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Department of Physics, Kocaeli University, 41380 Kocaeli, Turkey

Received: 26 April 2021 / Accepted: 24 September 2021 / Published online: 12 October 2021
© The Author(s) 2021

Abstract We present a gauge formulation of the special
affine algebra extended to include an antisymmetric tenso-
rial generator belonging to the tensor representation of the
special linear group. We then obtain a Maxwell modified met-
ric affine gravity action with a cosmological constant term.
We find the field equations of the theory and show that the
theory reduces to an Einstein-like equation for metric affine
gravity with the source added to the gravity equations with
cosmological constant μ contains linear contributions from
the new gauge fields. The reduction of the Maxwell metric
affine gravity to Riemann–Cartan one is discussed and the
shear curvature tensor corresponding to the symmetric part
of the special linear connection is identified with the dark
energy. Furthermore, the new gauge fields are interpreted
as geometrical inflaton vector fields which drive accelerated
expansion.

1 Introduction

It is verified by the Solar System and cosmological tests that
general relativity provides an elegant and powerful formu-
lation of gravitation in terms of Riemannian geometry and
forms our understanding of space-time [1]. Despite these suc-
cesses, there are some reasons to believe that general rela-
tivity is unable to explain some gravity phenomena on both
atomic and cosmological scales and should be either modi-
fied or replaced by a new theory of gravity. Recently many
papers propose new types of dynamics to explain the dark
energy phenomenon [2,3] as well as the dynamical role of
the cosmological constant [4,5].

It is also known that the cosmological term, usually asso-
ciated with the vacuum energy density, cannot be a valid
theoretical explanation for the accelerated expansion of the
universe [6]. A very different approach holds that cosmic
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acceleration is a manifestation of new gravitational physics
rather than dark energy, i.e., that it involves a modification
of the geometry as opposed to the stress–energy tensor side
of the Einstein equations [4]. It is important to point out that
one can accommodate a generalized cosmological constant
in the gravity theory using extended algebras. A way of intro-
ducing the generalized cosmological constant term using the
Maxwell algebra was presented in [7] and even more, inter-
estingly it has been argued that by making use of the gauged
Maxwell algebra one can understand it as a source of an
additional contribution to the cosmological term in Einstein
gravity.

Maxwell symmetry was introduced around forty years ago
[8,9], but it is only recently that has attracted more attention
after the work of Soroka [10] in 2005. The Maxwell symme-
try is the result of extending the Poincare symmetry by six
additional tensorial Abelian symmetry generators that make
the four-momenta non-commutative. Since then a variety of
different Maxwell (super) symmetry algebras with interest-
ing geometric and physical properties have been constructed
and analyzed in the papers [11–19].

By gauging Maxwell symmetries, one can define modi-
fied gravitational theories that extend general relativity by
including a generalized cosmological term [20–30]. Among
these is the Maxwell extension of special affine symmetry
and its gauging which will be the focus of our attention in
this paper.

In 1974 Yang [31] put forward a gauge theory of gravity
based on the affine group to construct a theory of (quan-
tum) gravity in the high energy limit [32]. On the other
hand, in nature, there is no conservation law corresponding
to the (special) linear transformation and so the linear trans-
formations must be dynamical, i.e., spontaneously broken
[33]. Correspondingly, the papers [34–38] suggested that the
renormalizability and unitarity problems in quantum gravity
can be overcome by taking the affine group as the dynamical
group in a gauge theory of gravity with the help of general-
ized linear connection [39]. There exists a series of papers

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09685-6&domain=pdf
mailto:ocebecioglu@kocaeli.edu.tr
mailto:salihkibaroglu@gmail.com


900 Page 2 of 7 Eur. Phys. J. C (2021) 81 :900

[38,40–46] in which an affine gauge gravitation theory is
considered.

Our paper has the following structure. In Sect. 2, follow-
ing [28,29], we briefly review the Maxwell extension of the
special-affine group,MSA (4, R). We also present the trans-
formation rules for the generalized coordinates (coset param-
eters) and the corresponding differential realization of gen-
erators using the nonlinear realization technique. In Sect. 3,
we gauge the Maxwell special linear algebra msa (4, R) and
find the gauge covariant quantities to construct the gauge-
invariant action. In Sect. 4, we introduced SL (4, R) gauge
covariant metric tensor in the affine space needed for the met-
ric affine gravity (MAG). In Sect. 5, we propose an action
for Maxwell metric affine gravity by using Euler or Gauss–
Bonnet type topological action and derive the equations of
motion of corresponding action. We present our conclusions
in Sect. 6.

2 Introducing the special-affine algebra and its maxwell
extension

We begin in this section by giving an overview of the Maxwell
extension of the special affine group. For a more complete
description of the details, the reader is referred to earlier
works [28,29]. The special affine symmetry groupSA (4, R)

is given by the semi-direct product of the special linear group
SL (4, R) and the translation group T (4) and are generated
by the fifteen special linear generators L̊a

b and by the four
affine translation generators Pa , respectively. The commuta-
tors of the generators obey the following algebra,
[
L̊a

b, L̊
c
d

]
= i

(
δcb L̊

a
d − δad L̊

c
b

)
,

[
L̊a

b, Pc
]

= −i

(
δac Pb − 1

4
δab Pc

)
,

[Pa, Pb] = 0. (1)

From this algebra, we can construct a group element by expo-
nentiation,

g
(
x, ω̊

) = eix
a(x)Pa eiω̊

b
a(x)L̊

a
b , (2)

where xa (x) , ω̊b
a (x) are the real parameters. The Maurer–

Cartan (MC) 1-forms is defined as � = −ig−1dg, here g is
the general element of the SA (4, R) group and the structure
equation is given by

d� + i

2
[�,�] = 0. (3)

Thus, one can show that the MC 1-forms satisfy following
equations,

0 = d�a
P + �a

L̊b
∧ �b

P − 1

4
� L̊ ∧ �a

P ,

0 = d�a
L̊b

+ �a
L̊c

∧ �c
L̊b

, (4)

where the MC 1-forms �a
P and �a

L̊b
correspond to transla-

tions and special-linear transformations in affine space-time.
By using the MC structure equations (4) and making use
of the methods presented in [12,15], one can consider a
Maxwell extension of the special affine algebra by the anti-
symmetric generator Zab. The non-vanishing commutation
relations are[
L̊a

b, L̊
c
d

]
= i

(
δcb L̊

a
d − δad L̊

c
b

)
,

[
L̊a

b, Pc
]

= −i

(
δac Pb − 1

4
δab Pc

)
, (5)

as well as the Maxwell extension

[Pa, Pb] = i Zab,[
L̊a

b, Zcd

]
= i

(
δad Zbc − δac Zbd + 1

2
δabZcd

)
. (6)

The action of space-time symmetries on the fields, obtained
as an induced representation, is related to the nonlinear real-
ization of symmetries and are developed in reference [47–
50]. Therefore, when talking about these systems we find
the coset construction provides the appropriate language. We
refer the reader to references [33,38,42,46] for the deriva-
tion of the non-linear realisation with the SA (4, R) group.
We now construct the non-linear realization corresponding
to the group MSA (4, R) taking the SL (4, R) to be a local
symmetry. We therefore parametrize the coset elements of
the form

K (x, θ) = MSA
SL

= eix ·Peiθ ·Z , (7)

where xa, θab are the coset parameters. Upon using the def-
inition of the transformation of the coset representative

g(a, ε, u)K (x, θ) = K (x ′, θ ′)h(ω̊), (8)

where h(ω̊) = eiω̊
b
a L̊

a
b stands for the subgroup element, we

find that the infinitesimal transformations of the coset param-
eters are given by

δxa = aa + uacx
c − 1

4
uxa, (9)

δθab = εab + u[a|
c θc|b] − 1

2
uθab − 1

4
a[axb], (10)

ω̊a
b = uab, (11)

where the square brackets denote antisymmetrization of cor-
responding indices and a, ε, u are the real parameters for
affine space-time translations, tensorial translations and spe-
cial linear symmetry transformation respectively.

For the sake of completeness, we give the differential real-
ization of the symmetry generators

Pa = i

(
∂a − 1

2
xb∂ab

)
,
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Zab = i∂ab,

L̊a
b = i

(
xa∂b + 2θac∂bc

) − 1

4
δab

(
xc∂c + 2θcd∂cd

)
, (12)

where θ derivative is defined by ∂abθ
cd = 1

2

(
δcaδ

d
b − δcbδ

d
a

)
.

It is an easy task to check that the generators satisfy the alge-
bra Eqs. (5) and (6).

3 Gauging the Maxwell-specıal-affine algebra

Let us construct a gauge theory for the Maxwell special affine
algebra msa (4, R). For this purpose, we follow the same
methods given in [18,22,28]. The gauge field is a msa (4, R)

algebra valued one-form

A = ea Pa + BabZab + ω̊b
a L̊

a
b. (13)

An infinitesimal gauge parameter is

ζ (x) = ya (x) Pa + ϕab(x)Zab + λba(x)L̊
a
b, (14)

where ya (x), ϕab(x), and λba(x) are the infinitesimal param-
eters corresponding to the affine translation, tensorial and
special linear transformations respectively.

The gauge transformation are given by

δA = −dζ − i [A, ζ ] , (15)

evaluating (13), we get

δea = −dya − ω̊a
b y

b

+ 1

4
ω̊ya + λabe

b − 1

4
λea = −Dya + λabe

b − 1

4
λea,

(16)

δBab = −dϕab

− ω̊
[a|
c ϕcb] + 1

2
ω̊ϕab + λ

[a|
c B

cb] − 1

2
λBab + 1

2
e[a yb]

(17)

= −Dϕab + λ
[a|
c B

cb] − 1

2
λBab + 1

2
e[a yb], (18)

δω̊a
b = −dλab

− ω̊a
cλ

c
b + ω̊c

bλ
a
c = −Dλab, (19)

where the SL (4, R) valued exterior covariant derivative
D of a tensor density � of affine weight w contains{
wTr

(
ω̊a
b

)
�

}
, e.g.

(D�)ab =
[
δabd + ω̊a

b + w (�) Tr
(
ω̊a
b

)]
�. (20)

From transformation rules, we immediately infer that 1-
forms ea , Bab, and ω̊b

a have the following affine scaling
weights −1/4, −1/2, and 0 respectively.

Now, acting the exterior covariant derivative on A we
obtain the curvature �satisfying the structure equation and

the Bianchi identity

� = dA + i

2
[A,A] , (21)

d� + i [A, �] = 0, (22)

where d is the exterior differential. Upon expressing the cur-
vature form � as

� = Fa Pa + FabZab + Ra
b L̊

b
a, (23)

the structure Eq. (21) becomes

Fa = dea + ω̊a
b ∧ eb − 1

4
ω̊ ∧ ea = Dea, (24)

Fab = dBab + ω̊[a|
c ∧ Bc|b] − 1

2
ω̊ ∧ Bab − 1

2
ea ∧ eb, (25)

= DBab − 1

2
ea ∧ eb, (26)

Ra
b = dω̊a

b + ω̊a
c ∧ ω̊c

b = Dω̊a
b. (27)

Thus the curvature forms corresponding to the various gen-
erators of the algebra are

(
Fa,Fab,Ra

b

)
, and they repre-

sent the torsion, the field strength associated with the Bab

field and the non-Riemannian affine curvature form, respec-
tively. One concludes that the affine curvature Ra

b and the
torsion Fa are given by the exterior covariant derivatives of
the affine connection and vierbein respectively. On the other
hand, the curvature 2-formFab coming from Maxwell exten-
sion is not given by the exterior covariant derivative of the
corresponding gauge field. The extra term in Fab represents
the curvature of the local tensor space. This contribution is
present because the commutator of two infinitesimal affine
translations equals to an element of the tensor space. More-
over, from the Bianchi identity Eq. (22), we get the following
equations

DFab = R[a|
c ∧ Bc|b] − 1

2
R ∧ Bab − 1

2
F [a ∧ eb],

DFa = Ra
b ∧ eb − 1

4
R ∧ ea,

DRa
b = 0. (28)

Under infinitesimal gauge transformations with parameter ζ ,
the curvature 2-form � transform as

δ� = i [ζ, �] , (29)

and hence one gets

δFa = −Ra
b y

b + 1

4
Rya + λabFb − 1

4
λFa, (30)

δFab = −R[a|
c ϕc|b] + 1

2
Rϕab + λ[a|

cF c|b] − 1

2
λFab + 1

2
F [a yb],

(31)
δRa

b = λacRc
b − λcbRa

c. (32)

Again from these transformation rules, one observes that cur-
vature 2-form Fa , Fab, and Ra

b have the following affine
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scaling weights −1/4, −1/2, and 0 respectively and they
will be useful for constructing invariant Lagrangian densi-
ties.

4 Constructıon of the metric for the affine space

Using the definition of the local metric,

gab (x) = ea ⊗ eb, (33)

one deduces SL (4, R) gauge variation of the metric tensor
with the help of Eq. (16) by omitting diffeomorphism part

δλg
ab =

(
λace

c − 1

4
λea

)
⊗ eb + ea ⊗

(
λbce

c − 1

4
λeb

)

= λ(a
cg

cb) − 1

2
λgab, (34)

where round brackets denote symmetrization. Similarly from
the definition of the Kronecker delta tensor

δab = ea ⊗ eb, (35)

one can obtain the SL (4, R) gauge variation of ea as

δλea = −λbaeb + 1

4
λea, (36)

and the last equation implies

δλgab = −λc(agcb) + 1

2
λgab. (37)

With the use of vierbein and local metric, theSL (4, R) gauge
variation of the coordinate metric becomes

δλgμν (x) =
(

−λc(agcb) + 1

2
λgab

)
eaμe

b
ν + gab

(
λac e

c
μ − 1

4
λeaμ

)
ebν

+gabe
a
μ

(
λbce

c
ν − 1

4
λebν

)
= 0. (38)

Moreover, the gauge variation of determinant of the vierbein
is

δλe = 1

2
egμνδλgμν = 0. (39)

Defining the fully antisymmetric tensor ηabcd by

ηabcd = eεabcd , (40)

where εabcd is the Levi-Civita symbol, its variation under
local SL (4, R) transformation becomes

δληabcd = −λeaηebcd − λebηaecd − λecηabed

−λedηabce + ληabcd = 0, (41)

and has affine scaling weight 1.
Having defined the local metric for the affine space-time,

the metricity is obtained by taking the covariant derivative

of the local metric, i.e., Qab = Dgab and its explicit form
follows

Qab = Dgab = dgab + ω̊(a
c g

cb) − 1

2
ω̊gab,

Qab = Dgab = dgab − ω̊c
(agcb) + 1

2
ω̊gab. (42)

This in turn leads to the covariant derivative of the metricity

DQab = R(a
cg

cb) − 1

2
Rgab.

Likewise,

DQab = −Rc
(agcb) + 1

2
Rgab. (43)

5 Maxwell-modified mag field equations

One way of constructing the action is to begin from the
covariant quantities with manifest geometric meanings. To
prescribe the dynamics of the gauge fields, we have to intro-
duce an action, invariant under local SL (4, R) transforma-
tion. We need then curvatures Ra

b, Fab and the metric gab

obtained in the last section. We start with following topolog-
ical action,

S = 1

2χ

∫
J ∧ ∗J = 1

4χ

∫
ηabcdJ ab ∧ J cd , (44)

known as Euler or Gauss–Bonnet type action, where χ =
8πG/c4 is the Einstein’s constant, (∗) is the Hodge dual and
ηabcd is defined by Eq. (40). Contracting Ra

b with gab, we
can form curvature 2-form Rab = Ra

cg
cb and it’s gauge

transformation is given by

δRab = λacRcb + λbcRac − 1

2
λRab. (45)

It has the same form as Eq. (31) when the diffeomorphism
part omitted. So, one can introduce a shifted curvature 2-
form,

J ab = Rab − μFab, (46)

where μ is a dimensionful constant. Its gauge transformation
becomes

δJ ab = λacJ cb + λbcJ ac − 1

2
λJ ab. (47)

The gauge transformation of ∗Jab = 1
2ηabcdJ cd has the

following form

δ ∗ Jab = 1

2

(
λecηabed + λedηabce − 1

2
ληabcd

)
J cd , (48)

the term in the parentheses can be written another form after
re-indexing the labels as
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λecηabed + λedηabce − 1

2
ληabcd = −λeaηebcd − λebηaecd

+1

2
ληabcd , (49)

then variation of the Hodge dual of J becomes

δ ∗ J = −λea ∗ Jeb − λeb ∗ Jae + 1

2
λ ∗ Jab. (50)

Invariance of the action under gauge transformation can be
checked easily with the help of Eqs. (47) and (50). By con-
struction, the action is automatically invariant under diffeo-
morphism and has affine scaling weight zero. Before intro-
ducing dynamics, we still have to discuss the nature of the
gauge and general coordinate transformations (diffeomor-
phism). From a gauge theory perspective, infinitesimal dis-
placements are a ”local translation”. Under a local transla-
tion, quantities change according to Lie derivative. Indeed
using the identity lyσ = iydσ + diyσ for the Lie derivative
of any one-form σ , we easily find that

δdi f f e
a = iyFa − Dya + λabe

b − 1

4
λea = iyFa + δea (51)

δdi f f B
ab = iyFab − Dϕab

+λ
[a|
c Fc|b] − 1

2
λBab − 1

2
y[aeb] = iyFab + δBab

(52)

δdi f f ω̊
b
a = iyRa

b − Dλab = iyRa
b + δω̊b

a (53)

In particular if the affine torsion has vanishing projec-
tion along the tangent vector y, then the diffeomorphism
coincides with gauge transformation. Torsion constraint also
allows one to replace local translations by general coordi-
nate transformations. Invariance of the action (44) under local
translation can be directly checked by using the explicit form
of the Lie derivative:

δdi f f S =
∫

ly L =
∫

diy L + iydL (54)

The Lagrangian is a 4-form density, so the first term is a
total divergence can be ignored as a surface term and the
second term being a 5-form vanishes identically on the 4D
space-time.

It remains, of course, to find the field equations for the
gauge fields. The variation of the action (44) with respect to
gauge fields ω̊b

a (x), ea (x), Bab (x) and the metric gab (x)
lead to the following equations:

D
(
gac ∗ Jbc

) − 2μBac ∧ ∗Jbc = 0, (55)

eb ∧ ∗Jab = 0, (56)

D (∗Jab) = 0, (57)

Rc
(a ∧ ∗Jcb) − 1

2
gabJ cd ∧ ∗Jcd = 0. (58)

It is important to note that these equations of motion trans-
form as SL (4, R)-tensors. Here, the first and second equa-

tions represent the generalizations of the torsion equation,
and the Einstein equation. The third equation arises from the
Maxwell symmetry and the last equation is the generalized
version of the equation of motion for the metric tensor given
in [43].

In order to write Eq. (56) in the more conventional form,
one switches from tangent indices to coordinate indices,

∗ Jcd ∧ ec = 1

2
eεabcdJ ab ∧ ec

= 1

4
eεabcdJ ab

μν e
c
αdx

μ ∧ dxν ∧ dxα, (59)

multiplying this from right dxβ , we get following equation

J μ
ν − 1

2
δμ

νJ = 0, (60)

which can also be expressed as

Rμ
ν − 1

2
δμ

νR = μ

(
Fμ

ν − 1

2
δμ

νF
)

. (61)

This has resemblance to the usual Einstein’s field equation.
However, the curvature tensor Rμ

ν and Fμ
ν may not neces-

sarily be symmetric. Fμ
ν acts as sources in the field equation

of gravity. This equation can be written in a more familiar
form by going from differential form to space-time tensors
as

1

2
Fμν

ρσdx
ρ ∧ dxσ

= 1

2

(
eμ
a e

ν
bD[ρBab

σ ] − 1

2
δμ
ρ δν

σ + 1

2
δμ
σ δν

ρ

)
dxρ ∧ dxσ ,

(62)

so we get explicit form of Fμν
ρσ ,

Fμν
ρσ = eμ

a e
ν
bD[ρBab

σ ] − 1

2
δμ
ρ δν

σ + 1

2
δμ
σ δν

ρ, (63)

then Fμ
ρ and F can be extracted respectively as,

Fμ
ρ = Fμν

ρν = eμ
a e

ν
bD[ρBab

ν] − 3

2
δμ
ρ , (64)

F = Fμ
μ = eμ

a e
ν
bD[μBab

ν] − 6. (65)

Thanks to the last three equations, we can re-expressed the
right hand side of Eq. (61),

Fμ
ν − 1

2
δμ

νF = eμ
a e

ρ
bD[νBab

ρ] − 1

2
δμ
ν e

ρ
a e

σ
bD[ρBab

σ ] + 3

2
δμ
ν ,

(66)

so the Eq. (61) takes the following form,

Rμ
ν − 1

2
δμ
ν R − 3

2
μδμ

ν = μ
(
eμ
a e

ρ
bD[νBab

ρ] − δμ
ν e

ρ
a e

σ
bDρB

ab
σ

)
,

(67)

where 1
2δ

μ
ν e

ρ
a eσ

bD[ρBab
σ ] = δ

μ
ν e

ρ
a eσ

bDρBab
σ .
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We see that the source added to the gravity equations with
cosmological constant μ contains linear contributions from
the new gauge fields. The second term on the right-hand side
of (67) provides a field-dependent modification of the cos-
mological constant at the left-hand side of the equation[30].

To the decomposition above there corresponds a split-
ting of the connection 1-form into its Riemannian and non-
Riemannian parts ωa

b and , vab, respectively, as

ω̊b
a = ωa

b + vab, (68)

where ωa
b is antisymmetric Lorentz connection and vab is

symmetric shear connection. In terms of these forms Eq. (67)
becomes,

Rμ
ν − 1

2
δμ
ν R − 3

2
μδμ

ν

= μeμ
a e

ρ
b

(
D[νBab

ρ] + v
[a
[ν c ∧ Bcb]

ρ] − 1

2
v[νBab

ρ]
)

−μδμ
ν e

ρ
a e

σ
b

(
DρB

ab
σ + v[a

ρ c ∧ Bcb]
σ − 1

2
vρB

ab
σ

)
, (69)

where D is the Lorentz exterior covariant derivative. We see
that this is simply Einstein’s equation for metric affine grav-
ity with a cosmological constant term. It is then sensible to
identify the expression in the curly bracket as the source of
the gravitational field. Note also that, if the affine curvature
tensor is decomposed into the Riemannian and shear strength
tensor parts, it can end up in a Riemann–Cartan theory with
two extra fields, i.e., translational connection and the sym-
metric sector of theSL (4, R)-connection both migrate to the
stress–energy sector. This means that shear strength tensor,
considered to be an intrinsic property of metric affine space-
time, may measure the energy content of the universe, i.e.,
dark energy.

6 Conclusion

In conclusion, we have used coset formalism to determine
gauge formulation of the Maxwell extended special affine
gravity. For this purpose, we have introduced a SL (4, R)

connection over a (xa, θab) = (4, 6)-dimensional tensor
extended space obtained by extending a metric affine space-
time with six tensor coordinates. After gauging the Maxwell
special affine group MSA (4, R), we propose a locally
SL (4, R) invariant action for the Maxwell extended MAG
with the help of topological Euler or Gauss–Bonnet type
action.

It is found that the Maxwell extension modifies the results
of the metric affine gravity not only by changing the numer-
ical coefficient of the cosmological term but also the new
abelian gauge fields Bab

μ (x) terms already present in the lat-
ter theory. These additional terms represent the characteristic

contributions of the Maxwell symmetry. To our knowledge,
these terms have not been extensively analyzed yet but up
to now, the additional terms have been interpreted a lot of
meanings. For instance, in the gravitational framework, the
additional degrees of freedom represent uniform gauge field
strengths in (super)space which leads to uniform constant
energy density [13]. Also, it is known that such an addi-
tional term may be related to dark energy [4,5]. Moreover,
the Maxwell symmetry provides a geometric background
to define vector inflatons in cosmological models [30] and
the additional terms may be interpreted as geometrical infla-
ton vector fields which drive accelerated expansion. To sum
up, these results show the importance and potential of the
Maxwell symmetry.
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