
May-Happen-in-Parallel Analysis of X10 Programs

Shivali Agarwal
Tata Institute of Fundamental Research,

Mumbai, India
shivali@tcs.tifr.res.in

Rajkishore Barik
IBM India Research Lab, New Delhi,

India
rajbarik@in.ibm.com

Vivek Sarkar
IBM T.J. Watson Research Center

vsarkar@us.ibm.com

Rudrapatna K Shyamasundar
IBM India Research Lab, New Delhi, India

rshyamas@in.ibm.com

Abstract
X10 is a modern object-oriented programming language designed
for high performance, high productivity programming of paral-
lel and multi-core computer systems. Compared to the lower-level
thread-based concurrency model in the JavaTM language, X10 has
higher-level concurrency constructs such as async, atomic and
finish built into the language to simplify creation, analysis and
optimization of parallel programs. In this paper, we introduce a new
algorithm for May-Happen-in-Parallel (MHP) analysis of X10 pro-
grams. The analysis algorithm is based on simple path traversals in
the Program Structure Tree, and does not rely on pointer alias anal-
ysis of thread objects as in MHP analysis for Java programs. We
introduce a more precise definition of the MHP relation than in past
work by adding condition vectors that identify execution instances
for which the MHP relation holds, instead of just returning a single
true/false value for all pairs of executing instances. Further, MHP
analysis is refined in our approach by using the observation that two
statement instances which occur in atomic sections that execute at
the same X10 place must have MHP = false. We expect that our
MHP analysis algorithm will be applicable to any language that
adopts the core concepts of places, async, finish, and atomic sec-
tions from the X10 programming model. We also believe that this
approach offers the best of two worlds to programmers and paral-
lel programming tools — higher-level abstractions of concurrency
coupled with simple and efficient analysis algorithms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
nique]: Concurrent Programming—Parallel Programming

General Terms Languages, Verification

Keywords X10, May-Happen-in-Parallel, Place, Concurrent, Atomic,
Activity, Parallel Program Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’07 March 14–17, 2007, San Jose, California, USA.
Copyright c© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00

1. Introduction
The current trends towards multi-core processors is expanding the
demand for languages and tools that simplify parallel program-
ming. X10 [4] is a modern object-oriented programming language
designed for high performance, high productivity programming of
parallel and multi-core computer systems. X10 offers various con-
currency control constructs to the programmers: multiple parallel
activities can be created using the async construct, their termina-
tion can be coordinated using the finish construct, mutual exclu-
sion can be enforced using atomic blocks, and barrier based syn-
chronization among activities can be performed using the clock
construct. X10 also supports partitioning of data and activities
across places through the use of distributions.

The goal of May-Happen-in-Parallel (MHP) analysis is to stati-
cally determine if it is possible for execution instances of two given
statements (or the same statement) to execute in parallel. MHP
analysis serves as a key foundation for concurrent static and dy-
namic debugging tools including tools for data race detection [5,
10, 14, 16]. Past research on MHP analysis has been conducted for
parallel programming languages ranging from Ada [6, 15, 17] to
Java [2, 13, 18]. In general, the problem of precise MHP analysis
for all pairs of statements in a given program is undecidable. If all
control flow paths in all threads are assumed to be executable, Tay-
lor [23] has proved that, under certain assumptions, computation of
MHP information is an NP-complete problem. Given the complex-
ity of the problem, a scalable and efficient MHP analysis algorithm
remains a significant challenge in the area of analysis of parallel
programs.

In this paper, we focus on computing MHP information for
concurrent X10 programs. The main contributions of this work
compared to past MHP analysis algorithms are as follows:

1. We introduce a more precise definition of the MHP relation than
in past work by adding condition vectors that identify execution
instances for which the MHP relation holds, instead of just
returning a single true/false value for all pairs of executing
instances.

2. Compared to past work, the availability of basic concurrency
control constructs in X10 such as async and finish enable
the use of more efficient and precise analysis algorithms based
on simple path traversals in the Program Structure Tree, and
does not rely on interprocedural pointer alias analysis of thread
objects as in MHP analysis for the Java language. Note that
Taylor’s NP-hardness results [23] for MHP analysis applies to
programs that use lower-level synchronization primitives such

183

as Ada’s rendezvous, and are not applicable to the X10 con-
structs considered in this paper.

3. Finally, MHP analysis is refined in our approach by using the
observation that two statement instances which occur in atomic
sections that execute at the same X10 place must have MHP =
false.

2. X10 Overview
This section provides a brief summary of a core subset of v0.41
of the X10 programming language [4]. The goal of X10 is to
introduce a core set of new language constructs that address the
fundamental requirements for high productivity programming of
parallel systems at all scales — multi-core processors, symmetric
shared-memory multiprocessors (SMPs), commodity clusters, high
end supercomputers, and even embedded processors like Cell. The
key features of X10 include:

• Explicit reification of locality in the form of places, with sup-
port for a partitioned global address space (PGAS) across
places

• Lightweight activities embodied in async, foreach, and ateach
constructs which subsume communication and multithreading
operations in other languages

• A finish construct for termination detection and rooted excep-
tion handling of descendant activities

• Support for lock-free synchronization with atomic blocks

With a view to mainstream adoption, X10 uses a serial subset of the
Java language as its foundation, but replaces the Java language’s
current support for concurrency by new constructs that are mo-
tivated by high-productivity high-performance parallel program-
ming.

The remainder of this section briefly describes the three core
constructs of X10 — async, atomic, finish. An important safety
result in X10 is that any program written with async, finish, and
atomic can never deadlock. Section 2.1 outlines how these three
constructs are used to write single-place parallel programs. Sec-
tion 2.2 then discusses how the async and finish constructs extend
to the multi-place case.

2.1 Single-Place Programming in X10 using async, atomic,
finish

2.1.1 async 〈stmt〉
Async is the X10 construct for creating or forking a new asyn-
chronous activity. The statement, async 〈stmt〉, causes the parent
activity to create a new child activity to execute 〈stmt〉. Execution
of the async statement returns immediately i.e., the parent activity
can proceed immediately to its next statement.

Consider the following X10 code example of an async con-
struct. The goal of this example is to use two activities to com-
pute in parallel the sums of the odd and even numbers in the range
1 . . . n. This is accomplished by having the main program activity
use the async statement to create a child activity to execute the for-i
loop and print oddSum, while the main program activity proceeds
in parallel to execute the for-j loop and print evenSum.

public static void main(String[] args) {
final int n = 100;
async { // Compute oddSum in child activity
double oddSum = 0;
for (int i = 1 ; i <= n ; i += 2) oddSum += i;
System.out.println("oddSum = " + oddSum);

}
// Compute evenSum in parent activity
double evenSum = 0;

for (int j = 2 ; j <= n ; j += 2) evenSum += j;
System.out.println("evenSum = " + evenSum);

} // main()

2.1.2 finish 〈stmt〉
The X10 statement, finish 〈stmt〉, causes the parent activity to exe-
cute 〈stmt〉 and then wait till all sub-activities created within 〈stmt〉
have terminated globally. If async is viewed as a fork construct,
then finish can be viewed as a join construct restricted to only the
activities created within the scope of the finish. X10 distinguishes
between local termination and global termination of a statement.
The execution of a statement by an activity is said to terminate lo-
cally when the activity has completed all the computation related to
that statement. For example, the creation of an asynchronous activ-
ity terminates locally when the activity has been created. A state-
ment is said to terminate globally when it has terminated locally
and all activities that it may have spawned (if any) have, recur-
sively, terminated globally.

Consider a variant of the previous example in which the main
program waits for its child activity to finish so that it can print the
result obtained by adding oddSum and EvenSum:

public static void main(String[] args) {
final int n = 100;
final BoxedDouble oddSum = new BoxedDouble();
double evenSum = 0;
finish {

async { // Compute oddSum in child activity
for (int i = 1 ; i <= n ; i += 2)

oddSum.val += i;
}
// Compute evenSum in parent activity
for (int j = 2 ; j <= n ; j += 2) evenSum += j;

} // finish
System.out.println("Sum = " + (oddSum.val + evenSum));

} // main()

The finish statement guarantees that the child activity terminates
globally before the print statement is executed. Note that the result
of the child activity is communicated to the parent in a shared
object, oddSum, since X10 does not permit a child activity to
update a local variable in its parent activity. In this case, the local
variable oddSum contains a pointer to an object with a val field,
thereby enabling oddSum.val to be updatable even though oddSum
is a constant pointer. It is also worth noting that the X10 memory
model is weak enough to allow oddSum.val to be allocated to a
register during the execution of the entire for-i loop.

2.1.3 atomic 〈stmt〉
The atomic construct in X10 is used to coordinate accesses by mul-
tiple activities to shared data located at the same place. The X10
statement, atomic 〈stmt〉, causes 〈stmt〉 to be executed atomically
i.e., its execution occurs as if in a single step during which 〈stmt〉
executes and terminates locally while all other concurrent activi-
ties in the same place are suspended. Compared to user-managed
locking, the X10 user only needs to specify that a collection of
statements should execute atomically and leaves the responsibil-
ity of lock management and alternative mechanisms for enforc-
ing atomicity to the language implementation. Commutative opera-
tions, such as updates to histogram tables and insertions in a shared
data structure, are a natural fit for atomic blocks when performed
by multiple activities. An atomic block may include method calls,
conditionals, and other forms of sequential control flow. For scal-
ability reasons, blocking operations like finish and force are not
permitted in an atomic block. An async statement is not permitted
either because the atomicity guarantee would only apply to local
(not global) termination of the child async activity.

184

2.2 Multi-Place Programming in X10

Current programming models use two separate levels of abstrac-
tion for shared-memory thread-level parallelism (e.g., Java threads,
OpenMP, pthreads) and distributed-memory communication (e.g.,
Java messaging, RMI, MPI, UPC) resulting in significant complex-
ity when trying to combine the two. In this section, we show how
the three core X10 constructs introduced earlier can be extended to
multiple places. A place is a collection of resident (non-migrating)
mutable data objects and the activities that operate on the data. Ev-
ery X10 activity runs in a place; the activity may obtain a reference
to this place by evaluating the constant here.

X10 v0.41 takes the conservative decision that the number of
places is fixed at the time an X10 program is launched. Thus, there
is no construct to create new places. This is consistent with current
programming models, such as MPI, UPC, and OpenMP, that re-
quire the number of processes to be specified when an application
is launched. This design decision may be revisited in future ver-
sions of the language as more experience is gained with adaptive
computations which may naturally require a hierarchical, dynami-
cally varying notion of places.

Places are virtual — the mapping of places to physical locations
is performed by a deployment step that is separate from the X10
program. Though objects and activities do not migrate across places
in an X10 program, an X10 deployment is free to migrate places
across physical locations based on affinity and load balance consid-
erations. While an activity executes at the same place throughout its
lifetime, it may dynamically spawn activities in remote places.

X10 supports a partitioned global address space (PGAS) that is
partitioned across places. Each mutable location and each activity
is associated with exactly one place. A scalar object in X10 is
allocated completely at a single place. In contrast, the elements
of an array, may be distributed across multiple places. We now
discuss how the async and finish constructs discussed earlier in
a single-place context, extend directly to the multi-place case. A
key constraint for atomic constructs is that an atomic block is only
permitted to access place-local data (Locality Rule).

The statement, async (〈place-expr〉) 〈stmt〉, causes the parent
activity to create a new child activity to execute 〈stmt〉 at the place
designated by 〈place-expr〉. The async is local if the destination
place is same as the place where the parent is executing, and remote
if the destination is different. Local async’s are like lightweight
threads, as discussed earlier in the single-place scenario. A remote
async can be viewed as an active message, since it involves commu-
nication of input values as well as remote execution of the compu-
tation specified by 〈stmt〉. The semantics of the X10 finish operator
is identical for local and remote async’s i.e., a finish ensures global
termination of all asyncs (local and remote) created in the scope of
the finish.

3. Program Structure Tree and MHP Analysis of
X10 Programs

The May-Happen-In-Parallel analysis problem addressed in this
paper deals with analysis of multi-place X10 programs that use
async, finish, and atomic constructs, which are higher-level forms
of the thread-based start, join, and synchronized constructs in the
Java language. In this section, we introduce the Program Structure
Tree (PST) representation for X10 procedures, which will be used
in later sections as the foundation for performing MHP analysis:

DEFINITION 3.1. A Program Structure Tree PST(N ,E) for a pro-
cedure is a rooted tree where

1. N is a set of nodes such that each node n ∈ N has one of
the following types: root, statement, loop, async, finish,
atomic. The root node designates the start of the procedure.

Each async node is annotated with a place expression that
designates the X10 place executing the async.

2. E is set of tree edges obtained by collapsing the abstract syntax
tree representation of the procedure into the six node types
listed above. PST.parent(N) returns the parent of node N as
defined by E.

The X10 language semantics ensures that an atomic node will
not be an ancestor of finish or async node. In addition, all
statement nodes must be leaf nodes in the PST. �

Figure 1 contains a simple example of an X10 code fragment
and its PST.

Having obtained the PST from the abstract syntax tree, the high
level steps involved in MHP analysis for X10 programs are outlined
below:

1. First, Never-Execute-In-Parallel (NEP) analysis is performed
as described in Section 4. This analysis considers the occur-
rences of finish and async nodes in the PST and determines
statements that can never execute in parallel. For soundness, the
NEP analysis conservatively errs on the side of returning NEP
= false when it is unable to perform a precise analysis of the in-
put X10 program. In the case of loop nodes in the PST, we use
condition vectors (defined in Section 4) to qualify the instances
of execution that can never happen in parallel. Note that X10’s
foreach and ateach constructs for parallel loops can be rep-
resented in the PST by an equivalent pair of loop and async
nodes.

2. Next, a Place-Equivalence (PE) analysis is performed as de-
scribed in Section 5. The output of this analysis is a predicate,
PE(S1,S2), which is set to true if all instances of S1 and S2 are
guaranteed to execute at the same place. For soundness, the PE
analysis conservatively errs on the side of returning PE = false
when it is unable to perform a precise analysis of the input X10
program. Similar to NEP analysis, we use condition vectors to
qualify the instances of execution of statements that are place
equivalent.

3. In the final step of MHP analysis as defined in Section 6, we
combine the NEP and PE analysis to obtain the MHP informa-
tion for atomic constructs. The basic intuition is that for all
those instances of execution of pair of statements where NEP
is true, MHP is assigned false. In addition, if the statements are
executed atomically, then MHP is assigned false for all those
instances of execution which happen at same place.

4. Never-Execute-in-Parallel Analysis
In this section, we describe our approach for determining if two
statements will never execute in parallel (NEP). The NEP relation
is the complement of the May-Happen-in-Parallel (MHP) relation
that has been introduced in past work for Java and other concurrent
programming languages [2, 18]. NEP is used instead of MHP in this
section for the sake of convenience in presentation. In addition, the
NEP relation will be used to compute a refined MHP relation later
in Section 6.

The significant differences between the NEP analysis presented
in this paper and past work on MHP analysis are as follows:

1. The availability of basic concurrency control constructs in X10
such as async and finish enables a more efficient and precise
NEP analysis algorithm compared to past work on MHP analy-
sis for Java. Our algorithm is based on simple path traversals in
the PST.

2. Past work on MHP analysis resulted in a simple true/false
value for a given pair of statements. Our work makes the NEP

185

for (i = 1 ; i <= n ; i++)

finish

for (j = 1 ; j <= n ; j++)

for (k = 1 ; k <= n ; k++)

async (A.distribution[i,j,k])

atomic {

S1: temp = f(A[i,j,k]);

S2: A[i,j,k] = temp;
}

LOOP

FINISH

LOOP

LOOP

ASYNC

ATOMIC

S2

S1

Figure 1. Example X10 Program and its PST

relation more precise by adding condition vectors that are able
to identify execution instances for which the NEP relations
hold.

3. As discussed later in Section 6, we show how the NEP informa-
tion can be further refined by using the atomicity properties of
atomic sections in X10.

DEFINITION 4.1. Two statements S1 and S2 are said to never
execute in parallel, written as NEP(S1,S2) = true, with condition
vector set CS if the following conditions hold:

1. S1 and S2 have exactly k loop nodes, L1, . . . Lk as common
ancestors in the PST (where k ≥ 0).

2. Each element 〈C1, . . . Ck〉 in CS is a vector of k functions of
type int × int → boolean. In this paper, we will restrict our
attention to three possible functions — “=”, “ �=”, and “∗”. The
symbol ∗ denotes the function that returns true for all inputs1.

3. Let S1[i1, . . . ik] denote any execution instance of S1 in itera-
tion i1, . . . ik of loops L1, . . . , Lk , and likewise for S2[j1, . . . jk].
If Cx(ix, jx) = true ∀1 ≤ x ≤ k for some condition vector
〈C1, . . . Ck〉 in CS, then it is guaranteed that statement in-
stances S1[i1, . . . ik] and S2[j1, . . . jk] cannot execute in par-
allel. �

To summarize Definition 4.1, if NEP(S1,S2) = false then there
are no pairs of instances of S1 and S2 that can be guaranteed to
not execute in parallel. If NEP(S1,S2) = true then the instances
of S1 and S2 that can be guaranteed to not execute in parallel are
determined by the condition vectors in CS.

The algorithm for computing the NEP relation is given in Fig-
ure 2. The algorithm takes two inputs: PST for the X10 proce-
dure being analyzed, and two statements, S1 and S2, for which we
want to compute whether NEP is true or false. Note that the al-
gorithm also accepts the case where S1 = S2. The first step is to
find the least common ancestor of the two statements, denoted by
A = LCA(S1,S2). This gives us the common scope of execution
of the two statements. In Steps 2 and 3, it is established for S1 and
S2 respectively whether they execute within an “unfinished” async
created within A. Depending on this information, there are 4 cases
that arise for NEP analysis for the 〈“=”, . . . , “=”〉 condition vector,
as described in Steps 5d - 5g:

1 These three operators have been also used in past work on direction
vectors [24]. We may choose to extend Cx in the future to represent
distance vectors or other more general boolean functions.

• Case 1 (Step 5d): If both S1 and S2 do not execute in an async
construct under A then we can conclude they will never execute
in parallel.

• Case 2 and 3 (Steps 5e and 5f): If exactly one of S1 or S2

executes in an async scope, then the dominator relation can be
used to compute the NEP(S1,S2) relation. In the algorithm, the
dominator relation is checked on ancestors of S1 and S2 (AS1

and AS2 respectively) that are immediate children of LCA(S1,
S2). If the PST path from S1 upto LCA(S1, S2) contains an
async node which is not followed by any finish node and
AS1 dominates AS2, then S1 and S2 will never execute in
parallel.

• Case 4 (Step 5g): If both S1 and S2 execute in a async scope,
then we have to conservatively assume that NEP = false.

Finally, we come to Step 6 which is performed in the case when
S1 and S2 have k ≥ 1 common loops. This step examines all nodes
in the PST starting from A, the least common ancestor of S1 and
S2, and ending at L1, the outermost common loop that encloses
S1 and S2. Note that the algorithm uses the fact whether a loop
contains a finish or async node in the PST to restrict the set
of iterations for which NEP = true. If (say) loop Lx contains a
finish node that is an ancestor of both S1 and S2 statements
and there is no intervening async node in PST path from the
finish node to Lx, we observe that instances of S1 and S2 from
two distinct iterations of Lx (but created in the same iteration
of outer loops L1, . . . , Lx−1) can never execute in parallel. This
property is captured by a condition vector in which Cx is set to
“�=”, C1, . . . , Cx−1 are set to “=”, and Cx+1, . . . , Ck are set to
“∗”.

The algorithm in Figure 2 assumes that the PST has already been
constructed, which is a one-time O(N) cost. In addition, Steps 5e
and 5f use the dominator relation on the original control flow graph,
which can be computed using algorithms that vary in execution
time complexity from O(NlogN) [12] to O(N) [8] as a one-
time cost. We observe that the NEP algorithm takes O(H) time for
determining if a given pair of nodes, S1 and S2, satisfy NEP(S1,S2)
= true, where H is the height of the PST. Note that the condition
vector set CS, can contain at most L + 1 condition vectors — one
contributed by Step 5h and L by Step 6(b)iiiB – each of which
has O(L) size, where L ≤ H is the maximum nesting of loops in
the PST . Step 6(b)iii can be considered a constant time operation.
If used to compute the NEP relation for all pairs of statements,
the total execution time will be O(N2H), which is more efficient
than the O(N3) time of the MHP algorithm in [18]. However, we

186

Inputs:

1. A Program Structure Tree (PST) for the procedure being analyzed

2. Two statement nodes S1 and S2 in the PST with k ≥ 0 common loop node ancestors in the PST, L1, . . . , Lk.

Outputs:

1. NEP(S1, S2), a boolean value that indicates if instances of S1 and S2 never execute in parallel.

2. CS, a set of condition vectors that is used only if NEP(S1, S2) = true. Given statement instances S1[i1, . . . ik] and S2[j1, . . . jk], if
Cx(ix, jx) = true ∀1 ≤ x ≤ k for some condition vector 〈C1, . . . Ck〉 in CS then it is guaranteed that the two statement instances cannot
execute in parallel.

Algorithm:

1. A := LCA(S1, S2), the Lowest Common Ancestor of S1 and S2 in the PST

2. /* Determine if an instance of S1 can be executed in a new async activity that escapes a given execution instance of A */
async S1 := false
for (N := S1 ; N �= A ; N :=PST.parent(N)) do

(a) if N is an async node then async S1 := true end if

(b) if N is a finish node then async S1 := false end if

end for

3. /* Repeat the previous step for S2 */
async S2 := false
for (N := S2 ; N �= A ; N :=PST.parent(N)) do

(a) if N is an async node then async S2 := true end if

(b) if N is a finish node then async S2 := false end if

end for

4. CS:= ∅ /* Initialize CS to an empty set */

5. if (S1 �= S2) then
/* Analyze four cases for async S1 and async S2 */

(a) AS1 := PST ancestor of S1 that is a child of A; Note that AS1 := S1 if S1 is a child of A;

(b) AS2 := PST ancestor of S2 that is a child of A; Note that AS2 := S2 if S2 is a child of A;

(c) flag := false /* 〈 =, . . . , = 〉 will be added to CS if flag = true */

(d) if (¬ async S1 ∧ ¬ async S2) then flag := true end if /* Case 1 */

(e) if (¬ async S1 ∧ async S2) then flag := (AS2 does not dominate AS1) end if /* Case 2 */

(f) if (async S1 ∧ ¬ async S2) then flag := (AS1 does not dominate AS2) end if /* Case 3 */

(g) if (async S1 ∧ async S2) then flag := false end if /* Case 4 */

(h) if (flag) then CS:= CS∪{ 〈“=”, . . . , “=”〉 } end if

end if

6. if (k ≥ 1) then /* S1 and S2 have at least one common loop */

(a) seqloop := true ; x := k + 1

(b) for (N := A ; N �= L1 ; N :=PST.parent(N)) do

i. if N is an async node then seqloop := false end if

ii. if N is a finish node then seqloop := true end if

iii. if N is a loop node then

A. x := x − 1 ;

B. if (seqloop) then CS:= CS∪{〈C1 = “=”, . . . , Cx = “�=”, Cx+1 = “∗”, . . . , Ck = “∗”〉} end if

end if

end for

end if

7. NEP(S1, S2) := (CS�= ∅) /* Return NEP = true if CS is non-empty */

Figure 2. Algorithm for computing Never-Execute-in-Parallel (NEP) relations

187

Main thread:

S1: ExternalHelper1.start();
S2: ...
S3: ExternalHelper1.join();
S4: ... // MHP algorithm concludes that

// S11 and S12 may happen in parallel with S4

ExternalHelper1 thread:

S5: ...
S6: InternalHelper1_1.start();
S7: InternalHelper1_2.start();

S8: InternalHelper1_1.join();
S9: InternalHelper1_2.join();
S10: ... // MHP algorithm concludes that

// S11 and S12 cannot happen in parallel with S10

InternalHelper1_1 thread:

S11: ...

InternalHelper1_2 thread:

S12: ...

Figure 3. Java example program to illustrate MHP algorithm

expect that the execution time overhead of the NEP algorithm will
be much smaller than O(N2H) in practice, since it can be used in a
demand-driven fashion to only compute the NEP relation for pairs
of statements that are of interest to an interactive tool or compiler
transformation.

We will first use the example program in Figure 1 to illustrate
the algorithm. The example was intentionally chosen to be as sim-
ple as possible to illustrate the core ideas in this paper. In this exam-
ple, we are interested in determining which pairs of execution in-
stances of statements S1 and S2 will never execute in parallel with
each other, so the algorithm in Figure 2 will be invoked to compute
NEP(S1,S2). The output of this algorithm will be NEP(S1,S2) =
true, with condition vector set CS= {〈 =, =, = 〉, 〈 �=, ∗, ∗〉}. This
implies that two instances of S1 and S2 are guaranteed to never
execute in parallel if they belong to the same i-j-k iteration, or if
they come from iterations with distinct values of i.

Finally, we use the following X10 code fragment

{ S1 ; async S2 ; S3 ; async S4 ; }

to illustrate the four cases in Step 5 in the NEP algorithm as follows:

Case 1 NEP(S1, S3) = true, in accordance with Step 5d.

Case 2 NEP(S1, S2) = true, in accordance with Step 5e.

Case 3 NEP(S2, S3) = false, in accordance with Step 5f.

Case 4 NEP(S2, S4) = false, in accordance with Step 5g.

4.1 Comparison with MHP Analysis of Java programs

In this section, we briefly compare the NEP algorithm from Fig-
ure 2 with the MHP data flow analysis algorithm developed by Nau-
movich et al [18]. The later algorithm was designed to address all
concurrency features in Java threads, including wait/notify/notifyall
operations in synchronized blocks. In this comparison, we will re-
strict our attention to the MHP algorithm’s handling of the start,
join, and synchronized constructs in Java threads, which are com-
parable, but not equivalent, to async, finish, and atomic in X10.

Figure 3 contains the skeleton of a Java program that represents
the parallel control flow in the SplitRendererNested example

S0: finish {
S1: async { // ExternalHelperThread1.start()

finish {
S5: ...
S6: async S11 // InternalHelperThread1_1.start()
S7: async S12 // InternalHelperThread1_2.start()
...

}
S8: ... // finish subsumes InternalHelper1_1.join()
S9: ... // finish subsumes InternalHelper1_2.join()
S10: ... // NEP algorithm concludes that

// NEP(S10,S11) = NEP(S10,S12) = false
}
S2: ...

}
S3: ... // S0’s finish subsumes ExternalHelperThread1.join()
S4: ... // NEP algorithm concludes that

// NEP(S4,S11) = NEP(S4,S12) = false

Figure 4. X10 example program to illustrate NEP algorithm

ROOT

S0: FINISH

S1: ASYNC

FINISH

S5 S6: ASYNC S7: ASYNC

S3 S4

S2

S8 S9 S10

S11 S12

Figure 5. PST for example program in Fig 4

used in [18]. As discussed in [18], the MHP algorithm is conser-
vative in its analysis of nested parallelism and concludes that S11
and S12 may happen in parallel with S4, even though it is able to
conclude that S11 and S12 cannot happen in parallel with S10.

As a comparison, Figure 4 contains the skeleton of an X10
program that is equivalent to the Java program in Figure 3. If the
NEP algorithm from Figure 2 is invoked to compute NEP(S4,S11),
it will perform the following steps to conclude that NEP(S4,S11)
= true:

• Step 1: A := LCA(S4,S11) = ROOT

• Step 2: async S4 := false

• Step 3: async S11 := false

• Step 5(a): AS4 := S4

• Step 5(b): AS11 := S0

• Step 5(d): flag := true

• Step 5(h): CS := { 〈 =, . . . , = 〉 }
• Step 7: NEP(S4,S11):= true

Thus, the NEP algorithm is able to establish that S11 and S12
cannot happen in parallel with S4, while the MHP algorithm from
Figure 3 conservatively concludes that S11 and S12 may happen
in parallel with S4.

The above discussion focused on the conservativeness in anal-
ysis of nested parallelism in the MHP algorithm. As mentioned

188

earlier, another dimension of conservativeness in MHP analysis of
Java programs is the necessity to perform interprocedural pointer
alias analysis of thread objects to establish accurate parallel control
flow relationships among threads. For example, the MHP analy-
sis must establish that all thread objects (e.g., ExternalHelper1,
InternalHelper1 1, InternalHelper1 2) are distinct before it
can even conclude that S11 and S12 cannot happen in parallel with
S10 in Figure 3. As observed in past work on static data race de-
tection, interprocedural alias analysis of thread objects can pose a
significant challenge in practice. In contrast, the analysis of X10’s
async, finish, and atomic constructs is simpler because it does not
rely on alias analysis of thread objects.

5. Place Equivalence Analysis
In this section, we describe our approach for determining if two
statements are place equivalent (PE) i.e., if they will definitely ex-
ecute at the same place. Most parallel programming models that
are currently used for distributed-memory multiprocessors follow a
Single Program Multiple Data (SPMD) model in which one thread
is executed per place. However, the X10 programming model is
more general since it integrates thread-level parallelism and cluster-
level parallelism by allowing multiple activities to be created at dif-
ferent places. Place equivalence analysis therefore becomes impor-
tant for more general parallel programming models such as X10.

DEFINITION 5.1. Two statements S1 and S2 are said to be place
equivalent, written as PE(S1, S2) = true, with condition vector set
CS if the following conditions hold:

1. S1 and S2 have exactly k loop nodes, L1, . . . Lk as common
ancestors in the PST (where k ≥ 0)

2. Let S1[i1, . . . ik] denote any execution instance of S1 in itera-
tion i1, . . . ik of loops L1, . . . , Lk , and likewise for S2[j1, . . . jk].
If Cx(ix, jx) = true ∀1 ≤ x ≤ k for some condition vec-
tor 〈C1, . . . Ck〉 in CS, then it is guaranteed that statement
instances S1[i1, . . . ik] and S2[j1, . . . jk] must execute at the
same place. �

To summarize Definition 5.1, if PE(S1,S2) = false then there
are no pairs of instance of S1 and S2 for which place equivalence
is guaranteed. If PE(S1,S2) = true then the instances of S1 and S2

that can be guaranteed to execute at the same place are determined
by the condition vectors in CS.

The algorithm for computing the PE relation is given in Fig-
ure 6. The algorithm needs two additional pre-passes as inputs
along with the PST. First, a global place-value numbering pre-
pass for place expressions to determine place local information for
statements. Second, a global loop-invariant analysis (also known as
LoopSet analysis) pre-pass to determine loops for which a given
place expression is place variant. Global value numbering can be
performed using an SSA-based algorithm as in [1]. Let us describe
the how LoopSet information is computed.

Consider the following code fragment as an example:

for (i = 1 ; i < = n ; i++) // L1
for (j = 1 ; j < = n ; j++) // L2

for (k = 1 ; k < = n ; k++) // L3
async (A.distribution[f(i,j),k]) S;

To compute LoopSet information for the place expression,
A.distribution[f(i,j),k], in the async statement in the
above code fragment, we need to know the data distribution of
array A. In X10 [4], array A can be distributed using a wide range
of standard and user-defined distributions such as UNIQUE, RANDOM,
CYCLIC, and BLOCK. As an example, let us assume that A is dis-
tributed in (BLOCK, ∗) fashion so that A[p, ∗] is guaranteed to re-

side at the same place, where p is the index of the first dimension.
The async activity in the above code fragment with distribution
(BLOCK,∗) will be mapped to different places based on indices i
and j, but not k i.e., place-variant with respect to loops L1 and L2.
Hence, LoopSet(A.distribution[f (i,j),k]) := {L1,L2}.

As shown in Step 4a of Figure 6, a pair of statements S1 and
S2 associated with same global place-value numbers i.e., V (S1) =
V (S2) are always going to execute at the same place. If V (S1) �=
V (S2) and there are no intervening async nodes within the inner-
most common scope of S1 and S2, then these statements are also
bound to execute at the same place.

Step 5 traverses the common ancestors (only loop and async
PST nodes) to compute condition vector using LoopSet. For
loops that are placeLocalLoops, the condition vector entries are
set to ∗. Note that LoopSet keeps track of the place-variant loops
and placeLocalLoops keeps track of place-invariant loops.

The algorithm in Figure 6 assumes that the PST is constructed
in O(N) time. The pre-passes for the other inputs to the algorithm,
Global Value Numbering2 and LoopSet analysis, can also be com-
puted in linear time. We observe that Step 2 takes O(H) time. The
condition vector set CS, can at most have two entries – one ob-
tained from Step 4a and another from Step 5c – each of which
has O(L) size, where L ≤ H . For all pairs of statements in the
X10 program, the overall complexity of PE analysis is bounded by
O(N2H), which is the same complexity as that of NEP analysis.

Let us now see how the algorithm works for the example pro-
gram in Figure 1, assuming that array A has a (BLOCK,BLOCK,*)
distribution. This means that elements A[i, j, ∗] of array A are guar-
anteed to be mapped to the same place, and the async statement in
the example will follow the same distribution. Hence, the PE algo-
rithm will compute placeLocalLoops = {L3}, which in turn results
in a place condition vector set of CS= {〈 =,=, = 〉, 〈 =, =, ∗〉}.
This implies that S1 and S2 with same values of i and j are guar-
anteed to execute in the same place. Note that, in general, the algo-
rithm in Figure 6 does not require that the number of dimensions
in an array reference match the number of loops in the loop nest or
that the index ordering for the array access match the ordering of
the loop nesting.

6. May-Happen-In-Parallel Analysis using
Atomic Sections

In this section, we show how the Never-Execute-in-Parallel (NEP)
analysis from Section 4 can be combined with the Place-Equivalence
(PE) information analysis from Section 5 to obtain a more pre-
cise May-Happen-in-Parallel (MHP) analysis from X10 programs
by using atomic sections. The simple approach to computing
MHP would be to simply invert the NEP relation i.e., to return
MHP(S1,S2) = false when NEP(S1,S2) = true. The key insight
leveraged in this section is that two execution instances of state-
ments S1 and S2 in an X10 program are guaranteed to not happen
in parallel if they both occur in atomic sections that are executed at
the same place. This enables us to broaden the number of execu-
tions for which we can assert that MHP = false. Note that instances
of S1 and S2 can indeed happen in parallel if they occur in atomic
sections that execute at different places.

The algorithm for computing the MHP relation is given in
Figure 7. For a pair of statements S1 and S2, Steps 2 and 3 check
if they are nested in atomic blocks. In case both S1 and S2 are
nested in atomic blocks, MHP(S1,S2) is computed by combining
the NEP and PE results in Step 4. Otherwise, the MHP relation is
computed directly from the NEP relation.

2 For an SSA-based algorithm such as [1], the complexity is technically
linear in the size of the SSA form, which in turn is observed to be linear in
the size of the input program in practice.

189

Inputs:

1. A Program Structure Tree (PST) for the procedure being analyzed.

2. Two statement nodes S1 and S2 in the PST with k ≥ 0 common loop node ancestors in the PST, L1, . . . , Lk.

3. A value number V (e), for each place expression e that is the target of an async (e) statement. For convenience, we also assume the
availability of V (N) for each async node N in the PST, where V (N) denotes the value of here for the activity executing S. V (e) and
V (S) can be computed by a global value numbering analysis [1] pre-pass on place expressions.

4. For each place expression e, LoopSet(e) = subset of loops {L1, . . . , Lm} for which the value of place expression e is place-variant,
where L1, . . . , Lm are the loops surrounding expression e (counting from outer to inner). LoopSet(e) can be computed by a global
loop-invariant analysis pre-pass.

Outputs:

1. PE(S1, S2), a boolean value that indicates if instances of S1 and S2 must execute at the same place.

2. CS, a set of condition vectors that is used only if PE(S1, S2) = true. Given statement instances S1[i1, . . . ik] and S2[j1, . . . jk], if
Cx(ix, jx) = true ∀1 ≤ x ≤ k for some condition vector 〈C1, . . . Ck〉 in CS then it is guaranteed that the two statement instances
must execute at the same place.

Algorithm:

1. A := LCA(S1, S2), the Lowest Common Ancestor of S1 and S2 in the PST

2. Compute async S1, and async S2 as in Figure 2

3. CS := ∅ /* Initialize CS to an empty set */

4. if (S1 �= S2) then

(a) if (V (S1) = V (S2)) then

i. CS := CS ∪ { 〈∗, . . . , ∗〉 } /* S1 and S2 always execute at the same place */

ii. PE(S1, S2) := true

iii. return

else if (¬ async S1 ∧ ¬ async S2) then
CS := CS ∪ { 〈 =, . . . , = 〉 } /* Instances of S1 and S2 that come from the same iteration of L1, . . . , Lk must execute in the same
activity and hence at the same place. */
end if

end if

5. if (k ≥ 1 ∧ ¬ async S1 ∧ ¬ async S2) then /* S1 and S2 have at least one common loop */

(a) placeLocalLoops := {L1, . . . , Lk} ; x := k + 1

(b) for (N := A ; N �= L1 ; N :=PST.parent(N)) do

i. if N is an async node with destination place expression e then
placeLocalLoops := placeLocalLoops - LoopSet(e) end if

ii. if N is a loop node then

A. x := x − 1 ;

B. if (Lx ∈ placeLocalLoops) then Cx := “∗” else Cx := “=” end if

end if

end for

(c) if (placeLocalLoops �= ∅) then CS := CS ∪ { 〈C1, . . . , Ck〉 } end if

end if

6. PE(S1, S2) := (CS�= ∅) /* Return PE = true if CS is non-empty */

Figure 6. Algorithm for computing Place Equivalence (PE) relations

190

Inputs:

1. A Program Structure Tree (PST) for the procedure being analyzed

2. Two statement nodes S1 and S2 in the PST with k ≥ 0 common loop node ancestors in the PST, L1, . . . , Lk.

Outputs:

1. MHP(S1, S2), a boolean value that indicates if instances of S1 and S2 may happen in parallel.

2. CS, a set of condition vectors that is used only if MHP(S1, S2) = false. Given statement instances S1[i1, . . . ik] and S2[j1, . . . jk], if
Cx(ix, jx) = true ∀1 ≤ x ≤ k for some condition vector 〈C1, . . . Ck〉 in CS then it is guaranteed that the two statement instances cannot
happen in parallel.

Algorithm:

1. Compute NEP(S1, S2) and its associated condition vectors, CSNEP using the NEP algorithm in Figure 2

2. Set atomic S1 := true if S1 has an atomic node as an ancestor in the PST

3. Set atomic S2 := true if S2 has an atomic node as an ancestor in the PST

4. if (atomic S1 ∧ atomic S2) then
/* Combine NEP and PE analysis results */

(a) Compute PE(S1, S2) and its associated condition vectors, CSPE using the PE algorithm in Figure 6

(b) MHP(S1, S2) := ¬ (NEP(S1, S2) ∨ PE(S1, S2))

(c) CS := CSNEP ∪ CSPE

else
/* Just return NEP analysis results */

(a) MHP(S1, S2) := ¬ NEP(S1, S2)

(b) CS := CSNEP

end if

Figure 7. Algorithm for computing May-Happen-in-Parallel (MHP) relation using place equivalence and atomic sections in X10

The complexity of computing the MHP relation is bounded by
O(N2H). This is due to the complexity of computing both NEP
relation and PE relation.

As discussed earlier, the NEP solution computed using the
analysis described in Section 4 for the example in Figure 1 was
NEP(S1,S2) = true with condition vector set CSNEP = {〈 =, =
, = 〉, 〈 �=, ∗, ∗〉}. This indicates that for different values of loop
index i, S1 and S2 can not execute in parallel. However, this infor-
mation can be refined using the PE solution due to the presence of
atomic PST node in the loop body. The PE solution computed us-
ing the analysis described in Section 5 was PE(S1,S2) = true with
condition vector set CSPE = {〈 =, =, = 〉, 〈 =,=, ∗〉}. This
indicates that S1 and S2 will execute at the same X10 place for dif-
ferent values of loop index k but with same values for loop indices
i and j. Using the above two results, the algorithm in this section
is able to determine that MHP(S1,S2) = false with condition vector
set CS = {〈 =,=, = 〉, 〈 �=, ∗, ∗〉, 〈 =,=, ∗〉}. i.e., MHP(S1,S2) =
false if they belong to the same i-j-k iteration, or if they come from
iterations with distinct values of i or with the same values of i and
j.

7. Related Work
Several approaches for computing May Happen in Parallel (MHP)
information for programs have been suggested in the past. Callahan
and Sublok [3] proposed a data flow algorithm that computes, for
each statement in a concurrent program with post-wait synchro-
nization, the set of statements that must be executed before this
statement can be executed (B4 analysis). Deusterwald and Soffa [6]
applied B4 analysis approach to the Ada rendezvous model and
extended B4 analysis to be interprocedural. Masticola and Ry-
der [15] proposed an iterative approach of non-concurrent analysis
that computes a conservative estimate of the set of pairs of com-

munication statements that can never happen in parallel in a con-
current Ada program (the complement of this set is a conservative
approximation of the set of pairs that may occur in parallel). In that
work, it is assumed initially that any statement from a given process
can happen in parallel with any statement in any other process. This
pessimistic estimate is then improved by a series of refinements that
are applied iteratively until a fixed point is reached. Naumovich
and Avrunin [17] proposed a data flow algorithm for computing
the MHP information for programs with a rendezvous model of
concurrency. Thereafter, Naumovich, Avrunin and Clarke [18] pro-
posed an algorithm for computing MHP information for concurrent
Java programs. Their algorithm uses a data flow framework to com-
pute a conservative estimate of MHP information and is shown to
be more efficient than reachability analysis based algorithms that
determines ’ideal’ static MHP information. A practical implemen-
tation of the algorithm from [18] is described in [13]. Barik [2]
proposed an alternative algorithm to compute MHP information for
concurrent Java programs based on the thread creation tree. This
algorithm works with abstract threads rather than concrete thread
instance of threads and is shown to be more efficient than the algo-
rithm in [18].

Program Dependence Graphs (PDGs) [7] have been used to an-
alyze the intrinsic parallelism in a sequential program, but are not
designed to represent explicitly parallel programs. Parallel Program
Graphs (PPGs) [20, 21, 22] are a generalization of PDGs and CFGs
that can be used as a foundation for analyzing flow-sensitive prop-
erties of parallel programs that go beyond the PST-based analy-
sis presented in this papers. Srinvasan et al. [9] proposed a Paral-
lel Flow Graph (PFG) for optimizing explicitly parallel programs.
They provided data flow equations for the reaching definitions anal-
ysis and used a copy-in/copy-out semantics for accessing shared
variables in parallel constructs. Concurrent Control Flow Graphs

191

(CCFGs) [11] are similar to PPGs and PFGs, with the addition of
conflict edges in addition to synchronization and control flow edges
that can be used for analysis of programs with a sequentially con-
sistent memory model.

8. Conclusions and Future Work
In this paper, we introduced a new algorithm for May-Happen-
in-Parallel (MHP) analysis that is applicable to any language that
adopts the core concepts of places, async, finish, and atomic sec-
tions from the X10 programming model. The main contributions
of this work compared to past MHP analysis algorithms are as fol-
lows:

1. We introduced a more precise definition of the MHP relation
than in past work by adding condition vectors that identify ex-
ecution instances for which the MHP relation holds, instead of
just returning a single true/false value for all pairs of executing
instances.

2. Compared to past work, the availability of basic concurrency
control constructs such as async and finish enabled the use of
more efficient and precise analysis algorithms based on simple
path traversals in the Program Structure Tree, and did not rely
on interprocedural pointer alias analysis of thread objects as in
MHP analysis for the Java language.

3. We introduced place equivalence (PE) analysis to identify exe-
cution instances that happen at the same place. The PE analy-
sis helps us in leveraging the fact that two statement instances
which occur in atomic sections that execute at the same X10
place must have MHP = false.

For future work, we plan to implement this MHP algorithm in
an Eclipse-based X10 Development Toolkit (X10DT) being devel-
oped at IBM and included in the X10 release on SourceForge [19],
so as to be able to respond to interactive MHP queries. As moti-
vation, the X10DT screen shot in Figure 8 shows how closely the
outline view in X10DT mirrors the Program Structure Tree. We will
also investigate how the algorithms in this paper can be extended to
support additional concurrency constructs in X10, notably clocks
and futures. Finally, we will explore how the algorithms can be
enriched using distance vectors and can be applied in an interpro-
cedural context.

Acknowledgments
X10 is being developed in the context of the IBM PERCS (Pro-
ductive Easy-to-use Reliable Computing Systems) project, which is
supported in part by DARPA under contract No. NBCH30390004.
We are grateful to the following people for their contributions to the
X10 project which motivated this work: Philippe Charles, Christo-
pher Donawa, Kemal Ebcioglu, Robert Fuhrer, Christian Grothoff,
Allan Kielstra, Nathaniel Nystrom, Igor Peshansky, Christoph von
Praun, Vijay Saraswat, Tong Wen.

References
[1] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting

equality of variables in programs. In POPL ’88: Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 1–11, New York, NY, USA,
1988. ACM Press.

[2] Rajkishore Barik. Efficient computation of may-happen-in-
parallel information for concurrent java programs. In 18th
International Workshop on Languages and Compilers for Par-
allel Computing, October 2005.

[3] David Callahan and Jaspal Sublok. Static analysis of low-level
synchronization. In PADD ’88: Proceedings of the 1988 ACM
SIGPLAN and SIGOPS workshop on Parallel and distributed
debugging, pages 100–111, New York, NY, USA, 1988. ACM
Press.

[4] Philippe Charles, Christopher Donawa, Kemal Ebcioglu,
Christian Grothoff, Allan Kielstra, Christoph von Praun, Vi-
jay Saraswat, and Vivek Sarkar. X10: An object-oriented ap-
proach to non-uniform cluster computing. In OOPSLA 2005
Onward! Track, 2005.

[5] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert
O’Callahan, Vivek Sarkar, and Manu Sridharan. Efficient and
precise datarace detection for multithreaded object-oriented
programs. In PLDI ’02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming language design and im-
plementation, pages 258–269, New York, NY, USA, 2002.
ACM Press.

[6] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analy-
sis in the presence of procedures using a data-flow framework.
In TAV4: Proceedings of the symposium on Testing, analysis,
and verification, pages 36–48, New York, NY, USA, 1991.
ACM Press.

[7] J. Ferrante, K. Ottenstein, and J. Warren. The Program Depen-
dence Graph and its Use in Optimization. ACM Transactions
on Programming Languages and Systems, 9(3):319–349, July
1987.

[8] Dov Harel. A Linear Time Algorithm for Finding Dominators
in Flow Graphs and Related Problems. Symposium on Theory
of Computing, May 1985.

[9] Ferrante J, Grunwald D, and Srinivasan H. Compile-time
analysis and optimization of explicitly parallel programs. In
Journal of Parallel algorithms and applications, 1997.

[10] Jens Krinke. Static slicing of threaded programs. In Workshop
on Program Analysis For Software Tools and Engineering,
pages 35–42, 1998.

[11] Jaejin Lee. Compilation Techniques for Explicitly Paral-
lel Programs. PhD thesis, University of Illinois at Urbana-
Champaign, 1999.

[12] T. Lengauer and Robert Tarjan. A Fast Algorithm for Finding
Dominators in a Flowgraph. TOPLAS, July 1979.

[13] Lin Li and Clark Verbrugge. A practical mhp information
analysis for concurrent java programs. In The 17th Interna-
tional Workshop on Languages and Compilers for Parallel
Computing (LCPC’04), 2004.

[14] Stephen P. Masticola and Barbara G. Ryder. A model of ada
programs for static deadlock detection in polynomial times. In
PADD ’91: Proceedings of the 1991 ACM/ONR workshop on
Parallel and distributed debugging, pages 97–107, New York,
NY, USA, 1991. ACM Press.

[15] Stephen P. Masticola and Barbara G. Ryder. Non-concurrency
analysis. In PPOPP ’93: Proceedings of the fourth ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 129–138, New York, NY, USA, 1993.
ACM Press.

[16] G. Naumovich, G. S. Avruin, and L. A. Clarke. Data flow
analysis for checking properties of concurrent java programs.
Technical Report UM-CS-1998-022, 1998.

192

Outline view in X10DT mirrors the Program Structure Tree in Figure 2

Figure 8. Sample X10DT screenshot for example from Figure 1

[17] Gleb Naumovich and George S. Avrunin. A conservative data
flow algorithm for detecting all pairs of statements that may
happen in parallel. In SIGSOFT ’98/FSE-6: Proceedings of
the 6th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 24–34, New York, NY,
USA, 1998. ACM Press.

[18] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An
efficient algorithm for computing MHP information for con-
current Java programs. In Proceedings of the joint 7th Eu-
ropean Software Engineering Conference and 7th ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing, pages 338–354, September 1999.

[19] X10 release on SourceForge. http://x10.sf.net.

[20] Vivek Sarkar. A Concurrent Execution Semantics for Parallel
Program Graphs and Program Dependence Graphs (Extended
Abstract). Springer-Verlag Lecture Notes in Computer Sci-
ence, 757:16–30, 1992. Proceedings of the Fifth Workshop on
Languages and Compilers for Parallel Computing, Yale Uni-
versity, August 1992.

[21] Vivek Sarkar. Analysis and Optimization of Explicitly Par-
allel Programs using the Parallel Program Graph Represen-
tation. In Languages and compilers for parallel computing.
Proceedings of the 10th international workshop. Held Aug.,
1997 in Minneapolis, MN., Lecture Notes in Computer Sci-
ence. Springer-Verlag, New York, 1998.

[22] Vivek Sarkar and Barbara Simons. Parallel Program Graphs
and their Classification. Springer-Verlag Lecture Notes in
Computer Science, 768:633–655, 1993. Proceedings of the
Sixth Workshop on Languages and Compilers for Parallel
Computing, Portland, Oregon, August 1993.

[23] Richard N. Taylor. Complexity of analyzing the synchroniza-
tion structure of concurrent programs. Acta Inf., 19:57–84,
1983.

[24] Michael J. Wolfe. Optimizing Supercompilers for Supercom-
puters. Pitman, London and The MIT Press, Cambridge, Mas-
sachusetts, 1989. In the series, Research Monographs in Par-
allel and Distributed Computing.

193

