
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 323, Number 2, February 1991

MAXWELL'S EQUATIONS IN A PERIODIC STRUCTURE

XINFU CHEN AND AVNER FRIEDMAN

Abstract. Consider a diffraction of a beam of particles in M when the di-
electric coefficient is a constant 6, above a surface 5* and a constant e2 below
a surface S, and the magnetic permeability is constant throughout K . S
is assumed to be periodic in the xx direction and of the form x, = fx (s),
xi = fjis) ' x2 arbitrary. We prove that there exists a unique solution to the
time-harmonic Maxwell equations in E having the form of refracted waves
for x3 > 1 and of transmitted waves for -x3 » 1 if and only if there exists a
unique solution to a certain system of two coupled Fredholm equations. Thus,
in particular, for all the e 's, except for a discrete number, there exists a unique
solution to the Maxwell equations.

Introduction

In this paper we consider the Maxwell equations for time harmonic solutions
in the entire space R , with piecewise constant dielectric coefficient having
jump across a periodic surface. The magnetic permeability p is assumed to
be constant whereas the dielectric coefficient e is given by e = e¡ above a
surface S:x3 = f(xx) and e = e2 below the surface S; e¡ and e2 are different
constants. If S is a half-space {x3 = 0} then the solution É0, H0 can be
computed explicitly. We assume in this paper that S is periodic, i.e.,

fi(xx+L) = fi(xx)   \/xxgR(L>0).
We wish to find a solution È, H such that

Ë — Ëq and H - H0 are superpositions of "transmitted' waves
(0.1) in {x, < -A}  and of "reflected" waves in {x3 > A} where

A > max l/l.
In §§1-7 we assume that fi G C and we reduce the solution of the Maxwell
equations to a Fredholm system of four integral equations; in §8 we reduce
it further to a Fredholm system of two integral equations. Thus for all but
a discrete sequence of values of the physical parameters there exists a unique
solution to the integral equations, yielding a solution of the Maxwell equations;
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466 XINFU CHEN AND AVNER FRIEDMAN

the solution satisfies (0.1). In §9 we prove that any solution of the Maxwell
equations which satisfies (0.1) is uniquely determined.

In §10 we generalize the previous results to the case where the curve 5 =
Sn{x2 = 0} is not necessarily of the form x3 = f(xx ) with / G C2 ; in fact S
is assumed to be a piecewise C curve, which is not necessarily an x3-graph. In
particular, the case where / is a step-function is included; this case arises in the
design of digital lenses (oral communication from Dr. Allen Cox at Honeywell).

Integral equations have been used by Benaldi [2] to solve the Maxwell equa-
tions; he used finite-elements schemes for computing the solutions of the integral
equation. The Maxwell equations in periodic structure corresponding to arrays
of antennas were studied by Nedelec and Starling [8]; Bellout and Friedman
[ 1 ] studied the Schrödinger equation for a periodic potential, corresponding to
quantum scattering by a slab with periodically varying potential energy.

For the specific problem dealt with in this paper, there is a numerical ap-
proach due to Gaylord and Moharam [5], which is based on approximating
fi(xx) by step-functions and using the "separation of variables" method for
solving the approximating problems.

A good background on diffraction optics in grating material, especially from
engineering and numerical points of view, can be found in a collection of articles
edited by R. Petit [9].

1. The Maxwell equations

We denote points in R3 by X = (xx, x2, xf), Y = (yx, y2, yf). Let 5 be
a surface in R   given by S:x3 = fi(xx) where f(xx) is periodic of period L:

fi(xx+L) = fi(xx)   Vx,;

we also assume that fi gC .
Introduce the domains

Çïx={X = (xx, x2, xf ; xx > f(xf},
Q.2 = {X = (xx, x2, xf) ; xx < f(xf)}.

We assume that the magnetic permeability p is constant throughout space
whereas the dialectric coefficient e satisfies

e = Í £l    in "' '
\ e2   in £22,

where e,, s2 are complex constants and ex ̂  e2. Writing for j = 1, 2
i     . a i      . ns = e + is  ,        e  = e. + ze  ,

we further assume that
e'j>0,        e">0;

the case e" > 0 accounts for absorption; see, for instance, [4, §82].
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MAXWELL'S EQUATIONS IN A PERIODIC STRUCTURE 467

Suppose a beam of particles is incident to the period surface 5 from above
and it is time periodic of period 2n/o). We wish to find the corresponding time
harmonic solution

É(r)e~lM, H(r)e~' (r = X = (xx,x2,xf)

of the Maxwell equations and, in particular, to investigate the asymptotic be-
havior of the solution as |jc3| —> oo. Setting

E  = E\çi. »        H = Hin. »
Maxwell's equations in each £2. are

(1.1) Vxf'-^ = 0   in £2,,

(1.2) VxHj + —ÉJ = 0    inQv c J
ICOE ßj

C
where c is the speed of light.   The weak form of Maxwell's equations in a
neighborhood of 5 reduces to the following jump relations:

(1.3) ñx(Éx-É2) = 0   on S,
(1.4) ñx(Hl-H2)=0   onS,

(1.5) ñ-(sxÉx -e2É2) = 0   on S,
(1.6) ñ-(Hl-H2) = 0   on S,

where ñ is the downward pointing unit normal to S.
The incident beam of particles coming from Clx can be represented by the

solution
'dhn   „      dhn

(1.7)

where

Hfr) = (0,h0,0),       ^.¿jg.O.-gf),
ho = ei(aXi-ßX})

(1.8) a2 + ß2 ■= ̂ -^-,        areal,  Im/J>0.
c~

In the special case S = {x3 = 0} the corresponding solution of the Maxwell
equations (1.1)-(1.6) is

(1-9) «• ei{ax'-ßx^ + r(a, ß)ei{ax^+ß^   if x3 > 0,
h = h(x,, xf) = i ,      ■

1     Z>     \t(a,ß)e'^-ß^   if*3<0,
where

(1.10) ß = {(a+ß2)n2-a2}i/2,        lmß>0,n2=(^\ (Snell'slaw),
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468 XINFU CHEN AND AVNER FRIEDMAN

2

ßni + ß
1.11) t(a, ß) = n 2   2.    (transmission coefficient),

ßnl-ß
(1.12) r(<2,jS) = ^—Ç    (reflection coefficient).

Notice that Im/? > 0 and Im/? > 0 imply exponential decay away from S
(due to absorption).

We wish to find a solution to (1.1 )—( 1.6) for a general periodic surface S
such that (0.1) holds; this last condition is precisely the condition (9.2) under
which uniqueness is proved in §9.

We look for a solution satisfying:

M 1 3Ï        e~'ax,Ê(r) and e~'ax'H(r) are periodic in xx  of period L,
and are independent of x2.

In the sequel we use the notation

ex = (1,0,0),    e2 = (0,1,0),    e3 = (0,0,1).

Note that along S

(lu) ñ(x) = ñ(xx) = fi* fe i
'       {l+/'(x1)2},/2'

Throughout this paper we write

(1.15) a(x1) = {l+/(x,)2}1/2.

We conclude this section by proving that equations (1.5), (1.6) follow from
(1.1)-(1.4).
Lemma 1.1. // (É, H)  is a solution of (1.1)- (1.4)  then (É, H) satisfies also
the equations (1.5), (1.6).
Proof. Take any bounded subdomain F of S with smooth boundary. By ( 1.1 )
(which is assumed to hold up to the boundary of Cl; )

[ ñ ■ l-^HjdS = í ñ-(VxEj)dS = í   ÉJ ■ (ñ x ñf dl
Jf c JF JdF

= - í ñ0-(ñxEJ)di,
JdF

where nQ is the outward unit normal to dF . Hence

[ lA^Efi. tHl _H2)dS = - [   n0-(nx (£' - Ë2)) dl = 0
Jf    c JdF

by (1.3). Since F is arbitrary, ñ ■ (Hl - H2) = 0 on S. The proof of (1.5)
follows similarly from (1.2), (1.4).
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2. Integral representation of solutions

It is easily seen that É and H both satisfy, outside S, the equation

(2.1)

we shall always choose k such that

Rek>0,        lm«t>0.

It is natural to expect an integral representation of Ë, H by means of the
fundamental solution Ok of (2.1):

Jk\X-Y\
(2.2) <t>k(X-Y) = 4n\X-Y\
k = ^^pEf = kj in Í2;.

Motivated by [7] we shall try to find a solution of the form

(2.3)   E(X) -LWI{Y)<t>k{X -Y)-J(Y)x VY®k(X - Y)

+ icoe I(Y).VY4>k(X-Y) dSy,

(2.4)   H(X) IMJ(Y)%(X -Y) + I(Y) x VyO JX - Y)

+
103 p

J(Y)-VY%(X-Y) dSY'

-l-<5.Lemma 2.1. Suppose I(Y) and J(Y) are bounded by OQYf^") as \Y\ -> oc,
S > 0 (so that the integrals in (2.3), (2.4) and their derivatives are all well
defined). Then

(2.5) Vx£-^// = 0   onR\s,c

(2.6) Vx/7+—£ = 0   onR3\S.c
Proof. Since VxO^ = -VYQ>k , we have

Jx VY% = -Jx Vx®k = Vxx {JQk).

It follows that

Using the relations V x V = 0 and

Vx(Vxg) = V(V-g)-Ag,
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470 XINFU CHEN AND AVNER FRIEDMAN

we deduce that

VxÉ = ^Vxx j r<Y>k-Vxx(vxx ¡ J^

r    í c -+ v*x[v*Jtair'***'.

icop f ( ?   _   _ c  _   . ? _  _ .     icoe =>,  1= ^y(/xvÄ + _v,(y.vyo,) + —70fc|

c
i.e., (2.5) holds. The proof of (2.6) is similar.

In the sequel we shall be interested only in / and / which are independent
of y2 and are such that

(2.7) e~'ay,I(yx) and e~'ay¡J(yx) are periodic in yx of period L.

We then must show that the integrals in (2.3), (2.4) make sense. This is done
in the next section.

3. Periodic fundamental solution

In the sequel we assume that

(3.1) k2¿(^-a\      forall« = 0,±l,±2, ... .

Notice that if Ime   > 0 then (3.1) is certainly satisfied.

Lemma 3.1. The following formula holds:

/oo <&k(X-Y)dy2 = -H(0l)(k\x-y\),
-oo ^

where x = (xx, xf, y = (yx, yf) and H0    is a Hankel function.

Proof. Substituting Ç = (a2 +y2)l,2a~l/2, we get

r e'k(aW)m  A        r     e'kaC       ..     ni„(i),,   .

in the last equality we used [6, p. 322, 387 #4] for Im/c > 0, where H^l) is a
Hankel function.

In the sequel we use the notation x = (xx, xf), y = (yx, yf) and set
oo      r°°

(3.3) Vk{x-y)=   ¿   /     e-'a(x^+nL)%(X-Y + nLex)dy2.
«_    ^ «/ — OO
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For any complex number k in <C+ = {Im k > 0} , set

¿0/2

471

(3.4)    £„(*) = N
,2      /2/r«

iffc2-/'2™ a     =
i 2nnk  - ( —;-a 0 < 6 < In.

■y 2 4-
Since /c  t¿ (2nn/L -a)   for k gC  , fi„(k) is a complex analytic function in
C+ ; furthermore, it is continuous up to {Im k = 0} and

(3-5) fin(k) =
^k2- (^f-a)2   for k real,  k2 > (2j* - a)2 ,

ia/(2m _ a)2 _ fc2   for jfc real,  fc2 < (^f - a)2.
Theorem 3.2. For any kGC+ the following holds:

00

(3.6)
_°°_      e'/í„('c)lJC3-J'3le-'(2'"l/¿)Ul->'i)

Wn=—oo

Notice that for Ac > 0 the infinite series contains a finite number of oscillating
terms, namely those with (2nn/L -a) < k2 ; the remaining terms are expo-
nentially decaying as |x3 -y3\ —> oo, and so is their sum. On the other hand, if
k gC+ then all the terms in (3.6) are exponentially decaying as \x3 -yf —> oo .

Proof. It suffices to establish (3.6) for y = 0. Set

f(s,y,xf = e -ias   e •k\fs1+y2+xl

y/s2 + y2 + x]

/oo e"sfi(s ,y,xf ds.
-oo

By the Poisson summation formula [3, p. 52]

£ fiixx + nL,y,xf = -  ¿  F (-^-, y, xA
«! = — OO «1 = — OO ^ '

Consequently

("»    w-t-ètiZ.'&.y.*,)«)'*
By Bellout-Friedman [1], each integral in the last sum is equal to

TlJo   Jo

-UnnxJL

nxJL

roo    roo
4 I 2nn

-ai
iky/s-,ifcVs2+y2+xj

J \/s2 + y2 + x\
dsdy

= 2n f
Jo

o reiksfr2+xj

Ar2 + xj

2nn
r^dr = gn(k).
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472 XINFU CHEN AND AVNER FRIEDMAN

Since

JJz) ~ \ —sinz   asz—>oo,u V  7ÍZ

we easily deduce that the function gn(k) is complex analytic in k for k g C+ ,
continuous up to Im k = 0. It was proved by Bellout and Friedman [ 1 ] that
the boundary values of gn(k) on Imk = 0 are given by

(3.8) gnik) = 2ni   ß{k)      for^>0.

Since both functions

gn(k)   and   ™-jjfi-

are complex analytic in C+ with the same boundary values on Imk = 0,
k > 0, it follows, by applying unique continuation to their difference, that they
must coincide in C+ . Thus (3.8) holds for all complex k, Imk > 0, and using
this in (3.7) the assertion (3.6) follows.

Remark 3.1. Recall, by [6, p. 951, 8.405 #1], that

(3.9) Hl0l){ka) = Jfka) + iNfka)

and, as z —> 0,

J0(z) = l+0(r)    [6, p. 959,  8.440],
nNQ(z) = 2Jfz) log z + 0(z)   [6, p. 960,  8.444].

It follows that
Hlnl](z) = — logz + 0(l)    asz-^0.

u n

Setting

/OO
*k{X)dx2,

-oo

we conclude from Lemma 3.1 that
1  ,

;S~ log r-2n       \x
Remark 3.2. Set

(3.11) <DJt0(JC) = _iog_ + O(l)       (|x|-0).

/oo <¡>k(xx+n,x2,xf)dx2,
-oo

N

gN=      E    ®k,n-

Then

n=-N
niO

&gN + k gN = 0   for all x,  -L/2 <xx< L/2,
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MAXWELL'S EQUATIONS IN A PERIODIC STRUCTURE 473

and gN is uniformly convergent for \x\ = R, (VO < R < L/2) since the same
is true of gN + <¡?k 0 (by Theorem 3.2). Hence, by elliptic estimates, gN is
uniformly convergent also in {\x\ < R} . It follows that

Vk(x-y)-e-la(x^)%fx-y)

is a smooth function also as x - y — 0 and then, by Remark 3.1,

(3.12) T.(x -y) - x—log]-: is smooth V*, y.
k 2n       \x - y\

The above argument is due to Nedelec and Starling [8].

Remark 3.3. If we use Lemma 3.1 and apply the Poisson summation formula
to f(s) = e~asHQ\k\/s2 + x2), and then compare the resulting expression for
^(x) with that derived in Theorem 3.2, we obtain a formula for the Fourier
transform of //¿''(/cx/s2 + a2) for Im/c > 0 ; this formula is already known in
case Imk = 0 (see [6, p. 736]).

4. Integral representation for the periodic case

Set
(4.1) Ëa(X) = e~iaXlÉ(X),        Ha(X) = e~iaXlH(X).

We can assume that I and J depend only on yx , and set

(4.2) Ia(yx) = e-lay>I(yx),        Jfyf = e-ay'J(yx).

Multiplying both sides of (2.3) by e~laXl and setting

(4.3) 4>kta{X -Y) = e-ia{x'-y°%(X - Y),

we get, after some easy manipulations,

ÉÁX) = l^I^kJX - Y) - JQ x VY*kJX - Y)

+ ¿V^(>;')-V^-(X-y)]}

(4.4) +ia[(Jaxex)%a(X-Y)
Js

+ wJ^-Vr<S>k,aiX-Y)ëx + (îa-ëxWY<i>kia(X-Y)]

Js
If we integrate with respect to y2, -oo < y2 < oo, we obtain on the right-

hand side of (4.4), the same expressions but with $>a(X - Y) replaced by

/oo %,ai^i-yi>xï-y2,xi-y3)dy1.
-oo

c(ia)   _
g,

IOJE
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474 XINFU CHEN AND AVNER FRIEDMAN

Indeed, we first replace each VyOa by -Vx®a , then perform the integration
with respect to y2 , and finally replace back the -VxOa by Vy$Q . Assuming
that

(4.5) Ia(yx), Ja(yx) are L-periodic in yx,

we can then rewrite (4.4) in the form

4 w = [ {^ W* - y) - Z x Vv^(* - y)

+¿v;J'>l)-v^(*-*)]}*

(4.6) +ia [ (Jaxex)Vk(x-y)o
Jo

ica        fL  -
- —*i Jo iJa ■ e\W* - y)° dyx.

where a = o(yx) is defined as in (1.16), and y = (yx, f(yx)).
Using the notation

v-=(4'0,4)' v'=(4,0'4)-
omitting the index a in Ia, Ja , and noting that the right-hand side of (4.6) is
independent of x2, we can rewrite (4.6) in the form

(4.7)

Éfx) = £ ¡™£rvkix-9) - / x VyVk(x-y)

+¿VJC[/(y1).V^(x-y)]}c7(y1)rfv1

+ ia      (Jxëx)xVk(x-y)o(yx)dyx
Jo

+ C£j\ï-vy*kix-m+hvyvkix-y)\°iy<)dyi

-^^[^¿x-yMyJdy,

where / = T(yx) = (Ix, I2, If),  J = J(y) = (Jx, J2, Jf ; here we wrote
Éa(x) = Éa(X).
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MAXWELL'S EQUATIONS IN A PERIODIC STRUCTURE 475

Similarly, from (2.4) we obtain

(4.8)    Ha(x)= £ ^JVk(x-y) + TxVyVk(x-y)

+ 7^Vx[/(y1) • VyVkix - j>)]} o(yx)dyx

- ia /   (/ x ex)yYk(x-y)a(yx)dyx
Jo

+ TAT, /V- Vy^,(x - y)ex + Jx V/F^x - y)]o(yx) dycop Joo
tea'      fL

-*i I Ji^kix-y)aiy\)dyv
Jocop

Lemma 4.1. For any functions I(yx), J{yf) (0 < yx < L) the functions Ë,H
defined by (4.1), (4.7) <3««i (4.8) satisfy the Maxwell equations (2.5), (2.6);
further

(4.9) Éa(xx+L,xf = Éa(xx,xf,        Ha(xx+L,xf = Ha(xx,x2).
Proof. To prove (2.5), (2.6) we can proceed by appealing to Lemma 2.1 and
rigorously establishing the passage from (2.3), (2.4) to (4.7), (4.8). Alternately
(and more simply) we can establish (2.5), (2.6) directly, using the method of
proof of Lemma 2.1. Finally, the validity of (4.9) is obvious.

1
We shall henceforth refer to S as either the surface {x3 = f(xx)} in R   or

the curve {x3 = fi(xx)} in R . We denote points on the curve S by

x = (xx, fi(xx)),      y = (yx,fi(yx)).

Lemma 4.2. If I(yx) is L-periodic in yx and if I • ñ = 0 on S, then, for any
z±0,

(4.10) [LI(yx)-iVyVk(xz-yA))o(yx)dyx = - [Lp(f)Vk(xz-y)dyx
Jo Jo

where xz = (xx + z, f(xx)), and

(4.11) p{î) = 2j-ihiyf)°{yx)),     T=(ix,i2,if.
Proof. Since /• ñ = 0,

Hence

--¡:^-'m--i>^---i:wf^'
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476 XINFU CHEN AND AVNER FRIEDMAN

the boundary terms disappear since oIxx¥k is periodic in yx . This completes
the proof.

Using Lemma 4.2 we can rewrite the formulas (4.7), (4.8) in a more conve-
nient way, by getting rid of some gradients V  . The new representation is
(4.12)
Êfx) = £ i^tap¥k(x -y) - ofx VyVk(x -y)

+ -¿¿-ePÍÍ)VyVk(x-y)}dyx

+ ia f (Jxëx)Vk(x-y)o(yx)dyx-^- /"%(/>k(x-y)exdyxJo œs Jo

+ ^eI!'a(y^yVkix-y)dyx-l^-exJol'ïf¥k(x-y)o(yx)dyx,

(4.13)
Ha(x) = £ í^-afVk(x -y) + oíx VyVk(x - y)

+ Jafpfp{f)V^X-^}d^

-iai  K(îxëff¥k(x-y)a(yx)dyx-^-i f  p(f)Vk(x-y)exdyxJo wp Jq

+ ^-uiL^y^J^^^-y)dyxcop Jo

fL JfVk(x-y)o(yx)dyx.Jo
ica
-e,cop

5. Auxiliary estimates

Let
1 °° „r

(5.1) **(*) = ^  £log- + nLe. |
«I = —oo ' 1'

The series is convergent in the sense of principal value, i.e.,
N i1    ,.       v^ , nL

further

V*{x) = ¿- lim   T log , , , ,
v  ;     2n n^oo ¿-^     a \x + nLe,\

n=-N l

2*n^ooixx+nL)2 + x
where the convergence is again in the sense of principal value, i.e.,

* 1     .      J^\    (x, + nL, xf)(5.2) VT*(jt) = --L lim   Y
V ' V     ' ?7T   V-»on    ¿—sHindoo ^{x+nLf+xj'
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MAXWELL'S EQUATIONS IN A PERIODIC STRUCTURE 477

the convergence is uniform in x in every compact set which does not contain
integers.

Set

(5.3) ¥*W = _Llog]lj.

Lemma 5.1. For any z / 0, write xz = x + ze3 and let

(5.4) RkJx,y) = VyVk{xz-y)-VyV*{xl-yl,z + f(xl)(xl-yx)),
where VyxYk = -V*Ffc . Then

(5.5) \Rkz(x,y)\<C,
where C is a constant independent of x, y, z.
Proof. By (3.9) and (5.2) it suffices to show that

\Vy%ixz-y)-Vy%(xx -yx,z + f(xx)(xx-yx))\ <C,

i.e.,

(x.-y. , z + f(xx) - f(yx))K =
(xx-yx)2 + (z + fi(xx)-f(yx))2

(xx -yx, z + f(xx)(xx-yx))
(xx-yx)2 + (z + fi'(xx)(xx-yx))2

<C.

The difference of the numerators is (0, f(xx) - fi(yf) - f(xx)(xx -yx)), which
is 0((xx - yx) ). Hence

K < C0 + (|x, -yx\ + |z|)){2|z[/(x1)(x1 -yx) - (f(xx) - f(yx))]\

+ \f(xx)2(xx -yx)2 - (fi(xx) - fi(yx))2\}/N
where A is the product of the denominators, or

K < C0 + C,(|x, - yx\ + |z|)[|z|(x, -yx)2 + \xx - yxf]/N.

If |z| > (1 + C2)|x, -yx\ where C2 = max|/|, then N > c0\z\4   (c0 > 0) and
consequently K < C. On the other hand if |z| < (1 + C2)|x1 - yx\ then

K<C0 + C3\xx-yxf/N<C0 + C4.
Thus K is bounded in both cases, independently of z, x, y .

Lemma 5.2. For all z ^ 0,

(5.6) /   Vx¥*(xx, z+ axx)dxx =---^-^-sgnz.
Jo 2  1+a

Proof. Notice that V1?* is defined as in (5.2). Therefore, the left-hand side of
(5.6) is equal to the integral

/oo V«Pj(x,, z + axx)dxx
-oo
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taken in the p.v. (principal value) sense:

fNlim   /     Vy¥*Jxx, z + axx)dxx.
N-.00 J_N

To compute the integral in (5.7) we write it in the form

_J_ f°° xxex + (z + axx)eidx
ln J-oo   x2 + (z + axx)2       '

_L [°°
2n J-oc

2,(xx+az/(l+af)(ëx+aëf
2\/„    ,   „_//i   ,   „2xN2   ,   _2 //,   ,     2{oo (1 + <0(x, + az/(l + aL)f + zL/(l + a1)

J_ f°° (z/(l+a2))(ë3-aëx)
2n J-oo (i + a2)(xx + az/(l + a2))2 + z2/(l + a2)

The first integral on the right-hand side (taken in the p.v. sense) is equal to zero
since the integrand is an odd function in xx + az/(l + a ). Since further

27T./-00 (1

lsgn£
(I + a2)(ex + e2)   Sl     2i+a2'

the assertion of the lemma follows.

Lemma 5.3. Let u(xx) bean L-periodicfunction, locally in L . Then
(5.8)

lim /   (u(yx)-u(xx))Vf¥*(xx -yx, z + a(xx -yx))dyx
z-rn° Jo

= J   (u(yx) - u(xx))VyV*(xx -yx, a(xx -yx))dyx = ^-j-¿H{u),

where V f¥* means -grad1!'*, and

1   f°°   u(v )
Hu = (Hu)(xx) = p.y.- ^rvdyx

= hm (I r ^-dyx+l- i"   ̂ Ldy\
N^Oo\nJ_N    xx-yx njx%+exx-yx     lj

is the Hilbert transform.
Proof. From (5.2) we see that (5.8) is equivalent to

/oo (u(yx) - u(xx))Vyx¥*fxx -yx,z + a(xx -yx)) dyx

/oo (u(yx) - u(xx))Vy%(xx-yx, a(xx -yx))dyx
-oo

'■-Hu;

-oo

1 e, + ¿z<?.
2   1+,

the integrals are taken in the p.v. sense, lim^^^ f_N .
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Consider first the integral of the middle term of (5.10); it is equal to

1    [°° . , \    t \SX\ -y\)ië\ + a^) a(y. )-u(x. )) —!-=¡—-V dy.
lJ,(l+a2)(xx-yx)2   "

ex+ae3 1  f°° u(yx)-u(xx)
= -W+-f)ñl-oo    \xx-y/ ^'^

2(l+a2)^J-ooXx -y,     '     2(l+a2x

since

2(1 + a ) ><■
ex + ae3
2(l+a2)nJ-<

p.v.y
-00*1-^

Thus the second equality in (5.10) follows. The first equality in (5.10) follows
by similar considerations.

6. The jump relations

Fix a point x . For any z > 0, the point x = x + ze3 belongs to ííj . We
shall evaluate limz_k0¿Q(x + ze3), where Ea is defined by (4.12).

Notice that all the integrals which do not involve V¥t are well defined also
at z = 0 and are continuous up to z > 0. Thus the sum of the terms in É
which may produce some discontinuity is

-/   o(yx)J(yx)xVVk(x-y)dyx+ (   ^-p(f)V^k(x-y)dyx
//r   i\ JO JO      lC0E

:a j\(yx)IxVyVk(x-y)dyx.+ coe Jo
Write the first term in (6.1) in the form

Till    \   Tilt    \   v    J? iv       ii\ sl\- /   oiyfJiyf) xRk fx,y)dyxJo

- I   [oiyi)Jiyl)-a{xl)J{xl)]xVy'¥t{xl -yx, z + a(xx -yx))dyx

-o(xx)J(xx)x J   Vyx¥*(xx-yx, z + a(xx-yx))dyx       (a = /(xx)).

Then, as z j 0 we get, by Lemmas 5.1-5.3,
iL -. -> 1 -.      e + ae

- /   o(yx)J(yx) x Rk(xx, yx)dyx - ^H(oJ) x -±l-f.(6.2) Jo 2 x+a
1 f    e3 - aex

-■zOJ X -j-f-,2 l+a
where

(6.3) Rk(xx, yf) = VyVk(x-y) - V/(x, -yx, f(xx)(xx -yx)).
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Recalling (1.15) and introducing the unit tangent

(6.4)
ex + fl(xx)e3

{1+/W}1/2

to S, we can write with (6.2) in the form

rL M(rr ?} 1
(6.5)        -/   o(yx)J(yx)xRk(xx,yx)dyx-^— xf+-/x«.

If z < 0, z -+ 0 then we obtain the same limit except that \ J x ñ is replaced
by - \ J x ñ.

Similarly, for the second term in (6.1) we get, as z J, 0,

mes C     fL    iTxS  < xj c   H(p(I))^      1    C    /?(/).

and for the third term we get the limit

,, _,             ca   fL    .    , , ,    , - ,          , ,         ca H(oI, ) _     1 ca T _
6.7 — /   o(yx)L(y,)R.(x,,yx)dyx +-^-^t--—I.n.V       ' CUE J0       u';   'v/ly    ^    l'-'l'    "'I       CiJfi       2(7 2C0E   '

If z < 0, z —► 0 we get the same results, but the last term in (6.6) and in (6.7)
have the reverse sign.

Setting Wj = Vk , Rj = Rk   and

EJa(x)= limEfX),

we conclude that

X—.X
xetij

Ë](5c)=  f   \l-^oP¥i-ofxRi + ^—/.
Jo        c J 1       icOEj

+ I

(6.8)
a [ (Jxex)aWi - — [  pitrT!,ex + — í  oIxR¡

Jo J      MEj Jo >   '       OJEj Jo »    J

ica2      fL 1 -.
—e, /   1^,-^-HiaJ)
COEj   'Jo    '      J     2o ICOE-        2(7

ca H(oL)^ ,   1 -,    _        c    p(I)^     1 ca
cue      2(7 2 icoE,  2a        2coe-  '

where "+" is for ; =  1   and "-" for 7 = 2; here *¥j = »Fy(x - y)  and

Rj = Âj(xl,yï).
Similarly, setting

HJ(x) =  lim H Ax)
X—.X
xen,
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we get

(6.9)

..« rL ( icoE,a _ _    _        c       - - '
HJn(x)=  /      -'—JVt + oIxRi + -.— p{J)R,Jo   \     c J >     icopHy       f

- ia [ (Ix ëfo^i -—(  p(J)x¥iëx + — f  oJxR]Jo J     up Jo  yy      > '     cop Jo       l   J
ica2.   fL .   „.       1  „,   *     .      c   H(p(J)),

/O)//        2(7

1 ca
<y,u     2tT       r2'      * ̂  icop  2r7 '*     2c«j/z'
ca H(oJ.) _     1 -.    _        c   />(/) _     1 ca  , .

+ - ^T+ ^/ X rt + 777^^-^-"+ ^T77.J\n-

We summarize

Lemma 6.1. If I-n = 0, J-n = 0 along S, then the Ea(x), Hfx) defined by
(4.7), (4.8) are uniformly continuous in each Qj and their limits on 9Í2; are
given by (6.8), (6.9) respectively.

1. Reduction to integral equations

Definition 7.1. We denote by (Éf,Hf) the vector field defined by (1.9)-( 1.12),
where x3 > 0 and x3 < 0, in (1.9), are replaced by x3 > f(xx) and x3 < f(xx)
respectively.

We shall try to solve (1.1)-(1.4) in the form

(V. 1 ) (É,H) = (Éf, Hf) + (Ëa , ña)eiax>

where (Ea, Hf) are defined by (4.7), (4.8) for some L-periodic surface fields
/, / (i.e., I • ñ = 0, J • ñ = 0). A solution of the form (7.1) will incorporate
the condition (1.13), and as we shall see later on, the condition (0.1) will also
be satisfied.

Set
(7.2)

+ ia(J x ëx)o(yVx - "Vf-p(I)e _2
\ £x       e2

+ cffaI (L-^JSSLjtJTL-*!
co     Me,      e2 J      CO    l l    \ex      e2

(7.3)

T2if, J) = fQL j ^/(«.Y, - ef¥2) + aïx (Rx - Rf + -¿j^PiW, - R

- ia(fx ëx)o(Vx - 4L) - ^-P{J)WX - V2)ëx
2

+ï£LaJi(Âl-R2)-—tTj.ëxC¥x-V2)cop     '     '        l       cop      l  '     '        2

2>
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Lemma 7.1.  (É, H) is a solution of ( 1.1 )- ( 1.4) if and only if I, J satisfy the
following conditions:

(7.4) ñ x {Hq - H¡)e~'aXl -í+ñx Tfï, /) = O,

(7.5) * X (*° - #*""' + /+ ^27^ l^*7» + Wh)

+ ñx Tx(í, f) = 0.

Here and in the sequel, H¿ and E¿ stand for £ - and H, in Q .

Proof. If É,H satisfy (1.3), (1.4) then (7.4), (7.5) follow using (6.8), (6.9)
and noting that ñ x r = -ë2, ñ x (J x ñ) = J, ñ x (I x ñ) = I. Conversely,
if I, J satisfy (7.4), (7.5) then clearly I • ñ = 0, J • ñ = 0 and therefore if
Éa, Ha are defined by (4.7), (4.8) then they satisfy (6.8), (6.9). It follows that
(7.4), (7.5) imply (1.3), (1.4).

Definition 7.2. Introduce the space

(7.6) X = I g(xx) ; g(xx) is L-periodic continuous function on R

with ||g|| =      max      \g(xx)\

Consider the operator

(7.7) T:g^ f   G(xx,yx)g(yx)dyx,Jo

where G(x,, yf) is continuous for all (x, ,yx), xx f=- yx, and \G(xx, yx)\ <
C\xx - yx\~l+e   (e > 0). Then T is a compact operator from X into X.

We need to look more carefully at Tx and T2. By integration by parts

Iq  p(J)(Rx-R2) = -jo  <jJx-¡L(Rx-R2),

j^ p(f)(vx - v2)ëx = -joL oJAjfWi - ^)-

Using this in T2 we find that

(7.8) T2= (Ll-^o(ex-E2)JVx + T2,
Jo    c
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where

t2(I, f)= í   i —tie2JÇ¥] - ¥2) + olx (Rx - R2

'  „j.^-iñ.-Rf)icop     ' ay1     '

(7.9) - fa(/x *>(*, - *2) + ^a/,^-^ _ ^
.      2

+ ̂ LaJ(R        R) _ !£^_a/^ (^        4/ )
to/I       '       ' 2 ft)//        '   '       ' 2/

7o
G2(xx,yx)(I, /);

G2 is a 3x6 matrix and (7,7) is a column vector with components /., Jj
Since x¥x - ^2 and Rx - R2 are smooth functions,

<7-10> iVG^sc    (v = (4'4
In particular, t2 is a compact operator from X into X (more precisely, from
X6 into X3 ).

Similarly we can write

(7.11) Tx = (¡--^±¡\(I)(Rx-iaVxex) + Tx,

where

fx(I, J) = ^^.aï(Vx-V2)-oJx (Rx-R2)

c d   -     ---A—of Jf-<R   -R)ico£2    • dyf   '       2
ca+ ic,(j x ^wr, - *2) + —(",(•*, - tyê,

<y        V ei       e2 /       (B \£,       e2

= /"  0,(x,, y,)(/,/)
Jo

and G¡ is a 3 x 6 matrix,

(7.13) \GltXltyl)\<C]ogj—±— + Cl-,
\xi    y\\

G^jÍXj , yx) is continuous in xx, yx  for all x, ^ yx .  It follows that fx  is a
compact operator from X into X.
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If we substitute (7.8), (7.11) into (7.4), (7.5), we get
ax,       j>

)n x       er.
Jo

ñ x (//' - H¡)e'iaXi - I

ico
+ —(e, - e2)n x /   oJxYx +nx T2(I ,J) = 0,e

f 1        f*2^ _—iax, f ,   fij — £2    ^2(7.15)    nx{E¿-E¿)e  ""' + J +   '      '     f  [H(p(I)) + iaH(oIx)]

+ £77£i¿"X/   ̂ (W-ia^J + Axí,  =0.

Lemma 7.2. If K = ñ x ¡^ of^Yj and J-n = 0 then

(7.16)        p(K) = ~(Kxo) = -)ïH(oJ2)-j   oJ2(R)+f(xx)R))dyx,

where Rj = (R), R2, R)).
Proof. Notice that

f=Jx(ëx + f(xx)ëf + j2ë2.
We have

K.=K-ëx = -(nxëx)- [   o J'Y = - f  oJfY..
Jo '      O Jo

Let xz = x + zë3 = (Xj, z + /(x,))   (z/0) and consider

r,(i)=¿r,'o'i)/iWjci'w¿'1,
Then

(7.17)

—(*,(,),) = /o  ,<„)/,<*) (äxf +/(-i)^J i-,-y)dyx
= o(xx)J2(xx)jo   ^— + /(xx)—j

(xx -v,, z + /(x!)(xj -y,))rfy,
Ö»F*

+ y   [a(v,)/2(>'1)-a(x1)y2(x1)]^^r + /( *"9x;i ^3

(x, -y,, z + /(x,)(x, -y,))rfy

/ a(j'1)/2ü'1)[Ä; ,(x,j))+/(x,)^ .(x,)))]^,,

where Rk   2 is defined as in (5.4).
Using calculations as in Lemma 5.2, we find that the first integral on the

right-hand side is equal to zero. Similarly, by the calculations in Lemma 5.3,
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the second integral on the right-hand side is continuous in z (up to z = 0 )
and is equal to -jH(oJ2) when z = 0.

Since the last integral in (7.17) is also continuous in z, up to z = 0, we
conclude that (7.16) holds.

Let us now substitute I from (7.14) into those expressions in (7.15) which
involve p(I), noting that by Lemma 7.2,

p{i) = p(n x (#' - H20)eiax') + p(n x f2(I, /))

(7.18) ico.
-— (£l-e2) \h(oJ2) + j\j2(R\+f(xx)R.\)\.

Since H2u = H2(uX[_L L]) + H2(uX[_L L]f  and H2v = -v  for any v G
L2(Rl)

(7.19)
L2(r'), we obtain

;1        i?2,    -ax.n x (E¿ - E;)e~   ' + /+ {-^hL(j2e2 + e2H2(X[_LMJ2))

+ £l_£2    Ce2     J fj
EXE2    2ÍOCO 1

'1°2

p(n x (H¡ - H¡)e~'ax>) + p(n x f2(I, J))

10)--(e, \j  oJ2(R\+f(xx)R\)
Jo

+ iaH( *'i)}

+ !77£i77;" T \P(ñ x (#o - ñ¡)e'iaXx) + p{ñ x t2(T, J))
eie2   ia>   Jo

ICO.
■ —(£l-£2)

i rL

^H(oJ2) + j   oJ2(R\+f(xx)R\

■(Rx -ioAVxëx) + nx tx =0.
In view of (7.10),

(7.20) f3 = p(n x tf) is a compact integral operator.

Also, from (7.14)

(7.21) I = ñx (H0 - HQ)e~lax'í + tfl, J),     f4 a compact integral operator.

Using (7.21) in evaluating the term iaH(oIx) in (7.19), using also (7.20), and
noting that

JH(oJ2)(Rx-aVxëx)
is a compact operator, we can rewrite (7.19) in the form

(7.22) J + (£4i-rT-J•\"2
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where JQ depends only on the vectors Ëq - Ë2, h\ - H^ , and it vanishes if
both vectors vanish, and ffl, J) is a compact integral operator.

If we finally denote
(e, - e,)

we see that (7.21), (7.22) reduce to

(7.23) I = 70 + tfl, J),        J = J0 + ffl, J)
with J0 as above, 70 = n x (770' - H2)e~'ax> , and slightly modified f4, f5.

We have proved

Theorem 7.3. The system (7.4), (7.5) is equivalent to the system (7.23) where
r4, f5 are compact linear integral operators in X ; consequently the Fredholm
alternative holds.

It follows that the system has a unique solution except for a countable number
of values of the parameters e,, e2, p.

Recall that
8. A SIMPLIFIED INTEGRAL SYSTEM

1
"(*')=«7(x^(/(^-^

and (ë2, r(x,), n(xx)) is a moving orthonormal frame along S, with f x ñ

Let us write the possible solution /, / of (7.23) in the form

(8 n Îixx) = fi(xx)z(xx) + I2(xx)ë2,
J(xx) = Jfxx)x(xx) + J2(xx)ë2.

Notice that along S

ñ x (Hq - H¡)e ,ax> = a(xx)r(xx),
i°-   I -1 -2      -laxnx(E0-E0)e      ' = b(xx)e2.

If we take the scalar product of the equations (7.23) with ë2 and f(x,)
respectively, we get a system of linear homogeneous equations for 72, Jx of the
form

(8.3) 72 = ^(72,7T), JT = W2(I2,Jf.
Similarly, if we multiply the equations in (7.23) scalarly by f(Xj) and <?2,

respectively, we get a system of linear integral equations of the form

/ = a + WJL, Jf),(8 4)
1  • j J2 = b+Wff,J2).
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If the first Fredholm alternative holds for (7.23) then the first Fredholm alter-
native holds for both (8.3), (8.4). Therefore we must have

(8.5) 72 = 0,        /T = 0.

Of course, the trivial solution (8.5) is always a solution of (8.3). Thus, in seeking
a solution of (7.23), it seems reasonable to always choose 72 = 0, JT = 0 and
concentrate just on finding a solution to (8.4).

Theorem 8.1. If the first Fredholm alternative holds for (7.23), then the unique
solution has the form

(8.6) 7 = 7T?,        J = J2ë2

and the solution of ( 1.1)—(1.4) has the form

(8.7) Ë = Exëx+ E3ë3,    H = H2ë2   outside S.
Proof. We have already proved (8.6). To prove (8.7), notice that Jx = 0 and
p(J) = 0. It is now easy to check that all the terms on the right-hand side of
(4.13) are vectors parallel to ë2. It follows that 77 = H2ë2. Similarly one can
check that all the terms on the right-hand side of (4.12) are orthogonal to ë2,
and the first assertion of (8.7) thus follows.

9. Uniqueness

Set

,i      f,2     /      2nns

(9.i;

1/2

ßn= \ K - [a - ^ ) .        Im^>0(« = 0,±l,±2,...),

f / 21 '/2
ñ = \kí-(a-^r)   \     '        Im/?2>0(« = 0,±1,±2,...).

From (7.1), the representation (4.12), (4.13) and Theorem 3.2 we deduce that
(9.2)

and \NJn\ < C/sfil + \n\. The coefficients Nln are called the reflection coeffi-
cients, and the coefficients Nn are called the transmission coefficients.

Theorem 9.1. Suppose (É, 77) ¿j a solution of the Maxwell equations (1.1),
(1.2) outside S, satisfying (1.3), (1.4) suchthat e~'aXt(É,H) is independent
of x2 and is periodic in xx of period L. If (Ë, H) has the form (9.2) in
{\x3\ > |/|Loo} with vectors NJn uniformly bounded, then (É, H) is unique
provided the first Fredholm alternative holds the system (7.23).
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Proof. Suppose there are two solutions and denote by their difference (E, 77).
Then

{V°°        Mlp~'2nnx>/L+iß»xi    if y   ^\f\E"=-~ M"e 2    lfx3>l/L-

E7=-oo^yi2nnX>/L~iß"X3     if*3<-|/|L-

Set í=-ñxH, J = ñxÉ, f= Ie~iax>, J = Je~iax' and define

F(I(y),J(y),Vk(x-y))

=  I lJ^I(y)^k(X _ y) _ J(y) X Vy^(X - y)

+ ^Vx[/(y) • V^(x - y)] + iaf(y) x e,^(x - y)
ca.^
we+ 3'ÜO • Vfc(x -y)e, + 71V/Ffc(x -y)]

* ëxIx(y)Vk(x-y)COE

If we use the integral representation [7, p. 130] for Ë, H in

Dm = {/(x,) <x3 < Y, -mL<xx < mL},

where Y > |/|L=o, then we obtain a representation similar to (2.3), (2.4) with
S replaced by dDm . Integrating with respect to y2, -oo < y2 < oo, and then
letting m —> oo we find (since

(1) [~2     i(z-njA)
0  (z)~ Sñze asz-^oo;

e.g. [6, p. 962, §8451, #3]) that the boundary integrals over xx = ±mL converge
to zero. To the remaining integrals (on 5 and on y3 = Y ) we apply the process
which led from (2.3), (2.4) to (4.7), (4.8). We thus obtain the representation

e-'ax'É(x) = f    F(I(y),f(y),Vx(x-y))ds
JdDY

where DY = {(xx, xf) ; 0 < x¡ < L, f(x{) < x3 < Y}. By periodicity, the
integrals over x, = 0 and x, = L cancel each other. Therefore

e-iaXiÊ(x)- [  F(ï,J,Vx(x-y))(yx,fi(yx))o(yx)dyx
(9.4) L Jo

= - [  F(f,J,Vx(x-y))(yx,Y)dyx.
Jo

By Theorem 3.2 and (9.3), the left-hand side has the form
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whereas, by Theorem 3.2, the right-hand side of (9.4) has the form

ER   e'anXl-'ß!,Xi
n '

where Rn = Rn(Y). Letting Y — oo , we get

!a„*i+'A',*3 _Vp r™wla"*i-,^xEV^'^-E*- 00)<? -s

.-ißlx,for all x3 > |/|L<» . It follows that Kneip'Xi = Rn(oc)e~'p"X} for all x3 >
|/|£oo, which implies that Kn = Rn(oo) = 0. Thus, the right-hand side of (9.4)
converges to zero as Y —► oo, and we obtain

— laxe É(X)= [  F(I, J,Vx(x -y))(yx, fi(yx))o(yx)dyx
Jo

This representation is the same as (4.7), and similarly we derive a representation
for 77 as in (4.8). A similar representation holds in {x3 < -/}. Letting
x3 —► f(xx ) and using the jump relations derived in §5, we find that 7, 3 must
satisfy the homogeneous version of the system of integral equations (7.23).
Since for this system the first Fredholm alternative holds, I = J = 0 and
therefore É = H = 0.

10.  PlECEWISE SMOOTH INTERFACE

In this section we extend the results of the previous sections to the case where
S is piecewise smooth and is not necessarily a graph in the x3-direction. We
take S to have the form
(10.1)
S = {(xx, x2, x3); xx = fix(s), x3 = f3(s), -oo < 5 < oo and-oo < x2 < oo},

where s is the length parameter, and assume that for some /0 > 0, L > 0,

(10 2) fix(s + nl0) = nL + fix(s),
fi3(s + nlf = fi3(s)       (-oo<5<oo,  n = ±l, ±2, ...),

(10.3) fj(s) are continuous for all s € R .

Denoting by sx < s2 < • • • < sn the points of discontinuity of the derivatives of
fij in the interval 0 < s < /0 and setting sn+x = l0 + sx, we further assume that

(10.4) fij(s) is in C2[st, si+x] for I < i < n.

Notice that our assumption on S include the case where S n {x2 = 0} is a
step-function, i.e., x3 = f(xx) where / is piecewise constant.

Set / = S n {x2 = 0}, l(s) = (fix(s), 0, fi3(s)) and introduce the tangent
f = dl/ds and normal ñ = ë2 x x. We shall also write y(t) = l(t).
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We begin with the representation (2.3), (2.4), but take I, J to have the form

(10 5) fait)) = HD = I{t)fit),        lit) ee I(y(t)),
J(y(t)) = J(t) = J(t)ë2,        J(t) = J(y(t));

the general case where

(10.6)
i = i(t)î(t) + i2(t)ë2,

j = j(t)ë2 + jft)T(t)
can be handled similarly. However, as in §8, we can derive a system of equa-
tion for (7, J) and (separately) for (72, Jf , and the system for 72, Jx has a
solution 72 = 0, JT = 0.

Assuming (10.5) we have

(10.7) JWyVk{x - y(t)) = J(t)ë2 ■ (dyVkex + dyf¥kë3) = 0,

(10.8) p(I(t)) = jt[e(y(t))î(y(t)) ■ ëx] = ^-.

Proceeding with (2.4) and using (10.5), (10.7) we obtain analogously to (4.8):

(10.9)

r'° ( imp -Hfx)= J    ^—jyk(x-y(t)) + l(t)x VyVk{x-y{t))

-ia(I(t)xëx)Vk(x-y(t))}dt.

Similarly, proceeding with (2.4) and using (10.5), (10.8) we obtain analogously
to (4.12):
(10.10)

Ea(x) = j ° | !2yLfity¥kix - y(t)) - f{t) x VfVk(x - yit))

+   c   dl(t
■VyVk(x-y(t))}dt

C {Íafit) **' - S^> - l^Iit)exit)]%ix-y(t))dt

^¡"l(t)VyVk(x-y(t))dt.

icoE   dt

+
10

We set

(10.11) l = {0,i,,...,*„}.

Lemma 10.1. 7/ s & I then, for any u G L (0, L)o>

f'°Urn        „       u(t)^r—L—f^-f-dt exists.->0 Iu J /I,

¡is) - ¡it)
^{i,-^}     '\lis)-lit)Y--Ml,-0

Proof. We have

(10.12) í(s) - Tit) = (fx(s)ëx + f3(s)ë3)(s -t) + (s- t)2F(t),
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where F(t) is continuous in t. Hence

i(s)-T(t)     tiis)ëx + Û{s)ë% [F{t)
\l(s)-l{t)\ 2- s-t '      1V;'

where Fx(t) is continuous in /.  Using the Hubert transform properties, the
assertion of the lemma follows.

Lemma 10.2. Let x = l(s), 5 £ X. Then for any L  function u(t),

lim   /   u(t)Vyy¥k(x + zn(s)-y(t))dt
z*0   J0

= ±^n(s)u(s) + ^p.v. /   u(t) ?"'    f'.dt
2 2n       y0 |/(5)-/(0|2

+ j\(t)Vy^k(x-y(t))-^losw4m)dt

holds for a. a. s.

Proof. Since

*,(x-y)EEy,(x-y)-¿log-
2n      \x-y\

is a continuous function, it suffices to prove that

1_  A1» ï(s)-l(t) + zn(s)
n Jo   '      \T(s)-T(t) + zn(s)\:

, ! -/ x  « x      1 f1"   t« T(s) - T(t)    .±ïï«(î)m(j) + ^-p.v. /    Kf   ^v ;    ^ '   dt.
2      ' x '     2n       7o \l(s)-l(t)\2

1    /"o   , ,    (s) - l(t) + zn(s)    ,
z~>±o2nJ0 \l(s) - l(t) + zñ(s)\2(10.13) z*°

|/(j)-/(0l
Since

|f(i) - f« + zn(s)\2 = |f(s) - f(i)|2 + z2 + 2z«(s) • (/"(j) - T(t))
(s - t)2 + z2 + zO((s - t)2) + 0((s - t)3)    (by (10.12))

we have

T{S) - T(t) (S - t)T(s)
2        /„       #\2   ,      2\l(s) - l{t) + zn(s)Y     (s-tf + z

+ A(s, t, z)
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where A(s, t, z) is continuous in all variables. Hence

lim
z->±0

¡is)-lit) dt

;io.i4)

Wo

Jo \l(s)-l(t) + zn(s)\2
f'o (s - t)f(s)u(s)  ,      ,.      f'°   , ...

=ä. /„ \s-t)2+z2 dt+ä y0 u^s -< • *> *

lim   /W^-QfWW-^))^
-±oy0 (s-i)2 + z2

+

p.v.
Jo

= p.v. /    u
Jo

= p.v. /
To

[s - t)(u(t) - u(s))
(s - ty

dt /    u
Jo

x(s) + /    u(t)A(s ,t,0)dt

s -t x(s)+A(s, t,0)\ dt

'»   T(s)-T{t)u(t)dt,
\T{s)-i{t)\2

by reversing the previous steps in the case z = 0. Next

zn(s)
\í(s)-í(t) + zñ(s)\2

and therefore

zn(s)

zn(s)
1

(s - t)2 + z2
+ 0 z + \s-t\

(s - t)2 + z2

f'o
lim   / - dt = n(s) lim f'o       u(t)z

Jo   (s-t)2 +(s - t)2 + z2
dt

!o   \T(s)-T(t) + zu(s)\2
= ±nn(s)u(s).

Combining this with (10.14), the assertion (10.13) follows.

Using Lemma 10.2 we can now deduce from (10.9), (10.10) that

Ë±(x)= lim Êa(x + zn(s)),        H±(x)= lim Hfx + zñ(s))

exist for any x = x(s),  s <¿ I, and, setting É±(s) = É±(x(s)),  Tí*(s) =
H±(x(s)), we easily get
(10.15)
ñ(s)x(H+(s)-H-(s))

= 11 (s) + ™ ¡\^i - H^i)ixis) - y(M(t) dt

+ j\(t)^fft)^-fx(t)-^y^x-^2)(x(s)-y(t))dt

- j'° iaI{t)Ç¥2 - *,)(*(*) - yis))/3it) dt 1 fis),
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and (using also (10.13))
(10.16)
H(s)x(É+(s)-Ë-(s))

= \-J(s) + 2ncoi \e
1       1

■\J Jo

dljt)
dt + ial(t)

f¡is)ifxjs) - fifty + fi3\s)(f3(s) - fifty

+ -f10) Jo

\l(s)-l(t)\2
rdl(t)

dt

dt + ial(t) A<Ar'<)
-l--l\(x(s)-y(t))dt

+

+

+

/ Jit)Jo
ca   f
0) Jo

So

^w3-^wx (Vx-V2)(x(s)-y(t))dt

'" rdl(t)
dt + ial(t) /lis)(jî-^-)ix{s)-y{t))dt

ia/3(s)J(t) - l-^[fx(s)fx(t) + f3(s)f3(t)]I(t)

(Vx-V2)(x(s)-y(t))dt\ëv

Following the procedure of §7 we now wish to substitute 7 from ( 10.15) into
(10.16) in order to get rid of the derivatives dl/dt in (10.16). We require here
a lemma analogous to Lemma 7.2 whose proof uses Lemma 10.2:

Lemma 10.3. If

Lu= f\(t)(Ef¥x-Ef¥2)(x(s)-y(t))dt,
Jo

then

TsLu ■ds

+

f'o
/   u(t)(Vx-V:Jo

i'0
).V. /     u(t

Jo
fi2_-T

)(x(s)-y(t))dt

x(s)-(ï(s)-ï(t))
p.v. /    u(t)-

\l(s)-l(t)\2
dt

+ (e2-ex) j\(t)[fx(s)^-+f3(s)-^j^x(x(s)-y(t))dt.

The proof is omitted.
Introduce the operator 7L :

10.17) Hu(s x(s)-(i(s)-i(ty1 f'o
= -p.v. /    u(t)  w„    w^—i-^dt.

71   Jo       \ns)-i(t)\2
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If we substitute 7 from (10.15) into (10.16) and use Lemma 10.3 and the
notation (10.17), we get a system

:10-18) ,  (*,-e2)V
7+ri(7,/) = -70,

-772(/) + f2(7,/) = -70
'1"2

where 70f(í) = -ñ(s) x (H¿(s) - Hf(s)) and JQ depends on both 70 and
ñ x (Éq - Ëf)e~lax' ; for any 1 < p < oo the operators f,, f2 are compact
integral operators in the space X of Lp l0 -periodic functions defined on the
curve 5n{x2 = 0} with the Lp(0, If) norm.

Thus the only essential difference between (10.18) and (7.21), (7.22) or (8.4)
is that in the previous system H was the bounded operator 77 (the Hubert
transform) satisfying 77 = -1 whereas now we have an operator 77 which is
not as "nice" as the Hubert transform. We nonetheless have

Lemma 10.4.  77 is a bounded operator in X , that is,

WHuW Lp(0,l0) - CllMll¿'(0,/0)-
Proof. We first consider the behavior of (Hu)(s) for s near a point si where
x(s) has a discontinuity. For simplicity we take 0 < s¡< l0 . (If j. = 0 we can
work with f_l   instead of /0° (in (10.17)), since u and / are /0-periodic. Set

a = x(s( + 0) - x{st - 0).

Suppose i, < J < sl+x and consider the portion of the integral (Hu)(s) from
t = s i to t = s¡+ j . Then the integrand satisfies

(10.19) uit)™-^-*» =W+«it)F0,    F0 bounded
s-t\l(s)-l(t)\

(since t(-) is in C [s¡, si+l]).
Next consider the portion of the integral (Hu)(s) for s¡_x < t < s¡. Intro-

duce the auxiliary C '   curve Ift) in [s(_,, si+l] defined by

l=T{t)     if St<t<3M,
K = Kt) + a(t-s¡)   if s¡_x <t <sr

Then

x(s) ■ (Tjs) - T(t)) _ xjs) ■ [x(s)(s - t) - a(t - s¡) + Q(s - t)2]
\T(s)-T(t)\2 \x(s)(s - t) - S(t - sf + 0(s - t)2\2

Notice that for 5 > sx■,  x(s) = x(st + 0) + 0(s - sf .   Since also t(s¡ + 0)-
t{Sj - 0) > -1, the denominator in the last fraction is > c[(s - sf  + (t - s¡) ]
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(c > 0). It now easily follows that, for s¡_x < t < s¡,

u(t) x(s)-(l(s)-l(t))     u(t)

(10.20)

\l(s)-l(t)\

<c(i +

<c(i +

<c

Si-t

(s-sf + d-sf.

\t-Si\ + (s-t)2

(s-sf + it-sf
\u{t)\

\u{t)\

(since (s - t)   < (2(5 - sf  + 2(si - t) ))

\u(t)\s-t
since t < s( < s .

We have thus proved that, for s¿ < s < si+x,

c u{t)fis)fiiis)-ntydt
\lis)-lit)\2

u(t) dtfS<    \u(t)\ /"*'+' fsM   u(t<C\       \AAAmdt\ + c        \u(t)\dt+\        -^Ia-. r"J   I    v. \J*,-is-
= CH(\u\X[s¡t >Si])(s) + C f'M \u(t)\ dt + \H(ux[s¡_x §    ,)|.

A similar estimate holds for s in the interval (si_l, s A) and clearly also for s in
(0, s¡_f) or in (si+x, If). Since 77 is a bounded operator in Lp , the assertion
of the lemma follows.

We summarize:

Theorem 10.5. Let S be given by (10.1)- (10.4). Then there exists a solution of
(1.1)— (1-4) of the form (8.7) if there exists a solution I,J of (10.18), where
fx, T2 are compact linear integral operators in Xp and H is a bounded linear
operator in Xp, given by (10.17); here p is any number satisfying 1 < p < oo.

Remark 10.1. Theorem 9.1 extends to the case where 5 satisfies (10.1 )-( 10.4);
thus, the solution having the form (9.2) is unique if the system (10.18) has a
unique solution.

In order to show that the system (10.18) is a Fredholm system of equations
we need to analyze 772 more carefully. We shall be working with the spaces
Xp, 1 < p < 2 ; if T is bounded linear operator from Xp to X then its norm
is denoted by ||r||L,.

Lemma 10.6. 7*br any u e Xx n X2

(10.21) H2u = -u + Du + Tu,
where D is a compact operator from Lp(0, If) into Lp(0, l0) for 1 < p < 2,
and

(10-22) F«IIl'(o,,0)<^II"IIl'(o,/o)!
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(10.23) ||rM||L2(o/o) < 1±|^||M||l2(o/o)
Proof. Using a partition of unity to write

where x¡ is supported {si_i + 26, si+x -23} for some S > 0, it is sufficient to
concentrate on H2(x¡u). Setting

Lq = {u G Lp(si_x +ô, si+x - a) ; u(t) = 0ift<s¡_x + 2ô or if t > si+x - 20}

it is sufficient to establish ( 10.21)—( 10.23) for u in L¿ n L2,. (Here we have
taken for simplicity 0 < s¡_x, si+x < l0 ; if 5( is the smallest or largest point in
Z, then some small modifications need to be made, using the /0-periodicity of
the functions u(t).)

To simplify the notation we take

(10.24)   5I_, = -1,    sl_x+2ô = -^2,    S¡ = 0,    si+l-2ô = \,    si+x = l.
We first consider a special case where

as    if - 1 < 5 < 0,
(10.25) /(*)=,

ßs     if 0 < 5 < 1 ,

and |5| = \fi\ = 1, a^ß .
Lemma 10.7. The assertions of Lemma 10.6 holds for the case where u varies
in Lq and H2u is considered in Lp(0, If, provided (10.24), (10.25) hold.
Proof. We shall use complex notation

¡8 a i<p r,a = e   = a,        ß = e    = ß

as) - {

and set
A = ï(-l),     B = T(0),     C = T(l),

as    if - 1 < s < 0,
ßs    if 0<5< 1.

We assume for definiteness that AC lies in Q(  (i.e., above the curve 5" ), and
denote by Y the boundary of the triangle A, B, C .

Since
a-/"=Reaf, ß-l = KeßX,

we can write

fRe/^TTÄr^,       -Kí<0,kHu(s) = {      , ' Cls¡ ;l)
{^f^céññdt,       0<s<l.

Define
F{z) = Lémdt forzeQ"

F(C(s))= lim F(C(s) + En(s)),
C—.0+
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where
( ia    if - 1 < s < 0,

n{S)=\lß     if0<5.<l
is the normal to S pointing into £2,.

Notice that for -1 < 5 < 0,
,.     „    f° au(t)hm Re /    -f-2-dt

£->0+      J_x as + laE — atII
= Re/" QM(f)  dt + lim /—S /    Au(t) - u(s)]dt

J{-\,o}\j as-at e-+o+Jj (s-ty + e1

+ lim  / -      '—f—= u(s)dte^O+Jj <~
s-t

«-0+/y (S-t)2 + EL

where / is a subinterval of (-1,0) symmetric about s. The last integral
vanishes by symmetry, whereas the limit of the preceding integral is equal a.e.
to

r ^L-[u(t)-u(s)]dt.
Jj (s - tf

We conclude that
,^^r^ ,■ r,       ^       aU(t) „       f° UU(t) ,10.26 hm      Re/    -fj-dt = Re¡ K '     dt.z=ris)+en(S)        J_x Z - Ç(t) J_x Ç(i) - Ç(f)

£-»0+

Similarly

(10.27) lim      Im [     aU^. dt = -nu(s).
V ' z=C(s)+en(s) 7_, Z-C(t)

£->0+
Using (10.26) we deduce that, for -1 < 5 < 0,

~i
Re(aF)(C(s)) = Re j ^ ¡.{^\{t) dt = nHu(s).

holds for 0

(10.28) nHu(s) =

A similar result holds for 0 < 5 < 1 ; thus
Re(aF)(C(s))    if - 1 <s<0,
Re(ßF)(C(s))   if 0 < 5 < 1.

If -1 <s<0, then by (10.28)
(10.29)

n2H2u(s) = nH(Hu)(s)

=nRfar Jm-d,\Las) - at)
=     lim     Re < a

z=Ç(s)+iae£ — 0+ k

0 Re(aF)(C(t))  .   ,   fx Re(/?F)(i(f))rRe(aF)(qt))dtf
;_,    z-C{t) Jo0    2 - at)

dt

where (10.26) was used in the last equality. Since
adt    if - 1 < t < 0,
ß dt   if 0 < t < 1,dC(0={
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we have
(10.30)

a Re(oF)«(/)) A, ,   ; Re(/¡F)(C(()) d¡rK^F)mo)     r
A,    z-C(<) A    z-CW

/.i r-C(<) 7-,      r-C(«) A        z-£(<)
«-ofici      /•     -QQrfÂ _„ /• «»saQttßa,,,

7rZ-C 7lc+c7z-C      /       7-1      z-Ç{t)
•' aF

z - C(0

dt

r aRe(ßF)(C(t)) d
Jo

=    -2niaF(z) f   ^^IdC-i^^(ßdt)iciz-ca(- h z-atr   \
n(aF)(C(t)) At ,   f[ aRe(ßF)(C(t))dt_ar»iim(aF)(Ç(t))dt+r

y_i    z-ç(o        y0

= -ww^w)-/'a"n'™""¿.
To

F)iC
z-at)

/.
0 /Im(aF)(C(0)
-i    z-at)

where

dt,

in the last equation we used the relation aT7 = Re(aF) + ilm(aF). For -1 <
5 < 0 we clearly have

lim       ,   ailm(ßF)(gt)) dt =   /•' ailm(ßF)(t:(t)) ^railm(ßF)((t))dt=r
Jo z- C(t) J0z=C(s) + iae Jo Z- C(t) Jo as) ~ £(*)

£ — 0+

and, similarly to (10.27),
-o ~iimt~i7\ir(t\\ r0

lim      /    ^•Im(qJF)(C(0) dt = nlm{aFms)) + f p lm(aF)(gt)) „
í=f(í)+/ae /-i Z-C(0 7-1 *-/

£-►0+

Substituting (10.30) into (10.29) and using the last two relations, we obtain
(10.31)

n2H2u(s) = Re j -2nia[F(as)) + G(C{s))] - nlm(aF)(as))

7-1    «-< 7o   as)-at)    j

= 7T Im(aF)(C(5)) + 2tt Im(aG)(C(j)) - Rea j   ''fl^ff rfL
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Now, when -1 < 5 < 0,

au(t)

499

au(t) ,       fl   au(t)    .aF C(s))= hm  /    -A2--dt+ /   --¿-dt,e^o+J_x as + laE - at J0   as - ßt

and using (10.27) we get

(10.32) aF(as)) = -inu(s)+ [   -^- dt + f      "ff.   dt.7-1 s-t Jo  s-ßt/a
Similarly, when 0 < 5 < 1 ,

(10.33)
fiF(as))= Hm  /    .   /M-(0--dt+ [e^o+J_xßs + ißE-at Jo

'   fiujt)
ßs- ßt

.      , ,        f1   Mí      , f°        M(0 .-inu(s)+       -U-dt+       --TTßdt.Jo  s-t J_x s-at fi
Using (10.32), (10.33) in (10.31), we get

(10.34)
-7tw(5+Im/   --¿Tj-dtJo  s-fit a

2 ~2n 77 u(s) = 71

-Re

Noting the cancellation
■ i

az /    -Jo  as- ßt

+ 2nlm(aG)(as))

f°     "(Ù      .7tw(0 + Im /    -K—Ln; dxy_i t-ax ß
dt.

Re      —^-^-7iu(t)dt + 7ilm      — „  ,   dt = 0Jo   as- ßt Jo  s- ßx/a
we get from (10.34)

(10.35)
n2H2u(s)= -7i2u(s) + 27ilm(aG)(C(s))

+ i'Im(^ki)/-, iimr^7ß)uM'hd'
provided -1 < 5 < 0.

Similarly, if 0 < 5 < 1,

n2H2u(s) = - n2u(s) + 2nlm(ßGx)(as))
(10.36) + CH^hjß) ¡°X,mT^) u(r)d"»
with a corresponding function Gx.

Noting that

Im-—r-Im-—   —— = -sin (0 - <p)
s2 + t2t2 + x2s-ßt/a     t-ax/ß

if st < 0, tx < 0, we can rewrite (10.35), (10.36) in the form

(10.37) 7i2H2u = -n2u + fu + Du,
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where
Du(s) =

2nlm(aG)(as)),.

T0.38)
2nlm(ßGx)(as)),

fu(s) = -lí   his, t) If   h(t,x)u(x)dx)dt\ sin (6-tp) = -K2u(s),

/   h(s, t)u(t)dtKu(s)

and

h(s,t)

sin(8 - tp),

if st <0,_!_
S2 + f

0        if st > 0
In the definition of G(z), the denominator is uniformly positive in absolute

value for all z = £(s), when 5 varies in the interval

s(_i+S <s <si+l-S,    i.e.,     - 3/4 < s < 3/4.

A similar remark applies to Gx . Hence the operator D is compact from L¿
to L2(si_x +ô, sj+x - ô). The restriction of Du from L¿ to L (A), where
A = (0, /0)\(s;_, + S, si+x - a), is also compact. Indeed, on A, Du coincides
with n H u, i.e., Du = n H(Hu), and 77w is smooth in A (i.e. analytic). We
write Hu = Y^XÁHu), apply 77 to each y-(Hü), and express H(XjHu) in
(s_x -ô, sj+x +S) as in (10.37). We then find that 77 m is a compact operator
from L¿ into L (A)

We have thus proved that D , in (10.37), is a compact operator from L0 into
L2(0,/0).

Next,

\\Ku\\L, < i   ds        h(s, t)u(t)dt

- i\ (/-', |ä(j' t)lds)lu{t)ldt -^S\ lu(t)ldt>
which establishes (10.22). To prove (10.23) take first -1 < 5 < 0. Then

l*M(i)| <   /   l"(7o
^dt<cjl^dt

Jo   l - sf2 + t2

where cQ is such that

r°°    1
CoJ^—s^WXw^dt,

1+v^
s¿ + t¿- t-s

I.e. ,        Cr,  =
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Then
f-0 ' ,    ,    r-0

/U /-U ...    /"OO\Ku(s)\2 ds < c¡n2      (H(ux[0A])) dt<c07t   /     (m*[0>1]) </f.
7 — 1 7—oo

; holds for 0 < 5 < 1 and thus

/"'  IP-   /  m2j    / 3 + 2\/2    2   /"'  ,   ,,.,2   .,/    \Ku(s)\ ds <-2-n   \    \uit)\ dt,

and (10.23) follows.

Proof of Lemma 10.6. As before it is sufficient to concentrate on 772 with u
restricted to the space Lq and 77 considered in Lp(0,/0). Using the notation
(10.24), we introduce a curve 1(f) consisting of the two tangents to 1(f) at
t = S; = 0. We write l(t) = l(t) and denote by H¡, H¡ the operators 77
defined with respect to / and /, respectively. Set

D = Hl- Hj.
— 1 2

If we can prove that D is a compact operator from L0 into L , then the
assertion of Lemma 10.6 will follow from Lemma 10.7. To prove that D is
compact, introduce the function

¥,tl )_*• (/(»we»
' |/(»)-«(0l2

and similarly k¡.
Let -1 < 5 < 0. If -1 < t < 0, then

1kj(s , t) =

whereas
2,

kfs, t) = x(s)-[x(s)(s- t) + dx(s -tf]
r(s)(s-t) + dx(s-t)2\2(10.39) mw-*; + «i

=-Y d2 = kfs, t) + d2,

where the d- 's denote uniformly continuous functions of (s, t). On the other
hand, if 0 < t < 1, then

_ a-(as- fit)
|a5-y?í|2

and
.2 . j „2

k,= (a + d3s) ■ (as - fit + d3s  + dft) _ a ■ (as - fit) + d{
\as - ßt\2 + d5 \as - fit\2 + d.5

2N   0._, -..    n^2where |</5| < C(\s\5+ sLt + \s\f + t5), \d6\ < C(t + t\s\+s¿). Since |ai-ySf|   >
2 2c(j  + / ), c > 0, we deduce that

(10.40) k¡ = k-¡ + d1,    d7 continuous.
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From (10.39), (10.40) we see that, for -1 < 5 < 0,

(Du)(s) =       d(s, t)u(t)dt,

where d is a continuous function. The same result can be proved for 0 < 5 < 1
Consequently D is a compact linear operator from Lq into Lpü .

Set
\2

(io.4i; A
(¿i -e2

4e,e2
We return to equations (10.18). Using Lemma 10.6 we can rewrite the second

equation in the form

(10.42) [(I + X)E - XT]J + DJ + ffl, J) = -JQ,
where E is the identity operator. Set

X10.43) B = [(1 + X)E-XT] ' = (1 +Â)-1 ¿ (j^j

this is a bounded linear operator in X   provided

10.44) \T\\L><
l+X

When this condition is satisfied we can rewrite (1.18) in the form

I + fx(I,J) = -I0,
J + BD + BTfl, J) = -BJ0,

which looks like a Fredholm system.
By Lemma 10.6, (10.44) is satisfied if

(10.45)

(10.46)

(10.47)

1
4<

1+A
X P=U

3 + 2v"2< l+X
P = 2.

Recalling that e  = e' + if', e> 0, e" > 0, we have

(10.48)
1+A (e.+e,)

(e, (S'x - E2

'I
'n2

/   « / ,2   .   /  /'   ,     '«
_  (£, +E2)   +(£,  +62

««,2

+« - e;')2
>1,

so that (10.46) is always satisfied. Consequently we prefer to work in the space
Xx . However this requires a careful look at all the terms in T2, ensuring that
they each are a compact operator in Xx . Recall that in the operator T2 there
enter operators which are obtained when we substitute 7 from (10.15) into
(10.16). The "worst" operator in T2 is

cx/x(s) (°(Hu)(t) (^ - ^-\ (x(s)-y(t))dt,
Jo V e2 £1  /
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c, constant. If ug Ll then 77« is in (L )weak, so that in order to make sense
out of the above operator we must write it in the form

C2/¡is) i u(t')dt' [ ?(0;(W-/('')) i_^ dt
1     y J      \l(t) - l(t')\2        ö\x(s)-y(t)\ °

c2 is another constant, and T0 is a compact operator in Xx. The inner integral
has the form

*(i'-s) = A(logRÏÏ^K7)ï)(,')-
As in the proof of the previous two lemmas, it is enough to consider what

happens in a neighborhood of s¡ = 0 when /(f) consist of two line segments
meeting at t = 0. Using the same notation as in Lemma 10.7, this reduces to
studying the operator K :

(10.49) Ku(s)= Í   log(s-x)(T0u)(x)dx,

where

(10.50) Tju(s)= Í   hj(s, t)u(t)dt

and

(10.51) h0(s,t) s - t
s

if st > 0,

if st < 0.

Later on we shall also need to examine Tx u where

{-z-r    ifsf<0,
s2 + t2
0 if st > 0.

The operator K does not appear to be compact or even bounded if we con-
sider it in the L -norm. We shall therefore resort to a weighted L'-norm

\\u\\a= f^dt, 0<a<l.

Lemma 10.8. The operator u —» Ku from L¿ into L1  is a compact operator
provided both u and Ku are taken with the \\ \\a norm.

Here L1 = Ll(-l, 1) and L¿ = {« e L1 ; u(t) = 0 if |f| > |}.

Proof. Write v = Ku and set

u(t) = rau(t),        v(s) = s~av(s).

Then

v(s)= f   k(s,t)ü(t)dt = (Kü)(s),
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where
a     r\t       Ík{s,t) = -5j log\s - x\hJx, t)dx,

i •and it suffices to show that K is compact from L0 into L .
If s > 0, then, for t > 0,

k(s, 0 = p

whereas for t < 0

j\og\s-x\^ + f_ log |5 - T|
i2 + T2

dx

f \        f° dx        f[ x
k(s, t) = -s   p.v. /    log|i-r|-—-+/   loë\s-x\--¿dxs J-i x-t    Jo r + x2

A similar representation holds for 5 < 0.   Using properties of the Hubert
transform it is easily seen that

Í10 531       ^(s ' ^ *s a contmuous function of (s, t) for all (s, t) except
possibly 5 = 0, f = 0 or s = t.

If we can prove that

(10.54)

then

l^,0l<§i[(log|?|)2 + |log|5|log|f|]

|*(í,0l<£|log|í||.
Using this estimate and (10.53), we can deduce by a standard argument that K
is a compact operator from L0 into L .

To prove (10.54) it suffices to consider the case s > 0, t > 0. Then

(10.55)
kis, t) = -s xv.      log|j-r|--+/   log|j — t| 7 T   , di

Jo t-t    J-\ r + x1

= -äif+J2)

and

(10.56)

Next

(10.57)

\J2\<
J\r\<s/2     Js/2<\r\<2s     J\t\>2s

<C|l0g5||l0gf| +

<C|logs||logf|.

C ,2»
/ log |5 — T¡ <7t

J-s/2
+ C|logs||logf|

f2', , dx       /', , dx= p.v. /    log|i-T|--+/   log|i — t|-:=/,+/,
7o T - t    J21 'x-t
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Substituting x = t + r\ in 7, we get

/"'  lot» I.« — t

505

=p-v7_«'  log|s - f- t]\
n

dn= [
Jo

' log \s - t - r¡\ - log \s - t + n\

so that, upon substituting r\ = \s - t\Ç,
»log|(l+£)/(!-<*)|

(10.58) |/,l< /7o
dt

n

<c.

dr\

To estimate 72 we substitute x = 2t + r\t to get

-L[/t-2 log |5 - 2f - r¡t\
lo V+l

we may assume that l/t > 2. Writing

dn;

s -2t - r\t = t(y - r\)   where y
It

we obtain

\h\<I1//-2

t]+l dr\ + Il"~2 log|iy-y|

^ + 1 0^7/

< |l0gf|l0gy +72

where
/   ri/t-2 rl/t-2 f

= y o +y o +y o
{l>y+l}

| log \rj - y\
n + 1 dn.

The first term in 7, is bounded by

2 y iiogíi^í
7o

and each of the remaining two terms is bounded by
1   /•'/'_,

' t Jo     r\
1   fyt   dr\       _      ,2

+ 1

It follows that |72| < Ctlogi)^. Combining this with (10.58), (10.57), we see
that

|7,|<C(logf)2.
Recalling (10.56), (10.55), the assertion (10.54) follows.

Having proved Lemma 10.8, we remark that the compactness of all the other
operators in t2 is proved much more easily. However, since we shall be us-
ing the a-norm || ||a, we still must extend also Lemma 10.6 and the estimate
(10.22).

The proof of Lemma 10.6, for the a-norm, remains essentially the same; the
only difference is that now we have a slightly different estimate on Tx , namely

n
(10.59) '   ,M"a - 2cos(7ta/2)'
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Tx is defined by (10.50), (10.52). The proof of this estimate follows from
■i

ir1»n„<i|i.||„«?>/iMiiM|(r</î

yo    r¡(l + r¡¿)
n

2cos(na/2)'
From (10.59) we conclude that instead of (10.22) the following holds:

(10.60) l|71L<-r-ll«ll •a"4cos2(7ra/2)"  "a

Denote by Xx a the space Xx where the L1-norm is taken with weight co(t),

«„.¡»-r ¡fi«-s,i<¿,
Il if \t-s¡\>ó

for some small S > 0.
Notice that working with the space Xx a , the condition (10.44) becomes

l+X
\na = \\nXi <

and, in view of (10.60), (10.47), this condition is always satisfied if 4 cos (na/2)
> 1 , i.e., if 0 < a < 2/3. In this case, then, the system (10.18) is of Fredholm
type.

We summarize:

Theorem 10.9. The system (10.18) in Xx a (a G (0, 2/3]) is equivalent to the
Fredholm system (10.45) where BD and BT2 are compact operators in Xx Q.
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