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Will a large economy be stable? Building on Robert May’s original argument for large ecosystems, we
conjecture that evolutionary and behavioural forces conspire to drive the economy towards marginal stability.
We study networks of firms in which inputs for production are not easily substitutable, as in several real-world
supply chains. Relying on results from random matrix theory, we argue that such networks generically become
dysfunctional when their size increases, when the heterogeneity between firms becomes too strong, or when
substitutability of their production inputs is reduced. At marginal stability and for large heterogeneities, we find
that the distribution of firm sizes develops a power-law tail, as observed empirically. Crises can be triggered by
small idiosyncratic shocks, which lead to “avalanches” of defaults characterized by a power-law distribution of
total output losses. This scenario would naturally explain the well-known “small shocks, large business cycles”
puzzle, as anticipated long ago by Bak, Chen, Scheinkman, and Woodford.
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I. INTRODUCTION

Why is the output of large economies so volatile? Why do
small idiosyncratic fluctuations lead to large business cycles?
These questions have been at the forefront of economic re-
search for decades [1–4].

Naively, one would expect that the fluctuations of an
economy made of N independent sectors should decay rather
quickly, as N−1/2 [4,5] because of the central limit theorem.
In order to explain why fluctuations survive at the aggregate
level, three families of explanations have been proposed in
the literature. The first one is that aggregate fluctuations are
driven by global shocks, that affect all firms and sectors
simultaneously. However, it is often not clear what these
shocks might be1 and, when identified, they appear too small
to be responsible for the observed volatility of the aggregate
industrial production. Bernanke et al. [3] have called this the
small shocks, large cycles puzzle. One interesting possibility is
that these shocks are self-fulfilling prophecies [6], perhaps due
to collective opinion shifts or trust collapse; see, e.g., [7–10]
for various strands of literature on the subject.

Another resolution has been proposed by Gabaix [11] and,
in a slightly different context, by Wyart and Bouchaud [12];
see also [13]. The argument is that the fat-tailed distribution
of sizes of independent firms and sectors slows down the
regression of fluctuations from the standard N−1/2 behavior
to N−α , with α � 1/2 related to the tail exponent of the dis-
tribution. Although some empirical support for this scenario
has been put forth [11,14], other works suggest that network

1As Cochrane quipped [2], “What shocks are responsible for
economic fluctuations? Despite at least two hundred years in which
economists have observed fluctuations in economic activity, we still
are not sure.”

effects are in fact dominant [15–17], as idiosyncratic shocks
can cascade along the input-output network and eventually
become macroscopic.2 One particular stigma of these network
effects is the strong covariation of fluctuations across different
sectors [22]—but see also [23].

While the cascade story is enticing, the baseline Cobb-
Douglas network model proposed by Acemoglu et al. [1,15]
is, in our view, not convincing. Indeed, the only way to escape
the N−1/2 decay of fluctuations within this framework is to
assume that the supply network is very unbalanced, i.e., that a
few sectors are crucial suppliers to the whole economy [24].
This somehow throws out the baby with the bathwater, as
it reintroduces the idea of aggregate shocks in disguise. A
possible way out was proposed in Ref. [25]: by introducing
myopia and frictions in the Cobb-Douglas network model, it
was found that the general equilibrium solution of Acemoglu
et al. [15] is only stable in a certain region of parameters,
outside of which large fluctuations emerge endogenously, i.e.,
without any microscopic shocks. These fluctuations arise from
a breakdown of coordination between the different sectors and
illustrate how some mechanisms present in the real world may
cause the economy to be intrinsically unstable.

This idea (that the economy may in itself be unstable
and turbulent) was in fact already mentioned in 1948 by
Hawkins [26] (see also [27]) and picked up again by Bak,
Chen, Scheinkman, and Woodford [28,29] in the context of
“self-organized critical” (SOC) states in complex systems
[30]. In such a state, small microscopic perturbations give
rise to macroscopic fluctuations—like avalanches in sand
piles.

2Similar network effects have been argued to be at the origin of
systemwide breakdowns of the banking sector [18–21].
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Similar ideas have emerged in the context of theoretical
ecology. In his seminal paper, Will a Large Complex System be

Stable?, May [31] argued that a large number of very different
species can lead an ecosystem to instabilities and mass ex-
tinctions. May’s paradigm has recently been made much more
explicit in the context of a generalized Lotka-Volterra model
in Refs. [32–34], where it is shown that the system indeed
spontaneously evolves towards a marginally stable state that is
anomalously sensitive to small perturbations. Unfortunately,
this stream of ideas has not gained much traction in the
economics literature, perhaps for lack of a convincing mod-
eling framework. (See however [18–21] for financial network
models with explicit references to ecosystems, and [35] for a
very recent contribution.)

The aim of the present work is to present an economically
motivated model where marginal stability appears naturally,
and leads to an amplification of small, idiosyncratic shocks
along the input-output network. Interestingly, our model is
closely related to the ecological models alluded to above, and
builds upon the classic—but still extremely active—field of
random matrix theory, that describes the statistical properties
of the eigenvalues and eigenvectors of certain families of
random matrices, here related to the input-output matrix.
In particular, the feasibility of an equilibrium, defined as
the existence of an economically sound set of prices and
production outputs, depends strongly on the eigenvalues of
such a matrix. We define here the stability of the economy as
the resilience of such an equilibrium to idiosyncratic shocks.
We find that for a fixed number of firms N , increased inter-
linkages, profit maximization, and/or reduced substitutability
drive the system at the edge of instability. Similarly, increasing
the number of firms at fixed productivity also leads to a critical
state. At criticality, small idiosyncratic shocks can lead to
bankruptcy avalanches, which, depending on the topology of
the network and the heterogeneity of firms’ productivity, can
be either small and localized or systemwide, with all possible
gradations.

In the present paper, we only describe the equilibrium (or
absence thereof) aspects of our model, leaving the analysis of
its truly dynamical features—crucial when crises occur—for
a forthcoming publication [36].

II. MODEL

We consider N firms with a given input-output network
determined by the technology available to firms. The “tech-
nology network” is a directed graph where nodes represent
firms and where a directed edge j → i exists if i needs
goods produced by j for its own production. Note that this
framework allows for self-loops, with an edge i → i existing
if a firm produces one of its own inputs. The node i = 0
conventionally represents households, and supplies firms with
labor while consuming a part of their output. The link j → i

carries a “stoichiometric weight” Ji j , measuring the number
of j goods needed to make an unit of i’s production. The set
of suppliers of i is thus given by { j/Ji j �= 0}, while the set
of clients is { j/J ji �= 0}. The production of i, πi, is given by
a so-called CES (constant elasticity of substitution) function,

which reads [37]3

πi = zi

⎛
⎝∑

j

ai j

(
Ji j

Qi j

)1/q

⎞
⎠

−q

, with
∑

j

ai j = 1, (1)

where zi is the firm’s productivity, Qi j is the number of goods
firm i buys from firm j, and ai j � 0 are weight parameters.
The parameter q measures the global substitutability of the
different inputs. When q → 0, no substitutes are available and
Eq. (1) reduces to the classical Leontief production function:

πi = zi min
j

(
Qi j

Ji j

)
. (2)

The Cobb-Douglas function πi = zi

∏
j (Qi j/Ji j )ai j corre-

sponds to q → ∞ and is often used to describe the aver-
age aggregate production of economic sectors [1], or of the
economy as a whole. In a Cobb-Douglas economy, the loss
of a fraction f of good j can always be compensated for
by an increase of any other good k by a factor 1/ f ai j/aik . In
the Leontief case, on the other hand, the loss of a fraction
f of good j cannot be compensated and translates to an
immediate loss of the same fraction f of total production
πi. It models a situation where redundancy is costly. Firms
therefore choose their suppliers with parsimony and cannot
“rewire” (i.e., find alternative suppliers) on short time scales
in the real economy. For example, in the aftermath of the 2011
tsunami and Fukushima Daiichi nuclear power plant disaster,
the shortage of a few, seemingly unimportant components had
a severe impact on the car industry [38,39], very dependent
on products manufactured in Japan. The incident highlighted
how competition led firms to have a very tight supply-chain
strategy, as in the words of an observer: “In the race to
provide better quality at lower prices, manufacturers picked
very narrow, optimized supply chains” which caused them
to be very dependent on the “one supplier that had the best
product at the lowest price” [40]. At the time of the disruption,
firms had to swiftly rethink their supply-chain strategy and
large-scale rewirings of the production network took place.
The influence of possible rewirings is beyond the scope of this
paper, but for preliminary work in that direction see [41].4 In
the following, we will for simplicity focus on the extreme case
of a Leontief production function q → 0, but will show that
our results hold true in a range q ∈ [0, qc], where the critical
value qc depends on the network and on the productivities.

Calling pi the price of the goods produced by firm i, its
profit Pi reads

Pi = piπi −
∑

j �=0

Qi j p j − Qi0 p0, (3)

where p0 is the labor wage. Optimizing the profit with respect
to all inputs Qi j (including labor Qi0) leads, for q → 0, to the

3For a more in-depth exploration of these production functions, see
Appendix A.

4One could consider a case where firms have several possible sup-
pliers j within the same sector J and write πi = zi minJ max j∈J (

Qi j

Ji j
).

This extension will be studied at a later stage of the project.
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condition

∀(i, j), ∃γi � 0 such that Qi j = γiJi j (4)

which can also be interpreted as saying that given an output
level γi := πi/zi, the optimal choice for inputs Qi j is to pick
them proportionally to their stoichiometric weight, as buying
more would result in waste. In this case, profit can be written
as

Pi = γi

⎛
⎝zi pi −

∑

j �=0

Ji j p j − Ji0 p0

⎞
⎠. (5)

We now assume that households’ optimal consumption of
good i, given a certain utility function and a vector of prices,
are given by Ci > 0.5

As standard in the literature, we now assume the following:
(i) Market clearing, i.e., every good that is produced is

either consumed by households or bought by other firms for
their own production. Hence

πi =
∑

j �=0

Q ji + Ci −→ ziγi −
∑

j �=0

J jiγ j = Ci (> 0). (7)

(ii) Competitive equilibrium, i.e., competition drives profits
to zero. Hence

Pi = 0 −→ zi pi −
∑

j �=0

Ji j p j = Vi (> 0), (8)

where we have defined Vi = Ji0 p0 and imposed that γi �= 0, ∀i

[otherwise Eq. (7) cannot be satisfied]. One could also model
firms attempting to impose markups to reach a positive profit
equal to a fraction ϕi of its sales ziγi pi. This simply amounts
to shifting zi to zi(1 − ϕi ) in Eq. (8).

Now, in order for the equilibrium to make sense, the solu-
tions to Eqs. (7) and (8) must be such that γi > 0 and pi > 0,
∀i; i.e., that equilibrium prices and quantities must be strictly
positive. As first noted by Hawkins and Simon [27], this is
not automatic and requires the matrix M, defined by (M)i j =
ziδi j − Ji j , to be a so-called “M matrix,”6 i.e., such that all its

eigenvalues have non-negative real parts [42]. Therefore some
conditions on productivities and linkages must be fulfilled for
the economy to work.

This condition is the equivalent, in an ecological context,
of May’s stability criterion that allows the equilibrium pop-
ulation of all species to be strictly positive [32,33]. Rather
interestingly, Eqs. (7) and (8) are identical, mutatis mutandis,
to the equation determining the equilibrium size of species in
a generalized Lotka-Volterra model [34].

5For example, for a utility function U = ∑
i θiln(Ci ) and a certain

budget B, the optimal consumption Ci is

Ci = B∑
j θ j

θi

pi

:= Ŵi

pi

, (6)

but any other type of utility function would work in our model, as
long as consumption levels were strictly positive.

6Note that if M is an M matrix, Mt is also an M matrix. An
interesting property of an M matrix is that all the elements of its
inverse are non-negative.

In the case of a more general CES production function with
q � 0, the competitive equilibrium equation reads

(zi pi )
ζ −

∑

j �=0

a
qζ

i j

(
Ji j p j

)ζ = Vi (> 0), ζ := 1

1 + q
,

(9)

which boils down to Eq. (8) when q = 0 [for a detailed
proof, see Eq. (B5) in Appendix C]. Interestingly, setting
p̂i = p

ζ

i , one finds again that the condition for an admissible
equilibrium is that the matrix (M̂)i j = z

ζ

i δi j − a
qζ

i j J
ζ

i j is an M

matrix.
Note that since

∑
j �=0 ai j < 1, the Perron-Frobenius theo-

rem ensures that Cobb-Douglas networked economies (such
as those considered in Acemoglu et al. [15], and corre-
sponding to q → ∞), always have an admissible equilibrium,
for any network and any productivities. Therefore, the type
of shock propagation that takes place in our model has no
counterpart in a Cobb-Douglas economy.

III. STABILITY CONDITIONS FOR MODEL NETWORKS

Here and below we will for simplicity focus on the Leontief
case, commenting on the more general case q > 0 in the
conclusion. In order to gain some intuition on the stability
conditions, let us first consider a random directed network,
where each supply link Ji j is equal to J with probability r

and 0 with probability 1 − r, and where all N firms have
the same productivity z. The spectrum of M in this case
is well known when N ≫ 1 and r ∼ O(1). It consists of
an isolated eigenvalue λmin = z − JrN and a “sea” of com-
plex eigenvalues uniformly distributed in a disk of radius
J
√

r(1 − r)N centered at z (see, e.g., [43,44]). The stability
condition therefore reads z > JrN , i.e., productivity must
be large enough for the economy to function. The most
unstable eigenvector, corresponding to eigenvalue λmin, is the
uniform vector (1/

√
N, . . . , 1/

√
N ). As will be clear below,

this corresponds to a case where crises are system wide. The
same qualitative result holds when productivities are weakly
heterogeneous, i.e., zi = z(1 + ǫi ) with ǫi ≪ 1 [albeit λmin is
slightly shifted downwards by an amount O(z2ǫ2/JN )].

More interesting—but more complex!—is the case where
the average number of suppliers c = rN is of order unity [i.e.,
when r = O(N−1)]. In the random regular network (RRN)
where each firm has exactly c suppliers (and c customers)
chosen randomly among the N − 1 other firms, one knows
that the spectrum of M again consists of an isolated eigenvalue
λmin = z − Jc and a “sea” of complex eigenvalues distributed
in a disk of radius J

√
c centered at z.7 When heterogeneity is

introduced, either topological (i.e., letting the number of sup-
pliers or customers vary) or because the couplings J and the
productivities z fluctuate, there are no exact results available,
in particular in the case where M is not a symmetric matrix;
see [45] for a very recent survey.

When M is symmetric, exact results are still scarce but
a huge amount of work has been done in the physics,
mathematics, and computer science literature to characterize

7In this case, however, the density of complex eigenvalues is not
uniform but is given by ρ(λ) ∝ (c2 − |λ|2)−2 for |λ| <

√
c [45].
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FIG. 1. Numerical results for the structure of the eigenstates of
a directed random regular network (RRN) with N = 2000 firms
with c = 7 suppliers and clients each and J = 1. Productivities zi

are uniformly distributed in an interval [z − W/2, z + W/2], but the
x axis is centered around z. Notice that the eigenstates contained
in the bulk get localized as W increases. The leftmost dashed red
curve corresponds to the isolated eigenvalue that gets absorbed at
the point marked by a black star in the graph, corresponding to
values W ∗ ≈ 12.4 and λ∗ ≈ −12. The boundary between extended
and localized states is defined here by H = 5/N . Compare to Fig. 1
in [55], for the case of undirected RRNs.

the eigenvalues and eigenvectors of such random matrices
[46–55]. The reason is that such symmetric random matrices
appear in many physical situations, such as the vibration
spectrum of amorphous solids or the energy spectrum of
quantum systems with impurities. Such random matrices also
appear in graph theory and computer science. The problem of
estimating the extremal eigenvalue is of special importance,
as it appears in many different problems (such as epidemic or
rumor spreading [56]—or crisis propagation as in the present
work); the associated eigenvector is related to the concept
of node centrality in network theory [57]; see also [58] and
references therein.

In the sequel, we will call 2 the variance of fluctuations
(of connectivity, productivity, etc.). From the host of results
accumulated in the last decades, the following general sce-
nario is expected (see [55] and Fig. 1 for the case of random
regular graphs):

(i) For  = 0, all eigenvalues except one have their real
part confined in a certain interval I (= [z − √

c, z + √
c] in

the RRN example), while the isolated eigenvalue is located to
the left of this interval, at a nonzero distance g from its edge.

(ii) As  increases, the interval I broadens and its edges
become somewhat blurred, while the isolated eigenvalue gets
closer and closer to the lower edge of I (see Fig. 1).

(iii) Beyond a certain critical value c, the isolated eigen-
value is “eaten up” by I and disappears [this is called, in a

different context, the Baik-Ben Arous-Péché (BBP) transition
[59]].

Furthermore, as soon as  is nonzero, the interval I is
further subdivided into three intervals I−, I0, I+ (with I0

possibly empty; see Fig. 1), where the structure of the cor-
responding eigenvectors is markedly different. In the central
part I0, eigenvectors are extended, or delocalized, whereas
in the extreme parts I−, I+, eigenvectors are localized. In a
hand-waving manner, “localized” means that most of the norm
of the vector is concentrated on a few nodes (firms), whereas
“delocalized” means that the norm is well spread out over all
nodes. More precisely, calling v1, v2, . . . , vN the component
of a normalized vector |V 〉, the localized or delocalized nature
of |V 〉 is captured by its Herfindahl index H [called the inverse
participation ratio (IPR) in the physics literature]:

H (|V 〉) =
N∑

i

|vi|4. (10)

A localized eigenvector is such that H (|V 〉) = O(1) in
the limit N → ∞ whereas a delocalized eigenvector has
H (|V 〉) = O(N−1). The importance of this distinction for
crisis propagation in the context of our model will become
clear below.

Owing to the structure of M, the Perron-Frobenius theorem
ensures that its leftmost eigenvalue λmin is real with a real
positive eigenvector ui > 0. As stated above, λmin must be
positive for M to be an M matrix, i.e., for all prices and all
quantities to be positive. As λmin → 0, the economy becomes
more and more fragile to external shocks. Let us for example
consider the case where the productivity zi of some firms
decrease by −εi < 0, and/or that some of the stoichiometric
weights Ji j increase by some amount εi j > 0. Using stan-
dard perturbation theory to first order in ε,8 one finds that the
leftmost eigenvalue is shifted as

λmin −→ λmin − ε

⎡
⎣∑

i

iu
2
i +

∑

i �= j

i juiu j

⎤
⎦. (11)

Since both correction terms are negative, this formula shows
that as the system becomes marginally stable, any local
decrease of productivity or increase of required inputs tips
the system towards the unstable region. A certain number
of prices or quantities then become negative. Intuitively, the
physiognomy of these “crises” will depend on the localized
or delocalized nature of the eigenvector |U 〉 corresponding to
λmin, as we now discuss.

The next order correction to Eq. (11) is of order ε2/g,
where g is the gap between λmin and the next eigenvalue of M,
therefore first order perturbation theory is only valid provided
ε ≪ g. Now, two cases must be distinguished, depending on
the strength  of the heterogeneities:

(i) When  < c, the leftmost eigenvalue is isolated, in
which case g > 0 even when N → ∞. The first order result
Eq. (11) is then valid when ε is small enough. Furthermore,

8Indeed, given an eigenvector �u corresponding to an eigenvalue λ

of a matrix B subject to a perturbation B → B + εP, the first order
correction to λ in epsilon reads λ → λ + εt �uP�u.
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the associated eigenvector |U 〉 is delocalized. From Eq. (11),
one deduces that a localized shock—say on firm ℓ alone—
decreases λmin by ∼ − δzℓ/N . The system is unstable when
δzℓ > Nλmin, but for this condition to be compatible with
δzℓ ≪ g, one must also require Nλmin ≪ g. When destabi-
lized, the shock propagates over the whole system, because
of the delocalized nature of |U 〉. In the case of a small global

productivity shock δzi = δz,∀i, the destabilization occurs as
soon as δz > λmin.

(ii) When  > c, the leftmost eigenvalue is at the edge
of the interval I−, such that the gap g(N ) generically goes
to zero as N → ∞. Furthermore, the associated eigenvector
|U 〉 is now localized, usually centered around particularly low
productivity or high connectivity firms (called the Lifschitz
regions in the physics literature [55,60,61]). In this case, how-
ever, first order perturbation theory breaks down as soon as
ε ∼ g(N ), so one must have recourse to numerical simulations
to characterize the associated crisis patterns—see the next
section and Appendix D for a comparison with empirical data.

Finally, the following remarks should be useful to get an
intuition about crisis propagation in our model. Note that one
can write prices and outputs using the inverse matrix M−1

and its transpose. Hence, the price response to some generic
perturbations δy (for example to productivity, household con-
sumption, etc.) can be expressed using the eigenvalues and
eigenvectors as

δpi =
∑

α

ℓα
i

1

λα

〈rα|δy〉 , (12)

where ℓα, rα are, respectively, the left and right eigenvectors
of M associated to eigenvalue λα . Similarly, for production

δγi =
∑

α

rα
i

1

λα

〈ℓα|δy〉 . (13)

In the limit where λmin touches zero with a finite gap g, one
can approximate these responses as

δpi ≈ ℓmin
i 〈rmin|δy〉

λmin
; δγi ≈ rmin

i 〈ℓmin|δy〉
λmin

. (14)

Hence, the amplitude of the response of prices depends on the
overlap 〈rmin|δy〉 and is localized on the left eigenvector ℓmin,
and vice versa for production. This will be illustrated using
real data in Appendix D.

In order to understand intuitively the divergence of the
response to perturbations, consider the simple case where
∀i, zi = z. One can expand M−1 in the stable region as

M−1 = 1

z

∞∑

k=0

(
J

z

)k

(15)

with (J)i j = Ji j , since the stability condition implies that the
spectral radius of J is smaller than z. Now, the term (Jk )i j

consists of the sum of all paths of length k linking firm j to
firm i. Marginal stability corresponds to this sum becoming
divergent, with paths of all lengths contributing to (M−1)i j .
This interpretation also holds in the case of heterogeneous

FIG. 2. Plot of the average productivity z = fc(W ) needed to
stabilize the economy in the case of a directed RRN with productiv-
ities uniformly distributed in [z − W/2; z + W/2], for connectivities
c = 4 and c = 8. Notice that we find fc(0) = c and a linear behavior
of fc(W ) as W → ∞, as expected. Economies with N = 2048 firms
were simulated. Error bars are too small to be visible.

zi’s.9 The instability is therefore related to a situation where
shocks can propagate over paths of arbitrary length in the
input-output network. This is closely related to second order
phase transitions in physics, where correlations extend over
macroscopic distances and the response to small perturbations
diverges; see, e.g., [62].

IV. NUMERICAL RESULTS: BROAD DISTRIBUTION

OF FIRM SIZES AND CRISES

We will consider the simplest model of a random regular
network, where each firm has exactly c suppliers and c cus-
tomers, each chosen randomly among the N − 1 other firms
(other types of networks will be discussed in [36]). Each firm
has a random productivity uniformly chosen in the interval
[z − W/2, z + W/2], such that z is the average productivity
and  = W/2

√
3. The stoichiometric coefficients Ji j are taken

to be all equal to J . Without loss of generality, J can be set
to unity. In addition, we set Vi = 1 for simplicity and take
the households’ consumption Ci = 1/pi as obtained from a
logarithmic utility function with identical preference for all
products.

When W = 0, the spectrum of M can be computed, as
discussed in the previous section, with an isolated leftmost
eigenvalue given by λmin = z − Jc. As W increases, the spec-
trum evolves as shown in Fig. 1. In the case of c = 7, the
isolated eigenvalue disappears when W = W ∗ ≈ 15.5, and the

9Indeed one can always write an M matrix as M = zmax1 − B where
B is non-negative, and expand the series as M−1 = 1

zmax

∑∞
k=0 ( B

zmax
)
k
.
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FIG. 3. Log-log cumulative distribution of firm sizes P>(S) de-
fined by sales Si = ziγi pi, along with a curve corresponding to power
law S−μ with exponent μ = 1 (Zipf) for comparison. For small
values of W the distribution of firm sizes is sharply peaked at a value
of order 1/ε = 108. Increasing W causes the distribution to get fatter
tails with an apparent power-law exponent μ that decreases with W .
Here, c = 4, z = fc(W ), N = 1500. Inset: power-law exponent μ as
a function of W , along the critical line of the model.

edge of the spectrum corresponds to a localized eigenvector.
In the following, we fix the average productivity to z = fc(W )
such that [the function fc(W ) is shown in Fig. 2]. The model
then only depends on two parameters: the connectivity c

and the productivity heterogeneity W . We will study along
this critical line different characteristics of the corresponding
economy.

Two quantities are of particular interest for this paper (a
more throughout account of the results will be reported in
[36]). One is the distribution of firm size, defined as the total
sales Si = ziγi pi. Quite interestingly, while this distribution
has thin tails when W is small, it becomes fat-tailed (Zipf-like)
as W increases, as observed empirically [63], but with an
exponent that appears to vary with W and c (see Fig. 3, inset).
The emergence of a power-tailed firm size distribution is a
consequence of the criticality of the model, but requires the
extreme eigenvectors to be localized and heterogeneous, as it
is the case for W sufficiently large.

The second quantity is the distribution of crises amplitudes
A, defined as the total size of the firms that are such that
their equilibrium price becomes negative after an idiosyncratic
shock of amplitude −δzℓ hitting a certain firm ℓ. (Shocks on
the coefficients Ji j lead to qualitatively similar results.) While
in a fraction of cases nothing much happens, an avalanche can
develop where a number of firms “go under,” in the sense that
their equilibrium price becomes negative. Conditioned to such
events, the distribution of A is found to be of three types (see
Fig. 4):

FIG. 4. Log-log cumulative distribution of avalanche sizes as
defined by the total sales of firms gone under after a shock, for c = 4,
z = fc(W ), N = 1500, and δzℓ = 0.05. One again observes a broad,
power-law tailed distribution of casualties for large enough W ’s.
Inset: cumulative distribution of the number of firms N∗ that have
gone under after a shock. Notice that W = 2 and W = 10 correspond
to mostly systemwide avalanches (i.e., N∗ ≈ 1500), while larger
values of W correspond to avalanches of all sizes.

(1) Mostly “systemwide,” where a substantial fraction of
the output is wiped out. This occurs when W < W ∗ and δzℓ >

Nλmin, as expected from our general discussion;
(2) Thin-tailed, where avalanches are restricted to partic-

ularly fragile firms connected to ℓ. This corresponds to W >

W ∗, and weak perturbations δzℓ < g, in which case only one
or a few localized eigenvectors close to the edge propagate the
crisis.

(3) Fat-tailed, where small crises coexist with large crises
(a feature of self-organized criticality, as recalled in the Intro-
duction). This happens when δzℓ ≫ g, i.e., when a large col-
lection of eigenstates are mobilized in the crisis propagation.

The generic existence of three crisis scenarios is, we be-
lieve, quite interesting. In particular, the possibility that a
small, idiosyncratic shock can lead to systemwide trouble,
or else to avalanches of all sizes, has potentially deep con-
sequences on our understanding of the business cycle and
on crisis prevention policies. Of course, the above analysis
postulates that the economy is close to criticality, i.e., that
λmin → 0. Why this should be the case is obviously the crux
of the matter, and will be discussed in the next section.

It is also interesting to plot the total consumption of house-
holds as a function of λmin in the two cases above: delocalized
(W < W ∗) vs localized (W < W ∗) crises. In the first case, the
whole economy grinds to a halt as λmin → 0, as expected.
In the second case, only a fraction of the total consumption
(mostly coming from firms represented in the corresponding
localized eigenvector) is affected. See Fig. 5 for an illustration
of this point.
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FIG. 5. Total consumption of households vs λmin in the localized
and delocalized cases. Intuitively, one expects the prices of goods
represented in the eigenvector corresponding to λmin to behave as
λ−1

min, while a logarithmic utility function implies that consumption
scales as the inverse of the price, leading naturally to the consump-
tion of those goods to be proportional to λmin. In the delocalized case,
all goods are concerned and thus global consumption plummets, as
seen in the graph (orange squares). On the other hand, only the
handful of goods associated to λmin see their consumption decline
in the delocalized case, corresponding to the blue dots. An economy
with 1000 firms and a connectivity c = 4 was used for this plot, with
W = 0 for the localized case and W = 12 for the localized case.

Our general scenario is strongly reminiscent of similar
ideas in an ecological context, where the disappearance of
a single species can lead to mass extinctions mediated by
network effects [31,34]. A major difference, however, is that
the economic network is not static and can in principle adapt
to new conditions on relatively short time scales (at least
compared to evolutionary time scales). With our framework,
we expect that if a supplier undergoes some difficulty (i.e., its
equilibrium production is found to be negative), its customers
may choose to rewire and look for alternatives. Furthermore,
one expects that the market clearing and zero profit conditions
will be temporarily violated. An extension of the present
model that takes such dynamical effects into account would
certainly be extremely interesting (see [25,41] for prelim-
inary work in that direction). But what is clear is that if
rewiring takes time and/or is costly, the “paper crises” found
above could indeed materialize as actual defaults, or at least
acute difficulties. Since economic frictions are substantial and
rewiring cannot be instantaneous, we expect that the present
scenario could be relevant to understanding real world crises
[38–40].

Let us finally come back to the case of partial substitutabil-
ity, i.e., when the parameter q appearing in Eq. (1) is strictly
larger than zero. Since the matrix (M̂)i j = z

ζ

i δi j − a
qζ

i j J
ζ

i j is a
continuous function of q, it is clear that if the smallest eigen-
value λmin is negative for q = 0, it will remain so for a certain

range of q. We have checked numerically on some examples
that this is indeed the case; the economy is only stabilized
when q exceeds a (problem dependent) value qc > 0. Not
surprisingly, allowing for more substitutability can stabilize
an otherwise unfeasible economy. An in-depth study of this
new threshold will be presented in our forthcoming work [36],
but we expect all the properties reported in this section to hold
true for all q > 0 when the system is close to criticality.

V. MARGINAL STABILITY:

DISCUSSION AND CONCLUSION

In this section, we will motivate our claim that generic
economies—like many other complex systems, see, e.g.,
[30,34,64–66]—might “self-organize” to sit, at least tem-
porarily, close to the boundary of the stable region, i.e.,
satisfy the marginal stability criterion λmin → 0. Several types
of evolutionary forces act to that effect. One is simply the
creation of new firms, that lead to an effective reduction of
productivity and increase of connectivity. To see this, consider
that the economy consists of N firms in equilibrium and
add an additional firm indexed by ⋆, with productivity z⋆,
labor requirements J⋆0 = V⋆/p0, and links J⋆i, J j⋆ to the N

pre-existing firms. The equilibrium condition for price p⋆ is

p⋆ = V⋆

z⋆

+
N∑

j=1

J⋆ j

z⋆

p j . (16)

Plugging this result in the new equilibrium conditions for the
N original firms yields
(

zi − Ji⋆J⋆i

z⋆

)
pi −

N∑

j=1

(
Ji j + Ji⋆J⋆ j

z⋆

)
p j = Vi + Ji⋆V⋆

z⋆

, (17)

which means that the addition of a firm amounts in effect to
decreasing all original productivities: zi → zi − Ji⋆J⋆i

z⋆
and in-

creasing all stoichiometric coefficients: Ji j → Ji j + Ji⋆J⋆ j/z⋆.
As clear from Eq. (11), this can only decrease the smallest
eigenvalue of the matrix M⋆

N that describes the pre-existing
firms with the new firm added. One concludes that a growing
economy can only become more unstable with time. This ar-
gument is actually closely related to May’s original argument
about the stability of large ecologies [31].

In fact, one can show that as the number of links to the most
connected node of the network increases, the smallest eigen-
value of M decreases [58], until the instability threshold is
reached. In this case, the fragility of the network comes from
the most central hubs, a scenario akin to, but different from,
the one of Acemoglu et al. [15]. This effect might be amplified
if firms systematically favor links toward hubs (as suggested
in [40]), leading to a “scale-free” input-output network [67].
Interestingly, a stability-constrained growth mechanism for
networks, whereby a node is freely added to the network if
it does not destabilize the system but induces rewirings in the
network until stability is found again if it does, has been found
to generate such scale-free networks [68].

The second evolutionary effect is, even for a fixed size
N , the complexification of the production process, i.e.,
technology progress means that a wider array of products are
needed as inputs. If the average productivity z remains the

032307-7



JOSÉ MORAN AND JEAN-PHILIPPE BOUCHAUD PHYSICAL REVIEW E 100, 032307 (2019)

same while the average connectivity c increases, the system
eventually reaches the instability point (which in the simplest
case reads z = Jc). Hence productivity must increase at some
minimum rate for the economy to remain stable. But since
increasing productivity is costly, one can postulate that the
average productivity z will tend to hover around the minimal
viable threshold, and sometimes lagging behind, leading to
occasional endogenous crises. Similarly, as mentioned after
Eq. (2), firms tend to optimize their portfolios of suppliers,
thereby reducing their redundancy but, by the same token,
reducing the effective substitution effects captured by the CES
parameter q. As q → q+

c , the economy will again become
unstable.

Finally, we have assumed that firms are perfectly compet-
itive and that equilibrium corresponds to zero profit. Now,
in more realistic situations, firms attempt to realize positive
profits and distribute dividends. As already noted, if the profit
target of firm i is a certain fraction ϕi of its total sales Si =
ziγi pi, Eq. (8) remains identical but with a decreased effective
productivity zi → zi(1 − ϕi ). As firms attempt to maximize
their profits, the average effective productivity goes down,
until the marginal stability point is reached and a crisis ensues.
After the crisis, economic actors revert to more reasonable
levels of markups (i.e., reduce ϕi), which makes the economy
viable again—until the next crisis.

One could probably come up with other mechanisms that
push the economy towards instability, see for example [69,70].
Our conjecture is that evolutionary and behavioral forces
repeatedly drive the economy close to marginal stability.
As anticipated by Bak, Chen, Scheinkman, and Woodford
[28–30] and confirmed in this paper, this scenario would be
a natural explanation of the broad (Zipf-like) distribution of
firm sizes, and of the “small shocks large business cycle” puz-
zle, that both suggest some kind of criticality. Crises should
then be understood as intrinsically nonlinear events, where
feedback loops of arbitrary size contribute to propagating and
amplifying idiosyncratic shocks.

There are many directions to explore further. The most
important one is, in our opinion, to endow the model with
some realistic dynamics, partly along the lines of [25], that
would include frictions, myopia, imperfect market clearing,
rewiring, etc. This would make the model more realistic, and
is a prerequisite to calibration on empirical data, since within
the present static setting crises are signaled by the appearance
of negative prices, beyond which the model ceases to make
sense.

ACKNOWLEDGMENTS

We are indebted to F. Benaych-Georges, G. Biroli, J.
Bonart, G. Bunin, C. Colon, R. Farmer, A. Kirman, A.
Landier, A. Mandel, M. Marsili, J. P. Nadal, F. Roy, A.
de Sanctis, A. Secchi, D. Sharma, M. Tarzia, D. Thesmar,
and F. Zamponi for countless illuminating discussions on the
topics of this paper. We thank in particular X. Gabaix for
many detailed comments, and for insisting that we should
investigate the model beyond its Leontief limit.

APPENDIX A: CES PRODUCTION FUNCTIONS

Of standard usage in economics, the constant elasticity
of substitution (CES) functions are a family of production

functions giving the total production of a firm i given inputs
Qi j from its suppliers.10 In the most general setting, the CES
production function is defined as

πi = zi

⎡
⎣∑

j

ai j

(
Qi j

Ji j

)−1/q

⎤
⎦

bq

, (A1)

where zi is the productivity level of firm i, the ai j ,s are
weight coefficients satisfying

∑
j ai j = 1, and the Ji j terms

are stoichiometric coefficients defining the number of inputs
from j required to make a unit of i’s output. In the remaining
terms, b is called the returns to scale: multiplying all inputs
Qi j by some coefficient K will make the whole output level
to be multiplied by Kb. In the main body and all that follows
we have chosen b = 1, corresponding to the so-called constant
returns to scale case, but our analysis can be extended to other
values of b. The effect of q, the degree of substitutability,
deserves a more in-depth discussion through the study of
the limits q → ∞ and q → 0, corresponding to the so-called
Cobb-Douglas and Leontief production functions.

1. Perfect substitutability: Cobb-Douglas case

Take indeed the limit q → ∞ as

πi/zi = exp

⎡
⎣−qln

⎛
⎝∑

j

ai j exp

[
−1

q
ln

(
Qi j

Ji j

)]⎞
⎠

⎤
⎦

≃ exp

⎡
⎣−qln

⎛
⎝1 − 1

q

∑

j

ai j ln

(
Qi j

Ji j

)⎞
⎠

⎤
⎦

≃ exp

⎛
⎝∑

j

ai j ln

(
Qi j

Ji j

)⎞
⎠ =

∏

j

(
Qi j

Ji j

)ai j

(A2)

and one retrieves the ubiquitous Cobb-Douglas production
function. In this setting, one can easily check that if a given
input Qi j from a firm j is multiplied by an amount f < 1 then
the output need not drop if any other input Qik is multiplied
by f −aik/ai j .

2. Unsubstitutable inputs: Leontief case

Take instead the limit q → 0, and consider j∗ =
arg min j ( Qi j

Ji j
) to get

πi/zi =

⎛
⎝ai j∗

(
Qi j∗

Ji j∗

)−1/q

+
∑

j �= j∗
ai j∗

(
Qi j

Ji j

)−1/q

⎞
⎠

−q

= Qi j∗b

Ji j∗b

⎛
⎝ai j∗ +

∑

j �= j∗
ai j

(
Ji j∗Qi j

Qi j∗Ji j

)−1/q

⎞
⎠

−q

−→
q→0

Qi j∗

Ji j∗
= min

j

(
Qi j

Ji j

)
, (A3)

10This may also include labor inputs, which we conventionally
choose to correspond to the index j = 0.
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where the total output of firm i is determined by its scarcest
input.

The CES production function therefore bridges these two
limiting cases of which only the Cobb-Douglas case has been
studied in the network literature. We will now study the
competitive equilibrium equations for values of q ∈ [0; ∞).

APPENDIX B: COMPETITIVE EQUILIBRIUM

EQUATIONS AND HAWKINS-SIMON CONDITION

Our problem is first to maximize the profits,

Pi = πi pi −
∑

j

Qi j p j, (B1)

for each firm subject to the constraint given by Eq. (A1).
Computing first the derivative of πi with respect to Qil= j and
substituting using Eq. (A1) yields

∂πi

∂Qi j

= z
−1/q

i ai jJ
1/q

i j Q
−(1+q)/q

i j π
(1+q)/q

i , (B2)

which can now be used to set ∂Pi

∂Qi j
= 0, i.e.,

piz
−1/q

i ai jJ
1/q

i j Q
−(1+q)/q

i j π
(1+q)/q

i = p j

Qi j =
(

pi

p j

ai j

)q/(1+q)

J
1/(q+1)
i j z

−1/(1+q)
i πi. (B3)

One can now check this solution in the Leontief and Cobb-
Douglas limiting cases,

Qi j

⎧
⎨
⎩

=
q→∞

pi

p j
ai jπi

=
q→0

Ji j
πi

zi

, (B4)

retrieving the condition Qi j = Ji jγi defined in Eq. (4) of the
main body, where γi := πi/zi is the firm’s output level.

In the Leontief case the optimal input is necessarily deter-
mined by the firm’s desired output level, while it is determined
by the input’s price in the Cobb-Douglas case.

One needs now to impose a competitive equilibrium by
setting all optimized profits to 0 as

πi pi =
∑

j

Qi j p j

πi

(
z

1/(1+q)
i p

1/(1+q)
i

)
= πi

⎛
⎝∑

j

a
q/(1+q)
i j J

1/(1+q)
i j p

1/(1+q)
j

⎞
⎠

(B5)

corresponding to Eq. (9). The existence of a solution pi >

0 for this equation is equivalent to saying that the matrix
(M̂)i j = z

ζ

i δi j − a
qζ

i j J
ζ

i j , with ζ = 1/(1 + q), is a so-called M

matrix. Once prices are determined, imposing market clearing
πi = ∑

j Q ji also leads to a similar equation,

ziγi −
∑

j

(
p j

pi

a ji

)qζ

J
ζ

jiz
qζ

j γ j = Q j0, (B6)

which would require the matrix (M̃)i j = ziδi j −
( p j

pi
a ji )

qζ
J

ζ

jiz
qζ

j to be an M matrix. In the Leontief q → 0 case

we have the relation M̃ = M̂⊺ and the sufficient condition to
have both a competitive zero profit equilibrium and market
clearing is that M̂ be an M matrix.

On the other hand, in the Cobb-Douglas case, it is easy
to see that (M̂)i j = δi j − ai j is always an M matrix, and thus
the prices are chosen so that (M̃)i j = ziδi j − p j

pi
a jiz j is an M

matrix to have a market-clearing equilibrium.

APPENDIX C: FUNCTIONAL ECONOMIES

In [26,27] the authors proved that a necessary and sufficient
condition for an equation such as Eq. (8) to have solutions is
that all of the principal minors of the matrix M be positive,
while the authors in [42] proved that this condition is equiva-
lent to all of the eigenvalues of M having a positive real part.

Regarding the positivity of all principal minors of M,
Hawkins and Simon gave an economic interpretation of this
condition by claiming that it is equivalent to saying that “the
group of industries corresponding to each minor must be
capable of supplying more than its own needs for the group
of products produced by this group of industries” [27]. In this
section we will provide a rewording of this in terms of an
effective medium equation and Schur complements.

1. Effective medium for one firm

Consider first a firm i satisfying Eq. (7) written as

M |P〉 = |V 〉 (C1)

and consider the matrix M(i) with row and column i re-
moved, as well as |P(i)〉 and |V (i)〉 the vectors with i removed,
|Ji←〉 = (Ji0, . . . , JiN ) and |Ji→〉 = (J0i . . . , JNi ). The previous
equation can now be written as

zi pi − 〈Ji←|P(i)〉 = Vi,

M(i) |P(i)〉 − pi |Ji→〉 = |V (i)〉 ; (C2)

multiplying now the second line by (M(i))
−1

, taking the
product with 〈Ji←|, and subtracting from the first line leads
to

[zi − 〈Ji←|(M(i))−1|Ji→〉]pi = Vi + 〈Ji←|(M(i))−1|V (i)〉 ,

(C3)

which can be interpreted as i being a unique isolated firm,
albeit with an effective “renormalized” productivity z̃i = zi −
〈Ji←|(M(i))−1|Ji→〉 < zi. The Hawkins-Simons condition im-
plies that M(i) must also fulfill the same conditions as M, in
particular (M(i))−1 has positive components. For the whole
economy to be functional, the effective productivity of each
firm must be positive.

2. Sectoral interpretation

One can also extend this analysis to different economical
sectors. Consider for simplicity two sectors, so that M has the
following block structure:

M :=
(

M1 −J12

−J21 M2

)
, (C4)
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FIG. 6. Spectrum of −A in the complex plane, with the color of each eigenvalue λ given by L(λ), defined as the inverse of the inverse
participation ratio H of the corresponding eigenvector, e.g., the number of firms over which the eigenvector is effectively spread. The color
on the top plot corresponds to the right eigenvectors, while the one on the bottom corresponds to the left eigenvectors. Notice the different
localization profiles on left and right eigenvectors.

where the matrix M1 is made of firms from sector 1 and inter-
linkages between them, while the J matrices link sector 1 with
sector 2. Calling |P〉 = (|P1〉 , |P2〉) and |V 〉 = (|V1〉 , |V2〉), we
can write as in Eq. (C2) that

(
M1 − J12M−1

2 J21
)
|P1〉 = |V1〉 + J21M−1

2 |V2〉 (C5)

and thus the Hawkins-Simon condition is fulfilled also if both
M2 and M1 − J12M−1

2 J21 are M matrices for any choice of
sector partitioning in the economy. In other words, it is not just
that M1 must be an M matrix by producing enough goods for
the consumption of firms in sector 1, but it must also produce
enough goods for all of the other sectors.

APPENDIX D: REAL INPUT-OUTPUT NETWORKS

In this section we will attempt to confront our model with
available, but partial, data. At this stage, this is more of an
exercise that gives color to the general framework presented
in the body of the paper.

Since our stability criterion depends on spectral properties
of a matrix describing the entirety of the economy, we need
in principle highly detailed network data to present a full
analysis. Most available data, however, consist of input-output
tables describing sale and purchase relationships between
entities, be they firms or larger entities such as sectors or
even countries, or simple relational data describing who is
in a client-supplier relationship with whom, with the latter
having a significantly larger coverage. While it allows us to
some degree to infer the importance of certain firms in the
network, it does not correspond directly to the Ji j coefficients
that appear in our formalism.

The total productivity factors zi, which measure the ef-
ficiency with which a firm turns inputs into outputs, are
also hard to deduce from actual production data. In par-
ticular, detailed output data are seldom available, and so
productivity measures must be constructed from revenue data
only, allowing for potential errors between the actual and
the inferred productivity levels. For a detailed discussion,
see [71].
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TABLE I. Firms with the 20 most important contributions to the eigenvector |rλmin 〉, their respective contributions to the Herfindahl, and
their reported sales for the year 2015 in thousands of 2015 USD.

Company name Sales (kUSD) Herfindahl contribution ||rλmin
i ||4

HP Inc. 1.40 × 106 3.62 × 10−3

Samsung Electronics Co. Ltd. 1.37 × 106 3.21 × 10−3

Airbus SE 6.69 × 105 1.10 × 10−3

Boeing Co., The 1.12 × 106 9.37 × 10−4

General Electric Co. 1.85 × 106 9.28 × 10−4

Intel Corp. 4.99 × 105 8.85 × 10−4

Microsoft Corp. 5.61 × 105 8.74 × 10−4

Apple Inc. 2.20 × 106 5.75 × 10−4

International Business Machines Corp. 7.93 × 105 4.53 × 10−4

QUALCOMM Inc. 1.57 × 105 4.23 × 10−4

Google Inc. 7.51 × 105 2.18 × 10−4

Sony Corp. 2.73 × 105 2.17 × 10−4

United Technologies Corp. 7.68 × 105 1.92 × 10−4

Verizon Communications Inc. 7.73 × 105 1.67 × 10−4

Siemens AG 6.43 × 105 1.49 × 10−4

Honeywell International Inc. 3.58 × 105 1.11 × 10−4

Safran SA 1.02 × 105 1.07 × 10−4

Taiwan Semiconductor Manufacturing Co. Ltd. 2.25 × 105 1.04 × 10−4

ARM Holdings PLC 7.63 × 103 5.83 × 10−5

LG Electronics Inc. 3.45 × 105 5.80 × 10−5

Detailed data are becoming increasingly available, and we
intend to show that spectral analysis of production networks
is in principle possible.

1. Dataset and definitions

We use the FactSet Supply Chain Relationships database to
build a supply chain network. The FactSet dataset contains a
list of relational data between firms, stating that firms A and B

have a client-supplier relation, if they are in competition or if
they have a joint venture. It is built by collecting information
from primary public sources such as SEC 10-K annual filings,
investor presentations, and press releases, and covers about
23 000 publicly traded companies with over 325 000 relation-
ships. Since the relationships are inferred from data released
to the public, we cannot be sure that it is an exhaustive
database of all the relationships between firms, but the subset
of relationships is deemed important by the firm themselves.

TABLE II. Firms with the 20 most important contributions to the eigenvector |lλmin 〉, their respective contributions to the Herfindahl, and
their reported sales for the year 2015 in thousands of 2015 USD.

Company name Sales (kUSD) Herfindahl contribution ||lλmin
i ||4

Avnet Inc. 2.52 × 105 8.94 × 10−4

Apple Inc. 2.20 × 106 6.61 × 10−4

Esprinet SpA 1.59 × 104 2.72 × 10−4

Arrow Electronics Inc. 1.59 × 105 2.39 × 10−4

3M Co. 2.50 × 105 1.11 × 10−4

Computacenter PLC 2.74 × 104 8.06 × 10−5

Data#3 Ltd. 1.25 × 103 7.86 × 10−5

CDW Corp., DE 1.11 × 105 6.33 × 10−5

Emulex Corp. 1.26 × 103 6.31 × 10−5

Stratasys Ltd. ? 6.30 × 10−5

Xilinx Inc. 3.04 × 104 5.45 × 10−5

JB Hi-Fi Ltd. ? 5.19 × 10−5

Entropic Communications Inc. 5.68 × 102 3.64 × 10−5

Proximus SADP 6.49 × 104 3.46 × 10−5

Nuance Communications Inc. 2.89 × 104 2.97 × 10−5

Premier Farnell Ltd. 5.70 × 103 2.92 × 10−5

Ingram Micro Inc. 3.24 × 105 2.86 × 10−5

Systex Corp. 6.62 × 102 2.83 × 10−5

Northrop Grumman Corp. 2.16 × 105 2.73 × 10−5

CANCOM SE 8.35 × 103 2.67 × 10−5
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FIG. 7. Subgraph of the 38 firms with the largest contributions to |rmin〉.

Such links between firms have a finite duration in time
and have thus a beginning and an end date. For our study, we
have chosen the set of client-supplier relationships during the
whole year of 2015. This allows us to build a graph G where
a link i → j exists whenever i is reported to be a supplier
of j or when j is reported to be a client of i. This graph
G consists of 237 weakly linked subgraphs,11 of which we
select the largest subgraph G0. The graph G0 consists of 10 447
firms with 40 300 relationships between them. The remaining
subgraphs are very small and consist of at most a few tens of
firms.

From G0 we construct an adjacency matrix A defined by

(A)i j =
{

1 if j → i ∈ G0

0 otherwise
, (D1)

which carries the topology we expect from the matrix (M)i j =
ziδi j − Ji j defined in the main text. Indeed if for simplicity one
supposes that all firms have the same productivity z and that

11A weakly linked subgraph is such that any two nodes in it can be
linked by a directed path.

Ji j = 1 for all links in the graph, then one has M = z1 − A. A
full study of the properties of M would therefore require the
supplementary knowledge of the values taken by the Ji j and
zi terms, i.e., have access to the dollar amount of products
exchanged between firms and the total production of each
firm.

2. Spectral study of the adjacency matrix

As the main body of our paper suggests, it is interesting to
look into the properties of the eigenvalues and eigenvectors of
the matrix M, which under the hypothesis presented above are
the same as those of the matrix −A, up to a shift by z on the
real axis for the eigenvalues.

A notion introduced in our paper is that of localized and de-
localized eigenvectors. To quantify the localization properties
we introduce the inverse participation ratio, or IPR,12 H of a
normalized complex-valued eigenvector |vλ〉 = (vλ

1 , . . . , vλ
N )

12Akin to the Herfindahl index used in the economics literature.
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FIG. 8. Subgraph of the 38 firms with the largest contributions to |lmin〉.

associated to an eigenvalue λ as

H (λ) :=
∑

i

∣∣∣∣
v

λ
i

∣∣∣∣4
. (D2)

Indeed, for a perfectly delocalized eigenvector we should
have ∀i, v

λ
i = 1/

√
N and therefore an H (λ) = 1/N , while

an eigenvector localized on a single site |vλ〉 = (1, 0, . . . , 0)
has trivially a value H (λ) = 1. It follows then that L(λ) =
1/H (λ) is a measure of the number of sites over which a given
eigenvector associated to the eigenvalue λ is spread out.

We have computed the eigenvalues and eigenvectors of
−A, as visible in Fig. 6, where one can see qualitatively that
the spectral properties of the real adjacency matrix are not
far from the simplistic random regular graph case shown in
Fig. 1: we see indeed a bulk to the right hand side with isolated
eigenvectors to the left of it, and with varying localization
properties of the eigenvectors across the spectrum.

Of capital interest to our study are the leftmost eigenvec-
tors |lmin〉 and |rmin〉, which owing to the Perron-Frobenius
theorem have real positive components and are associated to
a real eigenvalue λmin, as can also be seen in Fig. 6. In the
graph we are studying, we have found that the eigenvectors are
spread out over Lr (λmin) ≃ 40 firms for the right eigenvector
and Ll (λmin) ≃ 185 for the left eigenvector. For both eigen-
vectors, we have listed the 20 firms with the most important

FIG. 9. Log-log plot of the sales of the 38 main firms contribut-
ing to |vλmin 〉 vs their contribution to H (λmin ), suggesting that firms
with a higher overlap with |vλmin 〉 have higher sales.

032307-13



JOSÉ MORAN AND JEAN-PHILIPPE BOUCHAUD PHYSICAL REVIEW E 100, 032307 (2019)

contributions on Tables I and II, as well as their yearly
reported sales for the year 2015.13 We have also represented
the subgraph of the 38 firms with the largest contributions
to these eigenvectors and their interlinkages in Figs. 7 and
8. This allows for a better understanding of Eq. (14): if a
shock hits firms represented in Fig. 7 this will be reflected in
the prices of goods produced by firms represented in Fig. 8.
This corresponds fairly well to basic intuition, as firms in
Fig. 7 correspond roughly to firms producing goods (such
as electronics and software) that we expect to be purchased,
after possible transformations along the supply chain, by retail
and communication firms in Fig. 8. The same holds by the
inverting the roles of the firms, as idiosyncratic shocks to firms
contributing to the left eigenvector will have an effect on the
output of firms represented in the right eigenvector.

13In a few cases these data were not available.

Although the data available to us are not as complete
as we could wish for a full study of the matrix M, we
think nevertheless that it supports some of our qualitative
conclusions. For example, in the main text we argue that the
power-law firm size distribution could be a feature explained
by the proximity of an instability, with the largest firms being
those that have a high overlap with the leftmost eigenvectors
of M. To test this, we plot the sales of the 36 firms with the
largest contribution to |rmin〉 and 34 firms with the largest
contribution to |lmin〉 against their contributions of these firms
to the IPR or Herfindahl of these vectors14 in Figure 9,
suggesting an increasing relation between the overlap of a firm
with |vλmin〉 and its sales.

14This is none other than the quartic root of the scalar product
between a firm’s vector and |l, rλmin 〉.
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