

Maxwell – a 64 FPGA Supercomputer

Rob Baxter1, Stephen Booth,
Mark Bull, Geoff Cawood,
James Perry, Mark Parsons,
Alan Simpson, Arthur Trew

EPCC and FHPCA

Andrew McCormick,
Graham Smart,
Ronnie Smart

Alpha Data ltd and FPHCA

Allan Cantle,
Richard Chamberlain,

Gildas Genest

Nallatech ltd and FHPCA

1 communicating author: r.baxter@epcc.ed.ac.uk; 0131 651 3579;
 University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Edinburgh EH9 3JZ

Abstract
We present the initial results from the FHPCA
Supercomputer project at the University of Edinburgh.
The project has successfully built a general-purpose 64
FPGA computer and ported to it three demonstration
applications from the oil, medical and finance sectors.
This paper describes the machine itself – Maxwell – its
hardware and software environment and presents very
early benchmark results from runs of the demonstrators.

1. Introduction

Against the background of possibilities in the emerging

area of high-performance reconfigurable computing [1]
the FPGA High Performance Computing Alliance
(FHPCA [2]) was founded in early 2005 to take forward
the ideas of an FPGA-based supercomputer. The alliance
partners are Algotronix, Alpha Data, EPCC at the
University of Edinburgh, the Institute for System Level
Integration, Nallatech and Xilinx. The project was
facilitated and part funded by the Scottish Enterprise
Industries team and had two main goals:

• design and build a 64-FPGA supercomputer from
commodity parts and “plug-in” FPGA cards;

• demonstrate its effectiveness (or otherwise) for
real-world high-performance computing (HPC)
applications.

We describe here the results of the first of these goals
and report some early results of the second.

The machine itself – Maxwell – was completed in the
first part of this year. We describe its architecture in
Section 3; interestingly it shares a number of similarities
with the proposed petascale Reconfigurable Computing
Cluster described by Sass et al in [3].

This paper is structured as follows. Section 2 describes
the motivation behind Maxwell. Section 3 delves into the
details of the machine’s hardware while Section 4

describes the software environment and programming
methodology used in porting a number of demonstration
applications. Section 5 discusses three key demonstration
applications from the fields of financial services, medical
imaging and oil and gas exploration., and Section 6
presents early performance results from these applications
on Maxwell. Finally Section 7 offers thoughts for the
future.

2. Motivation

Maxwell is designed as a proof-of-concept general-

purpose FPGA supercomputer. Given the specialized
nature of hardware acceleration the very concept of
‘general-purpose’ for high-performance reconfigurable
computing (HPRC) is worth investigating in its own right.
Can a machine built to be as broadly applicable as
possible deliver enough FPGA performance to be worth
the cost?

Our real interest in building Maxwell was not to test
whether FPGA hardware can be used to accelerate
segments of a standard HPC application, but to explore
whether standard HPC applications can be run almost
entirely on FPGA hardware, parallel communications and
all. We take the same view as Bennett et al [4] in
regarding the FPGAs as the primary compute platform
rather than co-processors to a CPU. To this end we
constructed a machine capable in principle of parallel
operation across a network of large FPGAs linked directly
together.

3. Hardware

Maxwell is essentially an IBM BladeCentre Cluster

with FPGA acceleration. Altogether it comprises 32 blade
servers each with one Intel Xeon CPU and two Xilinx
Virtex-4 FPGAs. The CPUs are connected to the FPGAs
with a standard IBM PCI-X Expansion Module.

3.1 BladeCentre chassis

Physically Maxwell comprises two 19-inch racks and

five IBM BladeCentres. Four of the BladeCentres have
seven IBM Intel Xeon blades and the fifth has four. Each
blade is a diskless 2.8 GHz Intel Xeon with 1 GB main
memory. The blades are connected over gigabit Ethernet
through a single 48-way Netgear switch with 40 Gb/s
throughput. The blades are booted over the network from
the headnode, a plain old Dell Precision 670 with 4 GB
main memory and over 1 TB of local SATA disk.

The chassis is thus a fairly standard commodity setup –
deliberately so since our intention was to investigate the
viability of building a high-performance cluster from
standard parts and plug-in FPGA cards from two
independent vendors – Nallatech and Alpha Data.

Logically we regard Maxwell as a collection of 64
nodes, where a node is defined as a software process
running on a host CPU, together with some FPGA
acceleration hardware. In full operation each blade CPU
thus hosts two software processes, each of which
‘manages’ one FPGA during runtime.

One obvious drawback to Maxwell’s architecture is the
diskless nature of the blades; all disk i/o traffic routes
through the Ethernet switch, offering an instant
performance bottleneck for data intensive applications.
However, Maxwell is intended as a demonstration and
exploration platform for FPGA-to-FPGA computing
rather than a production system, so this is a design
compromise we can live with just now.

3.2 FPGAs

The FPGAs in Maxwell are Xilinx Virtex-4 devices in

two flavours. Those on the Alpha Data cards are
XC4VFX100 parts, while those on the Nallatech cards are
XC4VLX160. The reasons for this are more logistical
and political than technical.

The LX flavours of Xilinx’s Virtex range offer the
greatest number of logic cells, while the FX flavours
include embedded PowerPC cores and multigigabit serial
transceivers (MGTs) (“RocketIO”) for off-chip
communications [5]. The V4LX160s each have 152,064
logic cells against the V4FX100s’ 94,896. This makes
them pretty large by current FPGA device standards,
allowing room to implement significant pieces of HPC
code on them. Given the mixed nature of devices in the
machine we have so far not used the PowerPC cores on
the FX100s.

These two flavours of Virtex-4 are built into two
flavours of plug-in PCI card: the Nallatech H101 and the
Alpha Data ADM-XRC-4FX.

Both types of card connect using a PCI/PCI-X bridge,
capable of 64 bit, 133MHz operation in PCI-X mode – a

peak bandwidth of 600 MB/s. PCI-X is by no means an
ideal connection technology to use – PCI Express is
capable of 8 GB/s on a 32-lane connection – and is
another potential performance bottleneck on Maxwell –
indeed on many PCI/PCI-X based FPGA cards. However,
our approach to programming Maxwell aims to remove
the CPU-FPGA connection from critical code paths by
performing the bulk of calculations purely on the FPGA,
so again we regard this as an acceptable design tradeoff.

3.3 Nallatech H101

The cards in one half of Maxwell are a slight variant on

Nallatech’s off-the-shelf H101-PCIXM [6]. The standard
card uses V4100LX devices; Maxwell uses the 60%
bigger V4160LX versions, with a peak clock speed of 200
MHz. There are 32 of these cards, occupying PCI slots in
16 of the blades.

Along with the V4LX160 the H101 has 16 MB of
DDR-II SRAM in four banks, and one 512 MB bank of
DDR-II SDRAM. The four SRAM banks deliver a peak
bandwidth of 6.4 GB/s, while the SDRAM delivers 3.2
GB/s.

Observant readers will have noticed that the V4LX
devices in the H101s have no serial MGTs and thus no
means of accessing the outside world. Quite so.
Communication links from the Nallatech cards are
achieved through a separate comms chip, a small Virtex-II
Pro FX device with an embedded router core. Each H101
card thus has four MGT links capable of running at 2.5
Gb/s.

3.4 Alpha Data ADM-XRC-4FX

The other 16 blades in Maxwell host 32 Alpha Data

ADM-XRC-4FX cards [7]. The ADM-XRC-4FX is a
high performance reconfigurable PMC/PMC-X/XMC
(PCI Mezzanine Card) based on the Xilinx Virtex-4-FX
range. The Maxwell cards are the V4FX100 variant.

As with the Nallatech cards the ADM-XRC-4FX have
16 MB of SRAM but double the SDRAM at 1,024 MB of
DDR-II in four banks. This gives a peak memory
bandwidth on 8.4 GB/s to the SDRAM.

Off-chip communication is direct from the V4FX
devices – again, four RocketIO MGTs each with a
maximum possible bandwidth of 3.125 GB/s.

3.5 Communications networks

As suggested thus far, Maxwell has two independent

communications networks. The blade CPUs are
networked over standard gigabit Ethernet via a single
switch; the CPUs thus have an all-to-all connectivity.
This is contrasted with the FPGA network which consists

of point-to-point links between the MGT connectors of
adjacent FPGAs, as illustrated in Figure 1. The FPGA
pairs hosted on a single CPU form “east-west” pairs in the
network.

Figure 1. FPGA connectivity in Maxwell

The MGTs are connected with standard HSSDC2 1x-

1x Infiband cables of 50cm and 100cm lengths, kept as
short as possible.

The FPGA connections are purely point-to-point – we
do not implement routing logic in the FPGA devices.
Maxwell’s FPGAs thus form a two-dimensional torus,
making the RocketIO network highly suitable for nearest-
neighbour communication patterns but less than ideal for
reduction operations such as global sums. For these,
applications call back to the host CPUs for MPI reduction
operations to be performed over Ethernet.

Our general approach is to use the Ethernet network
purely as a control network and to perform parallel
communications over RocketIO. The Ethernet is also
used for any explicit MPI calls that remain in the
application – for instance for start-up data distribution or
finalizing data marshalling on completion.

The hard-wired nature of the FPGA communications
network contrasted with the implicit all-to-all CPU
network means that care is required in constructing
application configuration and acceleration components in
software. This is one thing we have tried to address in the
Parallel Toolkit software environment (Section 4 below).

4. Software environment

Our aim with the environment on Maxwell was to

make it as ‘HPC-system-like’ as possible. Uptake of
FPGA and related technologies in HPC will be hindered if
the machines require a whole different approach to that of
‘mainstream’ HPC.

In the early days of parallel computing every vendor
had their own way of doing things and progress for
application developers was slow. One vendor’s
communication protocols did not map onto another’s and
machine environments were very different. Today,
parallel environments are much more standardized and
there is a lot of ‘legacy’ software built using libraries like
MPI, BLAS and SCALAPACK. Machines requiring
significantly different approaches will not find much
traction.

Thus Maxwell looks very much like any other parallel
cluster. It runs the Linux variant CentOS and all standard
Gnu/Linux tools. It offers Sun Grid Engine as a batch
scheduling system and MPI for inter-process
communication.

The one novel innovation is the Parallel Toolkit
(PTK). The PTK has been developed as part of the
overall design of Maxwell and provides an attempt to
enforce top-down standardization on application codes
across the different ‘flavours’ of hardware. Unfortunately
we do not have space here to go into detail, but the PTK is
described in [8]. Suffice to say that it is a set of practices
and infrastructure intended to address key issues in
hardware acceleration such as associating processes with
FPGA resources, associating FPGAs with bitstreams,
managing contention for FPGA resources within a process
and managing code dependencies to facilitate re-use.

4.1 FPGA programming

While providing a useful, common way of configuring

FPGAs from software the PTK does not address the
deeper portability issues for running applications on
different flavours of FPGA hardware. Maxwell still
requires developers to build their FPGA bitstreams against
either Nallatech H101 or Alpha Data ADM-XRC-4FX
cards offline and copy the bitfiles across to the system.
We do not mandate any particular tool approach for
FPGA developers – any tool capable of targeting the two
card types will produce a bitstream that can be run on
Maxwell.

5. Demonstration applications

As part of the overall project we have ported three

demonstration applications to run on Maxwell. Each of
these has been produced in two hardware ‘flavours’ for
the two halves of the machine, with a common high-level
interface to software captured in the Parallel Toolkit.

Two criteria were used to select these applications.
Firstly they were chosen from the application areas of
financial engineering, medical imaging and oil and gas,
three areas judged generally to have most to gain from
hardware acceleration solutions of one form or another.

Secondly they were chosen to illustrate progressively
more complex parallel application features, from trivial
parallelism and simple data requirements to full-scale
distributed-memory parallelism.

In all three cases we adopted the methodology of the
PTK: identify the application hotspot; define an abstract
object-oriented interface that encapsulates the hotspot;
refactor the code against this interface; generate
accelerated versions of the hotspot code underneath the
interface. In each case we also produced a ‘pure software’
version of the hotspot against the same PTK interface,
providing a direct point of comparison for both testing
and benchmarking purposes.

5.1 MCopt – Monte Carlo option pricing

Financial engineering is a mathematical branch of

economics that deals with the modeling of asset prices and
their associated derivatives. One of the cornerstones of
financial engineering is the Black-Schole model of prices
[9], essentially a recasting of the equations of physical
heat diffusion and Brownian motion.

The assumptions of the Black-Scholes model imply
that for a given stock price at time t, simulated changes in
the stock price at a future time t + dt can be generated by
the following formula:

dS = S rc dt + S σ ε √dt
where S is the current stock price, dS is the change in the
stock price, rc

is the continuously compounded risk-free
interest rate, σ is the volatility of the stock, dt is the length
of the time interval over which the stock price change
occurs and ε is a random number generated from a
standard Gaussian probability distribution.

The pricing of stock options follows the Black-Scholes
model, and simple stock options (so-called ‘European’
options) can be priced with a simple closed-form formula
called, unsurprisingly, the Black-Scholes formula. More
complex options such as those whose final price depends
on a time-average or other path-dependent price
calculations have no closed form and are typically priced
using stochastic or Monte Carlo modeling.

Our first demonstration applications supposes you
wanted to price an ‘Asian’ option, an option in which the
final stock price is replaced with the average price of the
asset over a period of time, computed by collecting the
daily closing price over the life of the option. The price
can be modeled as a series of dSs over the option’s
lifetime (say Ntimesteps). The formula for each dS is based
on the previous day’s closing price, and the average of the
Ntimesteps stock prices would determine the value of the
option at expiration.

The above gives you one possible future for the stock
price; repeating the model Nruns times allows the process

to converge on the ‘right’ option price. Nruns here is of
order 10,000 – 50,000.

Based on the above model, a serial code would be as
follows:

for i = 1, Nruns
 for n = 1, Ntimesteps
 ε = gaussianRandomNumber()
 S[n][i] = S[n-1][i] (1 + rc dt + σ ε √dt)
 endfor n
 Sav[i] = 1/Ntimesteps �n S[n][i]
 c[i] = max(Sav[i] – K, 0)
 p[i] = max(K – Sav[i], 0)
endfor i
Sbar = 1/Nruns �i Sav[i]
cfinal = 1/Nruns �i c[i]
pfinal = 1/Nruns �i p[i]

K here is the strike price of the option, the price

defined in the option contract; rc and σ are as defined
above.

Pricing a single Asian option thus requires Nruns ×
Ntimesteps Gaussian random numbers (plus four multiplies
and three adds each).

Our demonstration captures this whole core,
parameterized, on FPGA, and batches similar pricing
calculations for different stocks/assets across the whole 64
FPGAs. In fact the demonstrator core is so compact that
it can be replicated 10 times or more across a single
FPGA device, providing an additional order of magnitude
in possible speedup.

This demonstrator – MCopt – is the simplest of the
three applications, having a simple, compact
computational core and very limited data requirements.

5.2 DI3D – three and four-D facial imaging

 The second demonstration application was produced

in collaboration with Dimensional Imaging 3D ltd, a firm
specializing in three and four-dimensional facial imaging
for medical applications such as maxilo-facial surgery
[10].

The principle here is that a digital camera rig is used to
capture pairs of still (for 3D) or video (for 4D) images.
Each stereo pair is then combined to produce a depth map
which contains full three-dimensional information and is
used to create a 3D software model, or a 3D video in the
case of 4D capture.

Image combination is an expensive business and is an
ideal application for FPGA acceleration, playing well to
the devices’ strengths in image processing. Our
demonstrator thus takes a key part of Dimensional
Imaging’s own software and accelerates it using FPGA
hardware. Two versions of the demonstrator were
produced – an embedded version which can connect to a
live camera rig and provide on-the-fly image combination,

and a batch version designed to process large numbers of
image pairs from video frames.

This latter version is designed to run across all 64
FPGAs of Maxwell and provides the next step-up in
complexity. While as trivially parallel as the MCopt
application this demonstrator has real data requirements –
large digital images must be managed and streamed
through the FPGAs in an efficient manner to ensure
overall performance.

5.3 OHM3D – CSEM modeling

Our final demonstrator is another commercial code,

this time in the area of oil and gas exploration. OHM plc
are an Aberdeen-based consultancy offering services to
the oil and gas industry [11]. OHM specializes in a form
of simulation called controlled source electromagnetic
modeling, a technique which uses the conductive
properties of materials to analyse pieces of the seabed in
the search for oil or gas reserves [12].

OHM’s three-dimensional CSEM code provides the
basis for our final demonstrator. Already parallelized
using MPI, this is a ‘classic’ HPC application involving
large data sets representing physical spaces and fields,
double-precision arithmetic and iterative numerical
methods for performing linear algebra operations on large
matrices and vectors.

6. Initial performance results

This section presents our preliminary results from early

tests of the three demonstrator applications on Maxwell.
At the time of writing this section is only partially
complete since the final versions of the demonstrators are
still undergoing test.

All results quoted in this section were run on Maxwell.
The quoted CPU results are thus for the 2.8 GHz Intel
Xeon processors in the IBM blades. In caption legends
we use the label ‘AD’ to refer to the Alpha Data hosted
FPGAs, and ‘NT’ to refer to the Nallatech hosted devices.

6.1 MCopt

MCopt is the simplest of the demonstrators, a trivially-

parallel engine to explore the parameter space of a typical
option pricing calculation.

Our tests for MCopt aim to explore the five-
dimensional parameter space defined by the variable input
parameters to the Monte Carlo version of the Black-
Scholes model (S, K, rc, σ, Ntimesteps). Our test draws
100,000 data samples from this parameter space; we fix
the number of Monte Carlo iterations, Nruns, to 10,000 for
each sample.

The single-node performance is shown in Figure 2, and
Figure 3 shows MCopt run across 1 to 16 nodes, both
CPU and FPGA

15810

49 145
0

5000

10000

15000

20000

CPU AD NT

Figure 2. Single-node MCopt performance (s).

In Figure 3 the logarithmic scale belies the extreme

scalability of the FPGA versions here: a batch of 100,000
parameters (prices, rates or some combination of these)
that would take over 4 ½ hours on a Xeon blade runs in
less than a minute on one FPGA, or less than 3 seconds on
16. As might be expected with such a simple calculation
the FPGAs outperform the CPU by over two orders of
magnitude – a factor of 300 in the Alpha Data case.

1

10

100

1000

10000

100000

1 2 4 8 16

CPU

AD

NT

Figure 3. MCopt scaling performance on Maxwell

(times in s). Note the scale is logarithmic.

6.2 DI3D – facial imaging

The facial imaging demonstrator, while still trivially

parallel in execution, is more challenging than the MCopt
application because of its data requirements.

Our tests here involve the batch processing of 32 pairs
of video still images – 64 in all – each around 150 kB in
size. This represents a little over a second of three-
dimensional video. The images are read in from
networked disk, so this is also an interesting test of the
network and i/o overheads of the parallel system.

Figure 4 shows the single node performance for these
tests. Note that at the time of writing only times from the
Nallatech side of the machine have been generated.

834.0

330.5

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

CPU AD NT

W
al

lc
lo

ck
 ti

m
e

(s
)

Figure 4. Single node DI3D facial imaging

performance (times in s). Only the Nallatech results
are available.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

2 4 8 16 32

W
al

lc
lo

ck
 ti

m
e

(s
)

CPU

AD

NT

Figure 5. Facial imaging scaling performance on

Maxwell (times in s). Again, only the Nallatech results
are available.

Figure 5 plots the runtime for the same test against

increasing numbers of nodes. In both Figures 4 and 5
timings were made using the standard MPI timer function
MPI_Wtime() [13] across the full batch-processing

version of the application. This includes software-only
components not accelerated in hardware.

The overall application speedup is around a factor of
2.5. When we restrict timings to the accelerated kernel
against its software-only equivalent the speedup of the
FPGA version is around 3.6. While respectable in terms
of general application optimization it is hard to make a
case for the cost-effectiveness of the FPGA solution over
a faster CPU and motherboard here.

The final plot in Figure 6 shows the speedup curve
from the scaling results. Note the falloff towards 16
processors for both versions – we suspect that this is a
feature of i/o bandwidth saturation across the machine
although we have not investigated in detail.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0 2 4 6 8 10 12 14 16 18

linear

CPU

AD

NT

Figure 6. Parallel speedup of the DI3D facial imaging

code on Maxwell. AD results are not yet available.

6.3 OHM3D – CSEM modeling

The most challenging of the demonstrators is the

OHM3D CSEM modeling application, a fully-parallelised
classic HPC simulation. Here we used a sample dataset of
size 50×45×200 (450,000 points) and ran the solver until
it converged on a solution (c. 1000 iterations in both CPU
and FPGA cases).

Due to the preliminary nature of this work we have at
the moment only one datapoint for the OHM3D code –
Figure 7 shows this performance across eight nodes of
Maxwell, comparing CPU-only runs with FPGA runs on
the Alpha Data side of the machine. Such are the memory
requirements of this code that it is unable to run on fewer
than 4 CPUs or 8 FPGAs.

This preliminary result suggests the FPGA version runs
some 4.8 times faster per node than the pure software
version. Since we are currently unable to report on the
scaling properties of the FPGA versions of this code it is

difficult to draw strong conclusions about the
effectiveness of the accelerated versions over pure
software. Component test results do suggest that the
RocketIO implementations of the boundary swap at the
heart of the parallel kernel are at least as efficient as the
MPI-based versions over gigabit Ethernet. Thus we can
expect that the FPGA versions will scale approximately as
effectively as the CPU versions, and can conjecture that
the factor of 4.8 performance improvement seen in the
eight node version will persist on larger numbers of
FPGAs.

This ability to scale with increasing numbers of nodes
is critical if FPGA solutions are to be competitive with
parallelized software; the test of this for OHM3D is left
for further work.

846.0

174.8

0.0
100.0
200.0
300.0
400.0
500.0
600.0
700.0
800.0
900.0

CPU AD NT

W
al

lc
lo

ck
 ti

m
e

(s
)

Figure 7. OHM3D 8-node performance in seconds.
Nallatech figures are unavailable at time of writing.

6.4 A note on development costs

The potential performance gains from FPGA codes

must be weighed against the non-recurrent software
engineering costs of porting them to a particular hardware
platform in the first place. For the work presented here,
unravelling detailed engineering costs is a little complex,
but approximately: MCopt took a few staff-weeks to
develop both software harness and FPGA hardware; DI3D
took six staff-months; and OHM3D took 12 staff-months
and is as yet untested on more than eight FPGAs.

In software engineering terms these costs are high. In
each case the software portions of these codes were ported
by software engineers from EPCC and the FPGA portions
by hardware engineers at Alpha Data and Nallatech. Even
playing to the strengths of the teams in this way the larger
applications proved challenging to port across. We have
identified a number of reasons for this:

• early development was done on Virtex-II Pro
platforms; the transition from this to Virtex-4 was by
no means straightforward;

• the high-level “C-to-gates” tools used are still
maturing. Difficulty with tools, again partly in
changing hardware versions, slowed development;

• the size of the FPGAs brings challenges in two areas:
o synchronizing timing across such large devices

proves more difficult than with the earlier,
smaller generations;

o compilation (place-and-route) times for these
codes is of the order of 6-8 hours;

• memory management for data-bound HPC
applications is the key to performance, and a difficult
thing to get right.

In our opinion addressing these issues must be a

priority if FPGA computing is to gain more traction in the
HPC or general-purpose computing fields.

7. The future

Maxwell now exists, a 32-way IBM Bladecentre

containing 64 Xilinx Virtex-4s configured in two flavours.
Initial performance results show that it has not suffered
too badly from its ‘general purpose’ nature, and indeed
suggest that ‘general purpose FPGA computer’ is at least
not an oxymoron!

We intend to explore ways to improve the
programmability of Maxwell and FPGA-based systems in
general. While the three demonstrators here show that
FPGAs can deliver genuine performance benefits even for
memory-bound HPC simulation codes, the hardware
accelerations did not write themselves, and the costs were
high.

Realising significant benefit does still require
collaboration between software and hardware engineers.
The PTK has been a useful development in providing
high-level vendor-neutral application interfaces and
common methods of configuration and job launching but
its standardizing approach does not go deep enough into
the software stack.

The HPRC community needs now to turn its attention
to standards at all levels to help cement FPGAs into the
new fabric of high-performance computing.

8. References

[1] R. Baxter et al, “High-Performance Reconfigurable
Computing – the View from Edinburgh”, Proc. AHS2007 Conf.,
Second NASA/ESA Conference on Adaptive Hardware and
Systems, Edinburgh, 2007.
[2] The FHPCA, www.fhpca.org

[3] R. Saas et al, “Reconfigurable Computing Cluster
(RCC) Project: Investigating the Feasibility of FPGA-
Based Petascale Computing”, 15th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’07)
[4] D. Bennett et al, “An FPGA-oriented target language for
HLL compilation”, RSSI 2006.
[5] Virtex-4 datasheets,
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/v
irtex4/index.htm, Xilinx Inc, May 2007.
[6] H100 Series datasheet,
http://www.nallatech.com/mediaLibrary/images/english/5595.pd
f, Nallatech ltd, May 2007.
[7] ADM-XRC-4FX datasheet,
http://www.alphadata.co.uk/adm-xrc-4fx.html, Alpha Data ltd,
May 2007.
[8] R. Baxter et al, “The FPGA HPC Alliance Parallel
Toolkit”, Proc. AHS2007 Conf., Second NASA/ESA Conference
on Adaptive Hardware and Systems, Edinburgh, 2007.
[9] F. Black & M. Scholes, “The Pricing of Options and
Corporate Liabilities”, Journal of Political Economy, Vol. 81,
pp. 637-654.
[10] Dimensional Imaging, http://www.di3d.com/
[11] OHM plc, http://www.ohmsurveys.com/
[12] L. MacGregor, D. Andreis, J. Tomlinson & N. Barker,
“Controlled-source electromagnetic imaging on the Nuggets-1
reservoir”, The Leading Edge; August 2006; v. 25; no. 8; pp.
984-992.
[13] MPI manual, Argonne National Lab, http://www-
unix.mcs.anl.gov/mpi/www/www3/MPI_Wtime.html

