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Abstract

We consider the trajectory of a charged particle in an
arbitrary external magnetic field. A local orthogonal co-
ordinate system is given by the tangential, curvature, and
torsion vectors. We write down Maxwell’s equations in
this coordinate system. The resulting partial differential
equations for the magnetic fields fix conditions among its
local multipole components, which can be viewed as agen-
eralization of the usual multipol expansion of the fields of
magnetic elements.

MOTIVATION

The problem at hand came about while implementing a
generalized co-moving coordinate system in TraFiC4 [1],
which, in the generalized case, is curvilinear and non-
orthogonal.

The usual approach to describing the field content of
magnetic elements in accelerator physics is the expansion
in multipoles. This is based on the fact that the magnetic
field in vacuum can be derived from a potential obeying
Laplace’s equation; assuming a symmetry along one axis,
it reduces to the two-dimensional Laplace equation, which
is solved by analytic functions of a complex variable.

Strictly speaking, this approach is only admissible in
straight section, where the co-moving coordinate system
is cartesian. In curved sections, one has to use curvilinear
coordinates, and the Laplace operator changes its shape,
leading to a different set of solutions.

Furthermore, the transformation to curvilinear changes
the equation of motion, introducing inertial forces.

In this paper, we write down the Maxwell-Lorentz equa-
tions for the case of an external purely magnetic field in a
coordinate system co-moving on the orbit induced by the
external field. We describe that orbit in terms of its local
curvature and torsion; the Laplace and Lorentz equations
are given to all orders in this frame, Laplace’s equation is
solved for two special cases.

FRENET-SERRET COORDINATES

We consider the orbit particle in the usual description
of an accelerator. Ignoring energy changes, its trajectory
is completely determined by its initial conditions and the
external magnetic field.

We use the arc length s to parametrize its trajectory �r(s).
Then, we define the usual local dreibein by the Frenet field
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frame:

�Es := �t(s) = �r′(s)

�Ex := �n(s) =
1
k
�t′(s)

�Ey := �b(s) = �t(s) × �n(s)

where k is the curvature. We also introduce the torsion

w =
1
k2

det(�r′, �r′′, �r′′′)

We express all quantities in the coordinate system
spanned by �Ei, i.e. a vector �R is decomposed as
�R(s, x, y) = �r(s) + x�n(s) + y�b(s).

The magnetic field is scaled such that

�t′ = �t × �B

i. e., we absorb charge and energy into the field.
After some algebra, we find

B̄y = −k

B̄s = −w

B̄x = 0
(1)

where the index labels components with respect to �Ei and
barred quantities are values on the trajectory.

THE EQUATIONS OF MOTION

We now look at a particle with trajectory �x(t) =
x(t)�n(s(t))+y(t)�b(s(t))+�r(s(t)), where the coordinate s
is implicitly defined by �t(s(t)) · (�r(s(t)) − �x(t)) = 0. The
equations of motion for the coordinates x, y, s read:

ẋ = vx + ywṡ

ẏ = vy − xwṡ

ṡ =
vs

1 − kx

and

ẍ = ax+ x(ṡ2(w2 + k2)) + 2ẏwṡ+ yws̈+ (yw′− k)ṡ2

ÿ = ay − 2ẋwṡ + yw2ṡ2 − xw′ṡ2 − xws̈

s̈ =
as + 2ẋkṡ + (xk′ − ywk)ṡ2

1 − kx

where vi and ai are the components of the particle’s veloc-
ity and external acceleration.
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Putting in the Lorentz equation with magnetic fields B i,
we have

ax = (ẏ + xwṡ)vBs − ṡ(1 − kx)vBy

ay = (1 − kx)vBx − (ẋ − ywṡ)vBs

as = (ẋ − ywṡ)vBy − (ẏ + xwṡ)vBx

where v = vOrbit
s . The expressions for the second deriva-

tives of the coordinates contain centrifugal (proportional to
x, y) and Coriolis (proportional to ẋ, ẏ, ṡ) and higher-order
terms. They reduced to small quantities (O(v−vs), O(kx))
by the Lorentz force for the values given in (1).

THE OFF-ORBIT MAGNETIC FIELD

We are now interested in the external components of the
acceleration. They are given by the external magnetic field;
they can, however, not be arbitrary as the magnetic field has
to fulfill Maxwell’s equations. To find the conditions for
bx, by, bs, we write down the metric tensor for the curvilin-
ear coordinate system defined above:

gik =




h2 + w2(x2 + y2) −wy wx
−wy 1 0
wx 0 1




ik

(where x1 = s, x2 = x, x3 = y and h = 1 − k(s)x) with

det g = (1 − kx)2

The inverse is

gik = h−2




1 wy −wx
wy h2 + w2y2 −w2xy
−wx −w2xy h2 + w2x2




ik

The coordinate region we are interested is free of cur-
rents, so the magnetic field is the gradient of a potential Φ
with ∆Φ = 0. We express Laplace’s operator in curvilin-
ear coordinates; we find the following Laplace operators
for the cases of vanishing torsion and constant curvature;
constant curvature and torsion; and arbitrary curvature and
torsion, resp.:

∆k,0 = h−2∂2
s + ∂2

x + ∂2
y − k/h∂x

∆k(s),0 = ∆k,0 + xh−3k′(s)∂s

∆k,w = ∆k,0 + wh−3 (2[ky + h(y∂x − x∂y)]∂s +

w[−y∂y + h(x2∂2
x − 2xy∂x∂y + y2∂2

y)]
)

∆k(s),w(s) = ∆k,w(s) + xh−3k′(s)∂s (2)

Note that the s derivative of the torsion does not enter the
equations.

The magnetic field is

Bi = gik∂kΦ

so Φ has to fulfill the conditions

∂sΦ = −w

∂xΦ = 0
∂yΦ = −k

at the origin of the local system.
Obviously, the usual analyticity property of the solutions

is lost for nonvanishing curvature.

Constant Curvature

Let us solve the constant curvature case first. We notice
that the partial differential equation separates, i. e.

Ψ(s, x, y) = ψs(s)ψx(x)ψy(y)

We notice that ψ(s) = const because of the vanishing
torsion of the orbit. ψy(y) has to be a function fulfilling

ψ′′
y (y) = µψy(y)

and

(1 − kx)ψ′′
x(x) − µ(1 − kx)ψx(x) − ψ′

x(x) = 0

which is solved by Bessel functions

ψx = c1J0

(√

− µ

k2
(1 − kx)

)

+c2Y0

(√

− µ

k2
(1 − kx)

)

so

Ψ(s, x, y) =
∫

dµ(c1,y(µ)e−µy + c2,y(µ)eµy)
[

c1,x(µ)J0

(√

− µ

k2
(1 − kx)

)

+c2,x(µ)Y0

(√

− µ

k2
(1 − kx)

)]

This, of course, is just the well-known radial solution of
Laplace’s equation in cylinder coordinates [2].

Constant Curvature and Torsion

This case corresponds to an infinitely extending helical
orbit. The differential equation is given by line 2 of (2).
We make a separation Ansatz ψ(s, x, y) = −ws+ϕ(x, y).
The resulting differential equation for ϕ reads

(
∂2

x + ∂2
y − k/h∂x+

w2h−3 (2[h(x∂y − y∂x) − ky]+

h(x2∂2
x − 2xy∂x∂y + y2∂2

y)
))

ϕ(x, y) = 0

This equation is not solvable in closed form (the coordi-
nate system is not one of the ones in which the Laplace
equation is known to be separable[2]), we can, however,
obtain a recursion relation for coefficients in a power series
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ϕ(x, y) =
∑

m,n am,nxmyn. After some tedious work,
one obtains

am−3,n+2k(w2 + k2)(n + 1)(n + 2)+

− am−2,2+n(w2 + 3k2)(n + 1)(n + 2)+

− am−1,nk
(−k2(m − 1)2 + w2(m − 1)(2n + 1)

)
+

3 am−1,2+nk
(
n2 + 3 n + 2

)
+

am,n

(
k2(−3m2 + 2m) + w2(m + n + 2nm)

)
+

− am,2+n(n + 2)(n + 1)+

a1+m,−2+nkw2
(
m2 − 1

)
+

a1+m,nk(3m + 1)(m + 1)+

− a2+m,−2+nw2(m + 1)(m + 2)+

− a2+m,n(m + 1)(m + 2) = −2w2kδm,0δn,1 (3)

where the rhs term comes from the separation Ansatz. The
inital conditions are a0,0 = 0 (a global gauge fixing),
a1,0 = 0, a0,1 = −k. Note that there are special cases
of the recursion relation for m ≤ 3 or n ≤ 3, they are
(using the initial conditions)

a2,0 + a0,2 =

ka1,1 − 2a2,1 − 6a0,3 + w2k =
− 2a1,2 + 8ka2,0 − 6a3,0 + 6ka0,2 =

4w2a1,1 + 18ka0,3 + 8ka2,1 − 6a3,1 − 2k2a1,1 − 6a1,3 =

− 6k2a0,2 + 6ka1,2 − 12a4,0 − 2w2a0,2−
10k2a2,0 + 2w2a2,0 − 2a2,2 + 21ka3,0 =

− 3kw2a1,1 − 18k2a0,3 + 21ka3,1 − 6w2a0,3−
12a4,1+7w2a2,1−10k2a2,1−6a2,3+k3a1,1+18ka1,3 = 0

and, for p > 0

w2pa0,1+p − kw2a1,−1+p + ka1,1+p + w2a0,1+p−
6a0,3+p−5a0,3+pp−a0,3+pp

2−2w2a2,−1+p−2a2,1+p = 0

3w2pa1,1+p + 18ka0,3+p + 15ka0,3+pp + 3ka0,3+pp
2+

8ka2,1+p − 6a1,3+p − 5a1,3+pp − a1,3+pp
2−

6a3,1+p + 4w2a1,1+p − 6w2a3,−1+p − 2k2a1,1+p = 0

− 2kw2pa1,1+p − 5w2a0,3+pp − w2a0,3+pp
2+

3ka1,3+pp
2 +15ka1,3+pp−15k2a0,3+pp−3k2a0,3+pp

2+

5w2pa2,1+p − 3kw2a1,1+p + 3kw2a3,−1+p − a2,3+pp
2−

5a2,3+pp − 6w2a0,3+p − 10k2a2,1+p + 21ka3,1+p+

18ka1,3+p + 7w2a2,1+p + k3a1,1+p−
18k2a0,3+p − 6a2,3+p − 12w2a4,−1+p − 12a4,1+p = 0

and

− kw2pa1+p,0 + k3a1+p,0p
2 + w2a2+p,0p+

16ka3+p,0p + 3ka3+p,0p
2 − kw2a1+p,0 + 2k3pa1+p,0+

2kw2a−1+p,2 − 3p2k2a2+p,0 − a4+p,0p
2 − 7a4+p,0p−

2w2ap,2 +6ka1+p,2−10k2a2+p,0−6k2ap,2−12a4+p,0+

2w2a2+p,0 + k3a1+p,0 + 2k3a−1+p,2 + 21ka3+p,0−
11k2pa2+p,0 − 2a2+p,2 = 0

−3kw2pa1+p,1+16ka3+p,1p−3kw2a1+p,1+2k3pa1+p,1−
11k2pa2+p,1−3p2k2a2+p,1+6kw2a−1+p,3+k3a1+p,1p

2+

3w2a2+p,1p + 3ka3+p,1p
2 − a4+p,1p

2 − 7a4+p,1p+

18ka1+p,3 − 6w2ap,3 + 6k3a−1+p,3 − 10k2a2+p,1+

k3a1+p,1 − 12a4+p,1 − 18k2ap,3+

21ka3+p,1 + 7w2a2+p,1 − 6a2+p,3 = 0

− 3kw2a1,1 − 18k2a0,3 + 21ka3,1 − 6w2a0,3 − 12a4,1+

7w2a2,1 − 10k2a2,1 − 6a2,3+

k3a1,1 + 18ka1,3 = 0

(3) can be viewed as a generalization of the multipole
Ansatz for helical orbits. Of course, setting w = k = 0
we obtain the recursion relation valid for harmonic func-
tions in x, y, namely (n+1)(n+2)am,2+n +(m+1)(m+
2)a2+m,n = 0
. Obviously, the complexity of the power series prescrip-
tion limits its usefulness.

Planar Undulator

Here, we have vanishing torsion and a periodic curvature
k(s) = κ exp(−iλs). We substitute k(s) for s and obtain,
after separating off the harmonic y dependence as ∂ 2

yψ =
−µψ, where µ = 0 due to the boundary condition w = 0

(−λ2k(∂k + hk∂2
k) + h2∂xh∂x)ψ(k, x) = 0 (4)

Again, a solution is only possible in terms of a power se-
ries in terms of x and k, similiar as above. We obtain the
recursion relation

am−1,n−3(m − 1)2 − am−1,n−1λ
2(n − 1)(n − 2)−

am,n−2m(3m − 1) + λ2am,nn2+
am+1,n−1(3m + 1)(m + 1)−

am+2,n(m + 1)(m + 2) = 0 (5)

, as well as special cases for small m, n and for initial con-
ditions, which will not be given here for lack of space.
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