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Maxwell Equation for the Coupled Spin-Charge Wave Propagation
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We show that the dissipationless spin current in the ground state of the Rashba model gives rise
to a reactive coupling between the spin and charge propagation, which is formally identical to the
coupling between the electric and the magnetic fields in the 2 + 1 dimensional Maxwell equation.
This analogy leads to a remarkable prediction that a density packet can spontaneously split into
two counter propagation packets, each carrying the opposite spins. In a certain parameter regime,
the coupled spin and charge wave propagates like a transverse “photon”. We propose both optical
and purely electronic experiments to detect this effect.
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The generation and manipulation of spin current is es-
sential to the rapidly developing field of spintronics1. For
this purpose, the analogy between photonics and spin-
tronics greatly helped our conceptual developments, and
this analogy lead to the celebrated Das-Datta proposal
for a spin-field transistor2. However, earlier attempts to
realize this conceptual device were based on the rather
incomplete analogy between the electron spin and the
photon, and were plagued by many issues such as low
spin injection rate and the requirement of the ballistic
spin transport.

Recently, the remarkable phenomenon of the dissipa-
tionless spin current has been theoretically predicted3. A
electric field Ek generates a spin current described by the
response equation

ji
j = σsǫijkEk (1)

where ji
j is the current of the i-th component of the spin

along the direction j, ǫijk is the totally antisymmetric
tensor in three dimensions and the spin Hall conductiv-
ity σs does not depend on impurities. Since both the spin
current and the electric field are even under the time re-
versal, this equation describes a reactive response which
does not dissipate energy. One natural consequence of
this equation is the intrinsic spin Hall effect3,4, which has
been recently observed experimentally in the hole doped
systems5. Another consequence is the dissipationless spin
current in the ground state6. In the above equation (1),
the electric field can be either externally applied, or can
be spontaneously generated in systems without inversion
symmetry. In a two dimensional electron gas (2DEG),
the confining potential along the z direction breaks the
inversion symmetry, and leads to a internal electric field
Ez in the ground state. According to equation (1), there
is a spin current in the ground state, ji

j = j0ǫij , where
ǫij is the antisymmetric symbol in two dimensions with
i, j = x, y.

In this work, we shall show that the dissipationless spin
current in the ground state makes the analogy between
photonics and spintronics formally exact. In 2 + 1 di-
mensions, the electric field has two components, while
the magnetic field has only one component. If one iden-
tifies them with the in-plane components of the spin den-

sity and the charge density, respectively, the Boltzmann
transport equation for the coupled spin and charge wave
is formally the same as the Maxwell equation describ-
ing the electromagnetic fields, where the “speed of light”
is given by the Rashba coupling constant. This behav-
ior is in sharp contrast to the conventional Boltzmann
equation for the decoupled spin and charge dynamics in
semiconductors, where only purely diffusive, but no prop-
agating motion is predicted7. The photonic analogy helps
our understanding on how density gradient and time de-
pendence can generate spin density, and leads to many
novel predictions. We shall show that there is a parame-
ter regime, reachable experimentally, where the coupled
spin-charge wave propagates as a under-damped “pho-
tonic mode”. A density packet will split spontaneously
into two counter propagating packets, each carrying the
opposite spins. This mechanism enables injection of spins
and spin currents. The Boltzmann transport equations
for the Rashba model have been studied previously in
the diffusive region10,11. The coupled spin-charge wave
propagation is a new result of this work.

A spin 1/2 Hamiltonian which includes spin orbit cou-
pling can be written in the following general form:

H =
p2

2m
+ λi(p)σi, i = x, y, z (2)

where λi(p) is a odd function of p, in order to preserve
the time reversal symmetry. This includes a wide range
of spin-orbit couplings, including 2D Rashba and Dres-
selhaus couplings and the 3D spin splitting of the conduc-
tion band in strained semiconductors8. The phase space
density distribution function nF (p, r, t) and the energy
matrix ǫF (p, r, t) are 2 × 2 matrices, and can be decom-
posed as:

nF (p, r, t) = n(p, r, t) + Si(p, r, t)σi

ǫF (p, r, t) = ǫs(p, r, t) + ǫi
v(p, r, t)σi, i = x, y, z (3)

In this letter we consider the system in the absence of
external fields, such that ǫF (p, r, t) = p2/2m + λi(p)σi.
The influence of electric and magnetic fields on the sys-
tem is described in a future longer publication9. The
Boltzmann equation reads:
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(4)

where the right hand side is the collision term expressed
in the relaxation time approximation, and neq

F is the equi-
librium value of nF (p, r, t). τ is the momentum relax-
ation time. Although this approximation does not take
into account the self-energy effects, it turns out to be
qualitatively and quantitatively correct, as we see from
comparison with the solution involving the self energy in
some special cases of spin-orbit coupling10,11. We trace
out the matrix dependence of the distribution function as

well as that of the energy, and integrate the continuity
and the current equations over the Fermi volume9. After
linearization, we obtain9:
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= D
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∂r2
i
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(5)
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(6)

where D =
〈p2

F
〉τ

2m2 is the diffusion constant and µ = eτ
m

is the mobility, and the carriers are electrons of charge
−e. Aside from the self energy renormalizations, Eq.[6]
gives the same result as10,11 when particularized to the
Rashba-spin-orbit coupling. The last term in the spin
continuity equation represents the spin relaxation due
to Dyakonov-Perel (DP) mechanism12. In the case of
Rashba systems, the spin orbit coupling is λi = αǫijzpj,
α has the dimension of velocity, and the continuity equa-
tions become (from now on we use ∂i = ∂/∂ri and
∂t = ∂/∂t) :

∂tn = D∂2
i n − αǫliz∂iS

l

∂tS
k = D∂2

i Sk − αǫkiz∂in +

√

D

τs

(δkz∂iS
i − ∂kSz) −

− 1

τs

(Sk+δkzS
z) (7)

where ri = (x, y) (i = 1, 2) since charge and spin mo-
tion is now confined entirely to the 2D plane. Within
the current microscopic approximation, the DP spin re-
laxation time is given by τ−1

s = (2mα
~

)2D, however, in
the subsequent discussions, we shall treat D and τs as
independent, phenomenological parameters.

Let Sµ = (Sk, Sz), µ = x, y, z, k = x, y. We can write
the two dimensional vector Sk(r, t), k = x, y in the most
general form as a sum of a longitudinal vector Sk

L(r, t)
and a transversal vector Sk

T (r, t):

Sk = Sk
L + Sk

T ; ∂kSk
T = 0, ǫij∂iS

j
L = 0 (8)

Substituting this decomposition into Eq. (7), we find two

sets of coupled equations:

∂tn = D∂2
i n − αǫki∂iS

k
T

∂tS
k
T = D∂2

i Sk
T − αǫki∂in − 1

τs

Sk
T

∂kSk
T = 0 (9)

and

∂tS
k
L = D∂2

i Sk
L −

√

D

τs

∂kSz − 1

τs

Sk
L

∂tS
z = D∂2

i Sz +

√

D

τs

∂kSk
L − 2

1

τs

Sz

ǫij∂iS
j
L = 0 (10)

Hence the charge density couples only to the transverse
spin component, while Sz couples only to the longitudinal
spin component in a purely diffusive fashion11. In the
spin continuity equation of Eq. (9), we see that the α
term is nothing but the divergence of the dissipationless
spin current in the ground state jk

i = αǫkin. We shall
see that this term plays the crucial role leading to the
coupled spin-charge propagation.

At this point we come to a remarkable realization that
the Boltzmann equation (9) for the coupled charge and
transverse spin transport is exactly the Maxwell’s equa-
tion in 2 + 1 dimensions! In order to facilitate the com-
parison, let us first focus on the large spin-orbit coupling
limit, where we neglect the D and the 1

τs
terms in Eq.

(9). In 2 + 1 dimensions, the source-free Maxwell equa-
tions are given by

∂νFµν = jµ = 0 (11)

ǫµνρ∂µFνρ = 0 (12)
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where µ = (0, x, y). In 2 + 1 dimensions, the magnetic
field has only one component, given by Bz = Fxy, and the
two components of the electric field are given by Ei = F0i.
If we make the identification n → Bz, Si

T → Ei and α →
c, we see that the three Boltzmann transport equations in
Eq. (9) are exactly the three Maxwell’s equations in the
vacuum of 2 + 1 dimensions, namely the Faraday’s law
of induction, the Ampere-Maxwell law, and the Gauss’s
law. More generally, the 1

τs
Sk

T term can be interpreted as
light propagation in a metallic media, with the current
density in the Ampere’s law given by the Ohm’s law, and
the D terms can be interpreted as due to light diffusion
in a random media.

FIG. 1: Charge and spin density for τs = 1ns, α = 3×104m/s
and D = 10−3m2/s. We see propagation over distances of
more than 100µm. Inset: Charge and spin density in the
diffusive regime, for small values of α ( τs = 1ns, α = 102m/s
and D = 10−3m2/s) has the typical Gaussian decay.

In conventional theories without spin-orbit coupling,
the electron transport semiconductors is purely diffusive.
However, we see that in the limit of strong spin-orbit
coupling, there is a regime where a propagating, coupled
spin-charge wave mode is possible. If we neglect the dif-
fusion and the lifetime terms for the time being, we find
that the most general solution to the initial condition of
n(x, y, t = 0) = f(x) and Si

T (x, y, t = 0) = 0 is given by:

n(x, t) =
1

2
(f(x + αt) + f(x − αt))

Sy
T (x, t) =

1

2
(f(x + αt) − f(x − αt)) (13)

We see that an initial density wave packet spontaneously
splits into two counter-propagating packets, each carry-
ing the opposite spin. This phenomenon can be elegantly
interpreted in the “photonic” language. In 2 + 1 dimen-
sions, the magnetic field is always pointing along the +ẑ
direction. Since the propagation vector k, being propor-
tional to the Poynting vector, is given by k ∝ E × B, it
uniquely determines the direction of the transverse elec-
tric field. Translating from the “photonic” language into
the “spintronic” language, we see that the mode prop-
agating along the +x̂ has spins along the +ŷ direction,
while the mode propagating along the −x̂ has spins along
the −ŷ direction. The split wave packets carries a spin
current Jy

x , which is a reflection of the spin current in
the ground state of the Rashba model. For a simple esti-
mate, α = 3 × 104m/s, and hence the mode will cross a
sample of 1µm length in 30ps. Considering that the spin
coherence time in these samples can be larger than 1ns,
it means that the propagation time over 1µm distance is
well shorter than 30-th part of the spin relaxation time
and can hence be very useful for spin manipulation.

We now consider the more general situation includ-
ing diffusion and relaxation. We suppose that a one di-
mensional stripe of charge density has been created, say
by transient grating13. The initial density is given by
n(x, y; t = 0) = δ(x). The solution to the full equations
give Sz(x, t) = Sy(x, t) = 0 while Sy(x, t) is generated
by the spin-orbit coupling:

n(x, t) =

∫ ∫

1

(2π)2
iω + Dq2 + 1

τs

−(ω − ω1)(ω − ω2)
ei(ωt−qx)dωdq

(14)

Sy(x, t) =

∫ ∫

1

(2π)2
iαq

(ω − ω1)(ω − ω2)
ei(ωt−qx)dωdq

(15)
where ω1, ω2 are the characteristic frequencies of the sys-
tem:

ω1,2 = i(Dq2 +
1

2τs

) ±
√

α2q2 − 1

(2τs)2
(16)

We recognize the propagating mode inside the square
root. For momenta q > 1/2τsα both characteristic fre-
quencies contain real parts and hence describe propagat-
ing waves. However, q must not be as large as to cause
damping due to the term Dq2t. The condition for this
gaussian damping to be small is Dq2τs < 1 for q ∼ 1/τsα.
Therefore, the condition for the regime where a propa-
gating mode could exist is then given by:

α >

√

D

τs

(17)

This condition can be satisfied in samples where α =
3 × 104m/s and D = 10−3m2/s, with τs longer than

1ns14. In this case,
√

D
τs

= 103, much smaller than α.
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FIG. 2: A modified version of the classic Haynes-Shockley
experiment. A density packet injected by the emitter spon-
taneously splits into two counter propagating packets with
opposite spin. Unlike the settings of the Haynes-Shockley ex-
periment, one of the two packets propagates to the collector
without experiencing a sweeping electric field. The time de-
lay between the injection pulse the the collecting pulse gives
a purely electric determination of the Rashba spin-orbit cou-
pling constant.

In the limit of very long τs → ∞ the integrals can be
solved exactly. We give the expression of Sy in this limit:

Sy(x, t) =
1

4
√

π

1√
Dt

[

e−
(αt−x)2

4Dt − e−
(αt+x)2

4Dt

]

(18)

The propagating mode is αt ± x = 0 where either one of
the damping gaussian exponentials becomes unity. The
spin symmetry is odd in x, the spins propagating in the
positive and negative x axis directions having opposite
polarization. Note that for diminishing spin-orbit cou-
pling α → 0 the spin density also vanishes, as it should.
For finite τs in a stationary phase-type approximation
the spin-density solution above gets multiplied by an ex-
ponential factor exp(−t/2τs). Impressively, both spin

and charge can propagate over distances well in excess
of 100µm and for times well in excess of 10τs, (the full
time scale is not plotted in Fig[1]).

We now propose several experiments to test the cou-
pled spin-charge wave predicted in this work. One could
inject the density packet optically, and detect the split-
ting of the density packet and the associated spin orien-
tation by optical Kerr rotation. One could also detect
the spin orientation through the circularly polarized lu-
minance from the recombination with the majority car-
riers. Alternatively, one could detect the propagation of
the density packet purely electrically, by a modified ver-
sion of the classic Haynes-Shockley experiment? . Fig.
(2) describes a narrow sample with light p-doping. Two
rectifying metal-to-semiconductor point contacts are for-
ward and reverse biased, respectively, to serve as emitter
and collector electrodes. After turning on the emitter
pulse, a electron density packet is injected into the sam-
ple. In conventional Haynes-Shockley setup, the electron
packet would be swept to the collector electrode by a
electric field. In our case, no sweeping electric field is ap-
plied, but the density packet will spontaneously split into
two counter propagating packets with the opposite spin
orientation, with a velocity directly given by the Rashba
coupling constant α. When the right moving packet is
captured by the collector electrode, a voltage pulse is reg-
istered. From the time-delay and the shape of the voltage
pulse, one can determine the Rashba coupling constant
and the diffusion constant by purely electric means. This
experiment illustrates the fact that the injected density
pulse can take advantage of the spin current in the ground
state, and propagate without any applied voltage.
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