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Maxwell’s equations on Cantor sets are derived from the local fractional vector calculus. It is shown that Maxwell’s equations on
Cantor sets in a fractal bounded domain give e�ciency and accuracy for describing the fractal electric and magnetic �elds. Local
fractional dierential forms of Maxwell’s equations on Cantor sets in the Cantorian and Cantor-type cylindrical coordinates are
obtained. Maxwell’s equations on Cantor set with local fractional operators are the �rst step towards a uni�ed theory of Maxwell’s
equations for the dynamics of cold dark matter.

1. Introduction

Nondierentiability, complexity, and similarity represent the
basic properties of the nature. Fractals [1] are the basic
characteristics of nature, which are that fractal geometry
of substances generalizes to noninteger dimensions. Micro-
physics reveals the fractal behaviors of matter distribution in
the universe [2] and so� materials [3].

Fractal time was used to describe the transport of charges
and defects in the condensedmatter [4]. In fractal space-time,
the geometric analogue of relativistic quantum mechanics
was presented in [5–8]. In fractal-Cantorian space-time
Ω4� ⊂ Ω4 [9, 10], the uni�ed �eld theory, quantum physics,
cosmology, and chaotic systems were discussed in [11–13].

Based on the fractal distribution of charged particles, the

electric and magnetic �elds in time-space Ω3�+1 ⊂ Ω4 were
developed in [14] and fractional Maxwell’s equations were
proposed in [15]. In [16, 17], the concept of static fractional

electric potential was developed. Recently, based on the
Hausdor derivative, fractal continuum electrodynamics in

time-space Ω4� ⊂ Ω4 was proposed [18]. 
e fractional
dierential form of Maxwell’s equations on fractal sets was
suggested in [19]. In [20], theMaxwell equations of fractional

electrodynamics in time-space Ω3+� ⊂ Ω4 were considered.

e Maxwell equations on anisotropic fractal media in time-
space Ω3�+1 ⊂ Ω4 were developed in [21].


e local fractional calculus theory [22, 23] was applied
to model some dynamics systems with nondierentiable
characteristics. In [22–26], the heat-conduction equation
on Cantor sets was considered. In [27], the Navier-Stokes
equations on Cantor sets based on local fractional vector
calculus were proposed. Helmholtz and diusion equations
via local fractional vector calculus were reported in [28]. 
e
Fokker-Planck equation with local fractional space derivative
was suggested in [29]. In [30], Lagrangian and Hamiltonian
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mechanics with local fractional space derivative was pre-
sented.
emeasuring structures of time in fractal, fractional,
classical, and discrete electrodynamics are shown in Figure 1.


e aim of this paper is to structure Maxwell’s equations
on Cantor sets from the local fractional calculus theory [23,
27, 28] point of view. 
is paper is structured as follows. In
Section 2, we introduce the basic de�nitions and theorems
for local fractional vector calculus. In Section 3, Maxwell’s
equations onCantor sets in the local fractional vector integral
form are presented.Maxwell’s equations on Cantor sets in the
Cantorian and Cantor-type cylindrical coordinates are given
in Section 4. Finally, Section 5 is devoted to conclusions.

2. Fundaments

In this section, we recall the basic de�nitions and theorems
for local fractional vector calculus, which are used through-
out the paper.

Local fractional gradient of the scale function � is de�ned
as [23, 27]

∇�� = lim
��(�)→0

( 1
��(�)∯�(�)��S

(�)) , (1)

where S
(�) is its bounding fractal surface,� is a small fractal

volume enclosing �, and the local fractional surface integral
is given by [23, 27, 28]

∬(�	) �S(�) = lim

→∞



∑
	=1

 (�	)n	Δ�(�)	 , (2)

with � elements of area with a unit normal local fractional
vector n	, Δ�(�)	 → 0 as� → ∞ for � = (3/2)� = 3�, and
∇� is denoted as the local fractional Laplace operator [22, 23].


e local fractional divergence of the vector function u is
de�ned through [23]

∇� ⋅ u = lim
��(�)→0

( 1
��(�)∯�(2�)u ⋅ �S(�)) , (3)

where the local fractional surface integral is suggested by [23,
27, 28]

∬ u (�	) ⋅ �S(�) = lim

→∞



∑
	=1

u (�	) ⋅ n	Δ�(�)	 , (4)

with � elements of area with a unit normal local fractional
vector n	, Δ�(�)	 → 0 as� → ∞ for � = (3/2)� = 3�.


e local fractional curl of the vector function u [23] is
de�ned as follows:

∇� × u = lim
��(�)→0

( 1
��(�)∮�(�)u ⋅ �l(�))n	, (5)

where the local fractional line integral of the function u along
a fractal line �� is given by [23]

∫
�(�)

u (�	, �	,  	) ⋅ �l(�)

= lim

→∞



∑
	=1

u (�	, �	,  	) ⋅ Δl(�)	 ,
(6)
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Figure 1: Graph for comparison of the measuring structures of time
in fractal, fractional, and classical electrodynamics.

with the elements of line Δl(�)	 requiring that all |Δ�(�)	 | → 0
as� → ∞ and � = 2�.


e local fractional Gauss theorem of the fractal vector
�eld states that [23, 27]

∭
�(�)

∇� ⋅ u��(�) = ∯
�(�)

u ⋅ �S(�), (7)

where the local fractional volume integral of the function u is
written as [23]

∭ u (�	) ��(�) = lim

→∞



∑
	=1

u (�	) Δ�(�)	 , (8)

with the elements of volume Δ�(�)	 → 0 as � → ∞ and
� = (3/2)� = 3�.


e local fractional Stokes theorem of the fractal �eld
states that [23, 27]

∮
�(�)
u ⋅ �l(�) = ∬

�(�)
(∇� × u) ⋅ �S(�). (9)


e Reynolds transport theorem of the local fractional vector
�eld states that [27]

"�
"#�∭�(�)

$ (�, #) ��(�)

= ∭
�(�)

%�
%#�$ (�, #) ��(�) +∯

�(�)
$ (�, #) � ⋅ �S(�),

(10)

where � is the fractal �uid velocity.

3. Local Fractional Integral Forms of
Maxwell’s Equations on Cantor Sets

According to fractional complex transform method [31], the
fact that the classical dierential equations always transform



Advances in High Energy Physics 3

into the local fractional dierential equations leads to the idea
of yieldingMaxwell’s equations on Cantor sets using the local
fractional vector calculus.

3.1. Charge Conservations in Local Fractional Field. Let us
consider the total charge, which is described as follows:

& = ∭
�(�)

' (�, #) ��(�), (11)

and the total electrical current is as follows

* = ∬
�(�)

- (�, #) ⋅ �S(�), (12)

where '(�, #) is the fractal electric charge density and -(�, #) is
the fractal electric current density.


e Reynolds transport theorem in the fractal �eld gives

"�&
"#� = "�

"#�∭�(�)
' (�, #) ��(�)

= ∭
�(�)

%�' (�, #)
%#� ��(�) +∯

�(�)
' (�, #) � ⋅ �S(�)

= 0,

(13)

which leads to

∭
�(�)

%�' (�, #)
%#� ��(�) +∯

�(�)
' (�, #) � ⋅ �S(�) = 0. (14)

From (14), we have

∭
�(�)

%�' (�, #)
%#� ��(�) +∯

�(�)
- (�, #) ⋅ �S(�)

= ∭
�(�)

(%
�' (�, #)
%#� + ∇� ⋅ - (�, #)) ��(�)

= 0,

(15)

where - = '� represents the current density in the fractal
�eld.

Hence, from (15), we get

%�' (�, #)
%#� + ∇� ⋅ - (�, #) = 0. (16)

By analogy with electric charge density in the fractal
�eld, we obtain the conservation of fractal magnetic charge,
namely,

%�' (�, #)
%#� + ∇� ⋅ - (�, #) = 0, (17)

where '(�, #) is the fractal magnetic charge density and
-(�, #) is the fractal magnetic current density in the fractal
�eld.

3.2. Formulation of Maxwell’s Equations on Cantor Sets. We
now derive Maxwell’s equations on Cantor set based on the
local fractional vector calculus.

3.2.1. Gauss’s Law for the Fractal Electric Field. From (3), the
electric charge density can be written as

∇� ⋅ " = lim
��(�)→0

( 1
��(�)∯�(2�)" ⋅ �S(�)) = ', (18)

where" is electric displacement in the fractal electric �eld.
From (7), (18) becomes

∭
�(�)

∇� ⋅ " ��(�) = ∯
�(�)

" ⋅ �S(�),

∭
�(�)

∇� ⋅ " ��(�) = ∭
�(�)

' ��(�).
(19)

Hence, we obtain Gauss’s law for the fractal electric �eld
in the form

∯
�(�)

" ⋅ �S(�) = ∭
�(�)

'��(�). (20)

3.2.2. Ampere’s Law in the Fractal Magnetic Field. Mathe-
matically, Ampere’s law in the fractal magnetic �eld can be
suggested as [23]

∮
�(�)
6 ⋅ �l(�) = *, (21)

where6 is the magnetic �eld strength in the fractal �eld.

e current density in the fractal �eld can be written as

∇� × 6 = lim
��(�)→0

( 1
��(�)∮�(�)6 ⋅ �l(�))n	 = -, (22)

which leads to

∮
�(�)
6 ⋅ �l(�) = ∬

�(�)
(∇� × 6) ⋅ �S(�),

∬
�(�)

- ⋅ �S(�) = ∬
�(�)

(∇� × 6) ⋅ �S(�).
(23)


e total current in the fractal fried reads

* = ∬
�(�)

(-� + -�) ⋅ �S(�), (24)

where -� is the conductive current and
-� = %�"

%#� , (25)

which satis�es the following condition:

*� = ∯
�(�)

-� ⋅ �S(�)

= ∯
�(�)

%�
%#�" ⋅ �S(�)

= %�
%#�∯�(�)" ⋅ �S(�).

(26)

Hence, Ampere’s law in the fractal �eld is expressed as
follows:

∮
�(�)
6 ⋅ �l(�) = ∬

�(�)
(-� + %�"

%#� ) ⋅ �S(�). (27)
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3.2.3. Faraday’s Law in the Fractal Electric Field. Mathemat-
ically, Faraday’s law in the local fractional �eld is expressed
as

7 = −%
�8
%#� , (28)

where 8 is the magnetic potential in the fractal �eld and 7 is
the electrical �eld strength in the fractal �eld.

From (28), we have

∇� × 7 = lim
��(�)→0

( 1
��(�)∮�(�)7 ⋅ �l(�))n	

= − %�
%#� (∇

� × 8) = −%�9%#� ,
(29)

where 9 is the magnetic induction in the fractal �eld.
In view of (9), we rewrite (29) as

∮
�(�)
7 ⋅ �l(�) = ∬

�(�)
(∇� × 7) ⋅ �S(�),

∬
�(�)

(∇� × 7) ⋅ �S(�) = ∬
�(�)

(−%�9%#� ) ⋅ �S(�)

= − %�
%#�∬�(�)9 ⋅ �S(�).

(30)

So, from (30), Faraday’s law in the fractal �eld reads as

∮
�(�)
7 ⋅ �l(�) + %�

%#�∬�(�)9 ⋅ �S(�) = 0. (31)

3.2.4. Magnetic Gauss’s Law for the Fractal Magnetic Field.
From (3), we derive the local fractional divergence of the
magnetic induction in the fractal �eld, namely,

∇� ⋅ 9 = lim
��(�)→0

( 1
��(�)∯�(2�)9 ⋅ �S(�)) = 0. (32)

Furthermore, the magnetic Gauss’ law for the fractal
magnetic �eld reads as

∯
�(�)

9 ⋅ �S(�) = 0. (33)

3.2.5. �e Constitutive Equations in the Fractal Field. Similar
to the constitutive relations in fractal continuous medium
mechanics [23], the constitutive relationships in fractal elec-
tromagnetic can be written as

" = :�7,
6 = ;�9,

(34)

where :� is the fractal dielectric permittivity and ;� is the
fractal magnetic permeability.

4. Local Fractional Differential Forms of
Maxwell’s Equations on Cantor Sets

In this section, we investigate the local fractional dierential
forms of Maxwell’s equations on Cantor sets.


e Cantor-type cylindrical coordinates can be written as
follows [26]:

�� = <�cos�>�,
�� = <�sin�>�,

 � =  �,
(35)

with < ∈ (0, +∞),  ∈ (−∞, +∞), > ∈ (0, @], and �2� + �2� =
<2�.

Making use of (35), we have

∇� ⋅ r = %���
%<� + 1

<�
%���
%>� + ��

<� +
%���
% � ,

∇� × r = ( 1
<�

%���
%>� − %���

% � ) e
�
�

+ (%
���
% � − %���

%<� ) e
�
�

+ (%
���
%<� +

��
<� −

1
<�

%���
%>� ) e

�
� ,

(36)

where

r = <�cos�>�e�1 + <�sin�>�e�2 +  �e�3
= ��e�� + ��e�� + ��e�� .

(37)

From (7) and (20), the local fractional dierential form of
Gauss’s law for the fractal electric �eld is expressed by

∇� ⋅ " = ', (38)

which leads to

%�"�
%<� + 1

<�
%�"�
%>� + "�

<� +
%�"�
% � = ' (<, >,  , #) , (39)

where" = "�e�� + "�e�� + "�e�� .
In view of (9) and (27), we can present the local fractional

dierential forms of Ampere’s law in the fractalmagnetic �eld

∇� × 6 = -� + %�"
%#� ,

( 1
<�

%�6�
%>� − %�6�

% � ) e
�
� + (%

�6�
% � − %�6�

%<� ) e
�
�

+ (%
�6�
%<� + 6�

<� −
1
<�

%�6�
%>� ) e

�
�

= -� (<, >,  , #) + %�" (<, >,  , #)
%#� ,

(40)

where6 = 6�e�� + 6�e�� + 6�e�� .
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Using (9) and (31), the local fractional dierential forms
of Faraday’s law in the fractal electric �eld can be written as

∇� × 7 = −%�9%#� ,

( 1
<�

%�7�
%>� − %�7�

% � ) e
�
� + (%

�7�
% � − %�7�

%<� ) e
�
�

+ (%
�7�
%<� + 7�

<� −
1
<�

%�7�
%>� ) e

�
�

= −%�9 (<, >,  , #)
%#� ,

(41)

where 7 = 7�e�� + 7�e�� + 7�e�� .
From (7) and (33), the local fractional dierential forms

of the magnetic Gauss law for the fractal magnetic �eld read
as follows:

∇� ⋅ 9 = 0,
%�9�
%<� + 1

<�
%�9�
%>� + 9�

<� +
%�9�
% � = 0,

(42)

where 9 = 9�e�� + 9�e�� + 9�e�� .
5. Conclusions

In this work, we proposed the local fractional approach
for Maxwell’s equations on Cantor sets based on the local
fractional vector calculus. Employing the local fractional
divergence and curl of the vector function, we deduced
Maxwell’s equations on Cantor sets. 
e local fractional
dierential forms of Maxwell’s equations on Cantor sets in
the Cantorian and Cantor-type cylindrical coordinates were
discussed. Finding a formulation of Maxwell’s equations on
Cantor set within local fractional operators is the �rst step
towards generalizing a simple �eld equation which allows the
uni�cation ofMaxwell’s equations to the standardmodel with
the dynamics of cold darkmatter.Wenoticed that the classical
case was debated in [32].
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