxwell.  
At the time of writing this section is only partially 
complete since the final versions of the demonstrators are 
still undergoing test. 

All results quoted in this section were run on Maxwell.  
The quoted CPU results are thus for the 2.8 GHz Intel 
Xeon processors in the IBM blades.  In caption legends 
we use the label ‘AD’ to refer to the Alpha Data hosted 
FPGAs, and ‘NT’ to refer to the Nallatech hosted devices. 

 
6.1 MCopt 

 
MCopt is the simplest of the demonstrators, a trivially-

parallel engine to explore the parameter space of a typical 
option pricing calculation. 

Our tests for MCopt aim to explore the five-
dimensional parameter space defined by the variable input 
parameters to the Monte Carlo version of the Black-
Scholes model (S, K, rc, σ, Ntimesteps).  Our test draws 
100,000 data samples from this parameter space; we fix 
the number of Monte Carlo iterations, Nruns, to 10,000 for 
each sample. 

The single-node performance is shown in Figure 2, and 
Figure 3 shows MCopt run across 1 to 16 nodes, both 
CPU and FPGA 
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Figure 2.  Single-node MCopt performance (s). 

 
In Figure 3 the logarithmic scale belies the extreme 

scalability of the FPGA versions here: a batch of 100,000 
parameters (prices, rates or some combination of these) 
that would take over 4 ½ hours on a Xeon blade runs in 
less than a minute on one FPGA, or less than 3 seconds on 
16.  As might be expected with such a simple calculation 
the FPGAs outperform the CPU by over two orders of 
magnitude – a factor of 300 in the Alpha Data case. 
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Figure 3.  MCopt scaling performance on Maxwell 

(times in s).  Note the scale is logarithmic. 
 

6.2 DI3D – facial imaging 
 
The facial imaging demonstrator, while still trivially 

parallel in execution, is more challenging than the MCopt 
application because of its data requirements. 



Our tests here involve the batch processing of 32 pairs 
of video still images – 64 in all – each around 150 kB in 
size.  This represents a little over a second of three-
dimensional video.  The images are read in from 
networked disk, so this is also an interesting test of the 
network and i/o overheads of the parallel system. 

Figure 4 shows the single node performance for these 
tests.  Note that at the time of writing only times from the 
Nallatech side of the machine have been generated. 
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Figure 4.  Single node DI3D facial imaging 

performance (times in s).  Only the Nallatech results 
are available. 
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Figure 5.  Facial imaging scaling performance on 

Maxwell (times in s).  Again, only the Nallatech results 
are available. 

 
Figure 5 plots the runtime for the same test against 

increasing numbers of nodes.  In both Figures 4 and 5 
timings were made using the standard MPI timer function 
MPI_Wtime() [13] across the full batch-processing 

version of the application.  This includes software-only 
components not accelerated in hardware. 

The overall application speedup is around a factor of 
2.5.  When we restrict timings to the accelerated kernel 
against its software-only equivalent the speedup of the 
FPGA version is around 3.6.  While respectable in terms 
of general application optimization it is hard to make a 
case for the cost-effectiveness of the FPGA solution over 
a faster CPU and motherboard here. 

The final plot in Figure 6 shows the speedup curve 
from the scaling results.  Note the falloff towards 16 
processors for both versions – we suspect that this is a 
feature of i/o bandwidth saturation across the machine 
although we have not investigated in detail. 
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Figure 6.  Parallel speedup of the DI3D facial imaging 

code on Maxwell.  AD results are not yet available. 
 

6.3 OHM3D – CSEM modeling 
 
The most challenging of the demonstrators is the 

OHM3D CSEM modeling application, a fully-parallelised 
classic HPC simulation.  Here we used a sample dataset of 
size 50×45×200 (450,000 points) and ran the solver until 
it converged on a solution (c. 1000 iterations in both CPU 
and FPGA cases). 

Due to the preliminary nature of this work we have at 
the moment only one datapoint for the OHM3D code – 
Figure 7 shows this performance across eight nodes of 
Maxwell, comparing CPU-only runs with FPGA runs on 
the Alpha Data side of the machine.  Such are the memory 
requirements of this code that it is unable to run on fewer 
than 4 CPUs or 8 FPGAs. 

This preliminary result suggests the FPGA version runs 
some 4.8 times faster per node than the pure software 
version.  Since we are currently unable to report on the 
scaling properties of the FPGA versions of this code it is 



difficult to draw strong conclusions about the 
effectiveness of the accelerated versions over pure 
software.  Component test results do suggest that the 
RocketIO implementations of the boundary swap at the 
heart of the parallel kernel are at least as efficient as the 
MPI-based versions over gigabit Ethernet.  Thus we can 
expect that the FPGA versions will scale approximately as 
effectively as the CPU versions, and can conjecture that 
the factor of 4.8 performance improvement seen in the 
eight node version will persist on larger numbers of 
FPGAs. 

This ability to scale with increasing numbers of nodes 
is critical if FPGA solutions are to be competitive with 
parallelized software; the test of this for OHM3D is left 
for further work. 
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Figure 7.  OHM3D 8-node performance in seconds.   
Nallatech figures are unavailable at time of writing. 
 

6.4 A note on development costs 
 
The potential performance gains from FPGA codes 

must be weighed against the non-recurrent software 
engineering costs of porting them to a particular hardware 
platform in the first place.  For the work presented here, 
unravelling detailed engineering costs is a little complex, 
but approximately: MCopt took a few staff-weeks to 
develop both software harness and FPGA hardware; DI3D 
took six staff-months; and OHM3D took 12 staff-months 
and is as yet untested on more than eight FPGAs. 

In software engineering terms these costs are high.  In 
each case the software portions of these codes were ported 
by software engineers from EPCC and the FPGA portions 
by hardware engineers at Alpha Data and Nallatech.  Even 
playing to the strengths of the teams in this way the larger 
applications proved challenging to port across.  We have 
identified a number of reasons for this: 

• early development was done on Virtex-II Pro 
platforms; the transition from this to Virtex-4 was by 
no means straightforward; 

• the high-level “C-to-gates” tools used are still 
maturing.  Difficulty with tools, again partly in 
changing hardware versions, slowed development; 

• the size of the FPGAs brings challenges in two areas: 
o synchronizing timing across such large devices 

proves more difficult than with the earlier, 
smaller generations; 

o compilation (place-and-route) times for these 
codes is of the order of 6-8 hours; 

• memory management for data-bound HPC 
applications is the key to performance, and a difficult 
thing to get right. 

 
In our opinion addressing these issues must be a 

priority if FPGA computing is to gain more traction in the 
HPC or general-purpose computing fields. 

 

7. The future 
 
Maxwell now exists, a 32-way IBM Bladecentre 

containing 64 Xilinx Virtex-4s configured in two flavours.  
Initial performance results show that it has not suffered 
too badly from its ‘general purpose’ nature, and indeed 
suggest that ‘general purpose FPGA computer’ is at least 
not an oxymoron! 

We intend to explore ways to improve the 
programmability of Maxwell and FPGA-based systems in 
general.  While the three demonstrators here show that 
FPGAs can deliver genuine performance benefits even for 
memory-bound HPC simulation codes, the hardware 
accelerations did not write themselves, and the costs were 
high. 

Realising significant benefit does still require 
collaboration between software and hardware engineers.  
The PTK has been a useful development in providing 
high-level vendor-neutral application interfaces and 
common methods of configuration and job launching but 
its standardizing approach does not go deep enough into 
the software stack. 

The HPRC community needs now to turn its attention 
to standards at all levels to help cement FPGAs into the 
new fabric of high-performance computing. 
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