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In the second part of this tutorial we consider several advanced topics related to the Maxwell Garnett
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1. INTRODUCTION

This is the second part of the tutorial on Maxwell Garnett ap-
proximation. The first, introductory part was published in [1]
and we will refer to the equations of [1] in the form (FP#), where
# is the equation number.

In the second part, several more advanced topics will be dis-
cussed. The overall goal is to justify and generalize the Maxwell
Garnett approximation and to place it more solidly in the con-
text of modern classical electrodynamics of continuous media.
In particular, we will include into consideration the effects of
finite frequencies and electromagnetic interaction of inclusions.
We will also develop a rigorous homogenization theory for pe-
riodic composites. We will see that the Maxwell Garnett mixing
formula is obtained from this result by neglecting a term that is
responsible for the interaction of inclusions.

We will start with laying out in section 2 a general theo-
retical framework of the macroscopic Maxwell’s equations in
continuous media. This old topic has attracted renewed at-
tention recently [2, 3]. Traditionally, the derivation of macro-
scopic Maxwell’s equations from the microscopic ones was
done primarily for pedagogical purposes and the averaging
procedure typically involved in such derivations was not used
constructively. However, the development of modern compu-
tational approaches to the microscopic theory and, especially,
the emergence of the DFT-based ab initio methods for comput-
ing the microscopic electromagnetic quantities have motivated
re-examination of some basic assumptions.

One important idea that requires a fresh look is the classi-
cal interpretation of the polarization and magnetization fields
as the volume densities of the electric and magnetic dipole mo-
ments. Ab initio calculations of the microscopic induced charge
density in some solids such as crystalline silicon have shown

∗On leave from the Department of Radiology, University of Pennsylvania,
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that this interpretation can be incorrect [4]. In section 3, we
discuss the range of applicability of the classical interpretation
and identify two main reasons for its breakdown: charge leak-
age through the cell boundaries (in crystalline materials) and ac-
cumulation of a non-negligible electromagnetic phase between
the neighboring cells. The two causes for the classical interpre-
tation breakdown become important in different physical situ-
ations. Charge leakage can be relevant for natural materials in
which the elementary cells are microscopic but not for macro-
scopic composites. On the other hand, the phase shift plays
almost no role in natural materials but can come to the fore in
the macroscopic homogenization theories.

In section 4 we consider propagation of waves on three-
dimensional cubic lattices of polarizable particles. It is shown
that the Clausius-Mossotti relation follows from the law of dis-
persion for such waves in the long wavelength approximation.
The Maxwell Garnett mixing formula is then obtained from
the Clausius-Mossotti relation if we assume that the particles
are small dielectric spheres and use the appropriate expression
for their polarizabilities. We also discuss briefly what happens
beyond the long wavelength approximation and, in particular,
give a few leads to the extended homogenization theories that
include dynamic corrections and effects of nonlocality.

A drawback of the point-particle model is that it does not
allow one to account for the shape and physical size of the in-
clusions in a mathematically-consistent manner. In section 5,
we overcome this limitation by considering a general three-
dimensional photonic crystal. A rigorous homogenization the-
ory is obtained in the long wavelength limit. The resulting mix-
ing formula is very similar to Maxwell Garnett’s but contains
an additional term, which is responsible for the electromagnetic
interaction of inclusions. This term also allows one to compute
tensorial effective permittivities of anisotropic composites.

In section 6, we show several numerical illustrations of the
rigorous homogenization formula derived in section 5. Here
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we consider various two-component composites consisting of
the same materials (a conductor and a dielectric) as were
used in the first part of this tutorial to illustrate the Wiener
and Bergman-Milton bounds. The results are compared to
the Maxwell Garnett’s and Bruggeman’s predictions and it is
shown that the Maxwell Garnett approximation is quite robust
for isotropic composites, albeit we do not consider strong reso-
nance effects that can render simple mixing formulas grossly
inaccurate. However, in the case of anisotropic composites,
Maxwell Garnett’s predictions are much less robust even in the
absence of strong resonances.

Consistently with the first part of this tutorial, we will use
the Gaussian system of units.

2. MACROSCOPIC MAXWELL’S EQUATIONS IN CON-

TINUOUS MEDIA

The starting point for our exposition is the set of microscopic
Maxwell’s equations for the electric and magnetic fields E and
B and the electric current J,

∇× B =
1

c

∂E

∂t
+

4π

c
J , ∇× E = −

1

c

∂B

∂t
, (1)

where c is the speed of light in vacuum. The system (1) is sup-
plemented by the continuity equation

∂ρ

∂t
+∇ · J = 0 , (2)

where ρ is the density of electric charge. The two equations
∇ · E = 4πρ and ∇ · B = 0 are not independent but follow from
(1) and (2).

The fields E and B are fundamental in the electromagnetic
theory because they appear in the expression for the Lorentz
force F acting on a point charged particle, viz,

F = qE +
q

c
v × B . (3)

In classical physics, electric and magnetic fields are measurable
only through the action of the Lorentz force [5].

Some part of the electric current J can be viewed as a known
and externally-controlled source. One example is a radiating
antenna, which is fed in a prescribed way. We denote this term
by Jext and refer to it as to the external current. The electromag-
netic fields created by Jext will exert the force (3) and set the
charges of any material object in motion. This will create an in-
duced current Jind in that object. The total current everywhere in
space is then given by

J(r, t) = Jext(r, t) + Jind(r, t) . (4)

In any sensible application of the theory, the external and the in-
duced currents do not overlap spatially. Consequently, Jext(r, t)
does not overlap with the medium. One can consider a more
general case mathematically, but such models do not describe
the physical reality.

The induced current will create additional electromagnetic
fields, which will, in turn, act back on the moving charges. Even
if we can neglect the back-action of the induced fields on the
external source, this interaction will result in a big unsolvable
set of nonlinear equations. To complicate things further, it is
known that any set of charged particles can not hold itself to-
gether by the forces of the form (3) if we apply the Newtonian
laws of motion. Therefore, stability of matter can not be under-
stood from classical first principles.

Naturally, one wishes to develop an electromagnetic theory
of continuous media that avoids these complications. This goal
is achieved by the macroscopic Maxwell’s equation. In a typical
textbook exposition, these equations are obtained by averaging
the microscopic equations (1) over a physically small volume. The
derivation is based on the observation that 〈∇× E〉 = ∇× 〈E〉
and similarly for other fields, where

〈 f (r)〉 =
1

D

∫

D

f (r + s)d3s , (5)

D is a small region of space around the origin and D is its vol-
ume. We then replace all quantities in (1) by their averages. The
nontrivial task in this case is to compute 〈Jind〉, which describes
the response of the medium to the electromagnetic fields.

Unfortunately, there exist several problems with the averag-
ing approach. First, for the method to be mathematically sound,
we need to make sure that the integrals of the form (5) exist for
all quantities of interest and are independent of the shape of
D. But the field of a truly point charge is not integrable and
therefore it can not be averaged. This problem is not rectified
by introducing any number of point charges or by excluding
small spherical regions around each charge from integration
(this does not suppress the dependence on D). The only so-
lution to the divergence problem is to introduce a continuous
density of charge. In particular, the quantum-mechanical DFT
and the classical hydrodynamic model operate with continu-
ous densities, which are already in some sense averages. But
these smooth functions are not obtained by actual averaging
of some (generally, unknown) microscopic densities; they are
simply postulated to exist and are computed according to some
approximations.

Secondly, the microscopic quantities of interest are very dif-
ficult if not impossible to compute in continuous media. Of
course, there exist some simple models such as the Lorentz or
the Drude model. However, these models describe adequately
only some special cases and, moreover, they do not employ av-
eraging of the field of point charges. In the first part of this
tutorial, we have averaged the field of elementary dipoles (in sec-
tion 2B). This is a somewhat better-defined procedure albeit not
without its own mathematical ambiguities, which we have en-
countered while considering anisotropy in section 4.

We can conclude that the operation of microscopic field av-
eraging is a purely formal procedure; it is not constructive in
the sense that it does not yield any useful predictions. The av-
eraging is simply postulated for pedagogical reasons and not
used for anything. Instead, a phenomenological approach to
constructing the macroscopic theory is implicitly used. Indeed,
all we need to “derive” the macroscopic Maxwell’s equations
are the following three postulates:

(i) The medium is a true continuum, possibly, with
sharp boundaries or interfaces where the properties can jump
abruptly.

(ii) The external source excites a continuous density of in-
duced current Jind (possibly, with singular contributions at the
surfaces of discontinuity), which is a functional of the funda-
mental electromagnetic fields.

(iii) The induced current is zero in vacuum.

In the case of local and linear media, we can describe the func-
tional dependence of postulate (ii) by the equation

Jind =
∂P

∂t
+ c∇× M , (6)
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where

P(r, t) =
∫ ∞

0
fe(r, τ)E(r, t − τ)dτ , (7a)

M(r, t) =
∫ ∞

0
fm(r, τ)B(r, t − τ)dτ . (7b)

Here fe(r, τ) and fm(r, τ) are the electric and magnetic influence
functions (in general, symmetric tensors). We can say that (7) is
causal and local: for example, J(r, t) depends only on the elec-
tric field at the same point r (locality) and at the moments of
time t′ ≤ t (causality). Note that according to the Postulate (iii),
fe(r, τ) = fm(r, τ) = P(r, t) = M(r, t) = 0 if r is in vacuum.

Now we need to make a few important comments.

(i) Expressions (6),(7) are not the most general form of a lin-
ear functional relating the induced current to the fundamental
fields. In bi-isotropic and bi-anisotropic media, (7) is replaced
by a more general relation in which P is coupled to B and M
is coupled to E. However, (6),(7) are of the most general form
if we restrict consideration to media that are completely char-
acterizable by two symmetric tensors ǫ and µ (the dielectric
permittivity and magnetic permeability, defined below). Physi-
cally, our assumptions mean that the medium is reciprocal and
non-chiral. There exists a subtle point: the gyrotropic (magneto-
optical) effect is described by a non-symmetric tensor ǫ; it may
seem that this phenomenon can be formally described by (6),(7).
In fact, the off-diagonal elements of ǫ in gyrotropic media are
proportional to the amplitude of a stationary magnetic field and
(6),(7) do not allow for such a dependence. So our description
does not include gyrotropy and non-reciprocity caused by a sta-
tionary magnetic field.

(ii) Just like the microscopic Maxwell’s equations (1), expres-
sions (6),(7) are invariant under coordinate inversion. Recall
that the true vectors such as E, J and P change sign while the
pseudo-vectors B, M are invariant under coordinate inversion.
However, invariance under time inversion is lost in the macro-
scopic theory. Time inversion can be understood as an instan-
taneous change of direction of the classical velocities of all par-
ticles (we do not discuss here antimatter and other quantum
concepts). The fields J and B and the time derivatives such as
∂E/∂t change sign under time inversion while E and ρ are in-
variant. Invariance under time inversion is lost in the macro-
scopic equations because P(t) in (7a) depends on E(t′) for all
moments t′ such that t′ < t. If this dependence was local, e.g.,
P(t) = χeE(t) (and similarly for M), the macroscopic equations
would have been time-reversible. It is well known that tem-
poral nonlocality of (7), also known as temporal or frequency
dispersion, is a phenomenological way of accounting for ther-
modynamically irreversible processes such as absorption.

(iii) The familiar equation formalizing the Ohm’s law, Jind =
σE, where σ is the conductivity, is a special case of (6),(7).
Analysis is most straightforward in the frequency domain, but
we can also use the equation ∂P/∂t = σE to write P(t) =

σ
∫ t
−∞

E(t′)dt′; comparing this to (7a), we find that fe(τ) = σ,

that is, fe(τ) is independent of τ for conductors. We can also
write fe(τ) = σΘ(τ) where Θ(x) is the step function and ex-
pand integration in (7a) to the whole real axis. Note that Ohm’s
law is a prime example of time-reversibility breaking since the
fields J and E transform differently under time inversion.

(iv) We have used the same letters E, B, etc., to denote the
microscopic and macroscopic electromagnetic fields. We thus
break off with the tradition to denote the microscopic fields by
small letters such as e or b. The latter approach usually implies

that E = 〈e〉, etc. We do not follow the tradition since we as-
sociate a given notation with a physical quantity it represents
rather than with a particular approximation. Thus, E is the elec-
tric field that appears in the expression for the Lorentz force (3),
and the macroscopic theory simply offers us a mathematically-
tractable approximation for computing this quantity. Moreover,
the small-letter notations are not really used for anything: as
soon as the averaging operation is formally introduced, all cal-
culations are performed with the large-letter quantities, includ-
ing the calculations of physical measurables that are quadratic
in the fields. These calculations bear no trace of the averaging
procedure and, therefore, the existence or non-existence of the
more fundamental little-letter fields is of no observable conse-
quence. However, we will use below the notations ̺ and j for
the microscopic densities of charge and current. These quanti-
ties are introduced in various theoretical models of continuous
media.

(v) The term c∇× M can be viewed as a spatially-nonlocal
correction to the purely local term ∂P/∂t. We can envisage
terms with higher-order derivatives or a more general non-
local functional dependence. In this case, the linear relation
between Jind and E becomes of a very general form Jind(r, t) =
∫

d3r′
∫ ∞

|r−r′|/c dτ f (r, r′, τ)E(r′, t− τ)where f can have singular-

ities that describe derivatives of arbitrary order. This descrip-
tion requires detailed knowledge of the kernel f (r, r′, τ). It is
often implied that f is a function of the shift r − r′, but this is
true only sufficiently far from the boundaries and interfaces. If
f is known only far from the interfaces (as is usually the case),
introduction of the so-called additional boundary conditions
(ABC’s) and additional medium parameters is required. In nat-
ural materials, the effect of nonlocality, although in principle un-
avoidable, is very weak, and f quickly approaches zero for the
shifts |r − r′| that are significantly larger than the atomic scale.
On the other hand, nonlocality can result in some physical ef-
fects (such as optical activity), which are not present in purely
local materials. A detailed exposition of the nonlocal optics of
crystals is given in [6]. In macroscopic composites, nonlocality
can play a much more profound role, see Sec. 4.E below.

(vi) Substitution of (7) into (2) results in the expression for
the induced charge density,

ρind(r, t) = −∇ · P(r, t) . (8)

We could have added to the right-hand side of (8) any time-
independent function ρ0(r). It is usually assumed that the
medium is locally and globally neutral in the absence of exter-
nal excitation so that ρ0 = 0. We have used a similar assump-
tion in Point (iii) above to determine the constant of integration.
However, in some cases, this assumption is not valid. Examples
include charged objects and segnetoelectrics. In what follows,
we will assume that ρ0 = 0.

(vii) The quantities P and M define uniquely Jind through
Eq. (6) but the inverse is not true. Indeed, the pair (P′, M′),
where P′ = P + ∇ × F and M′ = M − ∂F/∂t yield the same
Jind as the pair (P, M). Here F is an arbitrary pseudo-vector
field. This fact has historically led to the proposition that, in
order to build the correct macroscopic theory, one must resort
to some additional conditions to define P and M uniquely [$6
7]. However, in the phenomenological approach described here,
one does not really need to determine P and M from a given
Jind. Instead, the physically-relevant problem is to determine
the functions fe(τ) and fm(τ) for a given material. This can
be done uniquely by performing several measurements of the
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transmitted and reflected field in some simple geometries such
as a slab. A particular example of an experimental technique
for determining the dielectric function of a homogeneous mate-
rial is called ellipsometry [8]. Once fe(τ) and fm(τ) (in practice,
their Fourier transforms with respect to τ) have been found, any
boundary-value problem can be solved uniquely for any illu-
mination and any shape of the sample. Correspondingly, the
fields P and M are also defined uniquely in each particular case.
Therefore, we do not need to apply the additional condition that
P and M are the densities of electric and magnetic dipole mo-
ments. In fact, we will see that this condition does not hold in
general.

We now substitute (6) into (4) and the result into the right-
hand side of (1) and obtain the macroscopic equations

∇× H =
1

c

∂D

∂t
+

4π

c
Jext , ∇× E = −

1

c

∂B

∂t
, (9)

where we have defined two auxiliary fields

D = E + 4πP , H = B − 4πM (10)

The second equations in (1) and (9) are the same.
To complete the construction of the theory, we transform the

macroscopic Maxwell’s equations to the frequency domain. Let
us assume that the source Jext(r, t) is strictly monochromatic.
Then we can write

Jext(r, t) = Re[Jext(r)e
−iωt] , E(r, t) = Re[E(r)e−iωt] (11)

and similarly for all other fields. We then obtain from (7),(10):

D(r) = ǫ(r)E(r) , B(r) = µ(r)H(r) , (12)

where

ǫ(r) = 1 + 4π
∫ ∞

0
χe(r, τ) exp(iωτ)dτ , (13a)

µ−1(r) = 1 + 4π
∫ ∞

0
χm(r, τ) exp(iωτ)dτ . (13b)

Substituting (11),(12) into (9), we arrive at

∇× H(r) = −ikǫ(r)E(r) +
4π

c
Jext(r) , (14a)

∇× E(r) = ikµ(r)H(r) , (14b)

k = ω/c + i0 . (14c)

Here k is the free space wave number. We have added to it an in-
finitesimal imaginary part to satisfy the boundary conditions at
infinity (this will also prove useful for computing various inte-
grals). We have explicitly indicated the dependence of all func-
tions of position on r. However, the frequency ω is suppressed
in the lists of formal arguments of various functions because we
focus on just one working frequency. Considering a discrete or
continuous superposition of frequencies will naturally lead us
to the theory of partially-coherent fields, which is very impor-
tant in optics but is outside of the scope of this tutorial.

Equations (14) are the closed set of macroscopic Maxwell’s
equations. If the functions ǫ(r), µ(r) are known and sufficiently
“nice” mathematically, we can solve (14) uniquely. On the other
hand, if we have a sample of material that is known to be homo-
geneous internally with some fixed ǫ and µ, we can perform a
set of experimental measurements with quasi-monochromatic
radiation that will determine uniquely these quantities at the
working frequency. For example, to determine the properties

of a homogeneous isotropic slab, one can perform transmis-
sion and reflection measurements at several incidence angles,
various states of polarization of the incident beam and, per-
haps, various widths of the slab. It should be kept in mind
that the experiments of this kind are usually carried out with
partially-coherent sources of radiation and one should use the
appropriate mathematical description of the polarization states
of partially-coherent radiation.

Finally, it is often more convenient to consider a given exter-
nal (incident) field rather than a given external current. This is
explained in Sec. 4.B.

3. THE PHYSICAL MEANING OF POLARIZATION AND

MAGNETIZATION

It is almost universally accepted that the polarization and mag-
netization fields P and M are the differential volume densities
of the electric and magnetic dipole moments in continuous me-
dia. However, in a typical textbook exposition of the subject,
the mathematical arguments in favor of this belief are either
missing or flawed. Sometimes it is implied that two functions
are point-wise equal if their integrals over a given region are
equal [see Eq. (16) below and its discussion]. Sometimes it is
remarked that P and M can not be determined uniquely from
the induced current Jind and we must, therefore, apply some
additional conditions to define these quantities unambiguously
[this argument is discussed in Point (vii) of Sec. 2 above]. In yet
other cases, it is argued that P and M must have some “phys-
ical meaning,” and then pictures are drawn of little polarized
atoms or current loops. The problem with this approach is that
it is relevant only to some very special cases.

The classical interpretation of P and M, as we will call it,
has gained wide acceptance for several reasons. First, it can be
viewed as pedagogical, since it gives a visual qualitative expla-
nation of the polarization and magnetization phenomena. Sec-
ond, the approach seemed to work fine when it could be ap-
plied in practice, that is, for molecular gases or simple compos-
ites. In other cases, which include pretty much all condensed
matter and composites of complex geometry, there was not
enough information to say anything. The microscopic charge
density in condensed phase could not be computed from sim-
ple models.

The situation has changed in 1990-ies with the develop-
ment of the density-functional theory and related computa-
tional methods. When the microscopic charge density was com-
puted in some solids, it became obvious that the classical in-
terpretation does not reproduce the experimental results with
an acceptable accuracy. This motivated the development of the
modern theory of polarization by King-Smith, Resta and Van-
derbilt [9–12]. The main idea of this new theory is that the po-
larization P itself (however defined) is not physically important;
it is the change of P that is measurable and can be related to
the macroscopic properties of matter. The point of view taken
in this tutorial is very similar: the fundamental quantity of in-
terest is the electric current – the time derivative of P (assum-
ing M = 0). However, since our discussion is purely classical,
we do not touch here the geometric quantum phase, which is
central to the modern theory of polarization. We note that re-
cent introductory-level reviews of this theory are available in
Refs. [4, 13].

Still, it is hard not to notice that the classical interpretation
is surprisingly robust, at least for the electric polarization, and
we naturally wish to understand its limits and conditions of ap-
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plicability. Considering the importance of this subject, we will
discuss it in detail in this section, primarily, in relation to the
electric polarization (magnetization is also discussed briefly).
In particular, we will see that the classical interpretation works
fine for the Maxwell Garnett theory as long as the character-
istic scale of inhomogeneities is much smaller than the wave-
length. However, one should be conscious of the conditions
of applicability of the classical interpretation, especially when
high-frequency phenomena are considered.

A. Polarization and the density of electric dipole moment

Consider a simple connected region D of volume D and let the
closed and regular surface S be its boundary. The region D is
located arbitrarily with respect to a given sample of continu-
ous medium, which occupies the spatial region V. We wish to
compute d(t) – the macroscopic dipole moment of the matter
contained in D. To this end, we can start from Eq. (8) and write

d(t) ≡
∫

D

rρind(r, t)d3r = −
∫

D

r[∇ · P(r, t)]d3r

=
∫

D

P(r, t)d3r +
∮

S

r[P(r, t) · dS] . (15)

We have used integration by parts in the second line of (15),
dS = n̂d2r is the vector element of surface and n̂ is an outward
unit normal to S.

If the surface integral in (15) was zero, we could conclude
that the classical interpretation is correct. Indeed, we can take
D to be sufficiently small so that

∫

D
P(r, t)d3r ≈ P(r0)D, where

r0 is a point inside D. Then P(r0) ≈ d/D is, indeed, the dipole
moment per unit volume. But there is no reason to believe that
the surface integral in (15) is zero. An obvious counter-example
is a statically polarized piece of metal. Since the macroscopic
charge can accumulate in conductors only on the surface (this
result holds at arbitrary frequencies if the conductor is inter-
nally homogeneous), the dipole moment of any interior vol-
ume element is zero while the polarization P is not. In fact, the
macroscopic dipole moment of any internal region of a homo-
geneous material is zero.

Thus, equation (15) written for the general case does not tell
us much. To make a more useful statement, we can take D ⊃ V

so that the surface S is in vacuum and completely encloses the
object. The surface integral in this case vanishes, and we obtain
for the total dipole moment of the object

dtot(t) =
∫

V

P(r, t)d3r . (16)

Therefore, the total dipole moment of any electrically neutral
object is equal to the integral of P over its volume. This result is
quite general but, of course, it does not mean that P is the differ-
ential density of dipole moment. Indeed, even if the integrals
of two functions evaluated over the same region are equal, the
functions can still be different.

However, we can use the result (16) constructively if we have
a microscopic model or some “more fundamental” expression
for the density of charge. As discussed above, this expression
can come from one of the theoretical models such as the Lorentz
model, the Drude model, the hydrodynamic model; it can result
from an ab initio DFT calculation, and so on. Let us say that
somehow we have computed a fine-scale density of charge ̺.
We expect the following equality to hold:

∫

V

P(r, t)d3r =
∫

V

r̺(r, t)d3r = dtot . (17)
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Fig. 1. One-dimensional illustration of the ambiguity of defin-
ing the dipole moment of an element of volume. Idea of the
figure is borrowed from Ref. [13].

In other words, the total dipole moment of the object should
be the same whether we compute it by using the macroscopic
polarization function P or the microscopic charge density ̺. We
hope to use this condition to establish a relation between P and
̺. Here is how we can proceed.

(i) Let us first apply the macroscopic theory to a geometry
in which the polarization function inside the object is constant
and equal to P. Examples include a sphere, an ellipsoid or a
relatively thin slab at a zero or low frequency. Then dtot = VP.

(ii) Let us break the object into N elementary cells Cn so
that V = ∪nCn. Let us assume that the function ̺(r, t) is
periodic. Then the microscopic dipole moment of each cell is
dC =

∫

C
r̺(r)d3r.

(iii) From the condition (17), we conclude that VP = NdC

and, consequently, P = dC/C, where C = V/N is the volume
of an elementary cell.

We thus have made an identification of P as the density of
microscopic dipole moment in a very special case. In particu-
lar, we have assumed that the geometry and frequency are such
that the macroscopic polarization is spatially uniform inside the
sample, the sample is dividable into completely identical cells
and the electromagnetic response of all cells is identical, includ-
ing the cells at the boundary and in the interior of the sample.

All the conditions described above are important. For exam-
ple, consider the physical situation sketched in Fig. 1. Here the
charge distribution is perfectly periodic. However, if we forget
about the left and right ends of the chain, there is no unique
definition of the unit cell. We can define the unit cell so that its
dipole moment takes any value in the interval [−qh, qh]. There-
fore, if we want to make a meaningful choice, the condition (ii)
must be used. Application of this condition depends on the left
and right ends of the chain, which are not shown in the figure. If
the medium is electrically neutral, there are only two possible
terminations: either the left end is negative and the right end
is positive or vice versa. In each case we can break the medium
completely into identical elementary cells. In one case, the macro-
scopic polarization of the medium Pz (along the chain) is +q/h2

and, in the other case, it is −q/h2 (we assume that each cell is
cubic); the intermediate values of Pz are not possible.

The above example suggests that what happens at the
medium boundaries is really important. It is not possible to
use a microscopic model of a medium without implicit or ex-
plicit consideration of the boundaries. Moreover, the familiar
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Fig. 2. Illustration of the charge density (18) for L = 10h. Here
Lorentzians of the width γ = 0.01h are plotted instead of true
delta-functions.

correspondence between P and the dipole moment of a cell can
easily break down if the cells adjacent to the boundaries are in
some way not equivalent to the cells in the interior.

Here is a simple one-dimensional example illustrating the
importance of boundaries. Consider a microscopic charge dis-
tribution ̺(z) of a sample contained between the planes z = 0
and z = L = Nh, which is given by the expression

̺(z) = ̺0

{

cos

(

2π
z + ∆

h

)

+
h

2π
sin

(

2π
∆

h

)

[δ(z)− δ(z − L)]

}

, 0 ≤ z ≤ L . (18)

This function (18) is obtained by taking the unperturbed charge
density ̺0 cos(2πz/h) in the interval 0 ≤ z ≤ L and “shifting”
it to the left by ∆. We assume that there is a hard wall at z = 0
and the charge can not leak through it. So all positive charge
that would otherwise go through the surface is accumulated in
the plane z = 0 and forms a surface charge density. An anal-
ogous process occurs at the other boundary z = L except that
there the charge of opposite sign is accumulated. We can imag-
ine that the shift ∆ is proportional to the macroscopic field Ez

inside the medium, say, ∆ = (χ/̺0)Ez, where χ is a propor-
tionality constant. Then the response of the medium is linear
as long as ∆ ≪ h. The function (18) is illustrated in Fig. 2 for
different values of ∆.

Let us now break the medium into the elementary cells nh ≤
z < (n + 1)h, n = 0, 1, . . . , N − 1. It is easy to see that each
elementary cell in the interior of the medium (that is, for 1 ≤
n ≤ N − 2) acquires a dipole moment per unit surface dC =
̺0(h

2/2π) sin(2π∆/h). According to the conventional wisdom,
the medium should be assigned the macroscopic polarization

Pz =
̺0h

2π
sin

(

2π
∆

h

)

−−−−→
∆/h→0

̺0∆ . (19)

Comparing this with Pz = [(ǫ − 1)/4π]Ez and ∆ = (χ/̺0)Ez,
we would conclude that the medium has the permittivity ǫ =
1 + 4πχ.

But the conventional wisdom is wrong in this case. The prob-
lem is that the boundary cells are not equivalent to the cells
in the interior. Of course, the boundary cells are not electri-
cally neutral and, therefore, we can not compute unambigu-
ously their dipole moments. However, we can compute the

total dipole moment of the whole structure, and it turns out
to be equal to zero. It happens so that the dipole moment of
the first and last cells (considered together) cancels exactly the
dipole moment of all internal cells. If we assign the medium the
dielectric permittivity ǫ = 1 + 4πχ, we would get an obviously
incorrect result. In fact, and somewhat paradoxically, the cor-
rect value of ǫ is 1; the medium is not macroscopically different
from vacuum.

It is interesting to note that the total dipole moment of the
sample remains zero if we replace the delta-functions in (18) by
Lorentzians of arbitrary width and unit integral weight.

Another way to understand the above result is to consider
the microscopic current jz(z). Let us assume that ∆ is a function
of time with the derivative ∆̇. Then we can use the continuity
equation ∂̺/∂t + ∂jz/∂z = 0 to compute the current. The result

is jz = −̺0∆̇ cos[2π(z + ∆)/h]. We have
∫ L

0 jzdz = 0 and, more-
over, the average of jz computed over an arbitrarily-defined cell

is also zero, viz,
∫ a+h

a jzdz = 0 for 0 ≤ a ≤ L − h.
We have just obtained an illustration of one important fact:

unlike the dipole moment, the cell average of the microscopic
current is independent of the choice of elementary cell. But this
is only natural: polarization and magnetization are introduced
as auxiliary quantities while the current is fundamental. Anal-
ogously, various multipole moments that are used in the clas-
sical interpretation are auxiliary quantities whose introduction
can be avoided altogether.

We now need to clarify that the example of Eq. (18) and Fig. 2
illustrates just one particular reason why the classical interpre-
tation can be wrong: the possibility of charge leakage through
the cell boundaries. This possibility is the main objection to the
classical interpretation that is raised in the modern theory of
polarization. We can, however, envisage a physical situation in
which every elementary cell contains a localized distribution of
charge that can not leak through the cell boundaries. This situa-
tion was referred to as the Clausius-Mossotti picture in Ref. [4].
It is well understood now that the Clausius-Mossotti picture is
not a realistic model for polarization of solids. Still, the model
may seem to be not so bad for the problem of homogenization
of macroscopic composite materials. For example, we can con-
sider isolated metallic inclusions in a dielectric host or even in
vacuum. In the latter case, the charge can definitely not leak
through the cell boundaries.

However, there is another reason why the classical interpre-
tation can fail. According to the condition (ii) above, we should
be able to break a macroscopic sample into identical elementary
cells. But if the size of a unit cell is not very small compared to
the free-space wavelength, such partitioning of the medium is
not possible. The fields in two adjacent cells will never be identi-
cal in this case. Therefore, the assumption that dtot = NdC will
not hold. One can also say that an elementary cell is not a physi-
cally small volume in this case. For the problem of homogeniza-
tion of macroscopic composites, this objection is much more im-
portant than the charge leakage.

We can now make the following conclusions.

(i) There are two main objections to the classical interpreta-
tion: charge leakage through the cell boundaries and accumu-
lation of non-negligible phase between two neighboring cells.
These objections come to the fore in different physical situations.
The first objection can be unimportant for macroscopic compos-
ite media while the second objection is almost never important
for the theory of molecular polarization of natural materials.

(ii) In some cases, neither of the two objections apply and
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we can safely use the classical interpretation to compute ǫ. In
particular, the Maxwell Garnett theory relies on this approach.
However, one should keep in mind that the classical interpreta-
tion has conditions of applicability.

(iii) To be used constructively, the classical interpretation is
not required to be valid for all possible samples. In fact, this
is hardly ever possible. For example, even at a very low fre-
quency, we can envisage a sample that is so large that the elec-
tromagnetic fields in its elementary cells are not equivalent and
the equality dtot = NdC does not hold. What we actually need
is the existence of at least some sample for which all the condi-
tions of applicability of the classical interpretation are met. We
can compute ǫ for this particular sample by using the classical
interpretation and then rely on the fact that ǫ is independent of
the overall shape and size of a sample.

B. Magnetization and the density of magnetic dipole moment

Although we do not discuss magnetic effects in any detail in
this tutorial, we will now look briefly at the vector of magneti-
zation M. The main point that we wish to make is that there
is no direct analogy between P and M and the arguments used
above for P can not be applied to M without additional restric-
tions.

The classical interpretation of magnetization is even more
problematic because an integral relation of the form (16) does
not generally hold for M. Indeed, the macroscopic induced
magnetic moment m of the region D is by definition

m =
1

2c

∫

D

r × Jindd3r , (20)

where Jind is given by (6). We can write m = m1 + m2, where

m1 =
1

2c

∫

D

r ×
∂P

∂t
d3r , m2 =

1

2

∫

D

(r ×∇× M)d3r . (21)

The term m1 contains the electric polarization vector and is usu-
ally disregarded at low frequencies. However, at high frequen-
cies, or even in the case when the medium supports a steady
current, this term is not zero. To evaluate the second term, we
can write identically r × ∇ × M = ∇(r · M) − M − (r · ∇)M.
Therefore,

m2 =
1

2

[

∮

S
(r · M)dS −

∫

D

Md3r −
∫

D

(r · ∇)Md3r

]

. (22)

The last integral can be evaluated by parts as

∫

D

(r · ∇)Md3r =
∮

S
M(r · dS)− 3

∫

D

Md3r . (23)

Collecting everything together, we obtain after some additional
re-arrangement

m2 =
∫

D

Md3r −
1

2

∮

S
r × M × dS . (24)

Again, we see that there is a surface term, which disappears
only if S is drawn outside of the body.

Let us now take D ⊃ V so that the surface integral vanishes.
Then the total magnetic dipole moment of the object is

mtot =
∫

V

Md3r +
1

2c

∫

V

r ×
∂P

∂t
d3r . (25)

This equation is more complicated than the analogous result
for dtot (16). We can use the arguments of previous subsection

to establish a mathematical connection between the magnetic
moment of an elementary cell mC and the macroscopic mag-
netization M only if the second term in the right-hand side of
(25) is negligibly small, which can be the case at sufficiently low
frequencies. Moreover, the transformation of mtot under a coor-
dinate shift r → r + a is given by

mtot → mtot +
1

2c
a ×

∂

∂t

∫

V

Pd3r = mtot +
1

2c
a ×

∂dtot

∂t
. (26)

It can be seen that mtot is defined unambiguously only if the
term proportional to ∂dtot/∂t is negligibly small.

The above discussion concerns magnetization caused by the
electric currents, which are often referred to as orbital, although
they can also include the conductivity current. Of course, the
orbital currents obey quantum laws at the microscopic level.
However, macroscopically, they can be viewed as classical. Fur-
ther details of the modern theory of orbital magnetization can
be found in [14, 15]. In contrast, ferromagnetism is a macro-
scopic quantum effect, which can not be fully understood
within the theoretical framework of classical physics. Neverthe-
less, the classical interpretation of M works fine for ferromag-
netism. This is so, firstly, because the last term in (26) is negli-
gible at the low frequencies for which the ferromagnetic effect
is non-negligible and, secondly, because the elementary Ampe-
rian current loops (the quantum-mechanical expectations of the
electric current associated with an electron spin) fit well into
the Clausius-Mossotti picture outlined above. In other words,
the conditions of applicability of the classical interpretation that
were discussed above for the case of electric polarization also
hold for the elementary current loops in ferromagnetics.

4. WAVES ON LATTICES OF POLARIZED POINT PARTI-

CLES

In the first part of this tutorial, we have derived the Maxwell
Garnett approximation for a collection of point noninteracting
dipoles at zero frequency. We now wish to construct a more
general theory. Specifically, we will consider arbitrary frequen-
cies and allow the dipoles to interact. We will, however, restrict
attention to a very simple geometry: point-like, spherically-
symmetric particles arranged on a cubic lattice. We will show
that the Maxwell Garnett mixing formula follows from the dis-
persion relation for the electromagnetic waves propagating on
such a lattice in the long wavelength limit. We will not use the
classical interpretation of polarization as the dipole moment per
unit volume for arriving at this conclusion. However, the classi-
cal interpretation is valid in the long wavelength limit and can
be used to derive the same result.

The model of electromagnetically-interacting point-like po-
larizable particles arranged on a three-dimensional lattice pos-
sesses an intuitive physical appeal. Historically, many authors
have considered this model [16–21]. Most if not all of these
references assume that the particles are embedded in vacuum.
We will make an unfortunate compromise and work under the
same assumption here, although it could have been more logi-
cal to start with the model of small inclusions in a host of per-
mittivity ǫh 6= 1. The main reason for our choice is simplicity.
Introduction of a host medium is not conceptually difficult but
will shift attention away from the key points, which we wish
to avoid. However, we hope that anyone who has followed
through the derivations of this section will be able to repeat
them for a more general host. Alternatively, the end result of
such a calculation can be obtained from the less general result
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of this section by the substitution ǫeff → ǫeff/ǫh, ǫi → ǫi/ǫh,
where ǫeff is the effective permittivity of the structure and ǫi is
the permittivity of inclusions. Towards the end of this section,
we will apply this transformation to derive the Maxwell Gar-
nett approximation for a general two-component mixture.

A. Polarizability of a small particle beyond the static limit

Consider a small particle illuminated by an external monochro-
matic field of the complex amplitude E(r) and frequency ω. If
the particle size a is much smaller than the wavelength of the
incident radiation, it can be characterized by the dipole polar-
izability tensor α̂, which is defined as the linear coefficient in
the expression d = α̂E(r0). Here d is the complex amplitude of
the dipole moment and r0 is a point inside the particle. If the
particle has the cubic symmetry, we can write α̂ = α Î, where α
is a scalar and Î is the identity tensor. For simplicity, we will
consider the scalar case in this section. However, the foregoing
discussion also applies to all principal components of the ten-
sor α̂, assuming it can be diagonalized by an orthogonal trans-
formation.

The polarizability is not arbitrary but satisfies certain con-
straints. A well known result is that the extinction cross section
of the particle (if excited by a plane wave) is σe = 4πkImα. Since
σe > 0, we conclude that Imα > 0. But this is not the most inter-
esting constraint. Another inequality can be obtained by noting
that the scattering cross section under the same excitation con-
ditions is σs = (8π/3)k4|α|2. We know that σe ≥ σs, where the
equality holds for an ideally non-absorbing particle. From this,
we find that

Im(1/α) ≤ −2k3/3 . (27)

The above result may seem strange if we recall the quasistatic
formula for the polarizability of a sphere (FP3). This formula
yields a real-valued result if ǫ is real at the working frequency.
Even if we allow ǫ to have a small imaginary part to satisfy the
condition Imα > 0, the inequality (27) might still not hold.

The apparent contradiction can be resolved by noting that
(FP3) is not quite accurate at finite frequencies: it does not ac-
count for the leading-order radiative correction (to the inverse
polarizability), which is equal to −2ik3/3. This correction can
be relatively very small. However, it is needed to satisfy the op-
tical theorem. When the electromagnetic interaction of several
small particles is considered, not accounting for the radiative
correction can yield strange results that contradict energy con-
servation [22, 23].

It turns out that corrections to Re(1/α) also exist and are
even of lower order in k. We can refer to these corrections as to
non-radiative since they are not associated with scattering. Un-
fortunately, these corrections are not uniquely defined. Differ-
ent authors give different expressions for the non-radiative cor-
rections [24]. The reason for this ambiguity is an irremovable
singularity of the Green’s tensor for the Maxwell’s equations;
we will encounter this singularity momentarily. As a result, the
non-radiative corrections depend not only on the particle shape
(which could be expected) but also on the form of the incident
field and on the reference point r0.

On the other hand, the first non-vanishing radiative correc-
tion is universal. This is so because the imaginary part of the
Green’s tensor does not experience the singularity mentioned
above. One can argue that it is the correction to Im(1/α) that is
physically important and should be retained even in the limit
ka → 0. In accord with this argument, we will decompose the

inverse polarizability as

1/α = 1/α̃ − 2ik3/3 , (28)

where α̃ is the polarizability with all the corrections up to the or-
der of O(k2). We do not really know the exact form of these cor-
rections without formulating the problem more precisely. All
we can say for sure is that α̃ → αLL when ka → 0, where αLL

is the quasistatic “Lorentz-Lorenz” polarizability of the particle.
For example, αLL is given by (FP3) for a sphere or by (FP32) for
an ellipsoid. The difference αLL − α̃ is of the order of O(k2) if
the particle has a center of symmetry and of the order of O(k)
otherwise. Note that α̃ can be complex or real (in non-absorbing
particles).

One last question that we need to address is the following.
If we account for the effects that are of the order of O(k2), is it
correct to neglect all higher-order multipole moments? Strictly
speaking, the answer is “no”. The magnetic dipole and electric
quadrupole moments of small particles are quantities of the or-
der of O(k2), same as the difference 1/α̃ − 1/αLL. We therefore
will work in the regime when the non-radiative corrections and
the higher-order multipole moments can be neglected.

As for the radiative correction, we will see that, in the partic-
ular problem we are solving, it exactly cancels. The cancellation
takes place because a plane wave can propagate on an infinite,
perfectly ordered lattice without scattering. Formally, the same
result could be obtained if we simply forgot about the radia-
tive correction and neglected the terms that are of the order of
O(k2) and higher in all formulas. It may seem therefore that
our discussion of the radiative correction was redundant. But
this is not truly so. In problems that actually involve scatter-
ing, e.g., for finite or disordered sets of dipoles, accounting for
the radiative correction can be crucial; its neglect can result in
the appearance of non-physical resonances or divergences and,
ultimately, in violations of energy conservation. On the other
hand, neglect of the non-radiative corrections does not lead to
anything dramatic or unphysical. One can also say that Re(1/α)
and Im(1/α) are responsible for different physical effects and
should be considered separately.

B. Green’s tensor beyond the static limit

We next need an expression for the electric field radiated by a
point dipole. This result is given by the free-space Green’s tensor
for the Maxwell’s equations. We have already encountered the
Green’s tensor in the static limit in the first part of this tutorial
[see (FP8)]. Now we need to generalize this result to finite fre-
quencies.

We start from the frequency domain macroscopic Maxwell’s
equations (14). We consider a non-magnetic medium with µ =
1 and let ǫ(r) = 1 + 4πχ(r), where the susceptibility χ(r) is
zero in vacuum. Upon substitution of H from the second into
the first equation of (14), and by using the definitions (10),(12)
to write χ(r)E(r) = P(r), we obtain

[

(∇×∇×)− k2
]

E(r) = 4πk2P(r) +
4πik

c
Jext(r) . (29)

From linearity, we can write the solution to the above equation
in the following form:

E(r) = Eext(r) +
∫

Ĝ(r, r′)P(r′)d3r′ , (30)
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where the field Eext and the Greens tensor Ĝ satisfy

[

(∇×∇×)− k2
]

Eext(r) =
4πik

c
Jext(r) , (31a)

[

(∇×∇×)− k2
]

Ĝ(r, r′) = 4πk2 Îδ(r − r′) , (31b)

and Î is the identity tensor.
We will refer to the solution of (31a), Eext, as to the external

or incident field. Here Eext is the field that would have existed
everywhere in space in the absence of the sample. Note that

Eext(r) = −
1

iω

∫

Ĝ(r, r′)Jext(r
′)d3r′ . (32)

Electromagnetic problems are typically formulated in terms of
a known external field rather than external current. Equation
(30) is one possible mathematical formulation of this approach.

In contrast, the second term in (30) is the field that is gener-
ated, or scattered by the sample; we denote this term by Escatt,
so that

Escatt(r) =
∫

Ĝ(r, r′)P(r′)d3r′ . (33)

The physical significance of the Green’s tensor can be under-
stood as follows. Consider scattering of an external field by a
small particle occupying the region V whose characteristic size
a is much smaller than the free space wavelength so that ka ≪ 1.
Let the point r0 ∈ V be the “center” of V. Then, for |r− r0| ≫ a,
we can write

Escatt(r) ≈ Ĝ(r, r0)
∫

V

P(r)d3r = Ĝ(r, r0)d , (34)

where we have used (16) to obtain the second equality. There-
fore, the Green’s tensor Ĝ(r, r0) gives the radiation field at point
r of an elementary dipole at point r0.

We will now use (31b) to compute Ĝ. Accounting for the
translational invariance of free space, we can write

Ĝ(r, r′) = F̂(r − r′) =
∫

K̂(p)eip·(r−r′) d3 p

(2π)3
. (35)

Substitution of this ansatz and the similar Fourier representa-
tion of the delta-function δ(r − r′) into (31b) results in the equa-
tion

[

(p × p×) + k2
]

K̂(p) = −4πk2 Î . (36)

This is a 3× 3 matrix equation for K̂(p). We can use the identity
(p × p×) = p ⊗ p − p2 Î to facilitate its solution. The result is

K̂(p) = 4π
k2 Î − p ⊗ p

p2 − k2
. (37)

Here ⊗ denotes tensor product of two vectors.
The real-space Green’s tensor can be obtained by comput-

ing the Fourier integral (35). To this end, we can replace the
tensor p ⊗ p by ∇r ⊗∇r′ . Then we can perform the angular
integration by using the elementary integration rules and the
ingratiation over p by residues. We can use the symmetry of
the integrand to extend integration to the whole real axis; also,
we should keep in mind that k has an infinitesimal imaginary
part according to (14c). The result of this calculation is

Ĝ(r, r′) =
(

k2 Î −∇r ⊗∇r′

) exp(ik|r − r′|)

|r − r′|
, (38)

or

F̂(r) =
(

k2 Î +∇⊗∇
) exp(ikr)

r
. (39)

Note that the signs in (38),(39) are correct. Similarly to the
static case, (38) is singular due to the differentiation of the non-
analytical expression |r|. We can write

F̂(r) = −
4π

3
δ(r) + F̂R(r) , (40)

where F̂R is “regular” in the sense that
∫

|r|<a
F̂R(r)d

3r −−→
a→0

0 . (41)

We have written the word “regular” in quotes because the
property (41) depends on the integration region and F̂R is not
truly regular; it still contains a singularity. As a result, some
physically-important integrals involving F̂R are conditionally
convergent. Indeed, by performing the differentiation carefully
everywhere except for r = 0, we obtain the following result:

F̂R(r) =

[(

k2

r
+

ik

r2
−

1

r3

)

Î +

(

−
k2

r
−

3ik

r2
+

3

r3

)

r ⊗ r

r2

]

eikr .

(42)

We thus see that F̂R(r) diverges as r−3 when r → 0. However,
the real and imaginary parts of F̂R behave differently. The ex-
pansion of F̂(r) in powers of r near r = 0 is of the form

ReF̂R(r) =

(

−
1

r3
+

k2

2r

)

Î +

(

3

r3
+

k2

2r

)

r ⊗ r

r2
+ O(r) , (43a)

ImF̂R(r) =

(

2k3

3
−

2k5r2

15

)

Î +
k5r2

15

r ⊗ r

r2
+ O(r4) . (43b)

It can be seen that ImF̂R(r) has no singularity. This is why the
first non-vanishing radiative correction is universal; in fact, it is
given by the first term in the right-hand side of (43b).

Let us now evaluate the integral of F̂R(r) over a small ball

of radius a. We can use the identity
∫

4π(r ⊗ r)dΩ = 4π
3 r2 Î,

where dΩ is the element of solid angle, to compute the angular
integrals. We then obtain

∫

|r|<a
F̂R(r)d

3r =
8π

3
Î[(1 − ika)eika − 1]

−−−→
ka→0

4π

3
Î

[

(ka)2 + i
2(ka)3

3
+ . . .

]

. (44)

This result is in agreement with (41).
On the other hand, if we evaluate the integral in (44) over a

more general nonspherical region, the term O(r−3) would not
integrate to zero. We will observe a physical manifestation of
this fact when we consider waves on lattices of point polariz-
able particles. We have also seen a similar difficulty when we
considered anisotropy in the first part of this tutorial (in section
4). All we can say now is that the “regularizing” decomposition
(40) is appropriate when spherical particles and regions are con-
sidered.

We can also define the “regular” part of the Green’s tensor
in the spatial Fourier domain. That is, we can write

K̂(p) = −(4π/3) Î + K̂R(p) , (45)

where F̂R and K̂R are spatial Fourier transforms of each other.
We can easily find that

K̂R(p) =
4π

3

(2k2 + p2) Î − 3p ⊗ p

p2 − k2
. (46)

This result will be used in the calculations below.
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C. Coupled-dipole equations on an infinite lattice

Consider an assembly of identical, point-like particles of scalar
polarizability α located at the positions rn. Let the whole system
be illuminated by the external field Eext(r). Then the dipole
moments of the particles dn are coupled to the external field
and to each other by the coupled-dipole equation

dn = α

[

Eext(rn) + ∑
m 6=n

ĜR(rn, rm)dm

]

. (47)

Note that the term with m = n is left out of the summation in
the right-hand side of (47). This reflects our idea that the electric
field acting on the n-th particle is a superposition of the external
field Eext(rn) and the fields scattered by all particles except for
the n-th particle itself.

Unfortunately, our exposition of the coupled-dipole equa-
tion is by necessity brief. We note only that it is important to
use the correct definitions for all quantities appearing in (47).
In particular, we should use the polarizability α as it was de-
fined in section 4.A above and not the “bare polarizability” [25]
or the quasistatic polarizability αLL. Also, we have used the
“regular” part of the Green’s tensor, ĜR, in (47) rather than Ĝ.
In the real-space representation, this is unimportant as long as
the m = n term is not included in the summation. However,
upon spatial Fourier transformation, the difference will show
up. Additional details about the coupled-dipole equations can
be found in Refs. [19, 24, 26].

Our goal is to find an eigen-solution to (47) on an infinite
lattice and to analyze the corresponding dispersion relation. To
this end, we assume that rn are the vertices of an infinite cubic
lattice of pitch h, set the external field Eext to zero and seek the
solution to (47) in the form dn = d exp(iq · rn). Upon substitu-
tion of this ansatz into (47), we obtain the equation

1

α
d = Ŝ(q)d , (48)

where

Ŝ(q) = ∑
rn 6=0

F̂R(rn)e
−iq·rn (49)

is the lattice sum, sometimes also referred to as the dipole sum.
Lattice sums are ubiquitous in physics [27] but not always

convergent. Correspondingly, a lot of effort has been devoted
to computing and regularizing diverging lattice sums. Two ap-
proaches to this task are common: allowing the point particles
to have higher-order multipole moments or allowing the par-
ticles to have a finite size and shape. Ultimately, the two ap-
proaches are equivalent since they describe the same physical
reality. We will resort to the second approach – that is, we will
assume that the particles are small spheres.

We now proceed with the calculation. First, we use the
Fourier representation (35) (applied to ĜR) to re-write (49) as

Ŝ(q) =
∫

d3 p

(2π)3
K̂R(p) ∑

rn 6=0

ei(p−q)·rn . (50)

To evaluate this expression, we need to complete the summa-
tion. This can be accomplished by adding and subtracting unity
to the series, which leads us to the expression

Ŝ(q) =
1

h3 ∑
n

K̂R(q + gn)−
∫

d3 p

(2π)3
K̂R(p) , (51)

where we have used the Poisson summation formula

∑
n

eip·rn =

(

2π

h

)3

∑
n

δ(p − gn) , gn =
2π

h
(nx, ny, nz) . (52)

Here gn are the reciprocal lattice vectors and we can view n =
(nx, ny, nz) as a composite index.

As expected, the expression (51) is divergent: the last term in
the right-hand side is just F̂R(0). But F̂R(0) is not well defined.
So we will use the regularizing substitution

∫

d3 p

(2π)3
K̂R(p) = F̂R(0) −→

3

4πa3

∫

|r|<a
F̂R(r)d

3r (53)

≈

(

k2

a
+ i

2a3

3

)

Î ,

where we have used the result (44). As mentioned above, this
regularization is appropriate in the case when the particles are
small spheres of radius a.

We now put everything together. We substitute the result
(53) into (51) and (51) into (48), use the decomposition (28) for
1/α, and obtain

(

1

α̃
+

k2

a

)

d =
1

h3 ∑
n

KR(q + gn)d . (54)

As expected, the radiative correction has canceled.

D. Long wavelength approximation

The dispersion relation (54) is still too complicated for analysis.
To proceed, we will need to make the long wavelength approx-
imation. Namely, we will assume that kh ≪ 1 and |qp|h ≪ 1,
where p = x, y, z. We should keep in mind that, in our model,
a ≪ h, so that ka ≪ 1 also holds. Then, with the precision of the
approximation used, we can write 1/α̃ + k2/a ≈ 1/αLL, where
αLL is the quasistatic polarizability of a particle.

We thus have simplified the left-hand side of (54). In the
right-hand side, we will write the term with gn = 0 and the rest
of the sum separately. We will thus obtain

1

αLL
d =

1

h3
K̂R(q)d +

1

h3 ∑
gn 6=0

K̂R(q + gn)d . (55)

We will now show that the last term in the right-hand side of
(55) can be neglected in the long wavelength approximation. In-
deed, for gn 6= 0, we can write

K̂R(q + gn) −−−−−−→
kh,|qp|h→0

4π

3
Q̂n , (56)

where

Q̂n = Î − 3
gn ⊗ gn

g2
n

, gn 6= 0 . (57)

Now, if the particles are arranged on a cubic lattice, the recipro-
cal lattice is also cubic. We can define a discrete cubic box with
excluded center, B(L), as the set of all reciprocal lattice vectors
with the indexes n = (nx, ny, nz) such that −L ≤ nx, ny, nz ≤ L
except for n = (0, 0, 0). Then

∑
gn 6=0

Q̂n = lim
L→∞

∑
gn∈B(L)

Q̂n . (58)

But each individual sum ∑gn∈B(L) Q̂n is zero. This can be
proved by noting that the sum over the surface of each box is
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zero and then representing a box of size L as a set of concentric
surfaces with the sizes L′ = 1, 2, . . . , L. From this, we conclude
that the limit in (58) is also zero and the second term in the
right-hand side of (55) can be neglected in the long wavelength
approximation.

We now use the above fact and the expression (46) for K̂R(q)
to obtain the following equation:

1

αLL
d =

4π

3h3

(2k2 + q2) Î − 3q ⊗ q

q2 − k2
d . (59)

This is the dispersion relation for electromagnetic waves propa-
gating on a cubic lattice of small, spherical, polarizable particles
in the long wavelength approximation.

The only thing left for us to do is to consider the polariza-
tion states. The effective permittivity of a cubic lattice of small
spherical particles can not be anisotropic (from symmetry, the
principal axes of the tensor ǫ̂eff must coincide with the crys-
tallographic axes, and the directions along all three crystallo-
graphic axes are equivalent). Therefore, we must assume that
the medium is characterizable by a scalar effective permittivity
ǫeff and q2 = k2ǫeff (we have assumed here that µeff = 1, more
on this later). Under the same conditions, the medium can sup-
port transverse waves for which q · d = 0. Then it follows from
(59) that the dispersion equation is

v

αLL
=

4π

3

ǫeff + 2

ǫeff − 1
, (60)

where we have introduced the specific volume per one parti-
cle v = h3. Note that longitudinal waves can also propagate
on the lattice but only if the special condition h3/α = −8π/3
holds (the structure is similar in this case to a non-dissipative
plasma). Usually this condition does not hold and we will ig-
nore the longitudinal waves.

Equation (60) is the inverted Clausius-Mossotti relation
[compare to (FP16)]. We therefore have derived the Clausius-
Mossotti relation as the long wavelength limit of the dispersion
relation for electromagnetic waves on a cubic lattice of small
spherical particles.

The Maxwell Garnett approximation can be obtained if we
use a specific expression for αLL. Since we have assumed that
the particles are small spheres, we will use (FP3). Substituting
everything into (60) and inverting the equation, we obtain

ǫeff − 1

ǫeff + 2
= f

ǫ − 1

ǫ + 2
, (61)

where f = 4πa3/3v is the volume fraction of inclusions. This is
the Maxwell Garnett mixing formula for inclusions of the per-
mittivity ǫ in vacuum. We can generalize this result to inclu-
sions of the permittivity ǫi in a host medium of the permittivity
ǫh by using the substitution ǫeff → ǫeff/ǫh and ǫ → ǫi/ǫh. We
thus obtain

ǫeff − ǫh

ǫeff + 2ǫh
= f

ǫi − ǫh

ǫi + 2ǫh
. (62)

This is the Maxwell Garnett mixing formula written in the form
(FP25).

E. Beyond the long wavelength approximation

We now discuss briefly what can happen beyond the long wave-
length approximation. The material of this subsection is not a
self-contained exposition but a collection of a few basic ideas
and leads for further reading and exploration.

Recall that we have neglected the non-radiative corrections
to the inverse polarizability and replaced the term 1/α̃ + k2/a
by 1/αLL. We can not make a more precise statement about the
inverse polarizability without abandoning the model of point-
like dipoles. However, we can still use this model and intro-
duce physically-meaningful corrections to the long wavelength
approximation if a ≪ h. In this case, the inequality ka ≪ 1 can
hold quite strongly, but the inequalities kh ≪ 1 and |qp|h ≪ 1
can be not so strong. We then expand the term KR(q+ gn) with
gn 6= 0 [in (55)] in powers of k and q. The long-wavelength
result (56) will give the zeroth order in this expansion. Some
of the expansion terms will sum to zero due to symmetry but
others will remain. If we make all expressions dimensionless
by multiplying the numerator and denominator in the expres-
sion for KR(q + gn) by h, the corrections will be of the order of
O((kh)n) and O((qph)n), where n is even. This is true for all
systems with a center of symmetry.

The terms proportional to (kh)2, (kh)4, etc. are the dynamic
corrections to the dispersion equation. Accounting for these
terms does not change the algebraic structure of the equation; it
remains quadratic in q and its solutions remain similar to those
in local, isotropic, homogeneous media. Generally, these solu-
tions can be written as q2 = ǫeff(k)k

2. However, if we account
for the dynamic corrections, ǫeff(k) will no longer satisfy the
scaling laws discussed in section 7 of [1]. In particular, rescal-
ing the composite as r → βr will change ǫeff(k); the law of unal-
tered ratios will also not hold.

Keeping the terms proportional to (qph)2, (qph)4 or q2
xq2

yq2
zh6

(anisotropic terms of this form do not contradict the cubic sym-
metry), etc., will fundamentally change the algebraic form of
the dispersion equation: it will become much more complicated
than the quadratic equation characteristic of local and isotropic
media. The dispersion equation can be written in this case as
q2 = ǫeff(k, q)k2. The explicit and sometimes very complicated
dependence of ǫeff on q can be considered as an effect of spatial
nonlocality of the constitutive relations.

Many important physical effects of nonlocality can be
glimpsed from the dispersion equation. This includes addi-
tional waves, birefringence, and optical activity (in systems
without a center of symmetry) [6]. Unfortunately, the disper-
sion equation does not give us the complete information about
the medium. Indeed, solving boundary value problems in fi-
nite samples requires the knowledge of the influence function
fe(r, r′; τ) [the nonlocal generalization of the function fe(r, τ)
that appears in (7a)]. But fe(r, r′; τ) is not the spatial Fourier
transform of ǫeff(k, q), nor is it a function of the shift r − r′; the
latter simplification is obtained only sufficiently far from the
medium boundaries. Generally, spatial nonlocality and bound-
ary value problems do not come together easily.

Things are further complicated by a wide-spread belief that
weak nonlocality of the dielectric permittivity is physically in-
distinguishable from nontrivial magnetic response. For the pre-
cise statement of this equivalence principle and relevant refer-
ences see [28]. In fact, the equivalence holds with respect to
the dispersion relation but not the medium impedance. A de-
tailed analysis of the equivalence principle is given in Ref. [29].
Here we only mention an obvious counterexample: an analyti-
cal solution can be easily obtained for a plane wave incident on
a slab or a sphere with purely local ǫ and µ. However, the same
problem can not be solved so easily if the object has a nonlocal
permittivity and µ = 1. If we define some function fe(r, r′; τ)
and solve somehow the resultant integro-differential equations,
the electromagnetic fields scattered by the object will be not the
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same as in the first case.
The above discussion underscores the fundamental impor-

tance of what happens at the medium boundary. In section 3.A,
we have already seen that disregard of the boundaries can yield
an incorrect result even in very simple physical situations. In
the more complicated scenarios considered by the extended ho-
mogenization theories, boundaries are crucial.

To illustrate the importance of boundaries one more time,
consider an elementary but frequently overlooked example. If
we know only the dispersion relation of an isotropic and local
medium, there is no good way to define the parameters ǫ and
µ separately. Indeed, the law of dispersion in this medium is
q2 = n2k2 where n2 = ǫµ. Assume that we have computed n2.
All we can gain from this knowledge is the product of ǫ and µ,
not these two quantities separately. This fact is frequently over-
looked when extended homogenization theories are developed
to predict both ǫ and µ but infinite unbounded media are con-
sidered. The main difficulty of the extended homogenization
theories is accounting for the lack of translational invariance
that occurs near the medium boundaries.

Now we have to backtrack a little and recall that, in the pre-
vious subsection, we have assumed without a justification that
µeff = 1. This was, however, not a random guess. In the long
wavelength limit, one can consider the medium with a planar
boundary and compute the reflection and transmission coeffi-
cients [30]. Alternatively, one can compute the total magnetic
moment of the medium in some simple geometry and apply
the results of section 3.B. Both approaches will indicate that the
correct choice is µeff = 1. Also, all experimental evidence tells
us that there is no artificial magnetism in composites whose het-
erogeneity size is much smaller than the wavelength.

But beyond the long wavelength approximation, one enters
a gray area in which the scaling laws discussed in section 7 of
[1] do not work, the magnetic effects can be considered as im-
portant and introduction of a nontrivial effective magnetic per-
meability as feasible even in intrinsically non-magnetic compos-
ites. The big question is whether the medium can be reasonably
characterized by local tensors ǫ̂ and µ̂ or, perhaps, by a more
general but still local constitutive tensor. The extended (non-
asymptotic) electromagnetic homogenization theories is a sub-
ject of active ongoing research [31–38]. The above references
and many references therein will give an interested reader use-
ful leads for further exploration of the subject.

5. WAVES IN PHOTONIC CRYSTALS IN THE LOW FRE-

QUENCY LIMIT

We have seen in the previous section that the model of an in-
finite lattice of point polarizable particles is not well-behaved
mathematically unless we assume implicitly or explicitly some-
thing about the particle shape and size. All methods of regu-
larizing the divergent lattice sums boil down to making these
assumptions, often in a disguised form. It makes sense there-
fore to abandon the point-particle model and consider the ac-
tual physical inclusions arranged periodically. We will see in
this section that this approach is ultimately rewarding since it
is free from any mathematical difficulties and allows one to ac-
count self-consistently for the effects of inclusions interaction,
anisotropy, etc. After all, Maxwell’s equations are not self-
contradictory and all mathematical difficulties grow from mak-
ing ill-justified or unphysical approximations.

The mathematical developments shown in this section are
not fundamentally different from those used for the case of

h

h

Fig. 3. (color online) A schematic illustration of a two-
component photonic crystal. Identical inclusions are peri-
odically arranged in a host medium. For simplicity, we as-
sume that the host medium is vacuum. The pattern is three-
dimensional.

point polarizable particles. However, some more advanced al-
gebraic manipulations will be used.

A. Bloch waves in a photonic crystal

Consider a three-dimensional periodic medium shown schema-
tically in Fig. 3. nclusions of arbitrary shape are arranged pe-
riodically on an infinite cubic lattice of pitch h. We denote the
elementary cells of the lattice by Cn and the center of Cn by
rn = h(nx, ny, nz). As above, n = (nx, ny, nz) is a composite
index.

Each elementary cell contains an inclusion. Let the spatial
region occupied by the n-th inclusion be Vn ∈ Cn. All regions
Vn are of exactly the same shape and the same volume V and
differ only by translations. In the figure, we have shown Vn as
connected but this assumption is not important for us. Also, Vn

can touch the boundary of Cn and the center of the cell, rn, can
lie inside or outside of Vn.

Further, we assume that the material of inclusions has the
permittivity ǫ 6= 1 and the material of the host is vacuum. Later
on, we will generalize the consideration to the case of a two-
component mixture by the usual substitution ǫ → ǫi/ǫh and
ǫeff → ǫeff/ǫh.

We start from the integral equation (30). Since we are look-
ing for an eigen-solution in an infinite medium, we set the ex-
ternal field Eext to zero. We also use the regularizing decompo-
sition (40) for Ĝ(r, r′) = F̂(r − r′) and obtain the equation

E(r) = −
4π

3
P(r) +

∫

F̂R(r − r′)P(r′)d3r′ . (63)

This equation is valid everywhere in space. However, the func-
tion P(r) is nonzero only inside the inclusions. Since all inclu-
sions are equivalent, it is possible to re-formulate the integral
equation (63) so that it involves only one inclusion. Indeed,
let us restrict attention to r ∈ Vn. We then multiply (63) by
(ǫ − 1)/4π and obtain after some additional re-arrangement

P(r) =
3χ

4π ∑
m

∫

r′∈Vm

F̂R(r − r′)P(r′)d3r′ , r ∈ Vn , (64)

where

χ =
ǫ − 1

ǫ + 2
(65)
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is the spectral parameter of the theory. We will seek a solution
to (64) in the form of a Bloch wave P(r) = exp(iq · r)P̃(r), where
q is the Bloch wave number (to be determined) and P̃(r) is a
lattice-periodic function, which satisfies P̃(r + rn) = P̃(r) for
any lattice vector rn.

If r ∈ Vn, we can make a change of variables r = rn + R
where R ∈ V0 ∈ C0 and C0 is the elementary cell centered
around the point r0 = 0. Then the Bloch wave ansatz takes the
form P(r) = exp[iq · (rn + R)]P̃(R). Upon substitution of this
expression into (64), we obtain

P̃(R) =
3χ

4π

∫

R′∈V0

Ŵ(R, R′)P̃(R′)d3R′ , R ∈ V0 , (66)

where

Ŵ(R, R′) = ∑
m

F̂R(rn − rm + R − R′)e−iq·(rn−rm+R−R′) . (67)

Note that the right-hand side of (67) is independent of n since
all cells of an infinite lattice are equivalent.

Next, we substitute the Fourier representation (35) of F̂R into
the right-hand side of (67) and use the Poisson summation for-
mula (52). This yields

Ŵ(R, R′) =
1

h3 ∑
n

K̂R(q + gn)e
ign·(R−R′) . (68)

This expression still contains a summation over the reciprocal
lattice vectors gn = (2π/h)(nx, ny, nz). The advantage of us-
ing the expression (68) is the availability of a simple analytical
expression for K̂R (46).

We now wish to reformulate the integral equation (66) as an
algebraic equation, which is amenable to numerical solution. To
this end, we recall that P̃(R) is a lattice-periodic function and
therefore it can be expanded as

P̃(R) = ∑
n

Pneign·R . (69)

Here Pn are the amplitudes of the Bloch harmonics; for a plane
wave in a truly homogeneous medium, we have Pn ∝ δn0. By
substituting the ansatz (69) into (66), we obtain an algebraic
equation for the Bloch amplitudes:

Pn = f
3χ

4π
K̂R(q + gn)∑

m
M(gn − gm)Pm , (70)

where f = V/h3 is the volume fraction of inclusions and M(g)
is the shape function; it is defined by the Fourier integral

M(g) =
1

V

∫

R∈V0

e−ig·Rd3R . (71)

This integral can be computed analytically for many regular
shapes.

Thus, we have written a set of algebraic equations (70) for
the Bloch amplitudes Pn. This equation should be viewed as
an eigenproblem but not of a traditional kind. Assume that
we have fixed the frequency ω and the shape of the inclusions.
Then the parameter χ is also fixed (χ is the only variable in the
equation that depends on ǫ). The volume fraction f is also fixed
and the function M(g) is uniquely defined by the shape of the
inclusions. Note that M(g) is invariant under coordinate rescal-
ing r → βr. Then the set of all values of q for which (70) has
a nontrivial solution forms the isofrequency surface. The word
“surface” should not be understood literally because q can be
complex. Generally, the vectors q that allow for nontrivial solu-
tions of (70) fill a very complicated six-dimensional manifold Ω.
For each q ∈ Ω, there can be several distinct solutions to (70) –
we can refer to these solutions as to the polarization states.

B. Long wavelength approximation

Equation (70) is too complicated for analysis and we will now
simplify it by using the long wavelength approximation. As
was done in section 4.D, we will consider the equations for P0

(with g0 = 0 in the left-hand side) and Pn (with gn 6= 0) sep-
arately. We will use the limit (56) in the latter case and write

P0 = f
3χ

4π
K̂R(q)

[

P0 + ∑
n 6=0

M(−gn)Pn

]

, (72a)

Pn = f χQ̂n

[

M(gn)P0 + ∑
m 6=0

M(gn − gm)Pm

]

, n 6= 0 . (72b)

Here the index n = 0 is equivalent to the triplet (nx, ny, nz) =
(0, 0, 0) and similarly for m.

In deriving (72), we have assumed that kh, |qp|h ≪ 1 or,
equivalently, we have taken the limit h → 0 under the condi-
tion that the proportions of all inclusions relative to the cell size
are fixed. Eq. (72a) does not involve any approximations. The
only place where the reciprocal lattice vectors (and the variable
h) appear in (72a) is M(gn). But the functions M(g) are invari-
ant with respect to rescaling and, therefore, do not change when
we take the limit h → 0. In deriving (72b), we have encountered
the expression K̂R(q + gn) with gn 6= 0, which depend on h.
The limit of this term is given by (56).

The crucial observation that we need is this: (72b) is a set of
linear equations with respect to the amplitudes Pn with n 6= 0
in which P0 can be viewed as a free term. To be sure, the set is
infinite and any numerical solution will require truncation. But
the important point is that we can view (72b) as an equation
with a nonzero free term, not an eigenproblem. Then, from lin-
earity, it follows that Pn = T̂n M(gn)P0. The set of tensors T̂n

can be determined by solving the system of equations (72b) for
three different right-hand sides: P0 = ex, P0 = ey and P0 = ez,
where ep (p = x, y, z) are unit vectors along the axes of a Carte-
sian frame. Consequently, we can write

∑
n 6=0

M(−gn)Pn = Σ̂P0 , (73)

where

Σ̂ = ∑
n 6=0

M(−gn)T̂n M(gn) . (74)

By substituting (73) into (72a), we find that the dispersion equa-
tion takes the form

[

Î − f χ
(2k2 + q2) Î − 3q ⊗ q

q2 − k2
( Î + Σ̂)

]

P0 = 0 , (75)

where we have used the explicit expression (46) for K̂R(q).
The derivations of this section involved a couple of mathe-

matically nontrivial steps, in particular, the splitting of the set
of equations (70) into two subsets (72) and subsequent algebraic
manipulations. It can be mentioned that the final result follows
directly from the fundamental theorem of determinants of block
matrices. Here we have followed a less formal approach.

We conclude the subsection with a few remarks.

(i) The tensor Σ̂ depends on the shape and orientation of in-
clusions and on the spectral parameter χ and therefore on ǫ.

(ii) The tensor Σ̂ can be computed by solving a well-defined
system of algebraic equations on a computer. Theoretically, the
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set is infinite but we can truncate it by restricting the recipro-
cal lattice vectors to the cubic box with excluded center B(L),
which was defined in section 4.D. Convergence can be investi-
gated by repeatedly increasing the box size L, e.g., by the factor
of 2.

(iii) In general, the tensor Σ̂ is complex symmetric and not
necessarily diagonalizable by an orthogonal transformation. If
it is not, then there is no Cartesian frame in which Σ̂ is diagonal.
We have not considered this (perhaps, unusual) case and will
not discuss it any further.

(iv) Note the limit lim
f→1

Σ̂ = 0. However, lim
f→0

Σ̂ = Σ̂0 where

Σ̂0 is zero for spherical inclusions but not for other shapes.

C. The mixing formula

The dispersion equation (75) has nontrivial solutions if the de-
terminant of the 3 × 3 matrix in the square brackets is zero. The
particular values of q for which this is the case are the Bloch
wave vectors. There can be several distinct polarization states
corresponding to a given Bloch wave vector. The consideration
is rather involved mathematically for a general anisotropic ma-
terial. We will derive therefore the homogenization result for
an isotropic composite and then write without proof a more
general formula applicable to the case when Σ̂ is tensorial but
diagonal in some Cartesian frame.

The composite is isotropic for any inclusions that obey the
same cubic symmetry as the lattice. For example, such inclu-
sions can be cubes or spheres centered around the points rn.
However, much more complicated shapes can also obey the cu-
bic symmetry. The major simplification that one obtains in this
case is Σ̂ = Σ Î, where Σ is a scalar. Then there are two linearly-
independent transverse polarization states with q · P0 = 0 for
each q. A longitudinal polarization state (such that P0 ‖ q) ex-
ists only if ǫ = 1− 3/[2 f (1+Σ)+ 1]. Usually, this equality does
not hold and we can safely ignore longitudinal waves. Under
these conditions, equation (75) is simplified to

1 − f χ
2k2 + q2

q2 − k2
(1 + Σ) = 0 . (76)

We now introduce the effective permittivity through the rela-
tion q2 = ǫeffk

2, use the explicit definition of χ (65) and trans-
form (76) to

ǫeff − 1

ǫeff + 2
= f

ǫ − 1

ǫ + 2
(1 + Σ) . (77)

We finally generalize the above result for the case of a two-
component mixture. To this end, we apply the usual transfor-
mation ǫeff → ǫeff/ǫh, ǫ → ǫi/ǫh and obtain the familiarly-
looking formula

ǫeff − ǫh

ǫeff + 2ǫh
= f

ǫi − ǫh

ǫi + 2ǫh
(1 + Σ) . (78)

It should be kept in mind that the spectral parameter χ in equa-
tion (72b) (which is used to compute Σ) should also be changed
to χ = (ǫi − ǫh)/(ǫi + 2ǫh).

If not for the factor Σ, equation (78) would be the Maxwell
Garnett mixing formula written in the form (F25). A nonzero
factor Σ accounts for the deviation of the rigorous homogeniza-
tion result from the Maxwell Garnett prediction.

Just like the Maxwell Garnett mixing formula, (78) is not
symmetric and, in fact, we do not expect the rigorous homog-
enization result to be symmetric. The definition of the mixing

formula symmetry and a more detailed discussion are given in
section 3 of [1]. Equation (78) captures correctly the effects of
shape of the inclusions and therefore it is not symmetric.

Another interesting feature of (78) is this. Consider cubic in-
clusions. Then we can change the size of the inclusion from 0
to h and it will correspond to changing f from 0 to 1. At f = 0
we have ǫeff = ǫh, and at f = 1 we have ǫeff = ǫi. If we plot
ǫeff( f ) given by (78) parametrically in the complex ǫ-plane, we
will obtain a smooth curve that connects the points ǫh and ǫi

and lies inside the Wiener bounds. In fact, there are two differ-
ent curves that connect ǫh and ǫi in this manner, depending on
whether we assume that f = 0 corresponds to a homogeneous
medium with the permittivity ǫh [as is assumed in Eq. (78)] or
that it corresponds to a homogeneous medium with the permit-
tivity ǫi. The two curves will not intersect except at the ends,
which is a manifestation of the lack of symmetry of the mixing
formula. The Maxwell Garnett approximation has exactly the
same property.

Therefore, (78) is a corrected or a generalized version of
the isotropic Maxwell Garnett mixing formula, which accounts
properly for the electromagnetic interaction of inclusions (in a
periodic system) but has the same general mathematical prop-
erties as the classical mixing formula.

We now state without proof the result for the case when Σ̂ is
diagonal in some Cartesian frame XYZ but its principal values
are different. The result is rigorously derived in Ref. [30] and is
a straightforward generalization of (78), viz,

(ǫeff)p − ǫh

(ǫeff)p + 2ǫh
= f

ǫi − ǫh

ǫi + 2ǫh
(1 + Σp) , p = x, y, z . (79)

Here Σp is one of the principal values of the tensor Σ̂. Solving
for (ǫeff)p, we obtain the mixing formula:

(ǫeff)p = ǫh

1 + 2 f
ǫi − ǫh

ǫi + 2ǫh
(1 + Σp)

1 − f
ǫi − ǫh

ǫi + 2ǫh
(1 + Σp)

= ǫh

ǫh +
1 + 2 f (1 + Σp)

3
(ǫi − ǫh)

ǫh +
1 − f (1 + Σp)

3
(ǫi − ǫh)

(80)

This is the rigorous homogenization result for anisotropic com-
posites that have three well-defined optical axes.

The second expression in (80) can be compared to the classi-
cal anisotropic Maxwell Garnett mixing formula (FP34). It can
be seen that the two formulas can not be made equivalent by
some special choice of the depolarization factors νp . Indeed,
the condition of equivalence of the two expressions is

νp =
1

3

(

1 −
Σp

1 + Σp

1

χ

)

, where χ =
ǫi − ǫh

ǫi + 2ǫh
. (81)

But in the Maxwell Garnett theory, νp is a purely geometrical
parameter, which is independent of ǫi and ǫh. Eq. (81) can
hold only if Σp = βpχ/(1 − βpχ), where βp is a material-
independent constant. If the latter equality holds, then it fol-
lows from (81) that νp = (1 − βp)/3.

In other words, for the Maxwell Garnett approximation to
be precise, it is required that Σ̂ has only one resonance for a
given polarization with the resonance value of χ being 1/βp =
1/(1 − 3νp). But this property does not generally hold except
if (ǫeff)p lies on one of the Wiener bounds, that is, for compos-
ites of some very special geometry. Of course, on the Wiener
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bounds, the anisotropic Maxwell Garnett mixing formula is pre-
cise. But in a more general case, the functional dependence of
the form Σp(χ) = ∑n βnpχ/(1 − βnpχ) is valid, and the sum is
not reduced to just one term. This follows from the algebraic
form of Eq. (72b), which determines Σ̂(χ). Therefore, in real-
ity, the function Σ̂(χ) has multiple resonances. The physical
significance of the resonance values of χ, χnp = 1/βnp is the
following. For χ in the vicinity of one of its resonance values,
electromagnetic interaction of inclusions becomes very strong.
In a sense, the Maxwell Garnett approximation assumes that
only one such resonance exists. If this is not so, the approxima-
tion can break down dramatically.

We can conclude that the Maxwell Garnett’s treatment of
anisotropy is based on a single geometrical parameter νp while,
in fact, the rigorous description involves many such factors
(βnp, using the above notations) or the function Σp that de-
pends on both geometry and composition. The ambiguity of
the anisotropic formula discussed in section 4 of [1] is mathe-
matically related to this fact. In the next section, we will show
an example of anisotropy that is not captured accurately by the
Maxwell Garnett theory.

6. NUMERICAL EXAMPLES

Let us truncate the infinite set of equations (72b) by restricting
the reciprocal lattice vectors to the box with excluded center
B(L). In this case, the number of equations that must be solved
to compute Σ̂ is N = 3[(2L + 1)3 − 1]. Note that the equations
must be solved with three different right-hand sides to gain ac-
cess to all elements of Σ̂.

It can be seen that the number of equations scales as O(L3).
This makes direct solution of 3D problems difficult and we
must resort to iterative methods. One such fast-converging iter-
ative algorithm is based on a continued-fraction expansion [30].
The method is spectral, which means that the computationally-
intensive part of this algorithm is independent of the spectral
parameter χ and, therefore, of ǫi and ǫh. This can be useful
if we are interested in the spectral dependence of ǫeff(ω) for
a fixed geometry of the composite and dispersive ǫh(ω) and
ǫi(ω). However, in the examples shown below, we fix ǫh and ǫi

and compute ǫeff( f ) by changing the size of the inclusions rela-
tive to h up to the geometrical limit. In this case, spectral meth-
ods are not computationally advantageous. Nevertheless, the
iterative method mentioned above is efficient enough to han-
dle 3D problems. Below, numerical results will be shown for
L = 32. Convergence was verified by doubling the box size L in
some of the cases and repeating the computations with L = 64.

Simulations were performed for spherical and cubic inclu-
sions and for two types of parallelepipeds shown in Fig. 4. Nu-
merical results are shown in Fig. 5. We have used the same per-
mittivities of the composite constituents as in the first part of
this tutorial (in section 6): ǫ1 = 1.5 + 1.0i and ǫ2 = −4.0 + 2.5i.
We now briefly describe the results.

In Panel (a) we show the effective permittivity of a compos-
ite consisting of spherical inclusions of the radius a that varies
from zero to the point of touching, a = h/2. The composite is
isotropic. The data points computed according to the formula
(80) are shown by circles. We consider two cases: metal inclu-
sions in the dielectric host and vice versa. Rigorous homogeniza-
tion results are compared to the Maxwell Garnett and Brugge-
man’s mixing formulas. Of course, in the analytical mixing for-
mulas f is not limited by the geometry and we have shown the
respective curves for 0 ≤ f ≤ 1. As was mentioned in [1], these
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Fig. 4. Illustration of the anisotropic inclusions and polariza-
tion labels used in the simulations shown in Fig. 5(c) below.

curves always connect the two points ǫ1 and ǫ2 in the complex-
ǫ plane. However, the value of f for the rigorously-computed
numerical data are limited by the condition of non-intersection
of the inclusions. Due to this reason, the numerical data termi-
nate inside the Wiener bounds. The last data point corresponds
to touching spheres.

It can be seen that the Maxwell Garnett formula is accurate at
low-to-moderate volume fractions while the Bruggeman’s for-
mula does not provide a meaningful correction. Note that the
comparison of the numerical results and analytical approxima-
tions in Fig. 5 is not quite definitive: even if two points overlap
in the complex-ǫ plane, they can correspond to different values
of f . Still, it is true that the Maxwell Garnett mixing formula
provides a good approximation for spherical inclusions. Admit-
tedly, we did not consider the case of strong electromagnetic res-
onances. The materials considered have large imaginary parts,
which suppress the resonant phenomena.

In Panel (b) we show similar data for cubes. Now the vol-
ume fraction f can vary from 0 to 1 in the analytical expressions
as well as for the actual inclusions. Again, the Maxwell Gar-
nett mixing formula yields surprisingly accurate results while
the Bruggeman’s formula can be seen as providing a meaning-
ful correction at low volume fractions and then breaking down
completely.

The most interesting cases are shown in Panel (c). Here the
inclusions are parallelepipedal as shown in Fig. 4. The effective
medium is anisotropic and uniaxial. We show all principal val-
ues of the effective permittivity tensor. In the case of inclusion
A, the geometrical limit of touching inclusions corresponds to
a one-dimensional layered medium of alternating metal and di-
electric layers. We know that the effective permittivity of this
medium lies on one of the Wiener bounds. This is indeed the
case. Just as expected, the effective permittivity starts from ǫ1

or ǫ2 (depending on the choice of the host) at f = 0 and then
terminates at the linear or circular Wiener bound for the s- or p-
polarization, respectively, at f = 0.5. Moreover, at f = 0.5, the
layered medium is invariant under the permutation ǫ1 ↔ ǫ2.
Therefore, the curves AsDH and AsMH start from ǫ1 and ǫ2 at
f = 0 and then meet at the linear Wiener bound at f = 0.5.
Analogously, the curves ApDH and ApMH meet at the circular
Wiener bound at f = 0.5. This behavior can not be captured by
the Maxwell Garnett or Bruggeman’s mixing formulas, which
always produce curves that connect ǫ1 and ǫ2 without touching
the Wiener bounds. The analytical predictions are not plotted
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Fig. 5. Numerical and analytical results for the effective permittivity of different composites. The inclusions are spherical (a), cubic
(b) and parallelepipedal (c). The shapes of the parallelepipeds and the corresponding polarization labels (directions of the funda-
mental Bloch harmonic P0) as shown in Fig. 4. The volume fraction of the inclusions is varied from zero to the maximum value fmax

allowed by the geometry. In particular, fmax = π/6 (a), fmax = 1 (b) and fmax = 0.5 (c), inclusion A and fmax = 0.25 (c), inclu-
sion B. Results are shown for both cases when ǫh = ǫ1, ǫi = ǫ2 (dielectric host) and ǫh = ǫ2, ǫi = ǫ1 (metal host). The labeling
of various curves and data sets is of the form X or XY or XvY. Here X takes the values X=MG (isotropic Maxwell Garnett mixing
formula), X=BG (isotropic Bruggeman’s mixing formula), X=S (Eq. (80) for spherical inclusions), X=C (Eq. (80) for cubic inclusions)
and X=A,B (Eq. (80) for parallelepipedal inclusions A or B shown in Fig. 4). The polarization label takes two values v=s or v=p and
is applicable only to X=A,B (see Fig. 4). Finally, the label Y takes two values: Y=DH for dielectric host and Y=MH for metal host.
LWB and CWB are the linear and circular Wiener bounds. Note that some data points shown as circles were computed for the val-
ues of f slightly different from the exact limiting values (for example, f = 0.01 instead of f = 0) to avoid complete overlap and
obscuration of two or more data points.

in Panel (c) because we know a priori that these predictions can
not be possibly accurate.

As for the inclusion B, its geometrical limit is a set of in-
finite rods of a square cross section and the volume fraction
fmax = 0.25. For the s-polarization, the electric field in this
medium is smooth (see [1], section 5). We therefore expect the
corresponding values of the effective permittivity to lie on the
linear Wiener bound. However, the composite is not invariant
under the permutation ǫ1 ↔ ǫ2. Therefore, the curves BsDH
and BsMH indeed terminate at the linear Wiener bound but at
different points. For the p-polarization, the displacement field
D is not smooth. Therefore, the curves BpDH and BpMH stay
well inside the Wiener bounds and do not touch the circular
bound at f = fmax.

7. CONCLUDING REMARKS

As was promised in the first part of this tutorial, we have de-
rived a rigorous homogenization formula by considering a gen-
eral photonic crystal in the long wavelength limit. The result is
not entirely analytical. The homogenization formula contains a
tensor Σ̂, which is a function of the contrast and geometry and
must be computed numerically. Setting Σ̂ = 0 results in the
isotropic Maxwell Garnett mixing formula. The anisotropic for-
mula is obtained if the principal values of Σ̂ are of the special
form Σp(χ) = βpχ/(1 − βpχ) where βp are constants. Here
χ = (ǫi − ǫh)/(ǫi + 2ǫh) is the spectral parameters of the the-
ory. We can identify the depolarization factors appearing in the
classical formula as νp = (1 − βp)/3. If βp = 0, νp = 1/3 and
the classical isotropic mixing formula is obtained.

However, there is a class of composites that are isotropic
but whose rigorous effective permittivity is not equal to
the Maxwell Garnett’s prediction. For these composites, a
more general functional dependence of the form Σp(χ) =
∑n βnpχ/(1 − βnpχ) is valid, where the sum is not reduced to

just one term. The composite is isotropic if Σp is independent
of p. This is a more general condition than the assumption that
βnp = 0, which is, essentially, the sufficient and necessary con-
dition for the isotropic Maxwell Garnett mixing formula to be
precise. In general, the Maxwell Garnett-type family of approxi-
mations assume that there is only one resonance of the function
Σp(χ). In actual composites, several resonances can be present
simultaneously for any given polarization.

The problem we have considered in section 5 is known in
the homogenization literature as the cell problem. There exist
many mathematical formulations of the cell problem and many
different approaches to its solutions. The specific approach of
section 5 utilizes the basis of plane waves. It also reduces the
numerical part to computing the tensor Σ̂, which was discussed
above. Other approaches may use local bases or compute the
effective permittivity directly, without casting it first in a special
form resembling the Maxwell Garnett mixing formula.

When we considered waves on lattices of polarized particles
or in photonic crystals, we have used integral equations as the
mathematical point of departure in order to arrive at the desired
result in the most direct and economical way. However, there
is nothing special in this approach. One can as well start from
the differential equations and arrive at exactly the same result.
Still, the fact that the Maxwell Garnett mixing formula seems to
be “embedded” in the integral equations of classical electrody-
namics is quite remarkable and we have intentionally used the
integral equations to emphasize this point.

The numerical examples of section 6 show that the isotropic
Maxwell Garnett mixing formula is quite robust and can work
reasonably well even beyond the limit of very low volume frac-
tions. Of course, this statement only concerns composites with-
out strong resonance phenomena (which we have not discussed
in the tutorial) and should not be understood too generally.

Finally, many of the ideas discussed in this tutorial (espe-
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cially, in the first part), and many interesting and relevant dis-
cussions, in particular, of the concept of the local field, can be
found in the book [39]. Unfortunately, as of this writing, this
book has not been translated into English.
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