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Turbulent state of the Maxwell-Bloch (M-B) equation, a classical model describing 

propagation of light through active resonant medium, is investigated in detail for a large 

number of cavity modes. The M-B system has turbulent solutions corresponding to the 

multi-mode laser oscillation. Confining ourselves to the good cavity case, the nature of the 

turbulent solution is studied in detail with use of the method of information theoretical 

characterization in the wave-number domain. How the networks of information carried by 

turbulent disturbances are formed in the wave-number domain is clarified. Turbulent distur

bances are generated in relatively narrow wave-number regions which we call the Rabi 

chaotic bands and propagate towards various other regions in the wave-number space. In 

this way the wave-number space is classified into two domains, that is, the attractor interior 

and the attractor exterior. The information theoretical analysis further reveals that the 

resonant wave-number region is dynamically correlated with the Rabi chaotic bands on a time 

scale much longer than that of chaotic motion. Such a correlated motion is responsible for 

the slow dynamics in the resonant region to which most of photon energy is distributed. In 

particular two typical dynamical phenomena, i.e., the mode partition noise and the mode 

hopping often observed in multi-mode laser oscillation are self-induced in the resonant region. 

The mode hopping is a 'chaotic itinerancy' among the ruins of local attractors with simple 

topological characteristics. It is shown that the interplay between the resonant region and 

the Rabi chaotic bands yields a quite ingenious mechanism which enables the topological 

characteristic to change and thereby induces the mode hopping. 
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296 K. Ikeda, K. Otsuka and K. Matsumoto 

Self-induced mode partition noise 

4.2. Longer time scale: self-induced mode hopping 

The mode hopping 

Self-formation of easy paths 

§ 1. Introduction 

An aim of the study of dissipative chaos is to elucidate the structure of complex 

dynamics of turbulent phenomena to which a huge number of degrees of freedom 

contribute. Fluid systems provide classical examples which exhibit such a complex 

turbulent dynamics. Besides the fluid systems, examples of turbulent behaviors have 

been found in various systems such as biological oscillations, chemical reaction 

systems, liquid crystals, nonlinear optical systems and so on. 

From the standpoint of nonlinear dynamics, the nonlinear optical systems have 

the following attractive features: Most of the nonlinear optical systems can approxi

mately be regarded as spatially one dimensional systems which are extended in the 

direction of the propagation of electromagnetic field, and the longitudinal modes 

alone contribute to the system's operation. Therefore, dynamics of nonlinear optical 

systems will much more easily be analyzed than other systems such as fluid systems. 

In spite of the simple structure, various complex dynamical phenomena have been 

observed in nonlinear optical systems. In particular a number of experimental 

studies have been reported for various kinds of fluctuation phenomena inherent in 

laser oscillation, for example, random spiking of laser output,Il mode hopping,2l 

construction and/ or destruction of mode locking,3l reflection induced noise4l and so on. 

Most of these phenomena are related with the multi-mode laser oscillation where a 

number of longitudinal electromagnetic field modes participate in laser operation. In 

this sense the nonlinear optics is a 'store-house' of spatially one dimensional complex 

dynamical phenomena, and we may expect that various examples of one dimensional 

complex dynamics may be realized with the nonlinear optical systems. It should be, 

however, commented that additional spatial dimensions must be taken into account in 

order to describe the systems for which the transversal effect plays a crucial role. A 

typical example is the holographic laser which operate as an associative memory 

element.5> 

Multi-mode oscillation has extensively been investigated for passive nonlinear 

optical systems modeling the bistable optical elements.6Ho> However, the studies of 

complex dynamical behaviors in active nonlinear optical systems typically 

exemplified by lasers have been so far restricted to low dimensional chaos to which 

only a few number of longitudinal modes contribute,s>,loJ,ll> although multi-mode 

oscillations are quite common in laser operations. Needless to say, this is because 

there has not been presented any efficient method by which the underlying structure 

of complex multi-mode dynamics can be analyzed. Recently an information theo

retical method is proposed by two of the present authors12> in order to characterize 

high-dimensional chaotic behaviors,9l and the method has been applied to the study of 

the multi-mode oscillation described by a simplified model of passive optical 

resonators. 12> We expect that this method may successfully be applied to exper-
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Maxwell-Bloch Turbulence 297 

imental as well as theoretical studies of multi-mode laser oscillations. 

In the present paper we study a typical turbulent state exhibited by a simplest 

model of the laser system: (1) First, we introduce the homogeneously broadened 

Maxwell-Bloch (M-B) equation, which is well known as a classical model of the laser 

system. Typical instability discovered for the M-B system is reviewed, and we show 

that this equation has a turbulent solution corresponding to multi-mode oscillation 

well above the instability threshold. (2) Secondly, we investigate the dynamical 

structure of the chaotic multi-mode oscillation by means of the information theo

retical method mentioned above. The 2-point and the 3-point mutual information are 

used for analyzing how the chaotic disturbances are generated and propagate in the 

wave-number space, and thereby the information structure as well as the information 

networks formed through the chaotic dynamics is elucidated. (3) Finally, we demon

strate that our chaotic multi-mode oscillation is accompanied by the two fluctuation 

phenomena well known as the mode partition noise and the mode hopping, which have 

been often observed in multi-mode laser oscillations. This is the first evidence that 

both the mode partition noise and the mode hopping can be self-induced by the chaotic 

dynamics inherent in the M-B system itself without introducing any noise source from 

the external world. An important role of a simple topological constraint inherent in 

the M-B system in realizing these fluctuation phenomena is discussed. In particular 

it is shown that the chaotic dynamics enables the system to form easy paths among 

the localized chaotic attractors and to itinerate over the 'ruins' of these attractors. 

The three subjects described above are presented in §§2~4, respectively. Section 5 is 

devoted to summarizing the complex dynamical behavior realized in the turbulent 

state of the M-B system. 

§ 2. Turburent states of Maxwell-Bloch system 

2.1. Model system 

Multi-mode oscillations in laser systems have been observed for gas lasers and 

solid state lasers in which the effect of inhomogeneous broadening cannot be neglect

ed.13J As has been pointed out by Casperson, the inhomogeneous broadening severely 

influences the stability of the system even in the case of single mode operation.14J In 

the case of multi-mode operation Mandel showed that the stationary lasing regime 

disappears in the inhomogeneously broadened limit.15J In the present paper we do 

not, however, take into account the effect of inhomogeneous broadening. This is 

because multi-mode oscillations in laser system have not been understood theoretical

ly at all even for homogeneously broadened limit. Dye-lasers and semiconductor 

lasers (and maybe quantum-well lasers) provide some examples of homogeneously 

broadened system which exhibit multi-mode oscillation. Quite interesting effects of 
inhomogeneous broadening will be investigated in future studies. 

The simplest classical model of the homogeneously broadened laser systems is the 

Maxwell-Bloch (M-B) equations describing the motion of electromagnetic field 

propagating unidirectionally through a resonant two-level medium. The Maxwell

Bloch (M-B) system is described by the following set of partial differential equations: 
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298 K. Ikeda, K. Otsuka and K. Matsumoto 

aE(t, z)/at+caE(t, z)/az=K(P(t, z)- E(t, z)), 

aP(t, z)/at= r2C- P(t, z)+ E(t, z) W(t, z)), 

(2·1a) 

(2·1b) 

aw(t, z)/at= r1[- W(t, z)+A + 1- ~ (E(t, z)P*(t, z)+ E*(t, z)P(t, z)) J. 
(2·1c) 

Here t and z are time and space coordinates, respectively, and cis the light velocity. 

E(t, z) and P(t, z) are complex variables which represent the envelopes of the electric 

field and of the polarization field, respectively, and W(t, z) is a real variable standing 

for the population inversion field. Thus E(t, z) means the electric field in the 

resonator, whereas P(t, z), W(t, z) represent the two-level medium field. r2 and r1 
are the transversal and longitudinal relaxation rates of the medium. On the other 

hand K is the parameter characterizing the loss rate of the resonator, and A stands for 

the pumping power. According to Risken and Nummendal/6> we have scaled all the 

variables by their stationary values, which can be easily checked from the fact that 

the stationary solution is given by E(t, z)=P(t, z)= W(t, z)=I. Since we suppose 

that the system is in a ring resonator, the periodic boundary condition must be 

imposed upon E(t, z), P(t, z) and W(t, z): 

E(t, z=O)=E(t, z=L), etc., (2·2) 

where L is the length of the resonator. The periodic poundary condition enables us 

to expand the variables E(t, z), P(t, z) and W(t, z) into Fourier series: 

E(t, z)="iJE(t, q)eikz, (2·3) 
q 

where 

(2. 3') 

The Fourier modes used for the expansion are often called the (longitudinal) 

cavity modes. The integer q, which specifies the mode number, is related to the wave 

number k by k=27rq/L. Then the Maxwell-Bloch system is transformed into the 

coupled-mode equations as 

~ E(t, q)=(- ick- K)E(t, q)+ KP(t, q), 

d 
(jfP(t, q)=-r2P(t, q)+y2q 1 +~=qE(q1)W(q2), 

~ W(t, q)=- r1C W(t, q)-A-1)- At 

X "2. [E*(t, -ql)P(t, q2)+ E(t, q1)P*(t, -q2)]. 
ql+q•=q 

(2·1'a) 

(2·1'b) 

(2·1'c) 

In this description the mode amplitude of electric field E(t, q) oscillates with the 

mode frequency m=ck=27rq/tR, where tR=L/c is the round trip time of light in the 
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Maxwell-Bloch Turbulence 299 

resonator. If we retain only the terms with q=O, then Eqs. (2·1'a~c) reduce to the 

single-mode Laser model which' is equivalent to the well-known Lorenz equation. 

Recently, the Lorenz instability and chaos have been observed by Weiss and his 

coworkers with a far-infrared laser.m 

We integrate numerically the M-B equations (2·1'a~c) by using the 

pseudospectral method, taking 256 or 512 cavity modes into account. Efforts to 

obtain chaotic solution of the M-B equations have been made by Mayer et al., Lugiato 

et al. and Ogawa.18> Their computations, however, have been restricted within a few 

number of modes analyses. The pseudospectral method enables a large number of 

modes simulation of the M-B equations. Instead of analyzing the original M-B 

system, Brunner et al. examined chaotic multi-mode oscillation of Lamb's equation.19> 

However, Lamb's equation, which is derived from the M-B equations by a perturba

tion expansion method, is inapplicable to describing the multi-mode oscillation which 

is likely to occur in high-pumping regime.20>·*> 

Roughly speaking, the multi-mode oscillation occurs on the condition that the 

mode spacing 2TC/tR is much smaller than the transversal relaxation time, namely 

(2·4) 

It is easy to show that Eqs. (2·1'a ~c) have the following family of solutions in which 

only a single mode is excited 

E(t, q') =/1- (Q/rz? tl-1 e-iotoq',q , 

P(t, q')=(1+i!J/rz)E(t, q'), 

W(t, q')=[1 +(!2/rz?]oq',o. 

(2·5a) 

(2·5b) 

(2·5c) 

Except for the resonant (q=O) solution, Eqs. (2·5a ~c) oscillate with the frequency Q 

=rzck/(rz+K). In this sense the above class of solutions is the limit cycle solutions, 

but we call them the single-mode stationary solution (SSS) because the intensity (or 

photon number) is invariant in time. All the SSSs are not, however, stable: Indeed 

Gerber and Bi.itticker showed that the solutions satisfying the 'nearly resonant' 

condition21> 

/!2/<Crz (2·6) 

are stable, where C is a numerical constant less than 1. The SSSs play important 

roles in the turbulent state of the M-B system as will be fully described in §4. 

2.2. Resonant Rabi instability 

Now let us discuss the instability peculiar to the homogeneously broadened M-B 

system which leads to the turbulent behavior. This can easily be achieved by the 

standard linear stability analysis as has been done by Risken and NummendaP6> and 

by Graham and Haken.22> Instead of repeating the details of the analysis here again, 

*) By using the pseudospectral method, the original M-B system can be integrated numerically with the 

CPU time much shorter than the one required for integrating Lamb's equation, although the latter is a 

simplified version of the former. For pseudospectral method, see S. A. Orszag, Stud. Appl. Math. 50 

(1971), 293. 
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300 K. Ikeda, K. Otsuka and K. Matsumoto 

we describe the physical mechanism of the instability. Although our description is 

not mathematically rigorous, it provides a clear physical picture of the instability. 

Suppose that the amplitudes of the nonresonant (q=I=O) modes are much less than 

that of the resonant (q=O) mode. Then we may neglect all the nonlinear coupling 

terms on the r.h.s. of Eqs. (2·1'b, c) other than the terms of the combinations (q1, q2) 

=(0, q), (q, 0) (for (2·1'b)) and (q1, Q2)=(0, q), (q, 0), (0, -q), ( -q, 0) (for (2·1'c)). 

Thus the M-B equations for the nonresonant mode can be written as 

Eq=(- ick- K)Eq+ KFq, 

Pq=- r2Pq+ r2CEo Wq+ Eq Wo), 

Wq=- rl wq- Y1A(EoFq+ PoEq)' 

(2·7a) 

(2·7b) 

(2·7c) 

where Xq=(X(t,q)+X(t,-q)*)/2(X=E,P, W). Assuming r1=r2=r for the 

sake of simplicity and introducing the variables 2 /±> = (F(t, q) ± iW( t, q) I /X), the 

above equations are rewritten as 

(2·8a) 

(2·8b) 

Here we have assumed Eo and Po to be real. In the large limit of the pumping power 

(A~1) the variable 2/±l oscillates with the frequency r!XEo because the second term 

is predominant on the r.h.s. of Eq. (2·8b). This oscillati~n is no more than the Rabi 

precession. Thus we may set 2/±)=e+irffEot2/±) where 2q(±) are slowly varying 

parts. Then the response of the electric field component to the rapidly oscillating 

complex variable 2/±> can be written as 

K/2 z (±) 

+ir!XEo+ikc+K q · 

Substituting this into the second term on the r.h.s. of Eq. (2·8b), the original 

dumping constant of the variables 2q(±) is renormalized to yield 

r~r{1 /X(r/XEo+kc)/K } 

2[(r/XEo+kc) 2 /~+ 1] · 
(2·9) 

Here we replaced 2o<±> by its stationary value 1 ± i/ IX::::::: 1. This fact implies that the 

modes which resonate with the Rabi precession frequency and hence satisfy IX rEo 

+ kc ~ O(K) becomes unstable as the pumping power increases, and the renormalized 

dumping constant (2·9) becomes positive. Hence it is appropriate to call this in

stability the resonant Rabi instability. It is different from the Lorenz instability of the 

single-mode laser system which occurs only when the relaxation constants of the 

system satisfy the 'bad' cavity condition 

(2·10) 

This is because the single mode cannot resonate with the Rabi frequency. The 
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Maxwell-Bloch Turbulence 301 

resonant Rabi instability occurs irrespective of the cavity being 'good' (K< r1 + rz) or 

'bad'. 

Here we summarize the result of a rigorous linear stability analysis for the 

resonant (q=O) SSS: It is straightforward to carry out the linear stability analysis of 

Eqs. (2·1a~c): Let the deviations of E(t, q), P(t, q) and W(t, q) from the stationary 

solutions be e(t, q), p(t, q) and w(t, q). Assuming 

e(t, q), p(t, q), w(t, q)cx:.exp(ij3qt), (2·11) 

the linearized equation of motion yields the characteristic equation of {3q given by the 

following cubic and quadratic equations: 

{3q3 +( r1 + rz+ K+ ick)/3/+ [ r1( rz+ K+ rul)+( r1 + rz)ick]f3q 

+2rlrzKtt+rlrz(1+tt)ick=O, 

/3/+(K+ rz+ ick){3q+ irzck=O. 

(2·12a) 

(2·12b) 

Physically interpreted, the former cubic equation represents the coupled motion W(t, 

z) with the amplitudes of E(t, z) and of P(t, z), whereas the latter one describes a 

linearly coupled motion of the phases of E(t, z) and of P(t, z). 16> The former coupled 

motion is responsible for the resonant Rabi instability. Indeed, from Eq. (2 ·12a) we 

see that the real part of a root becomes positive when the pumping power exceeds the 

threshold value 

Ath=4+3x+2./4+6x+2x2 , (2 ·13) 

at the critical wavenumber kR defined by 

(2·14) 

where x= rdrz. Ath is often called 'the second threshold' (the first threshold is that of 

lasing, i.e., tt=1). We call the corresponding mode number KR closest to kR/(2;r/L) the 

Rabi unstable mode number. It is not difficult to show that the frequency Im(f3q=KR) 

of the Rabi unstable mode coincides almost with the Rabi frequency. 

Whether the cavity is 'good' or 'bad' much influences not only the properties of 

instability but also those of the turbulent state which emerges far beyond the second 

0.1 0.3 
(a) 

0.0 

0.0 

Re./3 Re./3 

-0.3 L......~~~;...._-~~-' -0.5 L......~~~~-~~-' 

-10 ck 10 -10 ck 10 

Fig. 1. Real part of linear growth rate Re/3 as a function of ck=27rcq/L for various values of A; ..1=10, 

14, 18, 22 and 26. (a) good cavity case K=O.l. (b) bad cavity case K=5.0. Here r1 = r2=l.O. 
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302 K. Ikeda, K. Otsuka and K. Matsumoto 

threshold. We show in Figs. l(a) and (b) how the largest real part of the root /Jq of 

Eq. (2·12a) behaves in the good cavity limit (Fig. l(a)) and in the bad cavity limit (Fig. 

l(b)). In the good cavity limit the mode q=O is always stable, and the unstable band, 

that is, the regions of q in which Re(/Jq) >0, is localized around the mode number ±KR, 

even though the pumping parameter is increased far beyond the threshold of the 

resonant Rabi instability. Under the bad cavity condition (Fig. l(b)), on the other 

hand, even the q=O mode may become unstable (the Lorenz instability), and when the 

pumping power is slightly increased beyond the instability threshold, the two unstable 

bands localized around ±KR and separated by the q=O mode immediately get 

broadened and merge into a wide single band covering q=O. 

2.3. Turbulent states 

We roughly describe here the dynamical states observed beyond the resonant 

Rabi instability. We show in Figs. 2(a)~(c), the temporal wave forms of electric field 

intensity IE(t, z)l2 observed at a fixed position together with the energy spectrum of 

electric field modes IE(t, q)l 2 averaged over a long time scale. In the present case we 

start with the resonant SSS, but the scenario mentioned below is similar even if we 

2.0 0 

8' 
~ 

(a) >- >-
~ ~ 
"" "" z i5 "" 

0.0 -40. 

4.0 0 

(b) ~ 
~ 
>-

z ~ 
"" "" z 

"" 

0.0 -20. 

4.0 -1 

>- ~ 
(c) ~ 

~ "" i5 
i5 

0.0 -11 
0 100 -50 50 

q 

Fig. 2. Wave forms (left) and energy spectra (right) of typical dynamical states above the first 

threshold. (a) self-locked state (..1=15.5), (b) localized chaos (..1=18.0) and (c) global chaos 

(..1=33.0). Here K=.1, r•=rz=1, c=.2125 and L=2Jr. 
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Maxwell-Bloch Turbulence 303 

start with nonresonant SSS. 

Immediately after the resonant Rabi instability the SSS becomes unstable and a 

periodic oscillation with the Rabi frequency takes place, and its amplitude increases 

in proportion to /(A-Atll). This is a normal characteristic of the supercritical Hopf 

bifurcation. With a very slight increase in A, the simple sinusoidal oscillation makes 

a transition to a beating quasi-periodic oscillation ((a)) with two frequencies, i.e., the 

Rabi frequency and the round trip frequency=2Jrcu/L, where Cu is the group velocity 

cu=(dlm(f3q)/dq)q=Kn· The latter frequency is much less than the former, and the 

output forms a pulse train with the period equal to the round trip time L/cu deter

mined from the mode spacing dlm(f3q)/dq at the unstable mode number q=KR. Such 

a pulse train is very similar to the one emitted from the mode-locked laser.*> Thus 

a self-locked laser is self-organized in the Rabi unstable bands. However, the 

parameter domain in which such an oscillation is observed is not very wide, and as A 

increases the quasiperiodic oscillation undergoes a transition to a chaotic one as is 

shown in (b). Up to this stage the time dependent component is small enough and the 

motion is localized around the SSS with which we started. Such a small amplitude 

time dependent phenomenon will be described by a simpler model equation such as the 

complex TDGL model to which the original M-B equation is reduced by using the 

center manifold perturbation theory. However, we are not interested in such a 

reduction problem here. 

With further increase in A, the characteristics of chaotic state drastically changes 

above a certain threshold (we call hereafter 'the third threshold') and a chaotic state 

with a quite complex spatio-temporal structure appears ((c)). A remarkable charac

teristic of this state is reflected in the energy spectrum. Below the third threshold, 

energy is monopolized by the single 

mode of the SSS with which we started 

"-/b1 + 'Y2) (the mode q=O in the present case), but 

10. above the threshold the energy is dis

5. 

2. 

1. 

.5 

.2 

.1 

10 

~ 
.:: 
.9 
~ 
tl 

20 

>. 

30 

Fig. 3. A rough sketch of the phase diagram of 

various dynamical states. 

tributed over other near resonant modes. 

We may conjecture that in such a state 

the motion in the phase space, which has 

been bounded in the vicinity of the SSS 

below the third threshold, is released 

from the restraint of a specific mode and 

becomes capable of wandering globally 

over the 'ruins' of other SSSs. It is such 

a chaotic state that we would like to 

clarify in the present paper. We point 

out that a transition to a similar multi

mode oscillating state has been observed 

for the passive resonator system which 

exhibits the delay induced instability.9> 

*> A similar form of pulse solution has been obtained with a few number of modes analysis. See the paper 

by Lugiato et a!. in Ref. 18). 
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A rough sketch of the phase diagram of various dynamical states mentioned 

above are displayed in Fig. 3. Here, we consider the space of the two control 

parameters K/ ( rr + r2) and tl. Besides these parameters, our system has two addi

tional control parameters x= rrlr2 and L, but the latter parameter is less relevant for 

the global structure of phase diagram in the asymptotic limit of L---+oo. In the present 

paper we consider the specific case x=l although the condition x~l is more realistic 

in a number of lasers. Under the condition x=l the frequency domain contributing 

to Rabi oscillation at frequency r2.fiX is well separated from the resonant region (q 

~o) having the width r2, and the analysis becomes rather simpler. In the present 

paper we further confine ourselves to the good cavity limit and fully investigate the 

complex dynamical behaviors of the multi-mode oscillation. 

§ 3. Information theoretical study of turbulent state 

How: can we characterize the dynamical structure of the turbulent state of the 

M-B equation to which a number of degrees of freedom contribute? As is discussed 

in § 2, the instability which leads eventually to the turbulent behaviour occurs in a 

restricted region of the wave-number space. Therefore, we may expect that the 

region in which the chaotic disturbances are generated will be restricted in the 

wave-number space even in the turbulent state. In order to specify the active region 

in which chaotic disturbances are generated, we have to quantify how disturbances 

propagate in the wave-number space and influence the dynamics at different regions 

in the wave-number space. For this purpose the information theoretical analysis 

provides a powerful tooU2>'23> In view of an experimental applicability, this method 

is useful in particular for optical systems, because the Fourier analyzed time

dependent data can be easily obtained by the spectral analysis of the output. In what 

follows we show how the information theoretical method enables us to understand the 

dynamical connectivity formed in the wave-number space. 

3.1. Information theoretical quantities 

In order to quantify the amount of connectivity between two dynamical phenom

ena occurring at two positions, Qs and Qr, in the wave-number space, we suppose that 

there is an information channel between qs(the sender's position) and Qr (the receiver's 

position) and measure the amount of information exchanged through the channel. 

The exchanged information is the mutual information shared in common by the two 

time series of a suitable physical quantity E(t, q) at q=qs and q=qr. According to 

Shannon,24> the mutual information (MI) is computed in the following way. First 

discretize the time series E(t, q) with an appropriate time interval L1 as cq(l), ci2), 

Ei3), ···,where Eq(k)=c(kL1+ T, q) and T indicates the origin of the stationary time 

series arbitrarily chosen. Further, we quantize the variable ranges of E(t, q) into N 
finite levels aq,, aq., ···, aqN. Then the state of E(t, q) observed during a time interval 

T< ts T+ jL1 is represented by a string of the j symbols such as {aq., aq., aq., ···, aq,}, 

etc. For brevity we denote the statistical event represented by the series cq(l), ci2), 
···, Eq(j) by Equ>. Then we have Nj possible strings (states) taken by Equ>. We 

denote each member of the string by at(IslsNi). For each at we can compute the 
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Maxwell-Bloch Turbulence 305 

probability of finding it by observing the stationary time series c(t, q) at various 

origins T. Let P(al) be the probability of finding a string a1, then the j-steps informa

tion H(E/i') is defined by 

(3·1) 

This quantity characterizes the exponential growth rate of the number of 'sentences' 

made up by combining the Ni possible 'words'. Hereafter, we omit the superscript 

(j), if unnecessary. 

Next we consider the combined set of the two processes c(t, qs) and c(t, qr). Let 

us observe the time sequence c(t, qs) and the shifted sequence c(t + tr, qr) for the time 

interval T < t::::::: T + jL1, where tr is taken to be an integer multiple of 11, and let P(a1, 

13m tr) be the joint probability of finding the two time series in the combined state (a1, 
13m). Then the j-steps information carried by the sequences c(t, qs) and c(t+tr, qr) 

(for T < t::::::: T + jL1) is given by 

H(Eq., Eqr tr)=- ~P(al, /3m tr)log(P(al, /3m tr)) 
lm 

(3·2) 

where by the notation "Eqr tr'' we mean that the event Eqr precedes in time by tr. Let 

P(/3m trial) be the conditional probability of finding Eqr( T + tr < t::::::: T + jL1 + tr) to be 

in the state /3m under the condition of Eq. ( T < t::::::: T + jL1) being in the state a1, i.e., 

(3·3) 

If we know that the Eq. is in the state a1 then information carried by EQr is given by 

- ~~mP(/3m trlal)log(P(/3m triaL)) and hence the average amount of the information 

carried by Eqr alone is 

(3·4) 

Therefore, the information carried in common by the sequences c(t, qs) and c(t + tr, 
qr) (for T<t::::::T+jL1) is 

I(EQr tr : Eq.) = H(EQr tr)- H(EQr triEq.) 

=H(Eqr)+ H(Eqs)- H(Eq., Eqr tr) 

=l(Eq. - tr: Eqr)~O, (3·5) 

which defines the MI. A remarkable characteristics of the mutual information is that 

it is semipositive and is zero if and only if the two events Eq. and EQr tr are statisti

cally independent. The relations among various information theoretical quantities 

such as H(Eq., Eqr tr ), H(Eqr triEq.), H(Eq.) and I(Eqr tr : Eq.) are intuitively under

stood in terms of Benn's diagram as illustrated in Fig. 4(a). 

According to the similar procedures we can introduce higher order Mls.23' The 

3-point mutual information is of particular importance; it being defined as the infor-
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(a) 

E, 

H(E,E,) H(E,) H(E,fE,) 

(b) 

J(E,:E,.,E,) l(E,:E, :E,•) 

E, E, 

l(E,: E,) 

mation shared in common by the time 

series E(t,qs), E(t+ts',qs,) and E(t+tr, 

qr) observed for the time interval T< t 

~ T + jil at the three different points qs, 

qs' and qr. Let us denote the combined 

event composed of Eq •. ts' and Eq. by 

(Eq •. ts', Eq.). Then the MI shared in 

common with by the combined event 

(Eq •. ts', Eq.) and the event (Eqr tr) must 

be represented by I(Eqr tr : Eq's ts', Eq.). 

Then the 3-point MI shared in common 

by the three events (Eqr tr ), (Eq •. ts') and 

Eq. should be defined by 

J(Eqr tr : Eqs• ts' : Eq8 ) 

= I(Eqr tr : Eq.) 

+ J(Eqr tr : Eqs• ts') 

Fig, 4. Relationships among various information 

theoretical quantities illustrated by Benn's 

diagram: (a) Quantities related to two events 

and (b) to three events. 
- J(Er tr: Eqs• ts', Eq8 ), (3·6) 

where I(Er tr: Eq •. ts') may be written as I(Er tr- ts': Eq • .) because of the stationari

ness. The above relation is easily understood with Benn's diagram depicted in Fig. 

4(b). Unlike the 2-point MI, the 3-point MI can be negative, and it has a particularly 

important significance when it is negative: Suppose a channel with two terminals 

through which the signals Eq. and Eq •. are input. The signal represented by Eqr is 

output from another terminal. Then we can interpret that the negative 3-point MI, 

i.e., {- I(Eqr tr: Eq •. ts': Eq.)}, which is now positive, measures the amount of MI 

through the channel which is not included in the 2-point Mis. Indeed Eq. (3·6) is 

rewritten as 

- J(Eqr tr : Eq8 • ts': Eq8 ) = J(Er tr : Eq8 • ts', Eq8 )- J(Eqr tr : Eq8 )- J(Eqr tr : Eq'8 ts') . 

(3. 6') 

In other words, the r.h.s. measures the increment of correlation by extending the 

sender's space so as to include the 'additional' source Eqs·· As a typical example, let 

us consider the channel through which two random binary processes, say X= { -1, 1} 

and Y = { -1, 1} which are statistically independent, are combined to give the output 

Z according to the deterministic rule Z = XY. As far as the channel X~ Z is 

concerned, no correlation exists between X and Z and thus no information propa

gates, i.e., I(X: Z)=O although the output is related to the inputs via a deterministic 

rule. However, we immediately see that the 3-point MI I(X: Y : Z) has a negative 

definite value. Existence of the negative 3-point MI is a direct reflection that the 

apparent absence of correlation between X and Z is due to the modulation by an 

'additional' (or 'hidden') process Y. It is expected that the 3-point MI is of fundamen

tal importance particularly for the analysis of the systems dominated by 3-wave 

interaction processes. The M-B system and Navier-Stokes equation are typical 
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Maxwell-Bloch Turbulence 

examples of such a class of system. 

3.2. Mutual information (MI) map 

2-point MI map 

307 

In the present analysis we are concerned with how the dynamical fluctuations 
accompanying the energy (=photon number) of cavity mode propagates in the 

wave-number space. We, therefore, choose e(t, q) to be the averaged energy over a 

finite band 

q+dq/2 
e(t, q)= ~ IE(t, q')l2/dq, 

q'=q-dq/2 
(3·7) 

where dq is the band width appropriately chosen. The result is insensitive to the 

choice of dq as long as it is small enough. Practically we choose dq=4 (sometimes 

dq=2). Further, the computation of MI is carried out, taking the number of quantiza

tion levels N to be 2(sometimes 4) and the number of the steps j to be 1. It is 

convenient to display the mutual information I(Eqr tr : Eq.) with a fixed qs in the form 

of the contour map on the two dimensional plane of the receiver's time-space (tr, qr). 

We call such a map the MI map. Two typical examples of the MI map are shown in 

Figs. 5(a) and (b). First we explain how we can read out the dynamical structure 

from the MI map by using these two examples. 

In the case of (a), significant peaks of the MI arrange almost along the line tr=O 

with an equal interval. The highest peak is located at (tr, qr)=(O, qs) (this position 

is indicated by •) and the temporal decay rate of MI along the line qr=qs (we often 

call I(Eqr=qs tr: Eq.) the self-mutual information) characterizes the information gener

ating rate at the sender's position qs. A remarkable fact is that the time at which 

the MI becomes maximum along a fixed qr is all delayed from the one at qr=qs. This 

fact implies that the disturbances generated at qs propagate to other regions by 
skipping processes (indicated by ~) or cascading processes (indicated by ----~ ). 

Fig. 5. Two typical examples of 2-point MI map I(E.r tr : E •• ). Here • indicates the sender's time 

and position. K=.5, .1=30., r•=r2=l., c=.l517 and L=2Jr. 
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-5 

-10 

Ccnt.raJ .. 
: ~ 

RC_, : RC+1 

" . . i\ =\,_j ... 
RC., i \1 v \ RC+2 

,AJ v_, v., \;'\ 

Rc-3 '
/ v-2 v+2 \ Rc 

\ +3 

~~-3 ~:\ 

.,./ """ 
-100 0 100 

q 

Thus Fig. 5(a) provides a typical exam

ple when qs is a source of generating 

disturbances. On the other hand, (b) 

presents a sharp contrast to (a): the 

sender's position qs receives the disturb

ance from the higher wave-number side 

and propagates it toward the lower 

wave-number side by a cascading pro

cess. Moreover, it is influenced via skip

ping processes from all other regions 

with significant peaks of MI. Hence it 

is unlikely that any significant disturb

ances are genera ted here. 

According to the way explained 

above, we can read out from the MI map 

how information carried by the disturb

ances is generated and propagates in the wave-number space. We show in Figs. 7(a) 

~(g) a series of the MI maps computed for several representative positions of qs. 

Comparing the information structures read out from them, we can obtain a global 

picture of the information network formed in the wave-number space. In particular 

it is possible to specify the source region in which chaotic disturbances are generated. 

Fig. 6. Energy spectrum and locations of various 

regions (see the text) in the wave-number 

space. Parameters are the same as in Fig. 5. 

Before describing the information structure of the turbulent state, we show in Fig. 

6 the energy spectrum (this may be identified with the photon number spectrum) in the 

wave-number space. The highest peak is located at the resonance q=O, and most of 

the radiation energy is concentrated there. We call the region in the vicinity of q=O 

the central range. Besides the peak at q=O, other noticeable peaks are located near 

at the wave numbers of the resonant Rabi instability, i.e., ±Ka(Ka=ka/(27C/L); see Eq. 

(2·14) and at its higher harmonics ±2Ka, ±3Ka, etc. We denote the energetically 

rich regions surrounding these peak positions by RC±1, RC±z, RC±s, etc. On the other 

hand, the energetically poor regions surrounding the centers of the two peak positions 

are denoted by V±1, V±z, etc. The positions of qs in (a)~(g) of Fig. 7 are so chosen 

as to represent these regions, namely 

(a) represents central range 

(b) v+1 

(c)(d)(e) 

(f) 

(g) 

(qs=O) 

(qs=15) 

(qs=30, 39, 45) 

(qs=66) 

(qs=84). 

The regions RC+1 and RC-1 are called the Rabi chaotic bands since, as will be 

shown below, the chaotic disturbances are generated there. RC±1 split further into 

two regions, i.e., the upper band (RC±u) and the lower band (RC±L) belonging to 

different information networks, and 

(c)(d) represent 

(e) 
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(a) (b) (c) (d) 

150 ; ...... ::•· ··-:: .... -··::::: ................. :::::·· ····-····· ... I { ! :, '·~·-.:··, \ 

"~~~if~~~-· 
qr 

5 10 15 -5 5 -5 5 -5 5 

(e) (f) (g) 

Fig. 7. 2-point MI maps for various sender's positions (indicated by • ), i.e., (a) q.=O, (b) q.=15, (c) 

q.=30, (d) q.=39, (e) q.=45, (f) q.=66 and (g) q.=84. The central range (q=O), RC+1 and RC+• 

are indicated by <-. Levels of contour lines are ···0.005(bit), ···0.010, ···0.015, ···0.020, -0.030, 

-0.040 and -0.050. Parameters are the same as in Fig. 5. See the text for the correspondence 

between each Qs of (a)~(g) and each of the regions illustrated in Fig. 6. 

Now let us observe the MI maps shown in Figs. 7(a)~(g). From each of the MI 

map we can read out that the following connections are formed in the wave-number 

space: 

(a) Qs- RC+I and RC+2 and RC-1 and RC-2, 

(b) RC+L- 0qs- 0 lower wave numbers; 

v+2 and V+s- Qs; RC-L[ -KR+Qs]- Qs; V-2- Qs' 
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310 K. Ikeda, K. Otsuka and K. Matsumoto 

(f) RC+L ~ qs ~ v+!; qs= V-2 and higher wave number beyond v+3[qs+ KR] and 

V-3; qs~ V-r , 

(g) RC+u[KR] ~ qs; qs=RC-2 and higher wave number beyond RC±s[±3KR]; 

RC-u[- KR] ~ qs. 

Processes are arranged in order of decreasing correlation. Here, the notation X 
= Y means that the two regions X and Yare correlated simultaneously and neither 

of the two precedes the other one, and the symbol @ indicates the cascade process. 

By the notation X[qx] we show the wave number (qx) representing the region X. 
Taking into account the main processes alone, we see that the two main networks as 

follows are formed in the wave-number space: 

central range~ RC±u ~ RC±2=higher wave-number region 

RC±L ~ V±2=higher wave-number region 

At first glance the central range seems to be a source of chaotic disturbance. 

However, as is seen from Fig. 7(a), the decay rate of the self-mutual information along 

the line qr=qs is quite small. This fact means that the dynamics in the central range 

surely controls the RC±u but its time scale is considerably long (time scale=I00-200) 

and its dynamics is irrelevant to the downstream processes originating from RC±U 
which have much shorter time scale (time scale=5-10; see the dacay rate of the 

self-mutual information of Figs. 7(c)~(e)). However, the correlation between the 

central range and the Rabi chaotic band is quite important. The physical 

significances of the long time scale characterizing the central range and of the 

interplay between the central range and the Rabi band are discussed in detail in § 4. 

Thus the turbulent disturbances are generated in RC±u and RC±L, i.e., in the Rabi 

chaotic bands. 

The distribution of MI is in general localized around the highest peak at (qr, tr) 
=(qs, 0) (indicated by • ). Let D(qs) be the localization width of MI measured in the 

wave-number space around qr=qs. A striking feature of the MI with qs in the Rabi 

chaotic band is that the width D(qs) is quite narrow (see the localized structures of the 

MI around • in Figs. 7(c)~(e)) and is as large as the band width dq of the averaging 

procedure (see Eq. (3·7)). Therefore, we may conjecture that chaotic disturbances 

are generated almost independently by all the modes in the Rabi chaotic bands, and 

we can evaluate the dimension of attractor by the number of modes contained in RC±r. 

Thus the region RC±r correspond to the attractor interior. 

In contrast to the Rabi chaotic bands, the higher wave-number regions beyond the 
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(a) (b) 

60 ~--~~~~~ .. ~~~:~::--~~~;~.-, 

'"'"\, .... :==-~::.. ..~. ..'...:"' .. .... -

-60 1-----1---.L...-----'----' 

-60 -30 qs' 30 60 

Fig. 8. 3-point MI contour maps for the sender's position taken (a) in RC+L(q.=30) and (b) in RC+u(Qs 

=45). For details see the text. Levels of contour lines are ···; -O.OOl(bit), ···; -0.002, ··· ; 

-0.003,-; -0.004,-; -0.005···. Parameters are the same as in Fig. 5. 

regions V±2 and RC±1 are strongly correlated without any time delay (Figs. 7(f), (g)). 

This is a common property of the attractor exterior which has been observed in other 

systems as well. 12> The typical regions corresponding to the attractor exterior is V±1, 

V±2, RC±2, RC±3, etc. The peaks in the MI map arranged with equal interval is placed 

almost at the position qr=qs+(integer multiple of KR), which must be due to the 

3-wave interaction process such as q1(=qs)+q2(=KR)~q3(qr) inherent in the M-B 

system (see Eq. (2·1'a~c)). 

3 -point MI map 

Finally we show in Fig. 8 examples of the 3-point MI map at two fixed positions 

taken in the Rabi chaotic band. As discussed in § 3.1, the negative value of the 

3-point MI is of particular importance. We, therefore, compute the maximum value 

of Max(- l(qr tr: qs' ts': qs), 0) over the two times tr and ts' and display its contour 

map on the plane (qs', qr). From the definition, the contour plot is symmetric with 

respect to the line qs'=qr. A noticeable fact is that the 3-point MI does not have 

appreciable value for qr(or qs') in the Rabi unstable bands RC±1- This fact suggests 

that the strong decorrelation represented by the smallness of the 2-point MI in the 

Rabi unstable bands can by no means be attributed to a randomization due to a hidden 

variable at any qs'- This provides a further evidence that the absence of correlation 

among the motions in the Rabi chaotic bands is not apparent and these motions are 

intrinsically independent of each other. 

A further noteworthy facts read out from the 3-point MI map is that it has 

remarkable peaks at two positions indicated by arrows in Fig. 8. One peak (indicat

ed by~) is situated at qr and qs' in the central range and in RC-1, respectively (and 

vice versa). This allows us to interpret that the processes such as 

RC+1 + RC-1 ~ central 

RC+1 +central~ RC-1, etc., 
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312 K. Ikeda, K. Otsuka and K. Matsumoto 

are specifically activated. These processes are consistent with the 3-wave interaction 

which conserves the wave number, and they provide further evidences showing the 

presence of a strongly correlated motion among the two Rabi chaotic bands and the 

central range. Further, a study of the time dependent 3-point MI map reveals more 

clearly that the Rabi chaotic bands have two time scales; the shorter time scale 

characterizing the generation of chaotic disturbances and the longer time scale due to 

the motion correlated with the central range. The physical phenomena associated 

with the correlared process will be discussed in detail in the next section. 

On the other hand, the process implied by the other peak (indicated by==?) is not 

easy to interpret. In fact the meaning of the qr of the peak position cannot be 

identified, while the qs' is evidently in the central range. qr seems to be at the position 

of a fractional harmonic of RC+I. Possibility of the fractional harmonic instability 

in the wave-number domain has been reported in a Dye laser experiment by Hillman 

et al.26> They reported that above the first threshold subcritical transitions to the 1/2 

harmonic and further to 1/3 harmonic take place successively. Such a drastic transi

tions have not been reproduced at all in the present study of the M-B model, however, 

the above result of the 3-points MI map may imply that the turbulent state has a 

potential for generating fractional harmonics although the processes are negligible 

from an energetic point of view. Thus the MI method enables detecting dynamical 

processes which are very difficult to detect by usual spectroscopic methods based upon 

static measurement of energy spectrum.25> 

§ 4. Chaotic itinerancy : dynamics in the central range 

More than 90% of the total energy is distributed to the central range. In the 

present section we show that in the turbulent state the central modes exhibit two 

remarkable dynamical phenomena which have been often observed in multi-mode 

laser oscillations. These phenomena have been so far understood in terms of photon 

number dynamics modulated by externally applied random noise. In the M-B system, 

however, the origin of such phenomena is chaos generated by the system itself and 

moreover a topological constraint inherent in the M-B system plays an essential role. 

4.1. Shorter time scale: self-induced mode partition noise 

Simple topology of the slow manifold 

The 2-point and the 3-point MI map suggest that the nonlinear coupling between 

the two Rabi chaotic bands much influences the dynamics of the central range. To 

examine the effect of the Rabi chaotic bands, we observe what occurs when one of the 

two Rabi bands is 'removed' from the original M-B system. The removal is achieved 

by making the amplitudes of all the modes in one of the two Rabi bands zero at each 

step of numerical integration. Chaotic variation of the central modes ceases after the 

removing operation, and though the modes scramble for energy for a while, a single 

mode stationary solution (SSS) is eventually realized. Hence the M-B system is 

stabilized without one of the two Rabi chaotic bands. A remarkable feature of the 

'stabilized M-B system' is that it exhibits a mode competition in which one of the 
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Im.E, 

(a) 

----+ 
Re.E, 

(b) 

q=O 

Fig. 9. (a) Spatial configurations of E(t, z) corre-

sponding to the single mode stationary solu

tions (SSS) with the q=O and q=l, and (b) 

typical configuration which appears in the 

halfway through the transition from the q=O 

to q=l. A 'loop structure' is nucleated. 

modes suppresses all other modes. 

What mode finally survives the compe

tition depends not on the initial distribu

tion of photon numbers over the central 

modes but on the topological charac

teristic possessed by the initial con

figuration. Now let us discuss briefly a 

simple topological property inherent in 

the stabilized M-B system. 

Suppose that there is no spatial cou

pling in the original M-B equations (2·1 

a~c), i.e., c=O. Then it becomes an 

assembly of uncoupled single mode laser 

rate equation (=Lorenz equation), each 

of which is stable under the good cavity 

condition considered here. Therefore, 

the state of the system rapidly relaxes to the stationary lasing state with IE(t, z)l 

=IP(t, z)l=1, where the relative phase of E(t, z) to P(t, z) becomes fixed. In other 

words, the spatial configuration of the complex field amplitude started with arbitrary 

configuration relaxes onto the torus defined by IE(t, z)l=1(0~z~L). Without the 

spatial coupling, the absolute phase ¢(t, z) of E(t, z) at any spatial positions can be 

chosen arbitrarily. However, once the spatial coupling due to the propagation effect 

is introduced, the stable spatial configuration of phase is automatically selected. The 

family of the single mode stationary states defined by Eqs. (2·5a ~c) corresponds to 

such stable configurations. Quite important fact to be noted is that the single mode 

stationary states have different topological characteristics ; each of them being 

specified by the winding number defined by 

W(t)=(¢(t, z=L)- ¢(t, z=0))/27r. (4·1) 

The resonant state with q=O has the winding number 0, and the off resonant state 

with q=1 the winding number 1 and so on (see Fig. 9(a)). As far as the coupling 

strength is not very strong, it is easy to deform the spatial configuration of phase IE(t, 

z)l=1(0~z~L) with a given winding number on the torus, in other words, it takes a 

long time in relation to the coupling strength for a deformed configuration to relax to 

the configuration of the single mode stationary solution. Thus the torus IE(t, z)l=1(0 

~z~L) forms a slow manifold on which the spatial configuration of phase varies 

quite slowly in time. We note that there are a number of slow manifolds character

ized by different winding numbers 0., ± 1, ± 2, · · ·. 

It is easy to show that the motion on the slow manifold is described by a diffusion 

equation for the phase variables: Remember that the linearized motion of the phases 

of E(t, z) and P(t, z) around the resonant stationary solution exhibits a coupled 

motion described by the characteristic equation (2·12b), which has a root approaching 

zero in the limit q--+0. The root is expanded in the vicinity of k=O as 

(4·2) 
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314 K. Ikeda, K. Otsuka and K. Matsumoto 

where v=rzc/(rz+K), D=rzKc2 /(rz+K? and k=2Jrq/L. This fact means that an 

appropriate linear combination of¢ and <P (=phase of P(t, z)) denoted by 1J! satisfies 

the following diffusion equation: 

(4·3) 

In order to describe a more general motion on the slow manifolds with the 

winding numbers W=FO, we have to take into account the nonlinear term due to the 

spatial phase derivative. The derivation of the equation is a tedious but straightfor

ward calculation of the center manifold perturbation theory. The result is 

(4 ·4) 

where, as=-~rzc 3 /(K+rz) 5 , a4=K3 rzc4/(K+rzY, and the amplitude-dependent 

diffusion constant is defined by D(la1J!jazl 2 ) = Krzc2[1- (KA + K+ r2)c21 aw;azl 2 I (K 

+r2)2Kil]/(K+r2)3• Equation (4·4) describes the relaxation motion toward the single 

mode stationary solution on the slow manifold with a small winding number W=FO. 

However, we emphasize that the slow manifold with relatively large winding number 

satisfying I WI >qc~ rzL/27rc is unstable (see Eq. (2·6)). 

Self-induced mode partition noise 

The actual motion of the modes in the central range is significantly perturbed by 

the nonlinear coupling between the two Rabi bands. We show in Fig. 10 how the 

photon numbers (or energy) of the central modes vary in time in the turbulent state 

discussed so far. For comparison we plot the total photon number distributed to the 

central modes. Although the total photon number does not appreciably fluctuate 

2.0 ;---------------, 

mode partition noise 

- round trip time 

Rabi oscillation 

0.0 l..::l:.l~~~~~!_,____.._~~~__j 

0 2000 

Fig. 10. Mode partition noise: Temporal variation 

of energy (=photon numbers) of three different 

central modes and of total energy in the core 

range. Typical time scales of various dynami-

cal phenomena are also shown. Here, 1!=30, 

and other parameters are the same as in Fig. 2. 

around the mean value, the photon num

ber of each mode fluctuates quite violent

ly. This fact means that photon num

bers tend to be repartitioned actively 

among the central modes under the 

restriction of the total photon number 

being almost conserved. A quite inter

esting fact is that such a fluctuation is 

often observed in experiments of 

multimode laser oscillation and is called 

mode partition noise.21l The time scale 

of the mode partition noise is in general 

much longer than other time scales of 

lasing. In fact it characterizes the 

anomalously long memory of the self

mutual information in the central range 

displayed in Fig. 7(a). Presence of such 

a time scale is closely related with the 

existence of slow manifold discussed in 
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Maxwell-Bloch Turbulence 315 

the previous subsection. The mode partition noise has been described by conven

tional photon number dynamics driven by externally applied random noise.28' 

However, the mechanism which originates the mode partition noise is quite different 

in our system. First the origin is chaos generated by the system itself, and moreover 

the phase of electric field on the slow manifold plays an essential role. 

With a given winding number the spatial configuration of ¢(t, z) moves with the 

velocity v(Eq. (4·3)) and deforms quite slowly in time on the torus IE(t, z)l=l(Q::;;:z 

:o;;:L) under the influence of rapidly varying perturbation from the Rabi chaotic bands. 

Such a motion necessarily makes the phase derivative spatially nonuniform. Since 

¢(t, z) is a slowly varying function of ~=z-vt (moving frame) and r=t viz., ¢(t, z) 

= (i(r, ~) and the electric field is given approximately by E(t, z)=exp(i¢(t, z)), its 

Fourier component is computed roughly by using the stationary phase approximation 

as 

(4·5a) 

where ~j is the positions satisfying the condition 

(4 ·5b) 

Thus an appearance of the the spatial nonuniformity in the phase derivative means 

that modes with wave numbers other than the winding number are excited. Needless 

to say, the intensity of the total field is almost invariant because E(t, z) is on the torus 

IE(t, z)l=l. This is the origin of the mode partition noise in our system. The time 

scale of the mode partition noise is easily estimated from the diffusion equation (4·3): 

let Ec(t, z) be the amplitude of the electric field made up from the mode E(t, q) in the 

central range, i.e., 

Ec(t, z)= ~ E(t, q)ei2rrqztL, 
q e central range 

(4·6) 

and let ¢c(t, q) be the phase fluctuation mode with the mode number q. We suppose 

that the system is in the state with winding number W=O and the phase fluctuates 

quite slowly in space. Since Ec(t, z)=expi[~qif;c(t, q)ei2rrqztL], we obtain 

oEc(t, q)=iif;c(t, q)eii/Jc(t,q=OJ, (4·7) 

where oEc(t, q) stands for the q-th Fourier component of fluctuation of central field 

Ec(t, z). Consequently, the inverse of the decay rate of the phase mode which is 

closest but not equal to zero characterizes the time scale of the central range. From 

the Fourier transformed version of Eq. (4·3) (or from Eq. (4·2)) we can evaluate the 

time scale of the mode partition noise: 

(4 ·8) 

which is very long since it contains the system size L. The slow fluctuation in the 

central range in turn modulates the rapid motion in the Rabi chaotic bands and hence 

induces a long time scale component of the motion there. 
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0 5760 

Fig. 11. Mode-hopping: Temporal variations of 

energy( =photon numbers) of the core modes. 

(al) q=O, (a2) q=l, (a3) q=2, (a4) q=3, and 

(b) temporal variation of winding number. 

Here A=33, and other parameters are the same 

as in Fig. 2. 

4.2. Longer time scale: self-induced 

mode hopping 

The. mode hopping 

On a time scale much longer than 

that of the mode partition noise a drastic 

phenomenon is observed in the dynamics 

of the central range. In Figs. ll(al) 

~(a4) we show a typical example of the 

temporal variation of photon numbers of 

the central modes. In this figure the 

time scale is taken so long that the mode 

partition noise looks like a rapid fluc

tuation. A quite remarkable fact is that 

on such a long time scale the distribution 

of photon numbers over the central 

modes often changes drastically. In 

this example the number of the most 

predominantly excited mode changes 

successively as q=O --+q=l--+q=2 --+···. 

Quite similar phenomena described 

above have been often observed in 

multi-mode oscillation of lasers such as 

semiconductor laser, solid state laser 

and so on, and they have been called 

mode hopping.2> In the actual analysis 

of the mode hopping the rate equation 

for photon number, which was founded 

by Lamb et al. in order to describe 

multi-mode competition,20> is usually employed: The rate equation has stable fixed 

points corresponding to the single mode stationary states, and a random and un

controllable quantum noise introduced externally induces the hopping among the 

stable fixed points (Ohtsu et a1.).29> 

However, the underlying mechanism of the mode hopping phenomenon observed 

in the M-B system is quite different from the one described by the randomly perturbed 

Lamb's photon number dynamics in which the role of phase is discarded:20> We note 

that the mode hopping of the M-B system is closely related with the change of the 

topological characteristic. We depict in Fig. ll(b) the time evolution of the winding 

number W(t) associated with the central field Ec(t, z). The mode hopping takes 

place at the time when the winding number suddenly changes. This fact means that 

the mode hopping is an itinerant motion over the chaotic attractors each of which 

grows from a stationary single mode solution (SSS) and is localized around it with a 

definite winding number. In the former half of time evolution depicted in Fig. 11 

photons are monopolized by the single mode with the same mode number as the 

winding number, but photons can in general be distributed over multiple modes with 
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Maxwell-Bloch Turbulence 317 

the mode number close to the winding number. The number of photons distributed 

to a mode is almost conserved except for the variation due to the mode partition noise 

until a mode hopping takes place. Example of such multi-mode firing states is seen in 

the latter half of the time evolution shown in Fig. 11 and in the example depicted in 

Fig. 10. 

It is very easy to deform the spatial configuration of E(t, z) on the slow manifold 

with a given winding number. Such a deformation results in the mode partition 

noise. However, it is very hard to make a transition between two slow manifolds 

with different winding numbers, because in order to deform the spatial configuration 

of E(t, z) so as to change the winding number the configuration must be removed off 

from the torus and a 'loop' must be nucleated (see Fig. 9(b)). A quite similar situation 

is seen in the decay process of persistent current in the superconductor. However, 

unlike the case of superconductor, the source which causes the transition in our 

system is not the thermal noise but a deterministic chaos. In what follows we show 

that a quite ingenious mechanism which makes it much easier to change the 

topological characteristic is self-generated through the chaotic dynamics of our 

system. 

Self-formation of easy paths 

Hereafter we show that when a mode hopping is taking place an easy path through 

which the spatial configuration of the system changes its topological characteristic is 

self-generated owing to a close interplay between the modes in the central range and 

the ones in the Rabi chaotic bands. To this end we introduce physical quantities 

which characterize the dynamics in the central range and the Rabi chaotic bands. 

The state of the central range is described by the central field Ec(t, z) defined by Eq. 

(4·6). On the other hand, we have to introduce any quantity characterizing the state 

of the Rabi chaotic bands. From Eqs. (2 ·1' a~ c) the Fourier component of the 'force' 

which originates from the Rabi chaotic bands and perturbs the motion of the central 

mode must be defined as 

FP(t,q)=rz ~ E(ql)W(qz), (4·9a) 
q,+qz=q 

where either of q1 or qz ranges in the two Rabi chaotic bands. Therefore, 

FP,w(t, z)=~FP,w(t, q)eiZ1CqztL (4·10) 
q 

describes the spatial pattern of the perturbation originating from the Rabi chaotic 

bands. We call these the Rabi forces. We show in Fig. 12 what is happening when 

the winding number changes from 1 to 2. The series (a)~(c) represent time evolu

tions of the following quantities, i.e., (a) the spatial trajectory of Ec(t, z), (b) the 

spatial pattern of the phase ¢c(t, z) of Ec(t, z), and (c) the spatial pattern of the 

modulus of the Rabi force, respectively. A remarkable fact to be noted is that the 

spatial pattern of the Rabi force has remarkable peaks (we call these force peaks), 

and that the spatial phase pattern, on the other hand, has inflections indicated by 

arrows (see t=O, t=360 and t=760; called the phase inflections from now on). These 
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2. 
t=O t = 40 t = 80 t = 360 t = 760 

(a) 
ror 0 Q 0 ~ .... 0 0 
-2. 

-2. Re.E. 2. 

3 

{b) fi ! 

0 

Z/L 1 0 

Fig. 12. Temporal evolutions of the spatial trajectory of the complex central field Ec(t, z) (series (a)), 

of the spatial pattern of the phase r/Jc(t, z) (series (b)), and of the spatial pattern of the Rabi force 

amplitude FP(t, z) (series (c)). Transition process through which the winding number changes by 

1(t=O~SO), and typical situations in the quasi-stationary state after the transition (t=360, t=760). 

The inserted number in (c) stands for the length of the ordinate. Parameters are all the same as 

in Fig. 10. Typical phase inflections are indicated by ~ . 

objects move to right with light velocity and the force peaks go slightly ahead the 

phase inflections. When the height of a force peak increases, a bulge grows from a 

phase inflection (t=40) to form a "loop" structure, and a transition to a new state with 

a larger winding number is eventually achieved. Then which of the two phenomena, 

namely the appearance of phase inflections and the formation of force peaks, is the 

essential origin of the mode hopping? We examine this problem in the transplant 

experiment described below. 

Let us consider two identical M-B systems, systems I and II. We compute the 

time dependent data of the variables E(t, q), P(t, q) and W(t, q) in a specific 

wave-number region, say TP, of system I. We 'transplant' the data of I to the same 

wave-number region of system II and observe the time evolution of system II. The 

'transplant operation' represents to replace E(t, q), P(t, q) and W(t, q) in the wave

number region TP of system II by those of system I at each step of numerical 

integration. By observing the motion of system II, we can immediately examine how 

the wave-number region other than TP is influenced from the region TP to which the 

data created by system I through a natural evolution is transplanted. 

In the first experiment the data taken at the Rabi chaotic bands are transplanted 

to the Rabi bands of system II, and the evolution of the central range is observed. As 

shown in Fig. 13(a) the Rabi chaotic bands form the Rabi force with two noticeable 

peaks. In the initial stage we excite only the mode q = 1 in the central range of 
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t = 10 t =30 t =50 

2.000 

(c) t; 

Fig. 13. Transplant experiment 1: (a) Spatial pattern of the Rabi force formed through a natural 

evolution of the system I. (b) Phase inflections formed through the same evolution process as in 

(a). (c) Formation of phase inflections in system II by the transplanted Rabi chaotic bands data 

corresponding to (a). 

system II, and hence the central field varies spatially as Ec(t=O, z)=exp(2;rz/L) and 

the spatial pattern of ¢c(t=O, z) forms a straight line. However, as shown in Fig. 

13(c), the spatial phase pattern gets distorted as time elapses. In particular phase 

inflections quite similar to the ones formed through the natural evolution in system I 

(Fig. 13(b)) emerge behind the force peaks (Fig. 13(c)), which strongly implies that the 

Rabi force peaks are the origin of the phase inflections. 

The second experiment is a reversed version of the first one: We transplant the 

data obtained for the central range of system I to that of system II and observe the 

development of spatial pattern of the Rabi force. In the initial stage the modes in the 

Rabi chaotic bands are excited at random with very small amplitudes. We show in 

Figs. 14(cl)~(c3) three examples of the spatial pattern of the Rabi force formed in 

system II by using the same central range data transplanted, where the initial states 

of the Rabi bands are different from each other. It is evident that in all examples 

noticeable peaks are formed slightly ahead from the phase inflections depicted in (a). 

Moreover, the positions of the force peaks coincide quite well with those due to the 

natural evolution of system I (see (b)). This fact strongly implies that the force 

peaks grow adapting themselves to the positions of the phase inflections. 

The above two complementary experiments strongly suggest that the interplay 

between the central range and the Rabi chaotic bands works cooperatively in making 

the system change its topological characteristic: If a phase inflection is formed in the 

central field, then the radiation in the Rabi chaotic bands changes so as to enhance the 

Rabi force at the positions slightly advanced from the positions of the phase 

inflections, and the enhanced peaks of the Rabi force in turn distort further the phase 
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(a) 3 t = 260 t = 290 

,P, 
211" 

0 

(b) 0.900 

IF, I 

(cl) 

(c2) 

(c3) 

0 1 0 Z/L 

Fig. 14. Transplant experiment 2: (a) Spatial pat· 

tern of the phase <Pc(t, z) formed through a 

natural evolution of system I. (b) Spatial 

pattern of the Rabi force formed through the 

same evolution process as in (a). (cl)-(c3) 

show the spatial pattern of the Rabi force 

formed in system II to which the central range 

data corresponding to (a) is transplanted. 

inflections formed in the central field. 
In other words, the interplay between the 

Rabi bands and the central range 
induces an instability to form the Rabi 
force peaks together with the phase 

inflections. Such an instability makes a 
transition between the two slow mani

folds with different winding numbers 
easier: Once the phase inflections are 

formed together with the Rabi force 
peaks, such structures persist on a quite 
long time scale although the heights of 

the Rabi force peaks are modulated cha
otically on the time scale of the mode 
partition noise. Further the 'loop' struc

ture illustrated in Fig. 9(b), which 
enables the mode hopping, always grows 

from one of the phase inflections. 
These facts mean that a low dimensional 
path through which topological property 

likely changes is self-formed with a long 
lifetime in the infinite dimensional phase 

space. Attempts to change the winding 
number are repeated along the path, and 

the attempt is successfully achieved, 
when the Rabi force is occasionally 

strong enough. 

The persistent phase inflections, on 

the other hand, makes the phase deriva
tive spatially quite inhomogeneous, 

which means that the central modes with 

mode number other than the winding 
number are excited (see Eq. (4·5a)). 

This is the origin of the multiple modes 
firing state mentioned above. Thus, the 

multi-mode firing and the formation of 
the path between the localized attractors is closely connected with each other. The 
persistent structures, which is observed as the multi-mode photon number distribution, 
is not determined by the winding number alone; it being dependent upon the past 
history of hopping experienced by the system. 

The interplay between the central range and the Rabi chaotic bands seems to be 
essential for the mode hopping to be self-induced. Indeed, if we transplant random 
variables decorrelated with the state of the central range to the Rabi chaotic bands of 
system II, clear transitions between well defined winding numbers cannot be realized 
even if the random variables are constructed so as to replicate the statistical property 
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of the modes in the Rabi bands. The Rabi force is not a simple random force 

generated independent of the state of the system; it being an 'internal force' which is 

formed with a strong correlation with the past evolution of the central range. The 

internal force generated through a chaotic evolution of the system itself seems to be 

more effective than the externally applied random force in searching for the paths 

through which the itinerancy over the attractor ruins is realized. A more qualitative 

analysis of such a process will be presented in a forthcoming publication. 

§ 5. Discussion 

In the present paper we have investigated in detail complex dynamical behaviors 

of multi-mode oscillation exhibited by the Maxwell-Bloch (M-B) equation, confining 

ourselves to the good cavity case. The symmetry of the M-B system imposes a 

simple topological constraint on the structure of the slow manifold of the system, and 

hence the single mode stationary solutions (SSSs) which are stable when the pumping 

parameter is small enough are characterized by the winding number. Any SSS 

undergoes instability leading to a self-oscillation of the Rabi precession when the 

pumping parameter exceeds a threshold value. With further increase in the pumping 

parameter, the Rabi precession becomes chaotic, and the chaotic attractors, each of 

which has been localized in the phase space around a SSS with a definite winding 

number, further merge into a global attractor. It is such a globally chaotic motion 

that we investigated in detail in the present paper. The global chaos is contributed 

by a large number of cavity modes, and it provides a typical example of complex 

dynamics in nonlinear optical systems. 

First we investigated how information carried by chaotic disturbances is generat

ed and propagates in the wave-number space. The 2-point and the 3-point mutual 

information (MI) are computed in order to clarify the information structure formed in 

the wave-number space. More than 90% of electromagnetic energy is distributed to 

the wave-number region nearly resonant with the two level medium (we call this the 

central range), but chaotic information is generated in two narrow wave-number 

regions called the Rabi chaotic bands which are symmetric with respect to the central 

range. Each of the two bands splits further into the two regions which we call the 

upper band and the lower band, and the two information networks originating from 

each of the two regions are formed in the wave-number space: The upper band 

controls the motion in the higher-harmonic regions of the Rabi unstable bands, 

whereas the lower band governs the dynamics in the regions between the neighbour

ing higher-harmonic regions. In any way the sources of turbulent motion are in the 

two Rabi chaotic bands. 

The information theoretical study further reveals that the dynamics in the central 

range has a time scale much longer than that of the chaotic motion. Such a slow 

motion in the central range, however, severely influences the motion in the Rabi 

chaotic bands. Moreover, the sudy of the 3-point MI indicates that a correlated 

motion is activated among the two Rabi chaotic bands and the central range. 

Therefore, the rapidly varying chaotic motion in the Rabi bands is influenced consid

erably by the slowly varying motion in the central range, and vice versa. We have 
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to, however, emphasize that the central range does not directly contribute to generat

ing chaotic information. 

The interplay between the Rabi chaotic bands and the central range results in 

physically interesting phenomena. First the scattering process between the two Rabi 

chaotic bands yields low wave-number fluctuations which vary rapidly on the chaotic 

time scale. Such fluctuations perturb the central modes, and the photon number of 

each of the central modes fluctuates significantly although the total number of photons 

in the central range is almost conserved. This phenomenon corresponds to the mode 

partition noise which has been often observed in the multi-mode laser oscillations. 

The mode partition noise has been understood in terms of the photon number 

dynamics driven by an externally applied noise. However, the mode partition noise 

in our system is due to the chaotic motion excited in the Rabi chaotic bands, and 

furthermore the topological constraint inherent in the M-B system plays a crucial 

role. It is a slowly varying fluctuation of a phase variable associated with a spatial 

structure with a given winding number. The time scale of the mode partition noise 

is much longer than the time scale of chaotic motion in the Rabi bands and is 

proportional to the square of the system size. 

On a time scale still much longer than that of the mode partition noise, sudden 

transitions through which the winding number changes take place. At each transi

tion a drastic change occurs in the distribution of photon numbers over the central 

modes . This phenomenon corresponds to the mode hopping which has been observed 

for multi-mode laser oscillations. We have to note that the origin of mode hopping 

in the M-B system is not the external noise decorrelated with the state of the system. 

It owes to chaotic motion generated by the system itself, and the chaotic dynamics 

seems to work more effectively than the externally applied random force in realizing 

the mode hopping. Indeed we showed that the Rabi chaotic bands and the central 

range work cooperatively and eventually lead to an instability through which an easy 

path connecting the two states with different winding numbers is self-generated. 

Such an easy path has a quite long lifetime, and the chaotic force originating from the 

Rabi bands makes the central range attempt to change the winding number through 

the self-generated easy path. If such an attempt is achieved successfully, a similar 

process mentioned above will be repeated once again at the new state. In such a way 

an endless itinerancy over the ruins of local attractors is realized. 

As has been mentioned, an example of chaotic itinerancy wandering over multiple 

attractor ruins was reported for a model of passive bistable resonator,9> and it is 

recently reconsidered by Davis in the context of the chaotic memory search problem.30> 

The fact that chaos works more effectively than externally applied random force in 

inducing a hopping among local attractors suggests a possibility that a new scheme 

of memory search may be deviced by employing chaotic dynamics. From this 

standpoint, the recent experiment reported by Anderson and Erie5> is quite interesting. 

They observed an itinerancy phenomenon with a holographic resonator which works 

as an associative memory element, and they called it 'day dream'. In this case the 

itinerancy is a mode hopping among the memories which correspond to the single 

mode stationary states in our M-B system. It is, however, still unclear whether the 

origin of mode hopping is attributed to a deterministic chaos or not. Itinerancy over 
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the memories due to the 'noise-induced' chaos has been predicted theoretically by 

Tsuda for a neural network system modeling a dynamical aspect of the brain.31> A 

chaotic wandering over long-lived coherent structures is reported quite recently by 

Kaneko for his globally coupled map lattice model which may be regarded as a 

nonequilibrium version of the Hopfield model.32> Anyhow, examples of the chaotic 

itinerancy are found in a wide area of physical science, and systematic studies on it 

are strongly desired. 
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