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We present the Maxwell superalgebra, an N ¼ 1, D ¼ 4 algebra with two Majorana supercharges,

obtained as the minimal enlargement of a Poincaré superalgebra containing the Maxwell algebra as a

subalgebra. The new superalgebra describes the supersymmetries of generalized N ¼ 1, D ¼ 4 super-

space in the presence of a constant Abelian supersymmetric field strength background. Applying the

techniques of nonlinear coset realization to the Maxwell supergroup we propose a new �-invariant

massless superparticle model providing a dynamical realization of the Maxwell superalgebra.

DOI: 10.1103/PhysRevLett.104.090401 PACS numbers: 03.50.De, 04.40.Nr, 11.30.Ly, 12.60.Jv

Introduction.—Recently, after the discovery of the cos-

mic microwave background (CMB) and the mystery of

dark energy [1], it is interesting to consider some field

densities uniformly filling space-time. One such modifica-

tion of empty Minkowski space is obtained by adding a

constant electromagnetic (EM) field background, parame-

trized by the additional field degree of freedom f��. The

presence of a constant EM field modifies the Poincaré

symmetries into the so-called Maxwell symmetries [2–9].

The difference from the Poincaré algebra consists in the

de Sitter-like substitution (recall that dark energy is some-

times described by the addition of a cosmological term, or

replacement of ‘‘empty’’ Minkowski space by de Sitter

space)

½P�; P�� ¼ iZ��: (1)

The additional tensorial generators Z�� are, however,

Abelian and satisfy the relations

½M��;Z���¼�ið���Z������Z��þ���Z������Z��Þ;

½P�;Z���¼0; ½Z��;Z���¼0: (2)

The Bacry-Combe-Richard (BCR) algebra [2] is a sub-

algebra of the Maxwell algebra in which Z�� takes fixed

numerical values. In the same way as the Poincaré algebra

is the R ! 1 limit (R ¼ dS radius) of de Sitter algebra, the

Maxwell algebra M4 ¼ ðM��; P�; Z��Þ given in (1) and

(2) can be obtained by a suitable contraction of the de Sitter

algebra ð ~M��; P�Þ enlarged in a semisimple way by the

Lorentz generators M�� (see also [8]). Performing the

rescaling P� ! ��1P�, ~M�� ! ��2Z��, M�� ! M��

one obtains in the limit � ! 0 the Maxwell algebra M4.

In order to interpret the Maxwell algebra and the corre-

sponding Maxwell group, a Maxwell group-invariant par-

ticle model on the extended space-time (x�, ���) with the

translations of���, generated by Z�� has been studied [6–

9]. The interaction term described by a Maxwell-invariant

one form introduces new tensor degrees of freedom f��—

momenta conjugate to ���. In the equations of motion

they play the role of a background EM field which is

constant on-shell and leads to a closed, Maxwell-invariant

two form.

The aim of this Letter is to obtain the supersymmetric

extension of the Maxwell symmetries with new N ¼ 1

superMaxwell algebra and to investigate the corresponding

superMaxwell-invariant massless superparticle model.

(For massive superparticles one has to consider the N ¼
2 supersymmetries in D ¼ 4 [10].) Analogously to the

Maxwell case, one can introduce the generalized phase

space with coordinates (x�, 	�,���,��,�) and conjugate

momenta (p�, 
�, f��, ~��, D). Since (���, ��, �) are

cyclic coordinates the conjugate momenta (f��, ~��,D) are

constant on shell describing the constant Abelian SUSY

N ¼ 1 gauge field background. In this way one gets the

massless superparticle interacting with x independent field
strength superfield W�ð	Þ

W�ð	Þ ¼ i~�� �
i

2
f��ð �	�

��Þ� � iDð �	�5Þ�: (3)

We see, therefore, that the superMaxwell symmetries de-

scribe the geometry of N ¼ 1 superspace (x�, 	�) in the

presence of constant SUSY gauge field background (f��,
~��, D). It is also noted that the superparticle model is

invariant under � transformations, which eliminate half

of the Grassmann superspace coordinates 	�.
Particle model with Maxwell symmetry.—To formulate a

relativistic particle model, invariant under the Maxwell

group, it is convenient to use the nonlinear coset realiza-

tions method [11]. The coset G=H ¼ Maxwell=Lorentz

which we employ is parametrized as in [6–9], g ¼

eiP�x
�
eði=2ÞZ���

��
. The basic Maurer-Cartan (MC) form is
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� ¼ �ig�1dg ¼ P�L
� þ 1

2
Z��L

��
Z þ 1

2
M��L

��
M ; (4)

where

L� ¼ dx�; L
��
Z ¼ d��� þ 1

2
ðx�dx� � x�dx�Þ;

L
��
M ¼ 0:

(5)

The particle action invariant under the Maxwell algebra (1)

and (2) is described by the following Lagrangian:

L ¼
_x� _x�

2e
�

m2

2
eþ

1

2
f��L

���
Z ; (6)

where e is the einbein implementing the diffeomorphism

invariance, f�� is a tensorial variable canonically conju-

gate to the new coordinates ���, and L
���
Z is the pullback

of L
��
Z . In the proper time gauge, one obtains from (6) the

equations of motion

m €x� ¼ f�� _x
�; _f�� ¼ 0; _��� ¼�1

2
ðx� _x� � x� _x�Þ:

(7)

They describe the motion of a particle in an EM field f��,

which is constant on shell. The EM potential is described

by the one form A ¼ 1
2
f��L

��
Z . In the closed two form

field strength

F ¼ dA ¼ 1
2
f��L

� ^ L� þ 1
2
df�� ^ L

��
Z (8)

the second term vanishes on shell due to (7) and the field

strength components are constants f��.

From Maxwell algebra to superMaxwell algebra.—We

start with the following extension of the superPoincaré

algebra inD ¼ 4 with Majorana superchargesQ� (�,  ¼
1, 2, 3, 4)

fQ�; Qg ¼ 2ðC��Þ�P�; ½P�; P�� ¼ iZ��: (9)

In order to verify the (P, Q, Q) Jacobi identity, P� cannot

commute with Q� but requires a new Majorana charge ��

defined as

½P�; Q�� ¼ �i�ð��Þ

�: (10)

One can show from Jacobi identities that

fQ�;�g ¼
1
2
ðC���Þ�Z��: (11)

��, as well as Q�, transforms as a spinor under Lorentz

transformations,

½M��; Q�� ¼ �
i

2
ðQ���Þ�;

½M��;��� ¼ �
i

2
ð����Þ�:

(12)

Together with relations (1) and (2) the superalgebra G ¼

ðM��; P�; Z��; Q�;��Þ is shown to close due to the

gamma matrix identity ðC��Þð�ðC��Þ��Þ ¼ 0 (���

symmetric sum) valid in D ¼ 4. G defines the minimal

Maxwell superalgebra containing the Maxwell algebra

M4 as a subalgebra.

Consistently with the Jacobi relations one can also add a

scalar central charge B in (11) as

fQ�;�g ¼
1
2
ðC���Þ�Z�� þ ðC�5Þ�B (13)

and obtain the centrally extended algebra ~G ¼

ðM��; P�; Z��; Q�;��; BÞ. It can be shown that the central

charge B corresponds to the constant mode of an auxiliary

scalar in the ‘‘off shell’’ supersymmetric Uð1Þ gauge field
theory.

Two Casimir operators of the Maxwell algebra obtained

in [2,3],

C 2 ¼ Z��Z
��; C3 ¼ Z��

~Z��; ð ~Z�� � 1
2
�����Z��Þ

(14)

are also Casimir operators of the Maxwell superalgebra G,

but the third mass Casimir operator requires a fermionic

term

C ¼ P2 þM��Z
�� þ i�C�1Q: (15)

For the centrally extended algebra ~G the Casimir operator

C ceases to commute with Q and �. However, in the

presence of an additional chiral symmetry charge B5 sat-

isfying

½B5; Q�� ¼ �iðQ�5Þ�; ½B5;��� ¼ ið��5Þ�; (16)

we can construct the extension of Casimir C

~C ¼ P2 þM��Z
�� þ i�C�1Q� B5B; (17)

which becomes a Casimir operator of the algebra G5 ¼

ðM��; P�; Z��; Q�;��; B; B5Þ. The super algebra G5 will

be realized in a massless particle model in the next section.

Massless superparticle model with Maxwell supersym-

metry.—We construct a massless superparticle model using

a nonlinear realization of the superMaxwell algebra G5.

The supergroup element ~g is parametrized as

~g ¼ eði=2ÞZ���
��
eiP�x

�
ei���

�
eiQ�	

�
eiB� (18)

using the supercoset G=H ¼ G5=ðM� B5Þ [12]. Here the
chiral generator B5 is in the unbroken subgroup because we

construct a massless particle. The components of the MC

form ~� ¼ �i~g�1d~g are

~L� ¼dx�þ ið �	��d	Þ; ~L� ¼ d	�; ~L
��
M ¼ 0;

~L
��
Z ¼d���þ ið �	���Þ�d�

�þ
1

2
ðx�dx��x�dx�Þ

þ
i

2
ð �	�����	Þ

�

dx�þ
i

6
ð �	��d	Þ

�

;

~L�
�
¼d��þð��	Þ

�

�

dx�þ
i

3
ð �	��d	Þ

�

; ~L5 ¼ 0;

~LB ¼d�þ ið �	�5Þ�d�
�þ

i

2
ð �	�5��	Þ

�

dx�þ
i

6
ð �	��d	Þ

�

(19)

and verify the corresponding MC equations
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d ~L� ¼ i �~L�� ~L� ~L
��
M

~L�; d ~L
��
M ¼� ~L

��
M ���

~L��
M ;

d ~L
��
Z ¼ ~L� ~L� þ i �~L��� ~L� � ~L

��
M ���

~L��
Z � ~L

��
Z ���

~L��
M ;

d ~L� ¼ ð�5
~LÞ� ~L5 � 1

4
~L
��
M ð���

~LÞ�;

d ~L�
�
¼ ð��

~LÞ� ~L� � ð�5
~L�Þ

� ~L5 � 1
4
~L
��
M ð���

~L�Þ
�;

d ~LB ¼ i �~L�5
~L�; d ~L5 ¼ 0: (20)

These MC equations provide a dual formulation of the

superMaxwell algebra introduced in the previous section.

The massless superparticle action invariant under the

superMaxwell group is

L ¼
�2

�

2e
þLI�; LI ¼ 1

2
f��

~L
��
Z þ i��

~L�
�
þD ~LB;

(21)

where �� ¼ _x� þ i �	��
_	 is the pullback of ~L� to the

world line and e describes the einbein. Here f��, ��, D

are dynamical variables transforming as Lorentz tensor,

Majorana spinor and scalar, respectively. The interaction

Lagrangian can be written explicitly as

L I� ¼ 1
2
f��

_��� þ i~��
_�� þD _�þ ��A� þ _	� ~A�;

(22)

where

~� � ¼ �� þDð �	�5Þ� þ 1
2
f��ð �	�

��Þ� (23)

and the Uð1Þ SUSY gauge potentials are

~A� ¼ ið �	��Þ�

�

�1
2
f��x

�

þ i

�

2
3
~�� 1

8
�	���f

�� � 1
4
D �	�5

�

��	

�

;

A� ¼ �1
2
f��x

� þ i

�

~�� 1
4
�	���f

�� � 1
2
D �	�5

�

��	:

(24)

The variation of L with respect to (���, ��, �) gives

_f �� ¼ _~�� ¼ _D ¼ 0; (25)

i.e., the Uð1Þ superpotentials (24) are functions of the

superspace coordinates (x�, 	�) and the variables (f��,
~��, D) which take constant values on shell. The variation

of L with respect to (f��, ~��, D) gives the equations for

the variables (���, ��, �)

ð ~L
��
Z Þ� ¼ ð ~L�

�
Þ� ¼ ð ~LBÞ

� ¼ 0: (26)

The variation of L with respect to e puts the momenta ��

on mass shell with vanishing mass

�2 ¼ 0: (27)

Finally, the variation of L with respect to (x�, 	�) gives,
using (24) and (25), the superparticle equations of motion

in superspace,

d

d�

�

��

e

�

¼ ��F�� þ _	F�; (28)

2ið _�	��Þ�

�

��

e

�

¼ ��F��; (29)

where the superfield strength using the differential operator

D� ¼ @� þ ið �	��Þ�@� are

F�� ¼ ð@�A� � @�A�Þ ¼ f��;

F�� ¼ ð@� ~A� �D�A�Þ ¼ ið���Þ�;
(30)

and the superspace constraints following from (24)

F� ¼ ðD�
~A þD

~A�Þ � 2iðC��Þ�A� ¼ 0 (31)

have been used in (29). The sector of our model covered by

(x�, p�, 	
�, 
�, f��, ~��,D) describes therefore a massless

superparticle minimally coupled to the super Uð1Þ gauge
field. Identifying the interaction termLI ¼ A in (21) with

the EM one-form superpotential, the two-superform field

strength F ¼ dA is, after using the MC Eqs. (20),

F ¼ dA ¼ 1
2
f��L

�L� þ i��ð��LÞ
�L� þ � � � ; (32)

where the � � � terms are linear in the one forms LB, L
�
�
, L

��
Z

which vanish on shell. The field strength components are

the ones given in (30) and (31).

Our model describes the coupling to a particular choice

of Uð1Þ gauge superfield strength W�ðx; 	Þ in (3), which

satisfies the standard superspace constraints for the SUSY

gauge theories [13],

F� ¼ 0; F�� ¼ Wð��Þ

�;

D�W ¼ �
i

2
ðC���Þ�F��; @�Wð�

�Þ� ¼ 0:

(33)

It is known (see, e.g., [14]) that the coupling of the N ¼ 1

superparticle to the gauge superfield strength W�ðx; 	Þ
satisfying the constraints (33) leads to a �-invariant inter-
action. Actually our system is not only invariant under the

global Maxwell supersymmetries but also invariant under �
reparametrization and the � symmetries.

Conclusions.—In this Letter we found supersymmetric

extensions of the Maxwell algebra and proposed a � in-

variant superparticle model (21) with the superMaxwell

symmetries. It couples minimally to a constant Uð1Þ gauge
superfield strength satisfying the superspace constraints

[see (33)]. It gives a new geometric framework for a super-

space filled with a uniform SUSY gauge field by general-

izing the known nonsupersymmetric one with Maxwell

symmetries. Because supersymmetries have critical impor-

tance in current fundamental interaction theories (e.g.,

string or M theory), we hope such a generalization will

be useful in this context, in particular, in the interpretation

of fermionic backgrounds.

The superMaxwell algebra is realized if we regard the

variables (f��, ~��, D) as dynamical ones. In the
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Hamiltonian formulation of our model (21) they become

the generators (Z��, ��, B) of the superMaxwell symme-

tries. Note that by taking a fixed solution for (f��, ~��, D)

the superMaxwell symmetry is spontaneously broken to

smaller ones similarly as in the bosonic case [2]. The

evolution of the coordinates (���, ��, �) are described

by Eq. (26) with their solutions determined by the trajec-

tories in the ‘‘physical’’ subspace (x�, 	�, f��, ~��, D). It

will be interesting to find some physical interpretation for

the new coordinates (���, ��, �) and their dynamical

roles. For the bosonic Maxwell case it has been suggested

[7] that ��� describes the magnetic moment of a distribu-

tion of charged particles with center-of-mass position x�.
The superMaxwell algebra G introduced in this Letter is

a minimal superextension of the Maxwell algebra. It can be

considered as an enlargement of the Green algebra [15] by

adding the tensorial central charges Z��. In the Green

algebra the spinorial generators �� are central [compare

with (11)]. We have considered also its central extension ~G
and the enlargement G5 by means of the chiral generator

B5. The superMaxwell algebra G can be embedded into

larger superalgebras, in particular, in the known

Bergshoeff-Sezgin (BS) p-brane algebra [16]. Thus one

can introduce a corresponding BS-invariant superparticle

model with the interaction Lagrangian generalizing (22)

and gauge superpotentials ABS
� , ABS

� depending in a unique

way on the BS supergroup coordinates. Using the coset

with Lorentz stability group we find that the corresponding

superfield strength FBS’s do not satisfy the superspace

constraints (33); i.e., the BS superparticle dynamics is

not � symmetric. The origin of the noninvariance is the

appearance of Z�� in the fQ;Qg anticommutator result-

ing in F� � 0 which violates the SUSY constraint (33)

[cf. (32)]. We note also that Soroka and Soroka proposed in

[5,17] a nonstandard supersymmetrization of Maxwell

algebra, without the translation generators in the basic

anticommutator fQ;Qg; moreover in [17] there is presented

some superextension of k-deformed Maxwell algebra (k >
0 of [8]).

Our geometric scheme introduces additional degrees of

freedom, describing uniform gauge field strengths in space

and superspace leading to uniform constant energy density.

These global degrees of freedom are dynamical; i.e., our

model provides a framework in which the cosmological

constant could be considered as a dynamical quantity.

Recently, many papers propose new types of dynamics to

explain the dark energy phenomenon (see, e.g., [18]) as

well as the dynamical role of the cosmological constant

(see, e.g., [19,20]). Because at present these issues are of

fundamental importance, the developments in this Letter

should find some important applications.
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