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Abstract

We show how implementing invariance under divergence-free gauge transformations leads

to a remarkably simple Lagrangian description of massless bosons of any spin. Our con-

struction covers both flat and (A)dS backgrounds and extends to tensors of arbitrary

mixed-symmetry type. Irreducible and traceless fields produce single-particle actions,

while whenever trace constraints can be dispensed with the resulting Lagrangians display

the same reducible, multi-particle spectra as those emerging from the tensionless limit of

free open-string field theory. For all explored options the corresponding kinetic operators

take essentially the same form as in the spin-one, Maxwell case.
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1 Introduction

The main purpose of this work is to investigate the conditions under which higher-spin free

Lagrangians take their simplest possible forms, exploring the case of massless bosons of

any spin and symmetry in Minkowski as well as in (Anti)-de Sitter backgrounds. We find

that in all these cases it is possible to keep the corresponding kinetic operators essentially

as simple as their spin-one, Maxwell counterpart2. For instance, the Lagrangian equations

of motion for rank-s symmetric tensors in flat space-time resulting from our approach read

(M ϕ)µ1 ···µs
≡ 2ϕµ1 ···µs

− ( ∂µ1
∂ α ϕαµ2 ···µs

+ · · · ) = 0 , (1.1)

where the dots stand for symmetrisation of indices while the operator M builds the

higher-spin extension of the Maxwell field equations,

(M A)µ ≡ 2Aµ − ∂µ ∂
αAα = 0 . (1.2)

Indeed, considering the on-shell conditions for massless, spin-s propagation [3],

2ϕµ1 ···µs
= 0 , 2Λµ1 ···µs−1

= 0 ,

∂ αϕαµ2 ···µs
= 0 , ∂ αΛαµ2 ···µs−1

= 0 , (1.3)

ϕα
αµ3 ···µs

= 0 , Λα
αµ3 ···µs−1

= 0 ,

where ϕµ1 ···µs
is a rank-s symmetric tensor subject to the abelian gauge transformation

δϕµ1 ···µs
= ∂µ1

Λµ2 ···µs
+ · · · , (1.4)

it is already possible to notice that if ϕµ1 ···µs
and Λµ1 ···µs−1

no longer satisfy the first

equations in (1.3), as required for the system to be off-shell, then compensating the gauge

variation of 2ϕµ1 ···µs
leads to forego the condition on the vanishing of its divergence as

well and to construct the combination displayed in (1.1). In this sense one can interpret

the Maxwell-like tensor (M ϕ)µ1 ···µs
as providing the minimal building block necessary for

any off-shell extension of (1.3), and our goal in the present paper is to show that the same

operator actually also suffices for the same purpose. Differently, the trace conditions in

(1.3) appear at this level as optional possibilities and, as we shall see, keeping or discarding

them in the off-shell formulation can affect the spectrum of the resulting theories but not

the form of the corresponding Lagrangians.

The key idea underlying the whole construction is to allow for a restricted form of

gauge symmetry with parameters subject to a suitable set of transversality conditions.

For instance, as we show in section 2.1.1, in order to enforce invariance of (M ϕ)µ1 ···µs

under (1.4) the simplest option is indeed to require that the gauge parameter Λµ1 ···µs−1

be divergence-free,

∂ α Λαµ2 ···µs−1
= 0 , (1.5)

2See [1] for a general motivating discussion and [2] for reviews on the subject of higher spins.
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allowing to dispense with the introduction of additional terms involving traces of the field,

like those appearing for the same class of tensors in Fronsdal’s equation [4]

(F ϕ)µ1 ···µs
= (M ϕ)µ1 ···µs

+ ( ∂µ1
∂µ2

ϕα
αµ3 ···µs

+ · · · ) = 0 . (1.6)

A further distinction concerns the analysis of the spectra: while (1.6), supplemented with

the condition that the gauge parameter be traceless, describes the propagation of a single

massless particle of spin s, the spectrum associated to (1.1) comprises a whole set of

particles of spin s, s−2, s−4, · · · and so on, down to spin s = 1 or s = 0, thus providing

a reducible description of higher-spin dynamics. However, without altering the form of

the corresponding Lagrangian, easily seen to be given by

L =
1

2
ϕµ1 ···µs

(M ϕ)µ1 ···µs , (1.7)

it is also possible to truncate the particle content of divergence-free theories to the single

irreducible representation of highest spin s by further restricting both the field ϕµ1 ···µs

and the gauge parameter Λµ1 ···µs−1
to be traceless, as originally shown in [5]. Similar con-

siderations apply to symmetric tensors in (A)dS backgrounds, to which our construction

extends with no special difficulties both for reducible and irreducible theories, as discussed

in section 2.2.1.

Our approach proves especially effective in simplifying the Lagrangian formulation of

theories involving tensors with mixed symmetry. In section 2.1.2 we study the general

case of multi-symmetric tensors with N families of indices,

ϕµ1 ···µs1
, ν1 ··· νs2 , ···

, (1.8)

defining GL(D)-reducible representations, showing that a consistent Lagrangian for their

massless particle content in flat space-time is simply

L =
1

2
ϕµ1 ···µs1

, ν1 ··· νs2 , ···

{
2ϕµ1 ···µs1

, ν1 ··· νs2 , ··· − (∂ µ1 ∂α ϕ
αµ2 ···µs1

, ν1 ··· νs2 , ··· + · · · )

− (∂ ν1 ∂α ϕ
µ1 ···µs1

, α ν2 ··· νs2 , ··· + · · · )

− · · ·

}
,

(1.9)

where within parentheses symmetrisations over indices belonging to a single family are

understood. Gauge invariance of (1.9) under

δ ϕµ1 ···µs1
, ν1 ··· νs2 , ···

= (∂µ1
Λµ2 ···µs1

, ν1 ··· νs2 , ···
+ · · · )

+ (∂ ν1 λµ1 ···µs1
, ν2 ··· νs2 , ···

+ · · · )

+ · · · ,

(1.10)

is guaranteed provided the N parameters Λµ1 ···µs1−1, ν1 ··· νs2 , ···
, λµ1 ···µs1

, ν1 ··· νs2−1, ··· , · · · ,

each missing one index in a given group of symmetric indices, satisfy a set of transversality
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conditions where the divergence is computed “symmetrically” with respect to each family:

∂ α Λαµ2 ···µs1−1, ν1 ··· νs2 , ···
= 0 ,

∂ α {Λµ1 ···µs1−1, α ν2 ··· νs2 , ···
+ λαµ2 ···µs1

, ν1 ··· νs2−1, ···} = 0 ,

· · · .

(1.11)

Thus, together with diagonal constraints forcing the divergence of the i−th parameter

computed in the i−th family to vanish, there are off-diagonal constraints as well, com-

bining the divergence of the i−th parameter computed in the j−th family with the di-

vergence of the j−th parameter computed in the i−th family, as synthetically expressed

by eq. (2.29) in a more appropriate notation.

Similarly to the symmetric case, this constrained local symmetry is indeed sufficient

to ensure that the propagating degrees of freedom eventually sit in the totally transverse

reducible tensor of GL(D − 2)

ϕ i1 ··· is1 , j1 ··· js2 , ···
, (1.12)

whose branching in O(D−2)−irreps describes the full particle content associated to (1.9).

Comparing (1.9) with the constrained Lagrangian of Labastida [6] or with its minimal

unconstrained versions given in [7, 8] (see also [9, 10] for reviews) allows to appreciate the

advantages of our present approach3: while Lagrangians (1.9) always maintain the same

form irrespective of the number N of index-families of the tensor ϕ, in the approach of

[6, 7] the need to implement the more conventional kind of gauge invariance calls for the

introduction of a number of traces of the basic kinetic tensor increasing with N . Moreover,

the same actions (1.9) extend with no modification to the case of tensors in irreducible

representations of GL(D) or O(D), so that even in the mixed-symmetry case transverse

invariance can accommodate spectra of various degrees of complexity.

Remarkably, proceeding along the same lines it turns out to be possible to extend the

Lagrangian formulation for tensors of any symmetry to the case of backgrounds with non-

vanishing cosmological constant. Whereas a considerable body of knowledge is by now

available for field theories involving symmetric tensors of arbitrary rank, both in flat and in

particular in (A)dS backgrounds, where interactions among massless higher-spin particles

seem to find a most natural arena [14], when it comes to tensors with mixed-symmetry the

situation is vastly different. Indeed, in cosmological spaces not only are interactions for

these types of particles so far little explored [15], but even free Lagrangians are available

only for special classes of tensors, both in the metric-like approach that we pursue in this

paper [16] and in the frame-like approach where the higher-spin degrees of freedom are

encoded in sets of generalised vielbeins [17, 18, 19, 20] (see also [21, 22]). This essential

gap in our knowledge is especially acute since mixed-symmetry states account for the

3Fields of mixed symmetry in Minkowski backgrounds have been subject to intense study since the

mid-eighties, following the early progress of string field theory [11]. Here we discuss higher-spin fields

as generalisations of the metric tensor for gravity (metric-like approach), while alternative forms of

Lagrangians for tensors of mixed-symmetry in flat space have been obtained in a frame-like formulation

[12] and in various other approaches,including some BRST-inspired ones [13].
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vast majority of the string excitations. In this sense, it seems reasonable to expect that

a satisfactory comparison between massless higher-spins and strings may benefit from a

more complete understanding of the general types of massless particles allowed in a given

space-time dimension.

In this work we propose an action for arbitrary massless fields in (A)dS spaces of any

dimension, eq. (2.80) or (2.83), and in the remainder of this introduction we would like to

provide a few additional details on the peculiarities of massless particles in (A)dS spaces,

in order to better frame the main lines of our procedure.

The investigation of theories involving fields in arbitrary representations of the AdS

or dS groups in D dimensions, O(D − 1, 2) or O(D, 1) respectively, besides the technical

complications already present in the flat-space analysis, is fraught with additional sub-

tleties that are absent for the more customary symmetric representations. In particular,

as first shown by Metsaev in [23, 24], the very notion of single, massless particle does

not admit in general a continuous deformation from flat to (A)dS backgrounds and vice-

versa, on account of the impossibility of preserving all the gauge symmetries of the flat

theory. The analysis of [23, 24] elucidates the on-shell conditions to be satisifed in order

for the wave operator to retain the maximal possible amount of gauge symmetry in (A)dS

backgrounds, while also providing the further specifications needed to grant unitarity in

Anti-de Sitter space. The general result is that, out of the p gauge parameters in prin-

ciple available for tensors described by Young diagrams possessing p rectangular blocks

of different horizontal lengths, only one can be kept in (A)dS. Moreover, while gauge

invariance alone does not distinguish among the p options available in principle, for the

case of Anti-de Sitter spaces unitarity dictates to preserve the parameter represented by

the diagram missing one box in the upper rectangular block.

As a general consequence, (A)dS massless “particles” associated with a given diagram

describe the propagation of more degrees of freedom than their flat-space peers. The

exact branching of these irreducible (A)dS representations in terms of O(D−2) ones (i.e.

the structure of the flat-space multiplet corresponding to a single (A)dS particle) was first

conjectured in [25] by Brink, Metsaev and Vasiliev and was recently subject to a detailed

group-theoretical analysis in [26]; for instance, the unitary BMV multiplet associated with

the massless AdS particle ϕµν, ρ with the symmetries of the hook tableau {2, 1} comprises

the degrees of freedom of the flat-space particle described by the same hook diagram

together with those of a “graviton”. However, as already mentioned, while the pattern

of flat massless particles branching single (A)dS massless irreps is indeed known in the

general case, so far its off-shell realisation has been provided only for special classes of

Young diagrams.

In eq. (2.80) we propose Lagrangians for general N -family, O(D)−tensor fields in

(A)dS, uniquely determined requiring that they preserve the amount of gauge-symmetry

dictated by Metsaev’s analysis; in particular for the unitary choice identified in [23, 24]
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our Lagrangian reads

L =
1

2
ϕµ1···µs1

, ν1···νs2 ,···

{
2ϕµ1···µs1

, ν1···νs2 , ··· − (∇µ1 ∇α ϕ
αµ2···µs1

, ν1···νs2 , ··· + · · · )

− (∇ ν1 ∇α ϕ
µ1···µs1

, α ν2···νs2 , ··· + · · · ) − · · ·

−
1

L2

[
(s1 − t1 − 1)(D + s1 − t1 − 2) −

p∑

k=1

sk tk

]
ϕµ1···µs1

, ν1···νs2 ,···

}
,

(1.13)

where s1 and t1 identify length and height of the first rectangular block, while the sum

runs over the products of lengths and heights of all different blocks. Let us mention that,

in this irreducible context, the gauge invariance of (1.13) is meant under transforma-

tions involving a fully divergenceless parameter. This result provides a relatively simple

generalisation of the corresponding Lagrangian for symmetric tensors in (A)dS (2.55), to

which it reduces for p = 1 and t1 = 1. However, differently from that example and from

the flat-space case, where our construction applies both to reducible and to irreducible

tensors, the Lagrangians (1.13) involve traceless tensors in irreducible representations of

GL(D), and as such define candidate single-particle theories.

A convenient way to get some intuition about the unfamiliar BMV phenomenon is

to observe that, in (A)dS backgrounds, the pattern of reducible gauge transformations

associated in general to a mixed-symmetry gauge potential gets unavoidably broken by

terms proportional to the (A)dS curvature. With reference to the example of the (traceless)

hook tensor {2, 1} with covariantised gauge variation

δ ϕµν, ρ = ∇µ Λ ν, ρ + ∇ν Λµ, ρ + ∇ρ λµν −
1

2

(
∇µ λ νρ + ∇ν λµρ

)
, (1.14)

where Λµ, ν is a two-form while λµν is a symmetric tensor, it is not hard to verify that,

under the “gauge-for-gauge” transformations

δ Λµ, ρ = ∇ρ θµ − ∇µ θ ρ, δ λµν = − 2
(
∇µ θ ν + ∇µ θ ν

)
, (1.15)

that would leave the gauge potential invariant in flat space-time, now δ ϕµν, ρ acquires a

contribution proportional to the (A)dS curvature:

δ ϕµν, ρ = − 2

(
[∇ ρ, ∇µ] θ ν + [∇ ρ, ∇ ν ] θµ

)
. (1.16)

This observation implies that even if one were able to find a kinetic tensor for ϕµν, ρ in-

variant under the full transformation (1.14) the corresponding theory would possess too

much gauge invariance with respect to the flat case, and thus would not describe any-

more the degrees of freedom of the O(D − 2) hook. As an alternative to the elimination

of one of the parameters of the flat theory, suggested by the result of [23, 24], one can

instead “neutralise” the effect of the broken gauge-for-gauge vector θµ “promoting” it

to play the role of gauge parameter for a new O(D)−field, that at this level could be

7



either a symmetric rank-two tensor or a two-form. One could then proceed to construct

the full Stueckelberg Lagrangian for both options, taking care of the fact that not only

the “standard” gauge invariance but also overall gauge-for-gauge invariance be simultane-

ously preserved, in such a way that the number of independent gauge components of the

resulting (A)dS theory be the same as for the corresponding flat system. The important

difference between the two possible options is that, now referring specifically to Anti-de

Sitter backgrounds, only for the rank-two symmetric tensor would the corresponding ki-

netic operator emerge with the correct sign required by a unitary theory, in accordance

with the group-theoretical analysis of [23, 24]. Proceeding in this fashion for more general

cases one can obtain an independent justification of the full BMV-pattern, and construct

the corresponding Stueckelberg Lagrangians smoothly deforming the sum of flat-space

Lagrangians appropriate for the description of the corresponding multiplet.

We perform this kind of construction explicitly for the case of tableaux with two rows

in section 3.2.2, deforming the corresponding flat-space transverse-invariant Lagrangians

presented in section 2.1.2. In particular we show that, starting from the Stueckelberg

Lagrangian obtained in this way and performing appropriate off-shell gauge-fixings one

reaches indeed our simplified Lagrangians (2.80) together with the corresponding transver-

sality constraints, thus providing a complete proof, at least for these classes of tensors,

of the validity of our result. Let us mention that the Stueckelberg construction, also

discussed in [25] for the AdS particle with the symmetries of the hook tableau, has been

explored in particular by Zinoviev in [18, 19], where frame-like Lagrangians for massive

two-family tensors in (A)dS were obtained and their massless and partially massless limits

were also discussed.

Whenever a system is found to be invariant under constrained gauge transformations

it is natural in our opinion to try and interpret it as resulting from the partial gauge-

fixing of a more general theory whose gauge symmetry is not constrained. Indeed, for the

irreducible case involving traceless fields and transverse-traceless parameters investigated

in [5], the Lagrangian (1.7) can be seen to arise from a partial gauge fixing of Fronsdal’s

Lagrangian itself, whose formulation requires traceless parameters (and doubly traceless

fields). In its turn, the Fronsdal-Labastida theory admits minimal unconstrained exten-

sions given in [27, 28, 7, 8], building on previous formulations [29, 30, 31] where the

removal of constraints was linked to the possibility of assigning a dynamical role to the

higher-spin curvatures of [32]4. For the transverse-invariant Lagrangians that we pro-

pose in this work the most natural unconstrained extensions should be identified with the

“triplets” associated to the tensionless limit of free open string field theory [34, 30, 35, 36]

(see also [37, 38, 39]), whenever the corresponding actions are available. However, for the

case of (A)dS tensors with mixed symmetry the corresponding unconstrained Lagrangians

are not yet known, and exploring the possibility of constructing them and their possible

relation with string systems in (A)dS is an interesting question that we leave for future

investigation.

4For alternative formulations of the free theory of massless higher spins see e.g. [33].
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For the case of spin 2 the idea of considering transverse-diffeomorphism invariance is

indeed quite old and was explored from a number of perspectives, mainly in connection

with so-called unimodular gravity and its relation to the cosmological constant problem

[40, 41, 42]. The observation is that, while the variation of the Einstein-Hilbert action

performed keeping the determinant of the metric fixed provides only the traceless part

of Einstein’s equations, the (contracted) Bianchi identity allows to recover the relation

between the Ricci scalar and the trace of the stress-energy tensor, up to an arbitrary

integration constant appearing in the resulting equation as a cosmological term. The

connection with our approach is established observing that, at the linearised level, de-

manding that the determinant of the metric be gauge invariant requires transverse vector

parameters, thus providing the first non-trivial example of (1.5). Let us also mention that

conditions of transversality on gauge parameters were recently considered in the context

of quantum-mechanical models on Kähler manifolds in [43].

We present the main results of this work in section 2, where we perform the construc-

tion of transverse-invariant Lagragians in increasing degree of generality, from symmetric

tensors in Minkowski space to mixed-symmetry fields in (A)dS. The spectrum of particles

propagating in the corresponding equations of motion is then analysed in section 3 ex-

ploiting various approaches. As already mentioned, when built out of traceful fields our

Lagrangians propagate reducible spectra of free particles. This is the situation where the

highest simplification is obtained (taking into account the structure of the Lagrangians,

the form of the equations of motion and the analysis of the spectrum) and the closest

contact with the tensionless open string is achieved. In section 4 we perform an addi-

tional step for the case of symmetric tensors, providing the solution to the problem of

dissecting the field ϕ so as to explicitly identify its lower-spin components; as a result

the action gets decomposed into a sum of decoupled terms, one for each particle present

in the spectrum of the theory. We conclude summarising our findings while also putting

them in a more general perspective, while in the appendices we collect our notations and

conventions together with a number of additional technical results.
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2 Lagrangians

2.1 Flat backgrounds

2.1.1 Symmetric tensors

Let us consider the Lagrangian5

L =
1

2
ϕM ϕ , (2.1)

where M is the Maxwell operator

M = 2 − ∂ ∂ · . (2.2)

Up to total derivatives, its gauge variation under δ ϕ = ∂ Λ is

δ L = − 2

(
s

2

)
∂ · ∂ · ϕ∂ · Λ , (2.3)

and thus vanishes assuming the condition of transversality for the gauge parameter:

∂ · Λ = 0 . (2.4)

One could alternatively impose a differential constraint on the gauge field of the form

∂ · ∂ · ϕ = 0, that would also guarantee gauge invariance of (2.1). However, in order for

this latter condition to be itself gauge invariant, the parameter should satisfy in principle

a more involved transversality condition of the form ∂ · {2 ∂ ·Λ + ∂ ∂ ·Λ} = 0, so that it

does not seem especially convenient to proceed in this direction.

Our interest in these kind of systems has several motivations, the first clearly being the

appeal of simplicity. As we will show in this work, they provide an alternative route to the

description of massless higher spins in their full generality, finding their original inspiration

in the so-called TDiff-invariant spin-2 theories originally considered in [40, 41] and more

recently in [42] in connection with unimodular gravity and with the cosmological constant

problem. Moreover, in a number of cases one can relate transverse-invariant theories to the

triplet Lagrangians emerging from the tensionless limit of the free open string [34, 30, 35],

of which they effectively provide a simplified version retaining the same particle content.

A detailed analysis of the spectrum of Lagrangian (2.1) and of its generalisations is

presented in section 3. In the specific case of interest in this section one can also connect

the corresponding equations of motion,

(2 − ∂ ∂·)ϕ = 0 , (2.5)

5Our notation and conventions are spelled out in appendix A. Symmetrised indices are always implicit

and symmetrisation is understood with no weight factors. In particular “∂” stands for a gradient, while the

symbol “∂·” denotes a divergence. Thus, in the Maxwell-like equations for a rank-s tensor, (2 − ∂ ∂·)ϕ =

0, the second term actually contains s contributions: ∂ ∂ · ϕ = ∂µ1
∂αϕαµ2···µs

+ ∂µ2
∂αϕαµ1···µs

+ · · · .
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to the reduced Fierz system [3],

2ϕ = 0 ,

∂ · ϕ = 0 .
(2.6)

Indeed computing a divergence of (2.5) gives ∂ ∂ · ∂ · ϕ = 0, and thereby effectively

∂ · ∂ · ϕ = 0 , (2.7)

up to discrete degrees of freedom that we will systematically neglect, since they do not

affect the counting of local degrees of freedom which is our main object of interest in the

present framework. The remaining, transverse part of the divergence of ϕ can be gauged

away using the divergence-free parameter Λ on account of

δ ∂ · ϕ = 2Λ , (2.8)

thus showing the equivalence of (2.5) with (2.6) supplemented by the appropriate residual

gauge invariance with parameter satisfying

2Λ = 0 ,

∂ · Λ = 0 .
(2.9)

A standard analysis of (2.6) and (2.9) shows that the propagating polarisations are those

associated with the components ϕ i1··· is, where the indices ik refer to directions transverse

to the light-cone. Thus, together with the spin-s degrees of freedom contained in the

traceless part of ϕ i1··· is in D− 2 Euclidean dimensions, lower-spin representations of spin

s−2k, with k = 1, . . . , [ s
2
], also propagate and sit in the traces of ϕ i1··· is . For the irreducible

case describing a single particle of spin s, already studied in [5], it will suffice to observe

that, up to a restriction of the space of fields to traceless tensors subject to gauge variations

with transverse and traceless parameters, one does not need to modify the form (2.1) of

the Lagrangian, that in this sense applies to both reducible and irreducible descriptions.

The corresponding equations of motion obtain taking the traceless projection of (2.5) and

read (
2 − ∂ ∂ · +

1

D + 2 s − 4
η ∂ · ∂·

)
ϕ = 0 . (2.10)

Let us also mention that in our reducible context, with unconstrained fields subject to

transverse and traceful gauge variations, multiple divergences of ϕ of order higher than

one and, for even spins, the highest order trace ϕ [ s
2
], provide independent gauge-invariant

quantities that could possibly enter modified forms of the Lagrangian. This is in particular

true for the spin-2 case, where ϕ ′ and ∂ ·∂ ·ϕ could be combined in various forms providing

gauge-invariant modifications of (2.1). For arbitrary spins, even limiting the attention to

kinetic operators containing not more than two derivatives, we observe that uniqueness

of (2.1) is always meant up to the scalar sector of the even-spin case admitting indeed

possible deformations, both in the forms of mass terms

∆Lm =
1

2
m 2 (ϕ [ s

2
]) 2 , (2.11)
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or as additional kinetic operators for the scalar member of the multiplet,

∆LK =
a

2
ϕ [ s

2
]
2ϕ [ s

2
] , (2.12)

amenable in principle to change the propagating nature of the latter, and possibly to

eliminate it altogether from the spectrum by a suitable choice of the coefficient a6.

The reducible particle content associated to eq. (2.5) in the absence of trace constraints

corresponds to that of the Lagrangians obtained from the BRST action for the free open

string, after taking the tensionless limit α ′ → ∞ in the sense described in [34, 30, 35].

The spin-s block-diagonal term obtained in that approach (after solving for an additional

auxiliary field with algebraic equations of motion) reads in fact

L =
1

2
ϕM ϕ + 2ϕ∂ 2D − 2

(
s

2

)
DM̂ D , (2.13)

where ϕ and D are symmetric tensors of ranks s and s − 2 respectively, subject to the

unconstrained gauge transformations δ ϕ = ∂ Λ and δD = ∂ · Λ, while

M̂ = 2 +
1

2
∂ ∂· , (2.14)

is a sort of deformed Maxwell operator for the field D. In this respect our analysis

shows that performing the off-shell gauge-fixing D = 0 does not alter the spectrum of the

theory. Conversely, one can generate the Lagrangian (2.13) from (2.1) in two steps: first

introducing a Stueckelberg field θ via the redefinition ϕ → ϕ − ∂ θ, with δ ϕ = ∂ Λ and

δ θ = Λ, and then identifying the divergence of θ with the fieldD of (2.13). In this sense the

relation between the transverse-invariant Lagrangian (2.1) and the unconstrained triplet

Lagrangian (2.13) is analogous to the relative role played by Fronsdal’s constrained theory,

with traceless gauge parameter and doubly-traceless field, and its minimal unconstrained

extension proposed in [27] for the description of irreducible massless particles of spin s.

Modifying the constraints on the field and on the gauge parameter in various ways

(which include the option of relaxing them altogether) several possible completions of (2.1)

can be found, local and non-local (see also our comments in the Discussion). Concerning

the latter, a rationale for the introduction of non-local terms in unconstrained Lagrangians

is found whenever it is possible to interpret them as the result of the integration over

unphysical fields [44]. The corresponding analysis for the triplets was performed in [36]

where it was shown that the elimination of the field D in (2.13) produces indeed a gauge-

invariant completion of (2.1) given by the Lagrangian

L =
1

2
ϕM ϕ +

s∑

m=2

(
s

m

)
∂ ·m ϕ

1

2
m−1

∂ ·m ϕ

=
1

2

s∑

m=0

(
s

m

)
∂ ·m ϕ

1

2
m−1

∂ ·m ϕ ,

(2.15)

6See [39] for a discussion of reducible triplets in the frame-like approach, where in particular a similar

arbitrariness at the level of the scalar component of the multiplet was also noticed.
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where ∂·m denotes the m−th power of the divergence. In the same context it was also

shown how to combine the various terms in (2.15) in order to reproduce the square

of the corresponding higher-spin curvatures R
(s)
µ1···µs, ν1··· νs [32], leading to the compact

expression7

L =
(−1) s

2 (s+ 1)
R (s)

µ1···µs, ν1··· νs

1

2
s−1

R (s)µ1···µs, ν1··· νs . (2.16)

In (2.16) the spin-1 case corresponds to the only local option, while the non-local La-

grangians obtained for spin s ≥ 2 build a metric-like generalisation of Maxwell’s La-

grangian in its geometric form bearing the same particle content as the triplet system

(2.13).

Let us finally observe that, in analogy with the spin−1 case, where the divergence of

the field strength defines the equations of motion, in our present setting the kinetic tensor

M can be easily related to the first connexion in the de Wit-Freedman hierarchy8 [32]

Γ(1)
ρ, µs

= ∂ ρ ϕµs
− ∂µ ϕµs−1ρ , (2.17)

which clearly reduces to Maxwell’s field strength for s = 1. Indeed, it is simple to check

that the divergence of Γ ρ, µs
in the ρ index builds the Maxwell operator (2.2),

∂ ρ Γ(1)
ρ, µs

= (M ϕ)µs
, (2.18)

while the Lagrangian (2.1) can be written as a square of those connexions as follows:

L =
1

4 (s− 1)

{
Γµ, ρ µs−1

− (s− 2) Γ ρ,µs

}
Γ ρ, µs . (2.19)

This observation suggests a clear parallel with the Fronsdal formulation, where the basic

kinetic tensor F given in (1.6) obtains from the trace of the second connexion in the

hierarchy of [32],

Γ(2)
ρρ, µs

= ∂ 2
ρ ϕµs

−
1

2
∂ ρ ∂µ ϕµs−1ρ + ∂ 2

µ ϕµs−2ρρ, (2.20)

to be computed in the ρ-indices, providing a spin−s generalization of the linearised spin−2

Ricci tensor.

7Lagrangians for symmetric bosons and fermions of arbitrary spin were first formulated in terms of

metric-like curvatures in [29] while an approach similar in spirit was also proposed for mixed-symmetry

bosons in [45, 46]. Out of the infinitely many options available in principle, the unique Lagrangians leading

to the correct propagators were given for symmetric tensors in [28], while their massive deformations were

discussed in [31], together with a more detailed analysis of the role of curvatures for fermionic theories.

Their connection with the minimal local Lagrangians of [27] was given in [44]. More recently, first-order

non-linear deformation of the curvatures were also found in [47].
8To manipulate the generalised connexions of [32] we resort to a notation [31], where symmetrised

indices are denoted with the same symbol, while the subscript denotes the number of indices in a given

group. For instance ∂µ ϕµs−1ρ is a shortcut for ∂µ1
ϕµ2 ···µsρ + ∂µ2

ϕµ1 µ3 ···µsρ + · · · , with the index ρ

excluded from the symmetrization. For the manipulations required in this section the rules of symmetric

calculus given in Appendix A.1 apply separately for each group of indices.
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2.1.2 Mixed-symmetry tensors

In this section we would like to extend our analysis to tensor fields of mixed symmetry.

The basic objects under scrutiny will be multi-symmetric tensors,

ϕµ1···µs1
, ν1··· νs2 , ···

≡ ϕ , (2.21)

possessing an arbitrary number N of independent sets (“families”) of symmetrised indices

and thus defining reducible GL(D) tensors, of the kind appearing as coefficients in the

expansion of the bosonic string field. While this choice guarantees the highest degree

of overall simplification, our results can also be adapted to the case where ϕ defines an

irreducible representation of GL(D), or even of O(D), with minor complications from the

perspective of the construction of a gauge-invariant Lagrangian.

The proper generalisation of the index-free notation used in the symmetric case was

introduced in [7, 8, 9, 10] and is reviewed in appendix A.2. The basic idea is to employ

“family” labels to denote operations adding or subtracting space-time indices belonging

to a given group. More specifically upper family indices are reserved for operators, like

gradients, which add space-time indices, while lower family indices are used for operators,

like divergences, which remove them. As a result gradients and divergences acting on the

i−th family are denoted concisely by ∂ i ϕ and ∂ i ϕ respectively, while Tij ϕ refers to a

trace contracting one index in the i−th family with one index in the j−th family. It is

also useful to introduce operators, denoted by S i
j , whose effect is to displace indices from

one family to another while also implementing the corresponding symmetrization; namely

S i
j ϕ ≡ ϕ ··· , (µi

1···µi
si
|, ··· , |µi

si+1)µj
1···µj

sj−1, ··· , for i 6= j , (2.22)

while their diagonal members S i
i essentially count the number of indices in the i−th

family:

S i
i ϕ ≡ si ϕ ··· , µi

1···µi
si
, ··· . (2.23)

Thus, given the multi-symmetric tensor ϕ in (2.21), the corresponding GL(D)-diagram

with the same index structure is characterised by the additional condition

S i
j ϕ = 0 , for i < j , (2.24)

while supplementing (2.24) with the tracelessness constraint

T ij ϕ = 0 , ∀ i, j , (2.25)

allows to deal directly with irreducible tensors of O(D).

We first consider the case of multi-symmetric tensors (2.21) and postulate Maxwell-like

equations of motion

M ϕ ≡ (2 − ∂ i ∂ i)ϕ = 0 , (2.26)

together with the gauge transformations

δ ϕ = ∂ i Λ i (2.27)
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involving a set of multi-symmetric gauge parameters each of them lacking one space-time

index in the appropriate group, and thus denoted by Λ i. Under (2.27) the equations of

motion transform according to

δ (2 − ∂ i ∂ i)ϕ = −
1

2
∂ i ∂ j ∂ (i Λ j) , (2.28)

thus showing that the generalised transversality constraints

∂ (i Λ j) = 0 , (2.29)

summarizing in our compact notation the relations (1.11), suffice to guarantee gauge

invariance of the corresponding Lagrangian

L =
1

2
ϕ (2 − ∂ i ∂ i)ϕ ≡

1

2
ϕM ϕ . (2.30)

Actually the general solution granting the vanishing of (2.28), taken at face value,

would subject the parameters to a weaker set of conditions, namely

∂ i ∂ j ∂ (i Λ j) = 0 , (2.31)

and it is not manifestly obvious that the two conditions (2.29) and (2.31) should be re-

garded as equivalent. Indeed, the summation over family indices in (2.31), that we shall

refer to as defining “weak constraints”, leads to an equation that would admit in princi-

ple additional solutions as compared to (2.29), here referred to as “strong constraints”,

thus raising an issue about the effective amount of gauge symmetry possessed by the

Lagrangian (2.30).

A first indication of the eventual equivalence of the two conditions obtains from the

analysis of gauge-for-gauge transformations associated to (2.27), which take the general

form

δΛ i = ∂ k Λ [ik] , (2.32)

where square brackets denote antisymmetrisations, and in our notation indicate that the

two missing indices in Λ [ik] cannot belong to the same family. Exploiting (2.32) it is not

hard to show that the weak form of the transversality constraints (2.31) does not impose

additional conditions on the parameters of gauge-for-gauge transformations:

∂ i ∂ j ∂ i ∂
k Λ [jk] = 22 ∂ i ∂ j Λ [ij] + ∂ i ∂ j ∂ k ∂ i Λ [jk] ≡ 0 , (2.33)

where in particular the two contributions on the r.h.s. vanish independently, due to their

symmetry properties9. On the other hand, the strong constraints (2.29) do impose re-

strictions on the gauge-for-gauge parameters, summarized by the relations

∂ k ∂ i Λ [jk] + ∂ k ∂ j Λ [ik] = 0 . (2.34)

9Actually the result might be expected, since the weak form of the constraints reproduces directly the

variation of ϕ within the equations of motion, and as such must vanish identically under the full set of

second-generation variations (2.32).
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Thus we see that the potentially wider set of solutions to weak constraints is subject to

a bigger invariance under gauge-for-gauge transformations, while the latter provide less

severe conditions for solutions to strong constraints, on account of (2.34).

A complete argument to conclude on the equivalence of weak and strong conditions

can be formulated in two steps, considering the equations of motion in momentum space

and discussing separately the cases p 2 6= 0 and p 2 = 0. In the former case, saturating all

indices of (2.26) by divergences, it is possible to iteratively prove that, whenever ϕ solves

(2.26), all its double-divergences vanish10

p i p j ϕ = 0 . (2.35)

This implies that p i ϕ is transverse, and thus solving for ϕ in (2.26),

ϕ =
p i

p 2
p i ϕ , (2.36)

one can conclude that only pure gauge solutions are available, where the effective pa-

rameter Λ̃ i = p i

p 2 ϕ naturally satisfies strong constraints, thus making manifest that for

p 2 6= 0 there is no room for additional gauge transformations to be effective on the field.

For p 2 = 0 it is convenient to go to the frame where pµ = p+, where it is possible to

immediately observe that all components transverse to the light-cone (i.e. the physical

ones) are gauge invariant, regardless of the conditions to be imposed on the parameters.

The issue is then to show that parameters subject to strong constraints actually suffice, in

conjunction with the equations of motion, to remove all components longitudinal to the

light-cone, thus implicitly showing that weak constraints must eventually be equivalent

to the former, since they could not remove anyway additional polarisations. We discuss

in detail this aspect of the proof in section 2.1.2, where we show that the spectrum of the

transverse-invariant theory defined by (2.30) coincides with the particle content of the

reduced Fierz system

2ϕ = 0 ,

∂ i ϕ = 0 ,
(2.37)

with appropriate residual gauge invariance, with Λ i also satisfying a system analogous to

(2.37).

Let us mention that the same kind of issue might be raised when discussing the nature

of the constraints in the Labastida formulation [6]. In that framework indeed the gauge

variation of the basic kinetic tensor

F = M ϕ+
1

2
∂ i∂ j Tij ϕ (2.38)

10One can make sure that the corresponding condition is gauge invariant solving the system for the

double divergences of (2.29), p k p (i Λ j) = 0, p j p (k Λ i) = 0, p i p (j Λ k) = 0, with i 6= j 6= k. (The

other cases are trivial.) Equivalently, it is possible to observe that of the two projections admissible in

principle, p k p i Λ j ∼ ⊕ , only the first one does not vanish directly after imposing (2.29). This

implies the equality p k p i Λ j = 2
3 (p k p i Λ j − 1

2 p j p (i Λ k)), allowing in its turn to conclude again that

all double divergences of the parameters vanish, once more due to the transversality conditions (2.29).
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is proportional to a triple gradient of the traces of the field,

δF =
1

6
∂ i ∂ j ∂ k T( ij Λ k ) , (2.39)

so that the natural condition granting gauge invariance of the equations of motion would

look

∂ i ∂ j ∂ k T( ij Λ k ) = 0 , (2.40)

rather than its strong form, where all symmetrised traces are directly required to vanish:

T( ij Λ k ) = 0 . (2.41)

Even for this case, however, a reasoning similar to the one we presented above should

allow to conclude for the eventual equivalence of the two possibilities, on account of the

different amount of gauge-for-gauge invariance available in the two cases.

Thus, from now on we will always assume that the transversality constraints are sat-

isfied in their strong form (2.29), which is easier to manipulate. In section 2.1.2 we will

show that starting from reducible GL(D)−tensors the propagating polarisations are of

the form

ϕi11··· i1s1 , ··· , i
N

1··· iNsN
, (2.42)

with indices ij l = 1, . . . , D−2 , here displayed for additional clarity, taking values along the

directions transverse to the light-cone. The resulting expression can be first decomposed in

diagrams of GL(D−2), each carrying in its turn a reducible particle content described by

the corresponding branching in irreps of O(D − 2), so that working with multi-symmetric

tensors leads to a spectrum that is two-fold reducible, in a sense, and which can be directly

compared with the one emerging from the component expansion of string field theory.

However, it is also possible to stay closer in spirit to the more customary examples

of low spin and choose ϕ in an irreducible representation of GL(D) or even of O(D),

enforcing (2.24) and possibly (2.25), without otherwise spoiling the general scheme of the

construction. Indeed, the Maxwell operator defined in (2.26) commutes with the operators

S i
j,

[M, S i
j ] = 0 , (2.43)

and thus also with the operator projecting a multi-symmetric tensor to an irrep of

GL(D),11 thus ensuring invariance of the form of the Lagrangian and of the equations of

11The projectors take the schematic form Π = I + Sn, where Sn denotes a product of Si
j operators

with all indices contracted; for instance, the multi-symmetric tensor ϕµ1µ2, ν can be projected to the hook

diagram of GL(D) by the following operator:

Y{2,1} ϕ =
4

3

(
I −

1

4
S 1

2 S
2
1

)
ϕ .

Let us observe that this also implies that the Si
j commute with the projectors themselves. From a

different perspective, one can observe that acting with Si
j on a Young diagram one obtains a sum of

vectors in the same irreducible space.
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motion even in the irreducible case. Similar considerations are also valid for the Labastida

Lagrangian [6], which retains indeed the same form in both cases, as discussed for instance

in section 4 of [7]. Adding the condition of tracelessness (2.25), on the other hand, as

required to describe the propagation of a single massless particle with a given symmetry

pattern, again would not spoil the form of (2.30), similarly to what we already observed

for the symmetric case in the previous section. What would be different in this latter case

would be the actual form of the equations of motion, attaineable from (2.26) performing

the appropriate traceless projection. Moreover, for fields belonging to irreps of O(D), one

should supplement the transversality constraints (2.29) with the appropriate conditions

on the traces of the parameters and, correspondingly, on the gauge-for-gauge parameters.

In agreement with our previous discussion, in the following we will assume them to take

their simplest form, so that in particular for all generations gauge parameters can be

supposed to be traceless.

To summarise, for the three cases under consideration, namely GL(D)−reducible,

GL(D)−irreducible and O(D)−irreducible tensors of arbitrary type, eq. (2.30) provides

a gauge-invariant Lagrangian on condition that the gauge parameters satisfy the sym-

metrised transversality constraint (2.29), together with appropriate restrictions on their

traces for irreps of the orthogonal group.

In our opinion it is rather remarkable that a consistent Lagrangian for general tensor

fields of any symmetry type can be formulated in such a simple form as (2.30). To better

appreciate this point it might be useful to compare (2.30), with Λi constrained as in

(2.29), with the form of the Labastida Lagrangian for the two-family case12 [6], that in

our notation reads13

L =
1

2
ϕ {F −

1

2
ηij Tij F +

1

36
ηij ηkl

(
2 Tij Tkl − Ti ( k Tl ) j

)
F } , (2.44)

where F is the Fronsdal-Labastida tensor (2.38), ϕ is subject to a generalised double-trace

constraint,

T( ij Tkl ) ϕ = 0 , (2.45)

while, as already recalled, gauge invariance holds if the symmetrised traces of Λi are

constrained to vanish, as in (2.41).

For what concerns tensionless strings in the sector of mixed-symmetry fields, gener-

alised “triplets” were introduced in [35] and there shown to describe the full spectrum of

the free open string collapsed to zero mass. To establish contact with our formulation we

refer to the form of corresponding equations of motion for the multi-tensor ϕ transforming

as in (2.27), rephrased in our present notation as

M ϕ +
1

2
∂ i ∂ j D (ij) = 0 , (2.46)

12For an arbitrary number of families the result gets more and more complicated, and in particular the

number of terms in the corresponding Lagrangians grows linearly with the number of families. We refer

the reader to section 3 of [7] for more details.
13As already recalled, this form of the Lagrangian applies both to multi-tensors and to irreps of GL(D).
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where the set of fields D ij transform according to

δD ij = ∂ i Λ j , (2.47)

while also being subject to the constraint ∂ k D ij = ∂ i D kj, so as to prevent their gauge-

invariant combinations to propagate unwanted degrees of freedom. It should be noted

that the tensors D ij are not symmetric in their family indices, so that while their com-

bination appearing in (2.46) displays the proper gauge transformation as required for

consistency with (2.28), the comparison of the two formulations at the Lagrangian level

is less straightforward and should be the object of a separate investigation. Here we limit

ourselves to stress that working with divergence-free parameters, in the sense of (2.29),

allows to bypass completely the need for the additional set of auxiliary fields and cor-

responding gauge parameters introduced in [35], leading also with respect to the latter

formulation to a sizeable simplification.

Let us also mention that, similarly to the symmetric case, an alternative presentation

of (2.26) obtains also in this case introducing the following generalisation of the first

connexion of [32]

Γ ρ, µ1
s1

, ··· , µN
sN

= ∂ ρ ϕµ1
s1

, ··· , µN
sN

−
N∑

i=1

∂µi ϕµ1
s1

, ··· , µi
si−1 ρ, ··· , µN

sN
, (2.48)

where the index µi
si is a shortcut for a group of si indices in the i−th family, consistently

with the notation used for (2.17). (See footnote 8.) Making use of (2.48) it is then possible

to recast the equations of motion (2.26) in the form

(M ϕ)µ1
s1

, ··· , µN
sN

= ∂ α Γα, µ1
s1

, ··· , µN
sN
, (2.49)

along the lines of their counterparts (2.18) for the case of symmetric tensors.

2.2 (A)dS backgrounds

In this section we show how to build transverse-invariant Lagrangians in (A)dS back-

grounds. For symmetric tensors the construction mirrors the procedure exploited in

Minkowski space-time, for both reducible and irreducible cases. The case of mixed-

symmetry tensors is technically more involved and conceptually more subtle, due to the

unconventional branching of the corresponding irreducible representations in terms of

O(D−2) ones [23, 24, 25]. For this class of fields we focus on single-particle Lagrangians,

while still allowing the corresponding tensors to be of arbitrary symmetry type.

2.2.1 Symmetric tensors

We would like to construct the simplest deformation of Lagrangian (2.1) to the case of

maximally symmetric backgrounds, the corresponding spectra are discussed in section
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3.2.1. For this reason, starting with the covariantised version of the operator (2.2), we

compute the gauge variation of the corresponding tensor

M ϕ ≡ (2 − ∇∇· )ϕ , (2.50)

under the divergence-free gauge transformations

δϕ = ∇Λ , ∇ · Λ = 0 , (2.51)

obtaining14

Mδϕ =
1

L 2
{ [ (s− 2)(D + s− 3)− s ] ∇Λ− 2 g∇Λ′ } , (2.52)

where g is the AdS metric. Its gauge-invariant completion is then easily found to be

ML ϕ ≡ M ϕ −
1

L 2
{ [ (s− 2)(D + s− 3) − s ] ϕ − 2 g ϕ ′ } , (2.53)

displaying the same spin-dependent “mass term” as the covariantised Fronsdal theory

[48], up to a sign-flip in the trace part due to the different roles played by the variation

of ϕ ′ in the two cases15. The corresponding equations of motion,

ML ϕ = 0 , (2.54)

are obtained from the Lagrangian

L =
1

2
ϕML ϕ , (2.55)

which provides a smooth deformation of (2.1) to (A)dS space. In the absence of additional

assumptions eq. (2.54) propagates a reducible spectrum of (A)dS massless particles of the

same kind as its flat counterpart (2.1).

However, it can be also interesting to further restrict the relevant tensors in (2.55) to

be traceless:

ϕ ′ = 0 , Λ ′ = 0 , (2.56)

thus providing the (A)dS extension of the irreducible system in flat backgrounds. The

proper Lagrangian under these assumptions is still given by (2.55), with the proviso that

now the kinetic tensor ML does not contain contributions involving the trace of ϕ, while

the corresponding equations of motion

M ϕ −
1

L 2
[ (s− 2)(D + s− 3) − s ] ϕ +

2

D + 2 (s− 2)
g∇ · ∇ · ϕ = 0 , (2.57)

14The basic technical device needed is the commutator of two covariant derivatives acting on a vector

[∇µ ,∇ν ]Vρ =
1

L2
( gνρ Vµ − gµρ Vν ) ,

where for definiteness we refer to the Anti-de Sitter case, with L denoting the radius and g the metric

of a D-dimensional AdS space. With the substitution L → iL one recovers the commutator on dS; this

modification would not affect our manipulations so that our results formally apply to the dS case as well.
15In the Fronsdal case with traceless parameter one has δ ϕ ′ = 2∇ ·Λ; divergence-free parameters we

have in general δ ϕ ′ = ∇Λ ′.
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can be shown to propagate only the massless polarisations of spin s. In this sense, eqs.

(2.55) (with ϕ ′ = 0) and (2.57) build an alternative to Fronsdal’s theory in (A)dS [48],

involving a minimal number of off-shell field components.

2.2.2 Mixed-symmetry tensors

As a starting point for our analysis we compute the gauge transformation of the covari-

antised form of (2.26),

M ϕ ≡
(
2 −∇i∇i

)
ϕ , (2.58)

where ϕ is a multi-symmetric tensor with covariantised gauge variation

δϕ = ∇iΛ i , (2.59)

trying to identify the compensating terms needed to make (2.58) gauge invariant. With

the help of the commutators collected in appendix A.2 one can obtain

M δϕ = −
1

L2

{
(D − 1)∇iΛi − (D −N − 3)∇iSj

iΛj − ∇iSj
kS

k
i Λj

}

−
1

2
∇i∇j∇( iΛ j) +

1

L2

{
2 gij ∇( iΛ j) + gijSk

i∇[ j Λ k] − 2∇igjk Tij Λk

}
,

(2.60)

where N denotes the number of families. From the resulting expression, still rather

involved even after imposing the transversality conditions

∇(i Λ j) = 0 , (2.61)

it is possible to appreciate the difficulties met in extending the flat gauge invariance to

the (A)dS case, already visible for the case of tensors with two families of indices. Indeed,

rewriting (2.60) for these fields in a more explicit notation as

(M δϕ)µs, νr =
1

L2

{
[(s− 1)(D + s− 3)− (D + 2s− 3)]∇µ Λµs−1, νr

+ [(r − 1)(D + r − 3)− (D + 2r − 3)]∇ν λµs, νr−1

+∇µ Λ ν µs−2, µ νr−1
+ ∇ν λµs−1 ν, µ νr−2

+ (D + s+ r − 5)
[
∇ν Λµs−1, µ νr−1

+ ∇µ λ ν µs−1, ν r−1

]
+ · · ·

}
,

(2.62)

where the dots stand for terms involving traces or divergences of the parameters while

like indices are understood to be symmetrised, one can recognise that, for s 6= r, there is

no way of compensating the first two terms in (2.62) with contributions linear in ϕµs, νr of

any sort16 so that mixed-symmetry tensors in (A)dS are bound to possess a smaller gauge

16Considering counterterms involving exchanges of indices would not help. Indeed the variation of the

generic term

δϕµs−n νn , µn νr−n
= ∇µ Λµs−n−1 νn, µn νr−n

+ ∇ν Λµs−n νn−1, µn νr−n

+ ∇ν λµs−n νn, µn νr−n−1
+ ∇µ λµs−n νn, µn−1 νr−n

,

makes it manifest that no simultaneous compensation of the first two terms in (2.62) is possible in general.
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symmetry than their flat-space counterparts. In fact, with hindsight, this phenomenon is

maybe not so surprising, given that already for the one-family case, involving symmetric

tensors only, the gauge invariant completion of the (A)dS operator (2.53) depends on the

length of the corresponding row.

This observation does not imply that multi-symmetric tensors cannot be given any

Lagrangian formulation in (A)dS spaces, however it renders those maximally reducible

objects less palatable, in the absence of simple criteria allowing to identify the proper

gauge symmetry to be implemented off-shell. Indeed, we found it simpler to exploit

tensors transforming irreducibly under permutations of their space-time indices, also in

order to deal more efficiently with the complications introduced by the operators Si
j, and

in the remainder of this section we shall focus on this latter option. This means that in

the following

ϕµ1
1···µ1

s1
, ··· , µN

1···µN
sN

≡ Y{s1,..., sN} ϕµ1
1···µ1

s1
, ··· , µN

1···µN
sN
, (2.63)

where Y{s1,..., sN} denotes the projector onto the GL(D) representation labelled by the

Young diagram17 {s1, . . . , sN}, with s1 ≥ s2 ≥ · · · ≥ sN , a condition that can be expressed

in terms of the Si
j operators as

Si
j ϕ = 0 , for i < j . (2.64)

Eventually, we shall show that for traceless fields satisfying (2.64) part of the gauge

symmetry of the Maxwell-like Lagrangian” (2.30) can be restored in (A)dS choosing in

L =
1

2
ϕ
{

2 −∇i∇i − m2
}
ϕ (2.65)

a suitable “mass-term”, leading to the formulation of candidate single-particle Lagrangians.

Irreducible gauge fields in Minkowski backgrounds transform with irreducible param-

eters obtained stripping one box from the corresponding tableau, in all admissible ways

[50]. However, even in this case one can conveniently study the gauge variation of the

Maxwell-like Lagrangians in (A)dS starting from (2.60): one has only to take into account

that the multi-symmetric Λi are no longer independent due to (2.64). In our formalism

we can recover the structure of the irreducible parameters analyzing the solutions of the

variation of (2.64) given by the set of relations

Si
j Λk + δik Λj = 0 , for i < j . (2.66)

As we discuss more in detail in appendix B, the conditions (2.66) select the irreducible

components carried by each Λk, that can be decomposed as

Λk =
N∑

n= k

(
1− δsn, sn+1

)
Y{s1,..., sn−1,..., sN} Λk ≡

N∑

n= k

(
1− δsn, sn+1

)
Λ

(n)
k , (2.67)

17We identify Young diagrams by ordered lists of the lengths of their rows enclosed between braces. See

[49] and references therein for some introductory material on the representations of linear and orthogonal

groups.
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where, in particular, no components labelled by n < k are present in Λk, while the factor

between parentheses makes it manifest that if sn = sn+1 then {. . . , sn − 1, sn+1, . . .} is

not an admissible Young diagram. Moreover, eqs. (2.66) also imply that all Λ
(n)
k with

the same label (n) are proportional, as one can realise setting i = k and acting with the

proper Young projector so as to obtain

Λ
(n)
j = − Sk

j Λ
(n)
k , for fixed k < j . (2.68)

This result (where no summation over k is implicit) also rests on the fact that the operators

Si
j commute with Young projectors, as discussed in section 2.1.2. Therefore, one could

identify the irreducible parameters with proper linear combinations of the Λ
(n)
k associated

to the same Young diagram. However, in the following it will be more convenient to

preserve the redundancy of (2.59), that in the irreducible case one can rewrite more

explicitly as

δϕ =
N∑

n=1

(
1− δsn, sn+1

) n∑

i=1

∇iΛ
(n)
i , (2.69)

with the proviso that one can treat separately the various irreducible components labelled

by (n), but not the different parameters labelled by i.

The key to analize the gauge variation (2.60) of the Maxwell operator is then that

M commutes with all Si
j . Therefore, for any fixed irreducible component carried by the

parameters the structure of the gradient terms inMδϕ should agree with (2.69) in order to

be compatible with (2.64). On the other hand, the irreducibility condition cannot fix the

relative coefficients in the sum over n because any addendum is annihilated independently

by all Si
j with i < j. As a result, using the relations (2.66) it should be possible to recast

(2.60) in the form

M δϕ =
N∑

n=1

kn

(
1− δsn, sn+1

) n∑

i=1

∇iΛ
(n)
i + divergences and traces. (2.70)

This argument is supported by an explicit computation in appendix B, where we also fix

the coefficients kn obtaining

kn =
1

L2

[
(sn − n− 1)(D + sn − n− 2)−

N∑

k=1

sk

]
. (2.71)

Let us now mention that – even if one works with a traceful ϕ – the terms displayed

explicitly in (2.70) clearly cannot receive any correction from the gauge variation of traces

of the field. Therefore, one can only cancel them with a counterterm involving ϕ, so that,

for Young-projected fields, the only possibility is to define

ML ϕ ≡
(
2 −∇i∇i

)
ϕ − m2 ϕ , (2.72)

since all alternative counterterms must be of the type

∆ϕ ≡

(
a1 S

i
jS

j
i +

∑

k

ak S
i
j1S

j1
j2 · · · S

jk
i

)
ϕ (2.73)
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in order to preserve the index structure of Mϕ. However, ∆ commutes with all Si
j and,

as a result, it acts as a multiple of the identity on any irreducible representation of the

gl(N) algebra generated by them (see (A.14)). On the other hand, eq. (2.64) implies that

ϕ is a highest-weight state, that as such uniquely specifies an irreducible representation

of gl(N). Therefore, ∆ acts diagonally on any ϕ satisfying (2.64), and in our present

setup can only shift the coefficient m2 in (2.72). One can make this property manifest

by casting, for instance, the first addendum of (2.73) (corresponding to the quadratic

Casimir of gl(N)) in the form18

C =
N∑

i=1

Si
i

(
Si

i +N − 2i+ 1
)
+ 2

N−1∑

i=1

N∑

j = i+1

Sj
iS

i
j (2.74)

where in particular the second term vanishes on account of (2.64). As a consequence, one

can only tune a single parameter in ML, whereas in general all kn in Mδϕ are different.

Therefore, one can cancel at most the gradient terms corresponding to a single irreducible

component by suitably tuning m2 in (2.72), while it remains to be verified whether the

leftover terms in (2.60) induce extra constraints.

Let us start from the divergence terms in (2.60),

M δϕ = · · · −
1

2
∇i∇j∇( iΛ j) +

1

L2

{
2 gij ∇( iΛ j) + gijSk

i∇[ jΛ k]

}
+ · · · , (2.75)

since also for this class of contributions the discussion applies to both traceless and trace-

ful fields. The novelty with respect to the symmetric case is the term containing the

antisymmetric combination ∇[ j Λ k], that does not vanish manifestly even after forcing

the constraint (2.61). Indeed, the vanishing of the divergence terms in (2.60) requires

that the surviving irreducible parameter be fully divergenceless,

∇i Λ
(n)
j = 0 , for n fixed and ∀ i, j , (2.76)

although, as we show in appendix B, when a single irreducible gauge parameter is present

this condition is already implied by the constraints (2.61). Therefore, in the gauge varia-

tion of the deformed Maxwell-like equation (2.72) only the term

ML δϕ = −
2

L2
∇igjk Tij Λk (2.77)

remains to be discussed, and at this stage working with or without trace constraints makes

a notable difference. The simplest possibility is to impose

Tij ϕ = 0 . (2.78)

18We can also illustrate this fact displaying explicitly the space-time indices in a simple example. First

of all, the action of Si
jS

j
i preserves the lengths of the groups of symmetrised indices, but displaces their

position. For a field ϕµν, ρ the only alternative is ϕρ (µ , ν), which results from the action of (S1
2S

2
1−2 ·1)

on ϕµν, ρ. However, with a simple direct calculation one can show that

Y{2,1}ϕµν, ρ =
1

2

(
2ϕµν, ρ − ϕρ (µ , ν)

)
⇒ Y{2,1}ϕρ (µ , ν) = − Y{2,1}ϕµν, ρ .
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At the level of field equations this extra condition would require to project (2.72) on its

traceless component, but we can discuss gauge invariance directly at the level of the La-

grangian. There the contraction with another traceless field avoid the need for a projection

and the self-adjointness of ML implies

δ L = ϕML δϕ =
sisjsk
L2

(∇i Tjk ϕ )Tij Λk = 0 . (2.79)

In conclusion, if ϕ satisfies (2.64) and (2.78) then the Maxwell-like Lagrangian

L =
1

2
ϕ

{
2 − ∇i∇i −

1

L2

[
(sn − n− 1)(D + sn − n− 2) −

N∑

k=1

sk

]}
ϕ (2.80)

is invariant under the gauge transformation generated by a single fully divergenceless

{. . . , sn − 1, . . .}-projected parameter. Let us observe that the “masses” that we found

coincide with those appearing in the on-shell system presented in [24], while for the

particular case N = 1 (2.80) reproduces our result for symmetric tensors discussed in

section 2.2.1.

As is manifest in eq. (2.67), in the presence of blocks of rows of equal length one cannot

choose n arbitrarily in the interval from 1 to N . The allowed values correspond to the

rows at the end of each block: it could then be convenient to denote a general Young

diagram by {(s1, t1), . . . , (sp, tp)} where the pair (sk, tk) denotes the dimensions of the

i−th block, so that
p∑

i=1

ti = N . (2.81)

A field transforming in the {(s1, t1), . . . , (sp, tp)} representation of GL(D) thus admits p

independent gauge parameters on Minkowski backgrounds, while in (A)dS backgrounds

one can at most keep the invariance under the gauge transformation

δϕ =

t1+ ···+ tk∑

i=1

∇iΛ
(t1+ ···+ tk)
i , (2.82)

for a given value of k. Stressing the existence of blocks of rows with equal length leads to

rewrite the Lagrangian (2.80) in the form

L =
1

2
ϕ

{
2 − ∇i ∇i −

1

L2

[
(sk −

k∑

j=1

tj − 1)(D + sk −

k∑

j=1

tj − 2) −

p∑

j =1

tjsj

]}
ϕ .

(2.83)

3 Spectra

3.1 Flat backgrounds

In this section we investigate the spectra described by the equations (2.5) and (2.26).

For the symmetric case we already showed in section 2.1.1 that the transverse-invariant
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equations of motion reduce to the (traceful) Fierz system (2.6). However, here we pro-

vide an independent counting of the degrees of freedom based on a light-cone analysis

that is interesting in itself and constitutes our main tool for the study of the flat-space

mixed-symmetry construction. In addition, for both cases, we also discuss some aspects

of the Hamiltonian analysis of our systems, presenting in particular a simple argument

to evaluate the number of first-class constraints associated to our divergence-free gauge

symmetry.

In the ensuing discussion we shall work in momentum space in light-cone coordinates,

denoting indices transverse to the light-cone directions with small Latin letters i, j, k, . . . ;

for p2 6= 0 it is easy to prove that only pure gauge solutions exist: indeed, solving for ϕ

in (2.5) one obtains

ϕ =
p

p 2
p · ϕ , (3.1)

where the combination 1
p 2 p · ϕ can play the role of a proper gauge parameter in the

present framework, due to the condition (2.7) ensuring transversality of p · ϕ. While this

observation would allow one to restrict the analysis to null momenta, we prefer anyway to

keep it slightly more general and show how the elimination of all components longitudinal

to the light-cone works for the case of arbitrary momenta. Thus in the following we will

only assume

p+ 6= 0 , (3.2)

which is always admissible for physical particles.

As a general observation let us mention that, because of the constraints (2.4) and (2.29)

on the gauge parameters, it is not possible to fully reach the light-cone gauge off-shell, and

we shall need to use the equations of motion to complete the elimination of components

along both light-cone directions. The simplest example of this analysis is given by the

spin−2 case that we review here explicitly for pedagogical reasons. The condition of

transversality (2.4) on the vector parameter Λµ,

p · Λ = − p+ Λ− − p−Λ+ + pi Λi = 0 , (3.3)

implies that Λ− is effectively determined in terms of the remaining D−1 components, Λ+

and Λi, i = 1, . . . , D− 2. This implies that fixing the gauge completely (modulo singular

gauge transformations) one can eliminate at most h++ and h+i; from the corresponding

equations of motion evaluated in this gauge one finds however (p ·h)+ = 0 and (p ·h)i = 0,

which imply in their turn h−+ = 0 and h−i =
pj
p+
hij . Finally, from the equation for h−+

one finds h−− = 1
p2
+

pi pj hij , so that the only independent components of hµν are indeed

the transverse ones, subject to the equation p 2 h ij = 0 and thus arbitrary on the light-

cone p 2 = 0. These components describe an irreducible tensor of GL (D − 2), whose

branching in terms of irreps of O(D− 2) identifies its particle content, as expected, with

that of a massless spin−2 particle together with a massless scalar.
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3.1.1 Symmetric tensors

In this section we will use the following notation19:

ϕ− · · · −︸ ︷︷ ︸
l

+ · · · +︸ ︷︷ ︸
s−k−l

i1 ··· ik
≡ ϕ−l +s−k−l ik

. (3.4)

The condition of trasversality on the gauge parameter

p · Λµs−2
= −p+ Λ−µs−2

− p− Λ+µs−2
+ pi Λ i µs−2

= 0 (3.5)

fixes all components of Λµs−1
with at least one “−” index in terms of components of the

form Λ+s−k−1 ik
. Thus a complete gauge-fixing is reached setting

ϕ+s−k ik
= 0 , (3.6)

with k ranging from 0 to s−1, while in order to obtain conditions on components involving

“−” indices we have to resort to the equations of motion. From (3.6) we obtain, recursively,

(M ϕ)+s−k ik
= 0 ⇒ (p · ϕ)+s−k−1 ik

= 0 , (3.7)

whose expansion allows to iteratively set to zero all components of ϕ with one index along

the “−” direction and at least one index along the “+” direction:

ϕ−+s−k−1 ik
= 0 ,

k = 0, . . . , s − 2 ,
(3.8)

while also providing the relations

ϕ− is−1
=

pj
p+

ϕ j is−1
. (3.9)

One can now repeat the procedure, exploiting the consequences of the equations of motion

for the components of ϕ set to zero in (3.8). In analogy with the previous steps one obtains

(M ϕ)−+s−k−1 ik
= 0 ⇒ (p · ϕ)−+s−k−2 ik

= 0 , (3.10)

with k = 0, . . . s−2. As a consequence one finds that all components with two “−” indices

and at least one “+” index vanish

ϕ−2 +s−k−2 ik
= 0 ,

k = 0, . . . , s − 3 ,
(3.11)

together with an additional relation for the component with no “+” indices, to be com-

bined with (3.9)

ϕ−2 is−2
=

pj
p+

ϕ− j is−2
=

pjpk
p2+

ϕ j k is−2
. (3.12)

19In practice, we insert an exponent to indicate the number of times a specific “+” or “−” component

appears, while we denote with a numerical label the total number of indices for components transverse

to the light-cone.
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The corresponding iterative pattern can be proven by induction and leads to

(M ϕ)−l +s−k−l ik
= 0 ⇒ (p · ϕ)−l +s−k−l−1 ik

= 0 , (3.13)

from which it is possible to deduce the following relations:

ϕ−l +s−k−l ik
= 0 ,

ϕ−l+1 is−l−1
=

1

(p+)l+1
pj1 · · ·pjl+1

ϕ j1 ··· jl+1 is−l−1
,

k = 0, . . . , s − l − 1 ,

l = 0, . . . , s − 1 ,

(3.14)

essentially stating that the only independent components of ϕ are those containing just

indices transverse to the light-cone, ϕ is ≡ ϕ i1··· is , which satisfy the equations

p 2 ϕ i1··· is = 0 , (3.15)

and thus describe a set of massless particles carrying spin s, s− 2, s− 4, . . . , down to 1 or

0.

From the perspective of the Hamiltonian analysis [51, 52] the peculiarity of transverse-

invariant systems is found in the unusual counting of the corresponding first-class con-

straints, associated to the presence of higher generations of constraints besides the primary

and secondary ones present in more conventional situations. (See [41] for a discussion of

the spin−2 case and [5] for the case of symmetric and traceless tensors.) In general, on

a Cauchy surface, one has to assign independently the values of a given component of

the gauge parameter and of its time derivatives, up to the highest order appearing in the

variation of the gauge field, thus implying that they have to be counted as independent

constraints; thus, for instance, for conventional theories with parameters entering with

one derivative in δϕ, and in the absence of additional constraints, each gauge component

has to be counted twice, since its first time derivative provide an additional independent

condition to be imposed on the system.

Our observation is that for transverse-invariant theories there is a simple procedure

allowing to compute the number of components of the parameters, including their time

derivatives, that have to be counted as independent on a given Cauchy surface. Indeed,

solving the transversality constraint (2.4) with respect to the time derivative one finds

∂ α Λαµ2 ···µs−1
= 0 ⇒ Λ̇ 0µ2 ···µs−1

= ~∇ · Λµ2 ···µs−1
, (3.16)

where in the r.h.s. the divergence is computed along the spatial directions. One can thus

appreciate that for all components of Λµ1 µ2 ···µs−1
carrying at least one temporal index

the time derivatives are not to be regarded as independent, in view of the condition

(3.16). This means that the total number of first-class constraints is twice the number of

components of the parameters with only spatial indices, Λ a1 a2 ··· as−1
, ak = 1, . . . , D − 1,
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since for the latter their time derivatives are really independent, and only once the number

of components possessing at least one temporal index, in view of the previous observation.

Thus, for the case of rank−(s − 1) symmetric parameters discussed in this section the

total number of first class constraints is given by the formula

#1st class = 2

(
D + s− 3

s− 1

)

︸ ︷︷ ︸
Λ a1 a2 ··· as−1

+

(
D + s− 3

s− 2

)

︸ ︷︷ ︸
Λ 0µ2 ···µs−1

. (3.17)

In the absence of second-class constraints one can use (3.17) to directly compute the

propagating degrees of freedom of the transverse-invariant system using the formula [52]

#d.o.f. = # (components in ϕ) − #1st class , (3.18)

finding agreement with our result (3.15). The light-cone analysis in its turn implicitly

provides a proof of the absence of second-class constraints, thus dispensing the need to

study the full Hamiltonian system of constraints associated with (2.1).

3.1.2 Mixed-symmetry tensors

Having discussed in some detail the counting of degrees of freedom for the case of sym-

metric tensors we are now in the position to extend our proof to the more general case of

GL(D)−tensors subject to (2.26), (2.27) and (2.29).

Similarly to what we saw for the symmetric case also in this context it would be possible

to distinguish the two cases p 2 6= 0 and p 2 = 0. In particular in the former case one can

solve for ϕ in the equation of motion (2.26) obtaining

ϕ =
p i

p 2
p · ϕ (3.19)

thus implying that ϕ only contains pure gauge components, provided one also shows that

under the same conditions all double divergences vanish,

p i p j ϕ = 0 , (3.20)

which, in its turn, can be proven iteratively. On the other hand, for light-like momenta it is

possible to work in the reference frame where only p+ is non-vanishing, which in particular

implies that the components transverse to the light-cone are to be gauge invariant, and

indeed one can show that they are actually arbitrary on the light-cone. It would remain

to prove that the transverse gauge invariance (2.29) suffices to remove all components

longitudinal to the light-cone, when (2.26) holds. However, it is also possible to discuss

the elimination of unphysical components simultaneously for arbitrary momenta, and in

the following we shall abide by this latter option when discussing the general case of

N−family tensors, so as to illustrate the procedure in its generality.
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We conclude this section evaluating the number of first-class constraints for the case

of two-family tensors, both reducible and irreducible, while also commenting on the role

of gauge-for-gauge transformations in our light-cone computation.

As a first step let us elaborate on the meaning of the conditions (2.29) on the gauge

parameters, that we write again here for clarity:

∂ (i Λ j) = 0 . (3.21)

From the “diagonal” sector of (3.21), given by i = j, we obtain

− p+Λ i (−)i − p− Λ i (+)i + pK Λ i (K)i = 0 , (3.22)

where for instance with the notation

Λ i (−)i (3.23)

we denoted a component of the gauge parameter Λ i with one “−” index in the i−th

family, while in order to distinguish family indices i, j, k, · · · from transverse component

indices here we denote the latter with capital Latin letters from the same part of the

alphabet: I, J,K, · · · . It is not hard, then, to recognize that (3.22) imposes on each

parameter Λ i a condition analogous to (3.5) for the symmetric case, essentially stating

that the components with “−” indices in the i−th family are not independent, and thus

cannot be used to gauge fix some components of ϕ, once all components of Λ i with “+”

and transverse indices in the i−th family have been used.

Now let us consider the role of the “off-diagonal” constraints

∂ i Λ j + ∂ j Λ i = 0 , i < j , (3.24)

which can be expanded as

− p+ (Λ i (−)j + Λ j (−)i)− p− (Λ i (+)j + Λ j (+)i) + pK (Λ i (K)j + Λ j (K)i) = 0 , (3.25)

where for instance the notation

Λ i (−)j (3.26)

identifies a gauge parameter with one index less in the i−th family, possessing at least

one “−” component in the j−th family. It is then possible to make use of all parameters

exploiting systematically (3.22) and (3.25) as follows: first, we perform a gauge-fixing

using the parameter Λ1, avoiding to make use of its components with “−” indices in the

first family that are not independent due to (3.22); when it comes to Λ2, together with

similar limitations on the use of components with “−” indices in the second family we must

take into account (3.25) as well, which implies that also the components of Λ2 with “−”

indices in the first family are now fixed and cannot be used. Similarly, once both Λ1 and

Λ2 have been completely fixed, we will be in the position to fully use Λ3 up to components

involving “−” indices in any of the first three families: the third because of the diagonal

condition (3.22), and the first and second family because of (3.25), and so forth. Although
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other gauge-fixings are certainly possible, the procedure we are suggesting allows to take

into account all conditions in a systematic fashion, and reduces indeed the counting of

degrees of freedom to a relatively direct extension of the procedure implemented for the

symmetric case.

More explicitly, computing the variation of the components of ϕ with s1−k “+” indices

and no “−” indices in the first family gives

δ ϕ (+s1−k Ik)1
= (s1 − k) p+Λ1 (+s1−k−1 Ik)1

+ pI Λ1 (+s1−k Ik−1)1
+

N∑

j=2

pj Λj , (3.27)

where in the last summation all parameters are understood to carry the same components

in the first family as ϕ. Thus we see that, at the price of solving completely for Λ1, it is

possible to reach the gauge

ϕ (+s1−k Ik)1
= 0 ,

k = 0, . . . , s1 − 1 .
(3.28)

As a consequence, in the equations of motion for the components of ϕ gauge-fixed as in

(3.28), only some terms in the divergence involving the first family survive; explicitly:

(M ϕ) (+s−k Ik)1 = − (s− k) p+ p1 ϕ(+s1−k−1 Ik)1
− pI p1 ϕ(+s1−k Ik−1)1

−

N∑

j=2

pj pj ϕ(+s1−k Ik)1
= 0 ,

(3.29)

where indeed all terms in the second line are zero due to (3.28). A simple iterative

argument allows to conclude that

(M ϕ) (+s−k Ik)1 = 0 ⇒ (p1 ϕ)(+s1−k−1 Ik)1
= 0 , (3.30)

a set of conditions analogous to (3.8) and (3.9) for the symmetric case, essentially stating

that components of ϕ carrying one “−” index in the first family are not independent:

ϕ (−+s1−k−1 Ik)1
= 0 ,

k = 0, . . . , s1 − 2 ,

ϕ (− Is1−1)1 =
1

p+
pJ ϕ (J Is1−1)1 .

(3.31)

The key observation allowing to proceed further, and actually the clue for the whole

analysis, is to notice that for the first family of indices one can reproduce the same

analysis as for the symmetric case, while the remaining families are invisible for our

purposes. Thus, following the steps from (3.7) to (3.14) performed for symmetric tensors

one can prove by induction that the following conditions hold:

ϕ (−l +s1−k−l Ik)1
= 0 ,

ϕ (−l+1 Is1−l−1)1 =
1

(p+)l+1
pJ1 · · · pJl+1

ϕ (J1 ···Jl+1 Is1−l−1)1 ,

k = 0, . . . , s1 − l − 1 ,

l = 0, . . . , s1 − 1 .

(3.32)
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As a result, only the components of ϕ with transverse indices in this set are really inde-

pendent, so that in the following we shall assume that no “+” nor “−” indices are present

in the first family.

We can now proceed to analyse the gauge fixing and its consequences for the second

family. Consistently with our general scheme the idea is to exploit the parameter Λ2 to

eliminate all components of ϕ with no “−” indices in the second family, in agreement with

(3.22), and only transverse indices in the first family, due to (3.32)20. More explicitly, let

us consider the variation of ϕ (+s2−k Ik)2
,

δ ϕ (Is1)1,(+
s2−k Ik)2

=(s2 − k) p+Λ2 (Is1)1, (+
s2−k−1 Ik)2

+ pI Λ2 (Is1 )1, (+
s2−k Ik−1)2

+ p1 Λ1 +
N∑

j=3

pj Λj ,
(3.33)

written with emphasis on the relevant indices in the first and second families for ϕ and Λ2,

while for the variations involving the other parameters we are using the compact notation;

we see that solving for Λ2 it is possible to fix the gauge

ϕ (Is1 )1, (+
s2−k Ik)2

= 0 ,

k = 0, . . . , s2 − 1 .
(3.34)

Inserting (3.33) in the equations of motion we obtain a condition on a set of divergences

computed in the second family,

(M ϕ) (Is1)1, (+s2−k Ik)2
= 0 ⇒ (p2 ϕ) (Is1 )1, (+s2−k−1 Ik)2

= 0 , (3.35)

analogous to (3.30). As a matter of fact at this level the index content of the families

other than the second can be ignored, and one can proceed focussing on the second family

as if the field ϕ were effectively a symmetric tensor. It is then possible to prove recursively

that the following conditions hold:

ϕ (Is1 )1, (−
l +s2−k−l Ik)2

= 0 ,

ϕ (Is1 )1, (−
l+1 Is2−l−1)2 =

1

(p+)l+1
pJ1 · · · pJl+1

ϕ (Is1)1, (J1 ···Jl+1 Is2−l−1)2 ,

k = 0, . . . , s2 − l − 1 ,

l = 0, . . . , s2 − 1 ,

(3.36)

stating that for the first two families only the components of ϕ with transverse indices

are really independent.

The proof for the general case can be obtained by induction: we assume it is possible

to obtain a set of conditions like (3.36) for the first N − 1 families, fixing the parameters

20Because of (3.25) we cannot use components of Λ2 with “−” indices in the first family since Λ1 is

now completely fixed, while further transformations involving “+” components of Λ2 in the first family

can be interpreted as particular gauge-for-gauge transformations; see appendix C.
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Λ1, Λ2 , . . . , ΛN−1 and exploiting the consequences of the equations of motion for the

gauge-fixed components of ϕ, as explicitly verified for N = 1, 2. It is then possible to

proceed for the N−th family using the parameter ΛN to gauge fix all components of ϕ

with transverse indices in the first N − 1 families and at least one “+” index, possibly

together with transverse ones, (but no “−” indices) in the N−th family:

δ ϕ (Is1 )1, (Is2 )2,··· , (+
sN−k Ik)N

=
N−1∑

j=1

pj Λj

+ (sN − k) p+ΛN (+sN−k−1 Ik)N
+ pI ΛN (+sN−k Ik−1)N

,

(3.37)

where the first N −1 parameters at this stage are fixed while the indices in the first N−1

families of ΛN are congruent with those of ϕ. Indeed, consistently with the constraints

(3.22) and (3.25) on ΛN , we can choose a gauge such that

ϕ (Is1)1,(Is2 )2,··· , (+
sN−k Ik)N

= 0 ,

k = 0, . . . , sN − 1 .
(3.38)

As for the previous steps, the clue to complete our proof is to observe that we can now

manipulate the components in the N−th family as if the tensor were symmetric, obtaining

the following consequences of the equations of motion

(M ϕ) (Is1)1,(Is2 )2,··· , (+sN−k Ik)N
= 0 ⇒ (pN ϕ)(Is1)1,(Is2 )2,··· ,(+sN−k−1 Ik)N

= 0 , (3.39)

which imply in their turn

ϕ (Is1)1, (Is2 )2,··· , (−
l +sN−l−k Ik)N

= 0 ,

ϕ (Is1)1, ··· , (−
l+1 Is2−l−1)N =

1

(p+)l+1
pJ1 · · · pJl+1

ϕ (Is1 )1, ··· , (J1 ···Jl+1 Is2−l−1)N ,

k = 0, . . . , sN − l − 1 ,

l = 0, . . . , sN − 1 .

(3.40)

As a consequence of (3.40) only transverse indices in the N−th family define independent

components, and are otherwise arbitrary on the mass-shell p2 = 0. All in all, we are left

with a GL(D − 2)−reducible tensor with N families of symmetric indices,

ϕ (Is1 )1,(Is2 )2,··· , (IsN )N , (3.41)

whose branching in O(D − 2) irreps describes the full content of massless particles prop-

agating in (2.26).

For what concerns the role of gauge-for-gauge transformations let us observe that,

since we are performing explicit gauge fixings, component by component in ϕ, in our

procedure we never have to deal with transformations that, by definition, cannot alter

any components of the field. However, one can keep track of their presence observing that,

once our gauge-fixing procedure is completed, one is left with a number of components
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of the various parameters that have not been used. In appendix C we discuss explicitly

from this perspective the example of a reducible (1, 1) field.

We conclude this section extending the counting of first-class constraints to the case

of two-family fields, for all classes of theories discussed in section 2.1.2, i.e. for reducible

and irreducible GL(D)−tensors and for irreducible O(D)−tensors. As in the symmetric

case analysed at the end of section 3.1.1, one has to count the number of independent

components of the (gauge-for-)gauge parameters and of their time derivatives on a given

Cauchy surface. Let us begin studying a reducible GL(D)−field ϕµ1···µs, ν1···µr
which

admits two multi-symmetric gauge parameters, Λµ1···µs−1, ν1··· νr and λµ1···µs, ν1··· νr−1
, and

one multi-symmetric gauge-for-gauge parameter θµ1···µs−1, ν1··· νr−1
. The constraints (2.29)

can be expanded as in (3.16) to give

Λ̇ 0µ1···µs−2, ν1··· νr = ∂ aΛ aµ1···µs−2, ν1··· νr ,

Λ̇µ1···µs−1, 0 ν1··· νr−1
+ λ̇ 0µ1···µs−1, ν1··· νr−1

= ∂ a
(
Λµ1···µs−1, a ν1··· νr−1

+ λ aµ1···µs−1, ν1··· νr−1

)
,

λ̇µ1···µs, 0 ν1··· νr−2
= ∂ aλµ1···µs, a ν1··· νr−2

, (3.42)

while for the corresponding constraints on the gauge-for-gauge parameter, eq. (2.34), we

assume they also hold in their strong form

θ̇ 0 µ1···µs−2, ν1··· νr−1
= ∂ a θ a µ1···µs−2, ν1··· νr−1

,

θ̇µ1···µs−1, 0 ν1··· νr−2
= ∂ a θµ1···µs−1, a ν1··· νr−2

,
(3.43)

where the index a runs over spatial directions, a = 1, . . . , D − 1. In this case not all

components of Λ̇ and λ̇ with a single temporal index depend on the spatial ones, but

assigning the value 0 to an additional index in the second of (3.42) one realises that all

components with at least two temporal indices are not to be regarded as independent.

Concerning the gauge-for-gauge parameter θ note that one has to consider as indepen-

dent on the given Cauchy surface its time derivatives up to θ̈, since the latter appears

in the gauge variation of the first-time derivatives of the parameters Λ and λ. In this

respect, the only independent components of θ̇ and θ̈ after imposing the constraints are

the spatial ones, as one can see computing a time derivative of (3.43). As a result, the

number of first-class constraints can be computed as

# 1st class = #Λµ1···µs−1, ν1··· νr + #λµ1···µs, ν1··· νr−1

+ #Λ a1··· as−1, a1··· ar + #λ a1··· as, a1··· ar−1
+ #Λ a1··· as−1, 0 a1··· ar−1

− # θµ1···µs−1, ν1··· νr−1
− 2# θ a1··· as−1, a1··· ar−1

,

(3.44)

where we denoted by e.g. #Λ the number of independent components of the multi-

symmetric tensor Λ and where Greek indices take values form 0 to D − 1, while Latin

indices take values only in the spatial directions. Subtracting the result to the number

of components of ϕ as in (3.18) one obtains the number of components of a reducible

(s, k) tensor of GL(D − 2). Also in this case the light-cone analysis thus provides an im-

plicit proof of the absence of second-class constraints for these systems. Under the same
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hypothesis one can also compute the degrees of freedom propagated in the irreducible

theories: it is indeed possible to verify that our differential constraints lead also in these

cases to a counting of first-class constraints that is formally identical to (3.44), but where

#Λµ1···µs−1, ν1··· νr now denotes the dimension of the {s − 1, r} irrep of GL(D) or O(D),

while #Λ a1···as−1, a1··· ar denotes the dimension of the corresponding irrep of GL(D−1) or

O(D−1). In both cases, subtracting the result to the number of independent components

of the field gives the dimension of the {s, r} irrep of GL(D − 2) or O(D − 2).

3.2 (A)dS backgrounds

Our analysis of the spectra in (Anti-)de Sitter backgrounds relies on one assumption:

under “smooth” deformation of a Lagrangian gauge theory in Minkowski space to a La-

grangian gauge theory in (A)dS space the number of degrees of freedom is unchanged.

The deformation is termed “smooth” if it keeps the number of gauge symmetries. In

Hamiltonian terms this statement is essentially equivalent to saying that a smooth de-

formation cannot introduce second-class constrains into the (A)dS system that were not

already present in the flat one. We are not aware of any general proof of this otherwise

reasonable21 conclusion, and in the following we shall abide by the conventional wisdom

of assuming its validity. Therefore, we shall show that our (A)dS Lagrangians always

define smooth deformations of flat-space Lagrangians whose degrees of freedom are un-

der control, while also providing occasionally a few additional independent arguments in

support of our conclusions.

3.2.1 Symmetric tensors

For symmetric tensors in (A)dS background the Lagrangian (2.55) retains the same num-

ber of unbroken independent gauge symmetries as its Minkowskian counterpart (2.1),

which is in fact true for both reducible and irreducible cases. Thus, the number of propa-

gating polarisations is expected to coincide with that of the flat case. To provide further

support to this conclusion let us also discuss a couple of independent arguments to the

same effect.

For the irreducible case we have to analyse the content of the equations (2.57),

M ϕ −
1

L 2
[ (s− 2)(D + s− 3) − s ] ϕ +

2

D + 2 (s− 2)
g∇ · ∇ · ϕ = 0 . (3.45)

21Under such a deformation the number of primary constraints clearly does not change. However, it

is a general result that whenever second-class constraints are present at least one of them should appear

among primary constraints [51]. Thus, assuming the flat theory to be free of second-class constraints,

the possibility that they appear in the deformed (A)dS system would imply that some of the primary

constraints changed their nature under the deformation, without the overall number of gauge generators

being modified.
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Since the number of first-class constraints is the same as for the Minkowsian case we can

at least conclude that the degrees of freedom associated to the (A)dS equation cannot

exceed those of the flat theory. The latter, on the other hand, also coincide with the

propagating polarisations described by the Fierz system in (A)dS (see [53] and [54] for dS

and AdS backgrounds, respectively):

{
2 −

1

L 2
[ (s− 2)(D + s− 3) − s ]

}
ϕ = 0 ,

∇ · ϕ = 0 ,

ϕ ′ = 0 .

(3.46)

Thus, in order to prove that (2.57) propagates the degrees of freedom of a single massless

particle of spin s it will be sufficient to show explicitly that it possesses all the solutions

to (3.46). Indeed in our framework ϕ ′ = 0 by assumption, while for fields in the kernel of

the Klein-Gordon operator, i.e. for ϕ s.t.

{
2 −

1

L 2
[ (s− 2)(D + s− 3) − s ]

}
ϕ = 0, (3.47)

computing n divergences of (3.45) we obtain

{
n (n− 1)

L 2
ρn+3 ρn+4 (∇·)n + ρ2n+4 ∇ (∇·)n+1 − 2 g (∇·)n+2

}
ϕ = 0 , (3.48)

where we defined ρn = D + 2s − n. It is then possible to observe that (3.48) recursively

sets to zero all multiple divergences of ϕ in decreasing order, finally leading to ∇·ϕ = 0.

For the case of traceful tensors, described by the equations of motion (2.53)

ML ϕ ≡ M ϕ −
1

L 2
{ [ (s− 2)(D + s− 3) − s ] ϕ − 2 g ϕ ′ } , (3.49)

while it is still true that the number of first class constraints is the same as the flat

reducible theory, however it is not obvious what should be the proper “Fierz system” with

which to compare our equations in order to prove that the degrees of freedom actually

match those of the flat case (2.5). The naive guess suggested by the flat-space example

(2.6) would be to reproduce the first two conditions in (3.46) while keeping the trace

undetermined. However, it is simple to observe that, as a consequence of (3.49), the first

two conditions in (3.46) would anyway imply ϕ ′ = 0 thus leading to the contradictory

conclusion that (3.49) describes the same degrees of freedom as the irreducible case. The

reason behind this difference with respect to the case of flat background is that massless

fields in (A)dS have mass-like terms depending on the spin, so that the various propagating

components in ϕ actually satisfy different equations of motion.

However, the effective particle content associated to Lagrangian (2.55) can be identified

comparing with the unconstrained Lagrangian for (A)dS triplets of [35, 38, 55]. In that
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context the relevant equations after eliminating an auxiliary field are

ML ϕ = − 2∇ 2D +
8

L 2
gD,

M̂L D = ∇ · ∇ · ϕ −
4

L 2
ϕ ′ ,

(3.50)

where M̂L is a deformation of the flat-space kinetic operator for D (2.14),

M̂L = 22 + ∇∇ · −
2

L 2
[(s − 1) (D + s − 3) + 3] +

4

L 2
g T , (3.51)

while gauge invariance obtains choosing δ ϕ = ∇Λ and δD = ∇ · Λ. To make contact

with our constrained theory, as already observed for the flat case, we remove the transver-

sality constraint (2.51) à la Stueckelberg, performing the gauge-invariant redefinition

ϕ −→ ϕ − ∇ θ (3.52)

where δ θ = Λ. The resulting Lagrangian

L =
1

2
ϕML ϕ + ϕ

(
∇ 2 −

4

L 2
g

)
∇ · θ − 2

(
s

2

)
∇ · θ M̂L ∇ · θ , (3.53)

actually coincides, upon renaming ∇ · θ ≡ D, with the (A)dS triplet Lagrangian leading

to (3.50), whose particle content was shown in [38, 55] to correspond to that of the flat

space-time reducible system here computed in section 3.1, thus completing our check.

In section 4.2 we show how to decompose the field ϕ in order to identify in (2.55) the

propagating modes, each described by a single-particle Lagrangian leading to equations

of the form (2.57).

3.2.2 Mixed-symmetry tensors

In this section we discuss the spectrum of the theory described by the Lagrangian (2.83),

corresponding to the the AdS-unitary choice of keeping the gauge parameter lacking one

box in the first rectangular block:

L =
1

2
ϕ

{
2 − ∇i ∇i −

1

L2

[
(s1 − t1 − 1)(D + s1 − t1 − 2) −

p∑

j=1

tjsj

]}
ϕ . (3.54)

Here ϕ carries a representation of O(D) described by a diagram with p rectangular blocks.

The reduced amount of gauge invariance available for (A)dS tensors with mixed symme-

try introduces additional complications if compared to more standard situations. For

instance, for symmetric tensors on flat space-time the variation of the divergence of the

field in transverse-invariant theories is proportional to the D’Alembertian of the parame-

ter:

δ ∂ · ϕ = 2Λ , (3.55)
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thus implying that the transverse part of ∂ · ϕ can be removed upon partial gauge-fixing

and need not be eliminated manipulating the equations of motion. To appreciate the

differences met in our present case it suffices to consider the simplest O(D)-hook field

ϕµν, ρ, whose divergence varies according to

δ∇αϕαν, ρ =

(
2 −

D − 2

L2

)
Λ ν, ρ , (3.56)

where Λ ν, ρ is the antisymmetric parameter dictated by the general analysis of [23, 24].

It is then manifest that only the antisymmetric projection of ∇αϕαν, ρ can be gauged

away, while its symmetric projection, being gauge invariant, now has to be eliminated

by the equations of motion themselves. Our strategy to avoid dealing directly with these

complications consists in constructing the Stueckelberg Lagrangian [18, 19] for the degrees

of freedom of interest, to then discuss the corresponding gauge fixing to our Lagrangian

(3.54). An additional virtue of the Stueckelberg procedure is that it allows to form an

intuitive picture of the essential peculiarities of (A)dS gauge fields with mixed symmetry

if compared to other more conventional classes of free fields.

Indeed, for a gauge field ϕ in a given irrep of O(D) a natural road to its (A)dS

deformation would be to covariantise its flat gauge transformation,

δ ϕ = ∇ i Λ i , (3.57)

to then try and construct the corresponding gauge-invariant kinetic operator. To get

a deeper insight into the reasons for the absence of general solutions to this program,

here explicitly observed in section 2.2.2, one can appreciate a related difficulty whose

clarification also bears the essence of its solution: in (A)dS backgrounds gauge-for-gauge

invariance is unavoidably broken; indeed, the transformations of the parameters

δΛ i = ∇ j Λ [ij] , (3.58)

that in flat space would leave ϕ unaltered, now produce a variation of the field itself

according to

δ ϕ =
1

2
[∇ i, ∇ j] Λ [ij] . (3.59)

Given that in a quantitative analysis of the consequences of (3.59) one should take into

account all generations of broken gauge-for-gauge transformations, it is anyway clear

that in (A)dS the gauge-for-gauge parameters Λ [ij], instead of providing a convenient

bookkeeping for those combinations of the parameters Λ i that do not affect the gauge

field, encode instead true additional gauge redundancies whose presence would eventually

affect the counting of degrees of freedom of the resulting theory.

However, it might still be possible to propagate the polarisations of the O(D−2) irrep

associated with ϕ provided one “neutralizes” the effect of those broken gauge-for-gauge

transformations encoded in (3.59) by promoting them to play the role of standard gauge

parameters for new fields (and corresponding new degrees of freedom) to be introduced in
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the theory. This is the basic idea underlying the Stueckelberg construction and, in our

opinion, it also provides an interesting alternative insight into the mechanism encoded in

the BMV pattern [25], showing how the degrees of freedom carried by individual (A)dS

massless particles distribute over multiplets of flat-space particles of zero mass.

Considering for instance the case of {s, 1} tensors of O(D), their standard description

as gauge fields in flat space would entail two gauge parameters with tableaux {s} and

{s − 1, 1} respectively, and one gauge-for-gauge parameter given by a symmetric tensor

of rank s− 1:

ϕ :

s︷ ︸︸ ︷
· · · G

−→





s−1︷ ︸︸ ︷
· · ·

s︷ ︸︸ ︷
· · ·

G2

=⇒

s−1︷ ︸︸ ︷
· · · (3.60)

According to our previous discussion, in (A)dS the latter has to play the role of a standard

parameter for an additional field, that might be either of the form {s − 1, 1} or {s},

where the second option is the only one eventually resulting in a unitary theory in AdS.

The corresponding Stueckelberg Lagrangian smoothly deforms the sum of the two flat

Lagrangians for the {s, 1} and for the {s} representations, thus providing a description

of the same O(D − 2) degrees of freedom. However, from the AdS vantage point, those

degrees of freedom are to be viewed as corresponding to a single massless particle with

the symmetries of the {s, 1}-tableau.

As an additional example of the general construction let us also discuss the case of

an O(D)–tensor with three families of indices and tableau structure {3, 2, 1}, that we

denote ϕ(0), which is instructive in particular due to the presence of one more generation

of broken gauge-for-gauge invariances.

The first consequence of covariantising derivatives in the flat gauge transformation of

ϕ(0) is the appearance of three broken gauge-for-gauge parameters, with diagram structure

{2, 1, 1}, {2, 2} and {3, 1} respectively; in addition, there is a third-generation gauge

parameter with tableau {2, 1} to be discussed later. The full pattern of gauge generations,

including the first one, associated to ϕ(0) is summarized in the following scheme:

ϕ(0) :
G

−→





G2

=⇒





G3

≡> (3.61)
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As a first step, in order to deal with the additional gauge freedom emerging from the

breaking of gauge-for-gauge invariance, we would include in our description two Stueck-

elberg fields, ϕ(1, 1) and ϕ(1, 2), with tableau structure {3, 1, 1} and {3, 2}, while following

[23, 24] we descard at this level the other possible choice of an additional Stueckelberg

field ϕ(1, 3) with structure {2, 2, 1}, assuming that it would lead to a non-unitary theory.

Looking at (3.61) this choice is tantamount to promoting the two lost first-generation

parameters to play the role of Stueckelberg fields. A pictorial synopsis of the pattern of

gauge generations for each of these two fields is provided in the following schemes:

ϕ(1,1) :
G

−→





G2

=⇒





G3

≡> (3.62)

ϕ(1,2) :
G

−→





G2

=⇒ (3.63)

Let us notice that the gauge variations of ϕ(1, 1) and ϕ(1, 2) comprise the three gauge-for-

gauge parameters associated with ϕ(0), together with an additional parameter with the

tableau structure {3, 1}, needed to ensure that eventually both ϕ(1, 1) and ϕ(1, 2) propagate

only their flat-space physical degrees of freedom, and not more. These Stueckelberg fields

in their turn generate two broken gauge-for-gauge symmetries, both of the form {2, 1},

while in relation with the {3, 1, 1}-tensor one should also take into account the existence

of a third-order transformation with a rank-two symmetric tensor parameter.

At this point an important novelty with respect to the two-family case manifests itself:

as already observed, in the complete pattern of flat gauge transformations associated with

ϕ(0) there is also a third-generation gauge parameter whose tableau structure is {2, 1}. In

flat-space it would indicate the existence of combinations of the first-generation parame-

ters apparently hampered by the existence of gauge-for-gauge transformations, but at a

closer look effective on ϕ(0). Thus, in order for the matching between field-components and

gauge parameters to be exact, in our Stueckelberg construction we have to accommodate

an additional gauge freedom with tableau structure {2, 1}. This means in practice that,

of the two broken gauge-for-gauge parameters with structure {2, 1} associated to ϕ(1, 1)

and ϕ(1, 2) one combination has to be left free, exactly to account for the part of the gauge

symmetry of the initial field that has been removed after introducing the Stueckelberg

fields ϕ(1, 1) and ϕ(1, 2). Thus, the presence of the pair of {2, 1} parameters in (3.62) and

(3.63) calls for the introduction of only one second-generation Stueckelberg field ϕ(2, 1),

whose structure is again fixed by unitarity to be that of a {3, 1} tensor (while possible

alternative options like tableaux {2, 2} or {2, 1, 1} are discarded) and whose gauge pattern
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is given as follows:

ϕ(2,1) :
G

−→





G2

=⇒ (3.64)

Finally, let us notice that the additional gauge symmetry provided by the second-generation

parameter in (3.64) is just what is needed to account for the third generation of broken

gauge-for-gauge symmetry of ϕ(1, 1), and thus the pattern of Stueckelberg fields that one

needs to introduce does not include an additional rank-three symmetric tensor. The

resulting system of O(D − 2) tableaux of the form {3, 2, 1}, {3, 1, 1}, {3, 2} and {3, 1}

matches the degrees of freedom of the massless AdS particle with the symmetries of the

diagram {3, 2, 1} as resulting from the BMV conjecture [25, 26].

These two examples should convey the general idea behind our interpretation of the

BMV phenomenon while also suggesting the concrete procedure to build the Stueckelberg

Lagrangian for the degrees of freedom of a given (A)dS massless particle with mixed

symmetry.

In the general case ϕ(0) can be an O(D)-tableau with N rows (that for simplicity one

might assume as being of different lengths) whose hierarchy of flat gauge-transformations

comprises N gauge parameters, (N
2
) gauge-for-gauge parameters, (N

3
) third generation

parameters and so on. To deal with the first instance of gauge-for-gauge breaking we

would introduce N−1 first-generation Stueckelberg fields ϕ(1,k), k = 1, . . . , N−1, (i.e. all

possible Stueckelberg fields whose first row has the same length as that of ϕ(0), effectively

corresponding to all first-generation gauge parameters with first row of maximal length) to

which one can associate an equivalent pattern of broken reducible gauge transformations.

The generation of new fields will stop as soon as the overall gauge symmetry of the

system will match that of its flat-space counterpart, accounting in particular for the full

pattern of reducible gauge transformations for each mixed-symmetry field introduced in

the spectrum.

Let us stress once more that insofar as gauge symmetry alone is concerned the pattern

would not be uniquely determined: at each step different choices of Stueckelberg gauge

fields would be indeed consistent with the additional gauge parameters emerging at the

previous level. In AdS all ambiguities are fixed performing at each step the unitary choice

dictated by the analysis of [23, 24], which amounts to choosing as allowed Stueckelberg

fields only tableaux whose first row has the same length as that of ϕ(0). We expect that,

pursuing the construction of the corresponding Lagrangian for different choices, at least

some of the Stueckelberg fields would eventually appear with kinetic terms of wrong signs.

Having discussed in some detail the motivations and the general structure of our ap-

proach, in the remainder of this section we shall construct the Stueckelberg Lagrangian

for the case of two-family O(D)-tensors in (A)dS, smoothly deforming the flat-space

transverse-invariant Lagrangians for the corresponding fields presented in section 2.1.2,
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thus also providing an application of our general construction in Minkowski space. Show-

ing that the final result admits an off-shell gauge-fixing to our Lagrangian (2.80) will

constitute our proof that the degrees of freedom associated to the latter are those de-

scribed by the corresponding Metsaev equations.

According to the general discussion of the previous paragraphs, starting with an O(D)

tensor in the {s, k} representation we expect our Lagrangian to involve a total of k

additional fields with tableau structure {s, k − i}:

ϕ(i) ∼ {s, k − i}; i = 1, . . . , k . (3.65)

Each of the fields ϕ(i) included in the system experiences gauge-for-gauge breaking phe-

nomenon involving parameters having structure {s− 1, k− i− 1}, which is taken care of

by the gauge transformation of the next field in the resulting hierarchy, ϕ(i−1).

The general form of the resulting Stueckelberg Lagrangian is

L =
1

2

k∑

i=0

ϕ(i)
(
M −

mi

L2

)
ϕ(i) +

k−1∑

i=0

ci
L
ϕ(i+1) ∇2 ϕ

(i) , (3.66)

where the quadratic part in ϕ(i) defines the deformation of the transverse-invariant flat

Lagrangian (2.30) for the corresponding representation, while the off-diagonal terms pro-

vide the only possible couplings available with less than two derivatives (as required in

order for their flat limit to vanish) for traceless tensors, and involve a divergence of the

tensor ϕ(i) with respect to its second family, here denoted ∇2 in accordance with the

general conventions for our index-free notation.

However, working with two-family tensors allows for a more explicit notation already

used in section 2.1.1, according to which tensors of the form {s, k} will be denoted by

ϕµ1 ···µs, ν1 ··· νk ≡ ϕµs, νk , (3.67)

while when computing products of tensors we will make use of the same symbols for

indices that are meant to be totally symmetrised; e.g.

∂ (µ1
ϕµ2 ···µs+1), ν1 ··· νk ≡ ∂µ ϕµs, νk . (3.68)

In this notation all rules for symmetric calculus collected in (A.1) apply independently

for the two sets of indices, while additional prescriptions for contracting indices belonging

to different families are not difficult to derive case by case.

Taking into account the whole set of gauge parameters available within the system we
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can write the general form of the gauge transformation of each field as

δϕ(i)
µs, νk−i

= ∇µ Λ
(i)

µs−1, νk−i
+ ∇ν λ

(i)
µs, νk−i−1

−
1

s− k + i+ 1
∇µ λ

(i)
µs−1 ν, νk−i−1

+
αi

L
λ(i−1)

µs,νk−i
+
βi
L

{
2gµµΛ

(i+1)
µs−2ν,νk−i−1

− (s− k + i)gµνΛ
(i+1)

µs−1,νk−i−1

}

+
γi
L

{
2 gµµ λ

(i+1)
µs−2 νν, νk−i−2

− (s− k + i+ 1) gµν λ
(i+1)

µs−1 ν, νk−i−2

+ (s− k + i+ 1)(s− k + i+ 2) gνν λ
(i+1)

µs, νk−i−2

}
, (3.69)

where it is possible to appreciate that, besides the parameters present in the flat gauge

transformation, Λ(i)
µs−1, νk−i

and λ(i)µs, νk−i−1
, a number of additional contributions can also

enter the variation of ϕ(i)
µs, νk−i

(in the combinations needed to recover the corresponding

{s, k− i}-projection, here collected in braces), exploiting parameters entering the system

from the flat variation of other fields in the multiplet. It is due to this mixing of gauge

transformations that gauge-for-gauge breaking at the level of a single field can be in

principle reabsorbed in the whole system. Indeed, along with (3.69) one can define the

following transformations of the parameters:

δΛ(i)
µs−1, νk−i

=∇ν Θ
(i)

µs−1, νk−i−1
−

1

s− k + i
∇µΘ

(i)
µs−2 ν, νk−i−1

+
bi
L
Θ(i−1)

µs−1, νk−i

+
di
L

{
2 gµµΘ

(i+1)
µs−3 νν, νk−i−2

− (s− k + i) gµν Θ
(i+1)

µs−2 ν, νk−i−2

+ (s− k + i)(s− k + i+ 1) gνν Θ
(i+1)

µs−1, νk−i−2

}
, (3.70a)

δλ(i)µs, νk−i−1
= −

s− k + i+ 1

s− k + i
∇µ Θ

(i)
µs−1, νk−i−1

+
ei
L

{
2 gµµΘ

(i+1)
µs−2 ν, νk−i−2

− (s− k + i+ 1) gµν Θ
(i+1)

µs−1, νk−i−2

}
,

(3.70b)

smoothly deforming the gauge-for-gauge transformations of the flat theory. Finally, the

transversality conditions get also deformed by the Stuecklberg construction according to

∇ · Λ(i)
µs−2,νk−i

−
1

s− k + i+ 1
∇ · λ(i)µs−2ν,νk−i−1

(3.71)

+
βi
L
(D + s+ k − i− 4)Λ(i+1)

µs−2ν,νs−k−i−1
+
γi
L
[D + 2(k − i− 3)]λ(i+1)

µs−2 νν, νk−i−2
= 0 ,

as expected on general grounds, besides being directly related to the need of keeping

gauge-invariant the condition of tracelessness of each field ϕ(i)
µs, νk−i

.

Our goal is to look for values of the coefficients in (3.66), (3.69) and (3.70) so that the

following conditions are simultaneously satisfied:

• the Lagrangian (3.66) is gauge invariant,

• the fields ϕ(i)
µs, νk−i

are invariant under the transformations of the parameters in

(3.70),
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thus ensuring that the Stueckelberg Lagrangian possesses the same net amount of gauge

symmetry as the sum of flat, transverse-invariant Lagrangians for the same set of fields.

After showing that the corresponding equations admit solutions, which is non-trivial a

priori since it is easy to verify that the system to be solved is over-determined, to complete

our argument we will need to discuss the possibility of gauge fixing the Stueckelberg

Lagrangian to our form (3.54), while also recovering the transversality conditions (2.76)

on the remaining parameter.

Asking for gauge invariance of Lagrangian (3.66) allows at first to express the coeffi-

cients in the gauge transformations (3.69) in terms of the couplings ci according to

αi = − ci−1 , (3.72a)

βi = −
ci

(k − i)(s− k + i+ 2)(D + s+ k − i− 6)
, (3.72b)

γi =
2 ci

(k − i)(s− k + i+ 2)2[D + 2(k − i− 4)]
, (3.72c)

while for the coefficients mi one finds:

mi = m̂0 − i +
(s− k + i− 1)(D + s+ k − i− 4)

(k − i+ 1)(s− k + i+ 1)(D + s+ k − i− 5)
c2i−1 . (3.73)

Here m̂0 denotes the physical mass of the ϕ(0) field, that for a tableau with structure

{s, k} reads

m̂0 = s+ k − (s− 2)(D + s− 3) , (3.74)

in agreement with our general result in (2.80). Let us also notice that the “physical” mass

associated to a field with symmetry {s, k− i} corresponds to the combination m̂0− i, thus

indicating that in our general solution only ϕ(0) will appear in the Lagrangian with its

own physical kinetic operator while the other values of mi do not define the “masses” of

the corresponding AdS fields. The remaining equations involve the squares of the ci and

are solved by

c2i =
(i+ 1)(k − i)(s− k + i+ 2)(D + 2k − i− 6)(D + s+ k − i− 6)

D + 2(k − i− 3)
, (3.75)

which, upon substitution in (3.73) allows to express the coefficients mi in the relatively

simple form:

mi = m̂0 − i + i
(s− k + i− 1)(D + s+ k − i− 4)(D + 2k − i− 5)

D + 2(k − i− 2)
. (3.76)

However, we still have to impose invariance under the gauge-for-gauge transformations
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(3.70). Solving the corresponding equations fixes the remaining coefficients to the forms

bi =
s− k + i

s− k + i− 1
αi , (3.77a)

di =
2 βi + (s− k + i+ 2)(s− k + i+ 3) γi

(s− k + i+ 1)2
, (3.77b)

ei =
(s− k + i+ 2) γi − (s− k + i) βi

s− k + i+ 1
, (3.77c)

while also imposing the following consistency conditions

αi ei−1 + βi bi+1 =
s− k + i+ 1

s− k + i
, (3.78a)

di+1 βi + ei+1 γi = 0 , (3.78b)

that are also satisfied by the expressions found in (3.72), thus showing existence and

uniqueness of the Stueckelberg Lagrangian we were after.

The gauge-fixing procedure to eliminate the Stueckelberg fields ϕ(i)
µs, νk−i

for all values

of i 6= 0 can be discussed iteratively, starting from the highest values of i:

δϕ(k)
µs

= ∇µ Λ
(k)

µs−1
+
αk

L
λ(k−1)

µs
, (3.79)

δϕ(k−1)
µs, ν = ∇µ Λ

(k−1)
µs−1, ν + ∇ν λ

(k−1)
µs

−
1

s
∇µ λ

(k−1)
µs−1 ν

+
αk−1

L
λ(k−2)

µs, ν +
βk−1

L

{
2 gµµ Λ

(k)
µs−2 ν − (s− 1) gµν Λ

(k)
µs−1

}
, (3.80)

δϕ(k−2)
µs, νν = ∇µ Λ

(k−2)
µs−1, νν + ∇ν λ

(k−2)
µs, ν −

1

s− 1
∇µ λ

(k−2)
µs−1 ν, ν

+
αk−2

L
λ(k−3)

µs, νν +
βk−2

L

{
2 gµµ Λ

(k−1)
µs−2 ν, ν − (s− 2) gµν Λ

(k−1)
µs−1, ν

}

+
γk−2

L

{
2gµµλ

(k−1)
µs−2νν − (s− 1)gµνλ

(k−1)
µs−1ν + s(s− 1)gννλ

(k−1)
µs

}
,

(3.81)

· · · .

From (3.79) one sees that the elimination of ϕ(k) is indeed possible due to λ(k−1), but actu-

ally makes use of both parameters Λ(k) and λ(k−1) up to gauge-for-gauge transformations

that, as such, do not affect the other fields as well. Similarly, when it comes to eliminating

ϕ(k−1), we see from (3.80) that a complete gauge-fixing of this field is reached making use

of Λ(k−1) and λ(k−2), given that at this level Λ(k) and λ(k−1) can no more affect ϕ(k−1), and

so on and so forth. In this fashion all fields ϕ(k−i), with i 6= k can be set to zero performing

at each step gauge fixings that make use of two parameters, Λ(k−i) and λ(k−i−1), whose

leftover freedom only amounts to irrelevant gauge-for-gauge transformations, while the

remaining parameters entering in principle the variation of ϕ(k−i) have been already ex-

ploited to gauge fix the fields ϕ(k−i+l) for all values of l = 0 · · · i− 1. After eliminating in
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this way all Stueckelberg fields the resulting Lagrangian clearly coincides with our result

(2.80) (or (3.54) in this section), with ϕ(0) subject to an effective transformation where

only one parameter appears,

δϕ(0)
µs, νk = ∇µ Λ

(0)
µs−1, νk , (3.82)

while we see from (3.71) that the latter is now subject to the proper transversality con-

dition required in this setting,

∇ · Λ(0)
µs−1, νk = 0 , (3.83)

thus completing our argument.

4 Diagonalisation of reducible theories

Besides the analysis of the spectrum, we would also like to discern the proper combinations

of the components of ϕ associated to each of the irreducible representations identified by

our preceding analysis. Focussing on the case of symmetric tensors, in this section we

present a systematic way to construct the field redefinitions needed to decompose the

Lagrangians (2.1) and (2.55) in their block-diagonal form, where each block provides an

action suitable for the description of the irreducible polarisations of a given spin. In

our opinion this latter approach retains some specific advantages: first, the resulting

Lagrangians display at a glance both number and nature of the irreducible propagating

degrees of freedom, including the relative signs among the various kinetic terms making

manifest the absence of ghosts; moreover, it allows in principle to interpret possible non-

linear deformations of (2.1) in terms of couplings among single-particle fields. For the

unconstrained versions of our Lagrangians provided by triplet systems the corresponding

diagonalisation was discussed in [56, 55].

4.1 Symmetric tensors in flat backgrounds

Our starting point is a formal decomposition of ϕ involving fields of decreasing spins:

ϕ = φs + Os−2 φs−2 + Os−4 φs−4 + · · · + Os−2k φs−2k + · · · , (4.1)

where φs−2k is a symmetric tensors of rank (s− 2k), while the associated operators Os−2k

are to be chosen so that when (4.1) is inserted in (2.1) the latter decomposes into a sum of

decoupled Lagrangians. Each of these Lagrangians will enjoy transverse gauge invariance

and must ultimately describe irreducible, massless spin-(s− 2k) degrees of freedom, with

k = 0, 1, . . . , [ s
2
]; as discussed in section 2.1.1, this requires that the fields φs−2k, and the

corresponding gauge parameters, be traceless.

46



More explicitly, inserting (4.1) into (2.1) one gets

L =
1

2

[ s
2
]∑

k,l=0

Os−2k φs−2kM Os−2l φs−2l , (4.2)

where O s = I and where contraction of indices is understood between Os−2k φs−2k and

M Os−2l φs−2l. From the previous expression one can see that the diagonalisation obtains

if

Os−2k φs−2kM Os−2l φs−2l ∼ δ k,l φs−2kM φs−2l , (4.3)

and we will show that the latter condition holds indeed if the operators Os−2k satisfy the

equation

M Os−2k = η kM . (4.4)

In general eq. (4.4) possesses several solutions, due to the invariance of the Maxwell-like

operator M under the gauge transformation

δ Os−2k = ∂ Λk , (4.5)

where Λk is itself an operator satisfying the transversality condition ∂ ·Λk = 022. Nonethe-

less, we shall see that whenever (4.4) is satisfied the diagonalisation conditions (4.3) holds

as well, so that the explicit form of the operators Os−2k is not really needed for our present

purposes. At any rate, it is possible to conclude on general grounds that all solutions to

(4.4) are to involve non-local operators, as we discuss in appendix D where we also exhibit

an explicit solution.

Let us make use of (4.4) in (4.2) assuming in addition, without loss of generality, k ≥ l:

Os−2k φs−2kM Os−2l φs−2l = Os−2k φs−2k η
lM φs−2l

= c l
{
M T lOs−2k φs−2k

}
φs−2l

= c l
{
[M,T l]Os−2k φs−2k + T l η kM φs−2k

}
φs−2l ,

(4.6)

where we exploited both the self-adjointness of M (up to total derivatives) and (4.4), and

where

c l = (2 l − 1)!!

(
s

2l

)
(4.7)

is a combinatorial factor coming from the contraction of the l powers of η, leading to the

l traces in the second line of (4.6), here denoted in operatorial notation as T l. Let us

evaluate separately the two terms in the third line of (4.6).

In the first term, the commutator of M and T l is proportional to a double divergence;

more precisely:

[M,T l] = 2 l T l−1 ∂ · ∂ · , (4.8)

22The solution would be unique if for some reasons there were no candidates for a divergenceless Λk;

while this is not the case in general, it happens indeed for a special subset of the operators Os−2k, as we

shall see in appendix D.
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as can be verified recursively starting from [M,T ] = 2 ∂ ·∂· and taking into account that

traces and divergences commute. In addition, the divergence of (4.4) gives

∂ · ∂ · Os−2k = η k ∂ · ∂ · − η k−1M , (4.9)

where we factored out an overall gradient. Let us stress that (4.9) allows us to dispense

with the detailed structure of the operatorsOs−2k, which otherwise would make the general

proof significantly more involved. All in all, we have to evaluate

2 l T l−1
{
η k ∂ · ∂ · − η k−1M

}
φs−2k φs−2l , (4.10)

where, due to the tracelessness of φs−2l, for k ≥ l the first term never contributes23 while

the second term can be conveniently rewritten as

− 2 l T l−1 η k−1M φs−2k φs−2l = − 2 l c̃ l,kM φs−2k T
k−1 η l−1 φs−2l , (4.11)

up to an overall combinatorial coefficient c̃ l,k, that we do not need to evaluate in general

since (4.11) contributes only for k = l when the coefficient itself is trivial (c̃ k,k = 1). For

the same reason in the second term to be evaluated,

T l η kM φs−2k φs−2l = ĉ l,kM φs−2k T
k η lφs−2l , (4.12)

the only contribution obtains for k = l; in both cases the relevant quantity to compute is

T k η lφs−2l = δ k,l

k−1∏

i=0

[D + 2 (s− 2k + i)]φs−2k . (4.13)

Substituting (4.13) in (4.11) and (4.12), and then inserting the corresponding expressions

in (4.6), we finally obtain

L =
1

2

[ s
2
]∑

k,l=0

Os−2k φs−2kM Os−2l φs−2l =
1

2

[ s
2
]∑

k=0

c k b k,s,D φs−2kM φs−2k , (4.14)

where c k was given in (4.7) and where we defined

b k,s,D =

k−1∏

i=0

[D + 2 (s− 2k + i− 1)] . (4.15)

This proves that the redefinition (4.1) in conjunction with the defining property (4.4)

of the operators Os−2k actually diagonalise (4.2). Each of the decoupled Lagrangians

involves traceless fields and displays transverse gauge invariance with traceless parameters,

as required for them to propagate each a single particle of a given spin. The fact that

all relative signs are equal confirms the absence of ghosts, while an additional rescaling

would be needed in order to assign to the various fields their canonical normalization.

23More explicitly: (T l−1 η k ∂ · ∂ · φs−2k)φs−2l ∼ ∂ · ∂ · φs−2k(T
k η l−1 φs−2l) = 0.
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4.2 Symmetric tensors in (A)dS backgrounds

The diagonalisation of the Lagrangian (2.55) follows closely the corresponding procedure

just presented for the flat case, and for this reason we shall limit ourselves to recalling its

main steps while stressing a few additional peculiar features of the (A)dS case. We first

introduce a set of traceless tensors of decreasing spins φs−2k via

ϕ = φs + OL
s−2 φs−2 + OL

s−4 φs−4 + · · · + OL
s−2k φs−2k + · · · , (4.16)

and then look for operators OL
s−2k implementing the diagonalisation condition for (2.55)24

OL
s−2k φs−2kM

(s)
L OL

s−2l φs−2l ∼ δ k,l φs−2kM
(s−2l)
L φs−2l . (4.17)

The key to the whole procedure is to assume that the operators OL
s−2k satisfy the basic

identity

M
(s)
L OL

s−2k = gkM
(s−2k)
L , (4.18)

which allows to write

OL
s−2k φs−2kMLO

L
s−2l φs−2l = OL

s−2k φs−2k g
lM

(s−2l)
L φs−2l

= c lM
(s−2l)
L T lOL

s−2k φs−2k φs−2l

= c l

{
[M

(s−2l)
L , T l]OL

s−2k φs−2k

+ T l (M
(s−2l)
L − M

(s)
L )OL

s−2k φs−2k

+ T lg kM
(s−2k)
L φs−2k

}
φs−2l ,

(4.19)

where the combinatorial coefficient cl is given in (4.7). Computing the commutator in

(4.19) gives

[M
(s−2k)
L , T l ] = 2 l T l−1∇ · ∇ · −

2

L2
l [D + 2 (s− l − 1)]T l , (4.20)

so that, after some manipulations, one finds that the term involving the commutator and

the following one in (4.19) sum up to

2 l T l−1

(
∇ · ∇ · −

4

L2
T

)
OL

s−2k φs−2k φs−2l . (4.21)

To evaluate (4.21) we make use of the identity

(
∇ · ∇ · −

4

L2
T

)
OL

s−2k = − gk−1M
(s−2k)
L + gk

(
∇ · ∇ · −

4

L2
T

)
(4.22)

24At the risk of being pedantic, here we add a label to specify the value of s in the spin-dependent

part of the kinetic operators; thus M
(s)
L corresponds to ML as defined in (2.53), while M

(s−2k)
L can be

obtained from (2.53) by the substitution s → s− 2k. It might be also useful to stress that the operators

OL
s−2k in (4.16) depend on the rank of ϕ, so that if rank(ϕ) = s they are assumed to satisfy (4.18) only

under the action of M
(s)
L .
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which in itself is a consequence of the divergence of (4.18). Assuming for simplicity k ≥ l

and completing the computation as in section 2.1.1 it is then possible to conclude that

the redefinition (4.16) decomposes the Maxwell-like Lagrangian (2.55) on AdS as

L =
1

2
ϕM

(s)
L ϕ =

1

2

[ s
2
]∑

k=0

c k b k,s,D φs−2kM
(s−2k)
L φs−2k , (4.23)

with the same combinatorial coefficients as for the flat case of (4.7) and (4.15), respectively.

5 Discussion

In this work we performed a systematic exploration of theories describing massless bosons

of arbitrary spin and symmetry under conditions of transversality on the correspond-

ing gauge parameters, obtaining Lagrangians that are typically simpler than their more

conventional counterparts.

Higher-spin free Lagrangians have been intensively studied from several perspectives;

in the metric-like approach, with second-order kinetic operators, the various options can

be viewed as different solutions to the problem of dressing the D’Alembertian wave op-

erator so that the resulting theory possesses a given amount of gauge invariance. As a

necessary condition, the latter has to grant at least the elimination of field components

whose presence would spoil the consistency of the theory. Aside from this requirement,

however, stressing additional features can lead to different realizations of the same pro-

gram, according to whether one aims to simplicity of the resulting action, to minimality

–in terms of number of field components to be kept off-shell– or to the possibility of for-

mulating the theory in terms of quantities amenable of a geometric interpretation, just to

mention a few possible ancillary criteria. Clearly, the general goal lying on the background

would be to prepare the stage for an investigation of interactions displaying in itself some

advantages, either technical or conceptual, with respect to other known approaches.

Without entering into a detailed illustration of the various directions explored so far, let

us observe that at least some of them can be pictorially organized according to whether

they refer more directly to the spin-two model of linearised gravity or to the spin-one

example of Maxwell’s theory. In both cases the corresponding higher-spin extension can

be implemented with or without additional constraints, and both equations of motion

and Lagrangians admit a formulation either in terms of suitably defined “connexions” or,

when constraints are removed, more geometrically in terms of higher-spin curvatures [1].

The Fronsdal-Labastida theory [4, 6], together with its minimal unconstrained exten-

sions [27, 7], can be safely placed in the first category due to the formal similarity of the

corresponding kinetic operators with the linearised Ricci tensor. The resulting equations,

together with their non-local extensions formulated in terms of higher-spin curvatures

[29, 28, 46], naturally provide irreducible descriptions of free higher-spin propagation.
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Differently, as we discussed at length in the previous sections, the Maxwell-like theories

that we explored in this work allow more naturally for the description of reducible higher-

spin spectra, insofar as trace constraints are not imposed. On the other hand, considering

the same Lagrangians on the restricted space of traceless gauge potentials leads to al-

ternative formulations of irreducible theories that are somehow “minimal” with respect

to their off-shell field content. The unconstrained extensions of Maxwell-like theories are

attractive in their own right, since in their local form they bear a direct relation with

free open strings in their tensionless regime [34, 30, 35], while their geometric incarna-

tions display actions as simple as squares of curvatures, thus adding a piece of pictorial

evidence to their formal relation with spin-one systems [36].

The simplification obtained focussing on the Maxwell operator allowed us to extend

the scope of our construction to the case of mixed-symmetry fields in (A)dS backgrounds,

providing a complete one-particle Lagrangian description of the corresponding represen-

tations in the general case. For this latter setting, far less explored in the literature

if compared to the cases of flat backgrounds or symmetric tensors in (A)dS, its uncon-

strained extensions and their possible relation to tensionless strings are at present not

known.

The construction of a corresponding scheme for fermions appears to be less direct to

implement. Indeed, if we were to follow closely the analogy with the bosonic case, starting

from the Fang-Fronsdal equations for single massless fermions of spin s+ 1
2
[57],

S = i ( 6∂ ψ − ∂ 6ψ) = 0 , (5.1)

the simplest candidate to play the role of kinetic operator for a reducible theory in this

case would seem to be the Dirac operator D = 6 ∂. However, in order to allow for gauge

invariance of the corresponding equation under δψ = ∂ ǫ one should also impose 6∂ ǫ = 0,

thus implying that only on-shell gauge invariance would be admissible. The counterpart

of this observation from the point of view of fermionic triplets [30, 35] is that for those

systems, differently from the bosonic ones, there are no fields satisfying purely algebraic

equations of motion, so that the reduction to a simpler local system seemingly implies

either to keep some auxiliary fields off-shell, or to impose constraints on the gauge param-

eters somehow stronger than the condition of transversality at the basis of our present

construction. We leave to future work a more detailed analysis of the possible constrained

theories for systems of reducible fermions.

In perspective, the main issue to investigate concerns the possibility that transverse-

invariance might allow for a systematic study of higher-spin interactions while also re-

taining at least part of the advantages met for the free theory. To begin with, one might

ask whether the simplicity of Maxwell-like Lagrangians survives in some forms when in-

teractions are turned on. At the level of cubic vertices, and with the proviso that only

explicit calculations can really clarify the issue, one can expect the answer to be in the

affirmative, given the minimal form of the completion needed in this case to promote the
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known, leading on-shell term in cubic interactions to a full off-shell form25.

After all, the existence of non-linear theories for unimodular gravity indicates that the

transversality constraint should not represent an obstacle to this programme. On the other

hand, one should anyway expect that the constraint (2.4), and generalizations thereof, be

properly deformed at the non-linear level, and indeed uncovering the systematics of this

deformation might represent one of the clues to the whole construction.

In addition, it would be interesting to investigate what would be at level of vertices the

implications of the non-local redefinitions needed to diagonalise the reducible systems, de-

scribed in appendix D. Indeed, given the existence of local interactions for single-particle

couplings (at least to cubic order, insofar as flat space is considered), one would naturally

expect the (cubic) couplings for reducible theories to reproduce the former, after diag-

onalising the quadratic part. However, in order for the resulting vertices among single

particles to stay local after the redefinitions, some non-trivial cancellations ought to occur

whose systematics is yet to be explored. Let us mention that the issue does not appear to

be related to the choice of flat background, given that in the field redefinition we found to

diagonalise the (A)dS system the issue of non-locality appears even more severe than for

its flat-space counterpart, and in this sense it can not be interpreted as a manifestation

of yet another pathology of higher-spin interactions in Minkowski space-time.

One could also investigate directly the structure of couplings deforming single-particle

Lagrangians, exploiting traceless fields. Once again, given the simplified kinematical

setting at the level of fields involved, the possible complications are likely to come from

the preservation or deformation of the constraints, and it could well be that, at the end,

the final balance would not especially favor transverse-invariance as a starting point for

investigating interactions. However, an additional reason to explore this path is that,

starting from Lagrangians (2.80), one has in principle the possibility to address in a

systematic and more direct fashion the interactions among bosonic gauge fields of mixed-

symmetry on (Anti-)de Sitter backgrounds.

Acknowledgments

We are grateful to K. Alkalaev, N. Boulanger, P. A. Grassi, M. Grigoriev, M. Henneaux,

E. Latini, J.J. Lopez-Villarejo, K. Mktrchyan, A. Roura, A. Waldron, and especially to

A. Sagnotti for useful discussions and comments. We would like to thank APC-Paris

VII, the Institute of Physics of the Academy of Sciences of the Czech Republic, Scuola

Normale Superiore, INFN and the MPI-Albert Einstein Institute for the kind hospitality

extended to one or both of us during the preparation of this work. The work of D.F. was

also supported by the EURYI grant EYI/07/E010 from EUROHORC and ESF.

25See e.g. [58] for various approaches to the systematics of cubic vertices for higher-spin bosonic fields.

52



A Notation and useful formulae

A.1 Symmetric tensors

We work with mostly-positive metric in D space-time dimensions. If not otherwise spec-

ified, symmetrised indices are left implicit, while symmetrisation is understood with no

weight factors. Thus, for instance, the symmetrised product AB of two vectors Aµ and

Bν here stands for AµBν + Aν Bµ, without additional factors of 1/2. Traces can be de-

noted by “primes”, by numbers in square brackets or even by means of the operator T :

ϕ ′ ≡ T ϕ is thus the trace of ϕ, ϕ ′′ is its double trace and ϕ [n] ≡ T n ϕ represents its

n−th trace. Multiple gradients are denoted by symbols like ∂ k, while for divergences we

use the symbol “∂·”. The relevant combinatorics is summarised in the following rules [29]:

(∂ p ϕ) ′ = 2 ∂ p−2 ϕ + 2 ∂ p−1 ∂ · ϕ + ∂ p ϕ ′ ,

∂ p ∂ q =

(
p+ q

p

)
∂ p+q ,

∂ · (∂ p ϕ) = 2 ∂ p−1 ϕ + ∂ p ∂ · ϕ ,

∂ · (η k ϕ) = ∂ η k−1 ϕ + η k ∂ · ϕ, (A.1)
(
ηk ϕ

) ′
= [D + 2 (s+ k − 1) ] η k−1 ϕ + ηk ϕ ′ ,

(ϕψ) ′ = ϕ ′ ψ + ϕψ ′ + 2ϕ · ψ ,

η η n−1 = n η n .

Switching to (A)dS backgrounds requires the substitutions

∂ → ∇ , η → g , (A.2)

where g denotes the (A)dS metric, while also taking into account the following commu-

tators,

[∇· , ∇ ]ϕ = 2ϕ −
1

L2
{ s(D + s− 2)ϕ − 2 g ϕ′ } , (A.3)

[2 , ∇ ]ϕ = −
1

L2
{ (D + 2s− 1)∇ϕ − 4 g∇ · ϕ } , (A.4)

[∇· , 2 ]ϕ = −
1

L2
{ (D + 2s− 3)∇ · ϕ − 2∇ϕ′ } . (A.5)

In several manipulations it is convenient to make use of the Lichnerowicz operator [59]

2L ϕ ≡ 2ϕ +
1

L2
{ s (D + s− 2)ϕ − 2 g ϕ ′ } , (A.6)

defined so as to satisfy

[2L, ∇ ]ϕ = 0 . (A.7)
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A.2 Mixed-symmetry tensors

Unless otherwise specified we work with tensors ϕµ1···µs1
, ν1··· νs2 , ···

often simply denoted

by ϕ possessing several “families” of symmetric indices, with no additional symmetry

properties relating different sets. In this sense they define reducible GL(D) tensors, here

often also referred to as “multi-symmetric” tensors. In order to keep our formulas readable

usually we do not display space-time indices, while we introduce family indices denoted by

small-case Latin letters. We are thus able to identify tensors carrying a different number

of indices in some sets as compared to the basic field ϕ, while also keeping track of index-

reshuffling among different families. Thus, for instance, a gradient carrying a space-time

index to be symmetrised with indices belonging to the i−th group is denoted by

∂ i ϕ ≡ ∂ (µi
1| ϕ ··· , |µi

2 ···µi
si+1) , ··· , (A.8)

with parentheses to signify symmetrization with no additional overall factors, while for a

divergence contracting an index in the i−th group we use the notation

∂ i ϕ ≡ ∂ λ ϕ ··· , λ µi
1 ···µi

si−1 , ··· . (A.9)

Thus, as a basic rule, the position of the family indices carries information on their role,

so that lower family indices are associated to operators removing Lorentz indices, while

upper family indices are associated to operators adding Lorentz indices, to be symmetrized

with their peers belonging to the group identified by the family label, as shown in (A.8).

In a similar spirit, the gauge parameters are denoted by Λ i to indicate that they carry

one index less than the gauge field ϕ in the i−th family. The Einstein convention for

summing over pairs of them is used throughout, although one should be careful not

to confuse saturation in family indices with contraction between space-time indices. A

notable example is the gauge transformation of ϕ (2.27),

δ ϕ = ∂ i Λ i , (A.10)

given by a sum of symmetrised gradients, each for any of the families of ϕ. Another

important class of operators is defined by the following equations:

Si
i ϕ ≡ si ϕ ··· , µi

1
···µi

si
, ··· , (A.11a)

Si
j ϕ ≡ ϕ ··· , (µi

1
···µi

si
|, ··· , |µi

si+1
)µj

1
···µj

sj−1
, ··· for i 6= j , (A.11b)

whose effect for i 6= j is thus to displace indices from one family to another, while also

implementing the corresponding symmetrization. For more general maximally symmetric

backgrounds the flat metric η ij gets replaced by the (A)dS metric gij, while δk
i simply

denotes a Kronecker δ-function in family space. In the following list we collect some useful
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(A)dS commutators, whose flat limit clearly obtains for L 2 → ∞.

[Si
j , ∇

k ] = ∇ i δj
k , (A.12)

[∇k , S
i
j ] = δk

i ∇j , (A.13)

[Si
j , S

k
l ] = δj

kSi
l − δl

iSk
j , (A.14)

[Tij , ∇
k ] = ∇(i δ j)

k , (A.15)

[Tij , g
kl ] =

D

2
δi

(kδj
l) +

1

2

(
δi

(kSl)
j + δj

(kSl)
i

)
, (A.16)

[∇k , g
ij ] =

1

2
δk

(i∇ j) , (A.17)

[∇i , ∇j ] = −
2

L2
gk[i Sj]

k , (A.18)

[∇i , ∇
j ] = 2 δi

j −
1

L2

{
(D −N − 1)Sj

i + Sj
k S

k
i

}
+

2

L2
gjk Tik , (A.19)

[2 , ∇i ] = −
1

L2

{
(D − 1)∇i + 2∇jSi

j

}
+

4

L2
gij ∇j , (A.20)

[∇i , 2 ] = −
1

L2

{
(D − 1)∇i + 2Sj

i∇j

}
+

2

L2
∇j Tij . (A.21)

B Variation of the Maxwell-like tensor in (A)dS

In section 2.2.2 we argued that for irreducible fields on (A)dS the gauge variation (2.60)

of the Maxwell-like tensor (2.58) should take the form

M δϕ =
N∑

n=1

n∑

i=1

kn ∇
iΛ

(n)
i + divergences and traces. (B.1)

We are now going to prove that this is the correct structure of Mδϕ and to compute the

coefficients kn in order to prove eq. (2.71). At the end of this appendix we also prove

that the constraints (2.61) imply the vanishing of all divergences of the single surviving

irreducible gauge parameter.

The key of the proof is the possibility to treat independently contributions proportional

to different irreducible components of the gauge parameters (labelled by (n) in (B.1)). A

crucial ingredient is thus the decomposition of the reducible gauge parameters presented

in eq. (2.67),

Λk =

N∑

n= k

(
1− δsn, sn+1

)
Y{s1,..., sn−1,..., sN} Λk ≡

N∑

n= k

(
1− δsn, sn+1

)
Λ

(n)
k , (B.2)

that determines the extrema of the sum over i in (B.1). We therefore begin by showing

how to derive the decomposition (B.2) from the conditions (2.66), that we recall here for

55



the reader convenience:

Si
j Λk + δik Λj = 0 , for i < j . (B.3)

In order to illustrate the meaning of eqs. (B.3) it might be useful to first focus on the case

of two families, where they take the explicit form

S1
2 Λ1 + Λ2 = 0 ,

S1
2 Λ2 = 0 .

(B.4)

The second of (B.4) is the condition of irreducibility for Λ2, allowing to identify the latter

with its homologous diagram:

Λ2 = Y{s1, s2−1} Λ2 ≡ Λ
(2)
2 , (B.5)

while from the first one we can now induce that, among all possible projections contained

in Λ1, only two of them survive, namely Λ
(1)
1 ∼ {s1 − 1, s2}, in the kernel of S1

2, and

Λ
(2)
1 ∼ {s1, s2 − 1}, related to Λ

(2)
2 by

S1
2 Λ

(2)
1 + Λ

(2)
2 = 0 . (B.6)

In the special case s1 = s2 there is no Λ
(1)
1 projection, since the corresponding diagram

does not exist, and the only independent parameter lives in the {s1, s2−1} representation,

with the corresponding components of Λ1 and Λ2 related as in (B.6).

In the general case it is also convenient to analyse eqs. (B.3) starting from the highest

value of the family label carried by the parameters: for k = N these relations imply that

ΛN is irreducible since it is annihilated by all Si
j with i < j. As a result, it coincides with

Λ
(N)
N in agreement with (B.2). On the other hand, if one decomposes the multi-symmetric

parameter ΛN−1 in all its irreducible components the (B.3) imply26

Si
j Λ

(n)
N−1 = 0 , for n < N and i < j , (B.7)

while for n = N the parameter is annihilated only by the Si
j with i < N − 1 and

SN−1
N Λ

(N)
N−1 = −Λ

(N)
N . (B.8)

To obtain these relations we used once more the fact that the operators Si
j commute with

Young projectors, as discussed in section 2.1.2. The system of equations (B.7) is solved

only by a tensor whose associated diagram has the same manifest symmetries, and we can

thus conclude that ΛN−1 admits two irreducible components: the Λ
(N−1)
N−1 and the Λ

(N)
N−1

26The multi-symmetric tensor ΛN−1 carries additional components with respect to those that we

labelled by the index (n) in (B.2). However, the argument showing that those with n < N − 1 are not

compatible with (B.3) applies also to those that we did not recall explicitly in eq. (B.7) to simplify the

presentation.
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related to Λ
(N)
N via (B.8). It should now be clear that one can show by induction that a

generic Λk satisfies

Si
j Λ

(n)
k = 0 , for n ≤ k and i < j , (B.9)

while the components with n > k are related to the Λi with i > k via eqs. (2.68), that

generalise (B.8).

We can now exploit (B.1) in (2.60), focussing on the variation induced by a single

irreducible component so as to obtain

Mδ(n)ϕ = −
1

L2

n∑

i=1

∇i

{
(D +

N∑

l=1

sl − 2) Λ
(n)
i −

n∑

j=1

(
(D − 3)Sj

i +

n∑

k=1

Sk
iS

j
k

)
Λ

(n)
j

}

+ divergences and traces, (B.10)

where we also used (A.14) to change the order of Si
j operators and we fixed the estrema

of the sums according to (B.2). In order to proceed it is convenient to distinguish when

the contracted indices are smaller, equal or greater than i. We shall thus treat separately

α
(n)
i ≡ (D +

N∑

l=1

sl − 2) Λ
(n)
i −

i∑

j =1

(
(D − 3)Sj

i +

i∑

k=1

Sk
i S

j
k

)
Λ

(n)
j , (B.11)

that can be reduced to the form (B.1) simply by exploiting (2.68), and

β
(n)
i ≡ (D − 3)

n∑

j= i+1

Sj
i Λ

(n)
j +

i∑

j=1

n∑

k= i+1

Sk
i S

j
k Λ

(n)
j , (B.12a)

γ
(n)
i ≡

n∑

j = i+1

n∑

k=1

Sk
i S

j
k Λ

(n)
j , (B.12b)

that require a more sophisticated discussion.

With the help of (A.11a) and (2.68), eq. (B.11) can be cast in the form

α
(n)
i = {D + stot − (si − i)(D + si − 4)− 2 }Λ

(n)
i −

i−1∑

k=1

[Sk
i , S

i
k ] Λ

(n)
i −

i−1∑

j,k=1

Sk
iS

j
k Λ

(n)
j

= {D + stot − (si − i)(D + si − 4) + (i− 1)(si − 2)− 2 }Λ
(n)
i

−
i−1∑

j=1

(
j−1∑

k=1

[Sk
i , S

j
k ] +

i−1∑

k= j+1

Sk
iS

j
k

)
Λ

(n)
j , (B.13)

where we introduced the shorthand stot =
∑N

l=1 sl. Using again (2.68) one can show

i−1∑

j=1

(
j−1∑

k=1

[Sk
i , S

j
k ] +

i−1∑

k= j+1

Sk
iS

j
k

)
Λ

(n)
j = (i− 1)(i− 2) Λ

(n)
i , (B.14)
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and eventually conclude

α
(n)
i = − { (si − i− 1)(D + si − i− 2)− stot }Λ

(n)
i . (B.15)

If one supposes that (B.1) holds this computation suffices to fix the coefficients kn since

the term ∇nΛ
(n)
n cannot receive further corrections. At any rate, we shall proceed by

evaluating also the remaining contributions collected in (B.12).

Using (2.68), eq. (B.12a) can be cast in the form

β
(n)
i = (D − i− 3)

n∑

j= i+1

Sj
i Λ

(n)
j . (B.16)

One cannot eliminate the remaining Sj
i with (2.68), but one can use it to build a portion

of the quadratic gl(N) Casimir that was introduced in (2.74):

C = χ + 2

N−1∑

i=1

N∑

j= i+1

Sj
iS

i
j , with χ =

N∑

i=1

Si
i

(
Si

i +N − 2i+ 1
)
. (B.17)

Using (2.68) one can indeed add a Si
j operator in (B.16) which becomes

β
(n)
i = − (D − i− 3)

n∑

j= i+1

Sj
i S

i
j Λ

(n)
i = −

1

2
(D − i− 3) ( C − χ ) Λ

(n)
i . (B.18)

One can now observe that Λ
(n)
n , like ϕ, is a highest-weight state in a representation of the

gl(N) algebra generated by all Si
j (see (A.14)). This follows from its irreducibility that

translates in

Si
j Λ

(n)
n = 0 , for i < j , (B.19)

while (2.68) implies that all Λ
(n)
i belong to the same representation. As a result C takes

the same value on all Λ
(n)
i , and one can conveniently compute it on Λ

(n)
n . On the other

hand, χ acts diagonally on any tensor and this leads to

( C − χ ) Λ
(n)
i = 2 ( si − sn + n− i ) Λ

(n)
i , (B.20)

and eventually to

β
(n)
i = − (D − i− 3)(si − sn + n− i) Λ

(n)
i . (B.21)

The leftover term (B.12b) can be simplified with a similar strategy: we shall build

again (C−χ) with the help of (2.68). To this end, one can begin by distinguishing various

contributions in the sum over k:

γ
(n)
i =

n∑

j= i+1

{ i−1∑

k=1

[Sk
i , S

j
k ] Λ

(n)
j + (si + sj − 2)Sj

i Λ
(n)
j

−

n∑

k= j+1

Sk
i Λ

(n)
k −

j−1∑

k= i+1

Sk
iS

j
kS

k
j Λ

(n)
k

}
.

(B.22)

58



In (B.22) we already used (2.68) to manipulate the two sums in the second line. There

the extrema of the sums over k depend on j, but they can be reorganized such that

γ
(n)
i =

n∑

j= i+1

(si + sj − j)Sj
i Λ

(n)
j −

n∑

k= i+1

Sk
i

(
n∑

j= k+1

Sj
kS

k
j Λ

(n)
k

)
. (B.23)

While one cannot built (C − χ) in the first sum due to the j−dependent coefficients, the

terms between parentheses in the second one can be substituted by (C − χ)Λ
(n)
i . The

result is

γ
(n)
i =

n∑

j= i+1

{(si + sj − j)− (sj − sn + n− j)}Sj
iΛ

(n)
j

= − (si + sn − n)(si − sn + n− i) Λ
(n)
i .

(B.24)

In conclusion, summing (B.15), (B.21) and (B.24) one obtains

M δ(n)ϕ = −
1

L2

n∑

i=1

∇i
(
α
(n)
i − β

(n)
i − γ

(n)
i

)

=
1

L2
{ (sn − n− 1)(D + sn − n− 2)− stot }

n∑

i=1

∇iΛ
(n)
i .

(B.25)

As expected we obtained an overall coefficient that depends on the chosen irreducible

component and coincides with the one appearing in (B.15) for i = n.

The previous discussion suffices to conclude that the Lagrangian (2.80) is invariant

under transformations generated by a single irreducible and fully divergenless parameter.

In section 3.2.2 we also checked that this amount of gauge symmetry suffices to remove

the unphysical components, at least in the two-family case. However, here we also would

like to show that the vanishing of all divergences of the residual parameter is already

forced by the apparently weaker condition (2.61), that in this case reads

∇i Λ
(n)
i = 0 , (B.26a)

∇i Λ
(n)
j + ∇j Λ

(n)
i = 0 , for i < j , (B.26b)

while if different irreducible components were present they would mix in (B.26). Eqs. (2.68)

and (A.13) then imply

∇j Λ
(n)
i = − Sk

j ∇i Λ
(n)
k , for fixed k < j , (B.27)

where we recalled that no summation over k is implied. Thus, one can choose the value

k = i and then exploit (B.26a) to conclude that

∇j Λ
(n)
i = 0 , for fixed i ≤ n < j . (B.28)
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The remaining divergences can be shown to vanish with a recursive argument that relies

again on (B.20). In fact, combining this result with (2.68) enables one to obtain27

Λ
(n)
i = −

1

si − sn + n− i

n∑

j= i+1

Sj
iΛ

(n)
j (B.29)

which in its turn, upon substitution in eq. (B.26b) and with the help of (A.13), gives

(si − sn + n− i− 1)∇iΛ
(n)
n −

n∑

j= i+1

Sj
i ∇nΛ

(n)
j . (B.30)

For i = n − 1 eq. (B.30) implies ∇n−1 Λ
(n)
n = 0 and, a posteriori, also ∇nΛ

(n)
n−1 = 0.

Increasing the value of i taking into account the previous outcomes eventually implies the

vanishing of all divergences of all Λ
(n)
i .

C Light-cone gauge-fixing and gauge-for-gauge

As is well known, for gauge theories involving tensors of mixed symmetry the gauge alge-

bra is generically reducible. However, in discussing the spectrum of transverse-invariant

theories for multi-symmetric tensors in section 3.1.2 we do not really need to come to

terms with this phenomenon. Indeed, we only perform explicit gauge-fixings that, as

such, can only make use of components of the parameters that do have an effect on the

gauge field. Consistently, we should be also able to identify (combinations of) components

of the various parameters that do not affect the gauge potential and therefore do not enter

the gauge-fixing procedure.

The simplest illustration of this aspect is provided by the case of reducible (1, 1)−tensors,

that we analyze in the following restoring indices for better clarity. Under the gauge trans-

formation

δ ϕµ,ν = ∂µ Λ ν + ∂ ν λµ (C.1)

the field ϕ is left invariant if

δΛ ν = ∂ ν ρ ,

δ λµ = − ∂µ ρ ,
(C.2)

providing the simplest example of gauge-for-gauge transformation. Thus, of the D + D

components of the parameters available in principle we must expect to be able to make

use of only D +D − 1 of them, to account for the invariance under (C.2).

Let us consider first the Labastida case: Λµ and λ ν are not constrained and we can try

to reach the light-cone gauge directly, without invoking the equations of motion. Indeed,

27This relation also allows to rewrite the gauge variation (B.1) only in terms of the irreducible Λ
(n)
n ,

that have the right structure to be identified with the parameters of [50].
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the number of components in ϕ+,ν and ϕµ,+ matches the number of independent gauge

transformations, and even from the detailed form of their transformations,

δ ϕ+,+ = p+ (Λ+ + λ+) ,

δ ϕ+,i = p+Λ i + p i λ+ ,

δ ϕ+,− = p+Λ− + p− λ+ , (C.3)

δ ϕ i,+ = p i Λ+ + p+ λ i ,

δ ϕ−,+ = p−Λ+ + p+ λ− ,

we see that ϕ+,ν = 0 = ϕµ,+ is a possible gauge. It would seem that one parameter

is still left out, in particular since only the combination Λ+ + λ+ enters to remove

ϕ+,+ . However, due to (C.2) we see that, for instance, we can freely set λ+ to zero

via λ+ → λ+ + p+ ρ (while all other components transform accordingly, to keep ϕ

unchanged), thereby implying that once the light-cone gauge is reached there are no

residual gauge transformations affecting ϕ, and the gauge is effectively completely fixed.

Alternatively, in the transverse-invariant situation where Λµ and λ ν are related by the

constraint

p · (Λ + λ) = − p+ (Λ− + λ−) − p− (Λ+ + λ+) +
∑

i

pi (Λ i + λ i) = 0 (C.4)

the number of independent components of the parameters is further reduced to D+D−2.

As a consequence it is not possible to reach the light-cone gauge off-shell and one needs to

make use of the equations of motion, as explained in section 3.1.2, in order to eliminate

one residual “+” component surviving after gauge fixing. In the general case some care is

needed when counting the number of components of the parameters available for gauge-

fixing, since the gauge-for-gauge transformations might be themselves affected by the

constraints (2.29). For instance, for multi-symmetric (2, 1) tensors there is in principle a

vector parameter of gauge-for-gauge transformations, due to the invariance of δ ϕµν, ρ =

∂ (µ Λ ν), ρ + ∂ ρ λµν under

δΛ ν, ρ = ∂ ρ α ν

δ λµν = − ∂ (µ α ν) .
(C.5)

However, because of the transversality conditions (2.29) the divergence of αµ is itself

forced to vanish, thus reducing to D − 1 the number of independent components in the

gauge-for-gauge transformation.

D Explicit forms of diagonal Lagrangians

In this section we discuss explicit solutions to (4.4), that we report here for the sake of

clarity:

M Os−2k = η kM , (D.1)
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where the dimensionless operators Os−2k appearing in the redefinition of ϕ (4.1)

ϕ = φs + Os−2 φs−2 + Os−4 φs−4 + · · · + Os−2k φs−2k + · · · , (D.2)

consist of linear combinations of monomials involving the metric tensor η, suitable pow-

ers of gradients and divergences, together with the appropriate inverse powers of the

D’Alembertian operator.

We see from (D.1) that the operators Os−2k satisfy a Maxwell equation sourced by

η kM ; the general solution is thus expected to be of the form

Os−2k = O o
s−2k + O ∗

s−2k , (D.3)

with O ∗
s−2k a particular solution to (D.1), while among the solutions of the homogeneous

equation there should be pure-gauge operators of the form

O o
s−2k = ∂ Λo , (D.4)

with Λo satisfying the transversality condition

∂ · Λo = 0 . (D.5)

While these observations imply that the general solution to (D.1) is not unique, in special

circumstances it might happen that it is not possible to construct an operator with the

properties of Λo. Let us consider for instance the spin−2 case,

ϕ = φ2 + O0 φ0 , (D.6)

and let us construct a solution O0
∗ to (D.1) by iteration:

O0
(0) = η −→ M O0

(0) = [M, η] + ηM = − 2 ∂ 2 + ηM , (D.7)

O0
(1) = η + a

∂ 2

2
−→ M O0

(1) = − (a + 2) ∂ 2 + ηM , (D.8)

O0
∗ = η − 2

∂ 2

2
. (D.9)

In this particular case the solution is thus completely fixed, since in the various steps of

the construction there was never the possibility to choose among alternative options. In

view of the previous observations we can interpret this result as due to the impossibility

of building the gauge parameter Λo for this special case. Indeed Λo should be a rank−1

operator acting on scalars, thus implying that neither η nor ∂· can appear in its defini-

tion, while a pure gradient is also excluded in force of the transversality condition (D.5).

Actually this is a manifestation of a general phenomenon valid for all even spins, when it

comes to solving the equation (D.1) for the rank−s operator O0, since in all those cases

it is impossible to build the corresponding gauge parameter. However, for the general

case parameters Λo can be constructed, leading to solutions depending on a number of
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arbitrary coefficients. In the following we will exhibit a particular solution to (D.1), which

is tantamount to choosing a specific gauge.

To begin with, we would like to expand the operators Os−2k in their monomial compo-

nents, so as to translate (D.1) into an explicit system for the coefficients of those terms.

Each coefficient can be identified by means of three labels: a
(m,k)
i , where

m → denotes the power of η ;

k → is related to the rank of the operator O s−2k : rk{O s−2k} = 2k ;

i → denotes the number of divergences ,

(D.10)

so that in general O s−2k can be cast in the form

O s−2k =

s−2k∑

i=0

a
(0,k)
i

∂ 2k+i

2
k+i

∂·i + η

s−2k∑

i=0

a
(1,k)
i

∂ 2(k−1)+i

2
k−1+i

∂·i + · · ·

+ ηm

s−2k∑

i=0

a
(m,k)
i

∂ 2(k−m)+i

2
k−m+i

∂·i + · · ·

=
s−2k∑

i=0

k+[ i2 ]∑

m=0

a
(m,k)
i ηm

∂ 2(k−m)+i

2
k−m+i

∂·i .

(D.11)

Moreover, it is understood that

2 (k −m) + i ≥ 0 , (D.12)

otherwise the corresponding coefficients are simply not present. We fix the set of initial

data

a
(k,k)
0 = 1 , (D.13)

corresponding to a choice for the normalization of the φs−2k’s convenient for our manip-

ulations. In terms of these definitions (D.1) translates into the system

[2(k−m) + i− 1]
{
a
(m,k)
i + [2(k −m) + i] a

(m+1,k)
i

}
+ [2(k−m) + i] a

(m,k)
i−1 = 0 , (D.14)

that for m 6= k provides a set of conditions ∀ i, while it applies only for i > 1 for m = k.

In particular for i = 0 we have the initial datum a
(k,k)
0 = 1, and for i = 1 we just get

a
(k,k)
1 − a

(k,k)
1 − a

(k,k)
0 − 0 · a

(k+1,k)
1 = − 1 , (D.15)

thus ensuring that the two terms with zero divergences and one divergence respectively

correctly recombine to give M .

Since the coefficients depend on m and k only through the combination k − m, it is

convenient to define

n = k −m, (D.16)
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and to introduce the shorthand

ai,n = a
(k−n,k)
i , (D.17)

so that (D.14) simplifies to

(2n+ i− 1) { ai,n + (2n+ i) ai,n−1 }+ (2n+ i) ai−1,n = 0 (D.18)

with n ≤ k (corresponding to m ≥ 0), with the proviso that for n < 0 one has i ≥ − 2n,

while for n > 0 one has i ≥ 0.

Eq. (D.18) simplifies for the minimum values of i admitted for a given n. For n ≥ 0

and i = 0 it becomes

a0,n + 2n a0,n = 0 . (D.19)

With the initial condition a0,0 = 1 this recursion relation is solved by

a0,n = (−1)n (2n)!! . (D.20)

For n < 0 and i = − 2n eq. (D.18) implies

a−2n,n = 0 . (D.21)

For generic values of i the structure of (D.18) and of the conditions (D.20) and (D.21)

suggest to consider the ansatz

ai,n = (−1)n+i ki (2n+ i) (2(n+ i− 1))!! . (D.22)

It manifestly satisfies the condition (D.21) due to the factor (2n + i) and it reduces to

(D.20) for i = 0. Moreover, it enables one to factor out various terms so that (D.18)

becomes

(−1)n+i(2n+ i− 1)(2n+ i)(2(n + i− 2))!! { 2(n + i− 1)ki − (2n+ i− 2)ki − ki−1 } = 0

(D.23)

and reduces to

i ki − ki−1 = 0 ⇒ ki =
1

i!
. (D.24)

Notice that the structure of the double factorial was chosen in order to let ki−1 contribute

only through a constant term. In conclusion, a particular solution of eq. (D.1) is provided

by (D.11) with the coefficients

a
(k−n,k)
i = (−1)n+i 2n+i−1 (2n+ i)

(n + i− 1)!

i!
. (D.25)

For the (A)dS case we expect to be able to find solutions for the operators OL
s−2k as

deformations of any flat solution by terms of O ( 1
L2 ). It is interesting that, at least for

spin 2, the operator OL
0 satisfying

M
(2)
L OL

0 = gM
(0)
L , (D.26)
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actually coincides with its flat counterpart, up to covariantization of the derivatives:

OL
0 = g − 2

∇2

2L

, (D.27)

where in particular in the construction of the corresponding projector we make use of the

Lichnerowicz operator.

However, for tensors of higher ranks the naive covariantization of the flat-space Os−2k

does not solve (4.18), that is the (A)dS counterpart of (D.1). The correct deformation

involves infinite series of terms with growing powers of the inverse Lichnerowicz operator.

This phenomenon can be conveniently illustrated in the simplest example given by the

O1 operator, that suffices to complete the decomposition of a rank-3 field. In this case

the general solution of (D.1) contains a free parameter and reads

O1 = η − 2
∂2

2
+ a η

∂

2
∂ · + 3(1− a)

∂3

2
2
∂ · . (D.28)

It coincides with (D.25) for a = −1, but for any value of the parameter (4.18) can be

solved by deforming (D.28) with an infinite number of terms that are proportional to

negative powers of L2
2L:

OL
1 = g −

∞∑

k=0

1

L2k
2

k
L

{
2 [ 2(s− 2)(D + s− 4)]k

∇2

2L

+ ak g
∇

2L

∇· + bk
∇3

2
2
L

∇·

}
(D.29)

where the coefficients ak and bk satisfy

3ak + bk − [(s− 2)(D + s− 4) + (s− 3)(D + s− 5)] bk−1

= − 3 [ 2(s− 2)(D + s− 4)]k .
(D.30)

The free parameters thus reside only in the divergence terms, as in flat space, while the

infinite tower of contributions in (D.29) appears unavoidable. However, before drawing

a definite conclusion, it would be adviceable to explore alternative deformations of the

inverse D’Alembertian other then the inverse of the Lichnerowicz operator, here used to

avoid order ambiguities.
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