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Abstract In this manuscript, we report the outcome of

the topical workshop: paving the way to alternative NNLO

strategies (https://indico.ific.uv.es/e/WorkStop-ThinkStart_

3.0), by presenting a discussion about different frameworks to

perform precise higher-order computations for high-energy

physics. These approaches implement novel strategies to deal

with infrared and ultraviolet singularities in quantum field

theories. A special emphasis is devoted to the local cancella-

tion of these singularities, which can enhance the efficiency

of computations and lead to discover novel mathematical

properties in quantum field theories.
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1 Introduction

Nowadays the calculation of observables relevant for high-

energy physics (HEP) colliders is extremely important, in

view of the future experiments that will provide new data with

accuracy not reached so far. Therefore, insight and support

from the theory side is necessary to understand the new find-

ings. Clearly, the HEP community has to be ready to tackle

this kind of problems and various approaches have to be

implemented or reformulated. In particular, the perturbative

framework applied to Quantum Field Theories (QFTs) has

shown to be very important for providing highly precise pre-

dictions. The so-called Next-to-Leading Order (NLO) revo-

lution was possible due to the emergence of novel techniques

inspired by clever ideas. Likewise, predictions at NNLO are

currently being calculated, but a fully established framework

as at NLO is not yet complete. There are indeed several ideas

and already working methods that can, for some processes,

produce NNLO predictions to be compared with available

experimental measurements.

In the spirit of providing observables at NNLO and

beyond, one encounters several obstacles that do not allow

to easily perform an evaluation in the physical four space-

time dimensions. For instance, the calculation of multi-loop

Feynman integrals constitutes a challenge due to the pres-

ence of singularities. Hence, proper procedures to deal with

infrared (IR) and ultraviolet (UV) divergences and with phys-

ical threshold singularities have to be devised and imple-

mented. As seen in many applications, starting with an inte-

grand free of singularities makes the evaluation more stable

and leads to reliable numerical results. Such an integrand-

level representation of physical observables, characterised

by a point-by-point, or local cancellation of singularities, is

one of the main topics of this manuscript and a valuable item

in the HEP community wish-list.

This manuscript is one of the outcomes of the discus-

sions and activities of the workshop “WorkStop/ThinkStart

3.0: paving the way to alternative NNLO strategies”, which

took place on 4–6 November 2019 at the Galileo Galilei
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Institute for Theoretical Physics (GGI) in Florence. In this

manuscript, we compare and summarise the several strate-

gies, presented at the workshop, to locally cancel IR singu-

larities and, thus, providing local integrand-level representa-

tions of physical observables in four space-time dimensions.1

In order to analyse their features, we consider the NNLO

correction to the scattering process e+e− → γ ∗ → qq̄ . The

adopted techniques extend the ones summarised in Ref. [16],

where thoughtful and complete descriptions of the NLO cal-

culations for this process are provided. Although the full cal-

culation of NNLO predictions requires several ingredients,

we elucidate among the different frameworks their main fea-

tures to perform such computations. Special emphasis is put

on comparing the advantages and limitations of each strategy,

in order to provide the reader with a better understanding of

the techniques that are currently available.

It is clear that having a fully local representation of any

physical observable allows for a smooth numerical evalua-

tion and, thus, a more direct calculation of highly accurate

predictions to be compared with the experimental data. In the

context of this kind of calculations, taking care of the regulari-

sation techniques applied to reach well-defined results is very

important. Speaking in a wide sense, in this manuscript we

consider two kinds of techniques, depending on the underly-

ing dimensionality of the integration space: four vs. d dimen-

sional implementations. Both alternatives are constrained to

fulfil several conditions. In the following, we list a few of

them.

• A comparison between various versions of regularisation

schemes that regulate singularities by treating the inte-

gration momenta in d dimensional space-time (dimen-

sional schemes) and schemes that do not alter the space-

time dimension (non-dimensional schemes) is carried

out at NNLO, showing transition rules between both

approaches at intermediate steps of the calculation.

• The ultraviolet renormalisation, preserving all the sym-

metry properties of the amplitude, is under study in the

different approaches. Some of these methods aim at an

integrand-level renormalisation, which differs from the

traditional integral-level framework. In other words, one

is interested in extracting the usual UV counterterms

directly from the bare amplitude rather than subtract-

ing integrated counterterms. Once again, the main focus

is put on the locality: subtracting the UV singularities

directly from the amplitude leads to a local cancellation

of non-integrable contributions in the UV region.

1 Several other strategies and methods for NNLO computations have

been presented and applied in the literature. These methods include,

for instance, sector decomposition techniques [1–4], sector-improved

residue subtraction [5–7], colorfull subtraction [8–10], N-jettiness sub-

traction [11–13], the nested soft-collinear subtraction scheme [14], and

the projection-to-Born method [15].

• It is clear that multi-loop level calculations are, in gen-

eral, contaminated not only by UV singularities. In fact,

the presence of IR ones makes a direct integration more

involved. This is because the standard IR singularities

need to be canceled by the corresponding real correc-

tions unless an IR counterterm is encountered.

A clear understanding of the aforementioned points will pave

an avenue to provide a systematic procedure to generate

NNLO calculations. On top of the d- or not to d-dimensional

techniques, the treatment of γ5 might be elucidated to, thus,

find agreement between the different schemes. Although this

topic was not considered on of main the targets of this work-

shop, interesting discussions took place. In particular, at the

closing discussion, which we summarise at the end of this

manuscript.

Nevertheless, with the very interesting developments

at the HEP colliders proposed for the near future, it is

currently mandatory to consider higher-order predictions.

Therefore, NNLO is no longer the ultimate goal and all meth-

ods need to overcome the obstacles of providing observ-

ables at N3LO and N4LO accuracy. Hence, for these

reasons, presenting a collection of different methods has

the intention of illustrating where we are and what we

can do next. To this end, in the present manuscript, we

comment on the features of the following regularisation/

renormalisation schemes as well as methods that are only

focused on the local cancellation of IR singularities:

• Dimensional schemes: four dimensional helicity scheme

(fdh) and dimensional reduction (dred)

• Non-dimensional schemes: four-dimensional unsubtr-

acted scheme (fdu), four dimensional regularisation/

renormalisation (fdr), and implicit regularisation (ireg).

• Subtraction methods: the qT-subtraction method, the

antenna and the local analytic sector subtraction.

In the last section of this manuscript, we summarise the

advantages and disadvantages of the above-mentioned meth-

ods. Furthermore, we provide a very brief summary of issues

that were mentioned during the closing discussion session at

the Workshop.

2 NNLO processes in FDH/DRED and FDR

The vast majority of higher-order calculations in QFT are

done using conventional dimensional regularisation (cdr)

to deal with ultraviolet (UV) and infrared (IR) singularities

in intermediate expressions. As discussed in [16], there are

several alternative approaches, trying to reduce or in fact even

eliminate the need to shift from four to d =4−2ǫ dimensions.
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In this contribution we elaborate further along these lines.

In a first step, we corroborate the relation between individ-

ual parts (double-virtual, real-virtual, double-real) of NNLO

cross sections computed in different variants of dimensional

regularisation such as the four-dimensional helicity scheme

(fdh) and dimensional reduction (dred). In particular, we

compute the individual parts of H → bb̄ at NNLO in dred

and fdh, and reproduce the decay rate obtained in cdr.

As for the process γ → qq̄ [17], the double-real correc-

tions in dred are simply obtained by integrating the four-

dimensional matrix element squared over the phase space.

The differences that occur by dropping the O(ǫ) terms in

the real matrix element are compensated by similar modifi-

cations in the real-virtual corrections and adapted UV renor-

malisation, such that the physical cross section is scheme

independent. This cancellation of the scheme dependence

is best understood by treating the ǫ-scalars that need to be

introduced to consistently define fdh and dred as spurious

physical particles. The UV and IR singularities of processes

involving ǫ-scalars cancel for physical processes after con-

sistent UV renormalisation and combining double-virtual,

real-virtual, and double-real parts. This leaves us with a finite

contribution multiplied by nǫ = 2ǫ, the multiplicity of the

ǫ-scalars. Setting ǫ → 0 in the final result the contribution

of the ǫ-scalars drops out or, equivalently, the scheme depen-

dence cancels.

Since the contribution of ǫ-scalars drops out for physical

observables it is, of course, possible to leave them out from

the very beginning. This is nothing but computing in cdr.

However, including ǫ-scalars sometimes offers advantages,

as it is (from a technical point of view) equivalent to per-

forming the algebra in four dimensions. We reiterate the state-

ment that introducing ǫ-scalars in diagrams and counterterms

is nothing but a consistent procedure (also beyond leading

order) to technically implement the often made instruction

to “perform the algebra in four dimensions”.2

Once we know how to transform from cdr to dimen-

sional schemes where some degrees of freedom are kept

in four dimensions, we ask the question whether the latter

can be related to an entirely four-dimensional calculation

using four-dimensional regularisation (fdr) [23–25].3 It is

clear that physical results must not depend on the regulari-

sation scheme and, therefore, fdr (and fdh and dred) has

to reproduce the results obtained in cdr, as long as the same

renormalisation scheme (typically ms) is used. For that rea-

2 Alternative studies that have a four-dimensional representation of

the d-dimensional space-time have been studied, at one-loop level, in

Ref. [18], displaying interesting features in formal [19,20] and in phe-

nomenological applications [21,22].

3 A similar approach that does not alter the space-time dimension is

considered in Sect. 4, where a rewriting of the Feynman propagator, as

shall be described, allows to explicitly extract the UV dependence from

the propagators.

son we investigate the possibility to relate individual parts

of the calculation obtained in fdr to the corresponding ones

in fdh and dred. Such a relation would deepen our under-

standing of the alternative schemes and tighten the argument

that they are consistent (at least to the order investigated).

On a more practical level, it opens up the possibility to com-

pute individual parts in different schemes and consistently

combine these results.

We start in Sect. 2.1 by presenting the new results for

H → bb̄ in dred and fdh and by discussing the results for

γ →qq̄ . The corresponding NLO results and the NF part of

the NNLO results in fdr are presented in Sect. 2.2. In Sect.

2.3 we study the relation of the individual parts between the

dimensional schemes and fdr.

2.1 FDH and DRED

The relation between cdr and other dimensional schemes

such as fdh and dred has been investigated thoroughly

in the literature [26,27]. Before we consider the processes

H → bb̄ and γ ∗ → qq̄ we collect the renormalisation con-

stants that are required. As is well known [28], in fdh and

dred the evanescent coupling of an ǫ-scalar to a fermion,

ae = αe/(4π), has to be distinguished from the gauge cou-

pling as =αs/(4π). Identifying the renormalisation and reg-

ularisation scales, the relation between the bare couplings a0
s

and a0
e to the ms-renormalised ones is given as

a0
s = Zms

as
as

= as S−1
ǫ

{
1 − as

ǫ

[
CA

(11

3
− nǫ

6

)
− 2

3
NF

]
+ O(a2)

}
,

(2.1a)

a0
e = Zms

ae
ae = ae S−1

ǫ

{
1 − as

ǫ

[
6 CF

]

− ae

ǫ

[
CA(2−nǫ) − CF (4−nǫ) − NF

]
+ O(a2)

}
,

(2.1b)

with Sǫ =e−ǫγE (4π)ǫ . In cdr we only need (2.1a) with nǫ →
0, whereas in fdh and dred nǫ = 2ǫ. The corresponding

values in the dr scheme are simply obtained by setting nǫ =0

in (2.1). As the NF part does not depend on nǫ at the one-loop

level, it is the same both in ms and dr. For later purpose we

further need the difference between (2.1b) and (2.1a) which

is given by

δms

Z ≡ Sǫ

[
Zms

ae
−Zms

as

]
ae=as

= a2
s

ǫ

[
CF (−2−nǫ)

+CA

(
5

3
+ 5

6
nǫ

)
+ 1

3
NF

]
+ O(a3). (2.2)

For H →bb̄ we also need the renormalisation of the Yukawa

coupling y0
b which is defined as the ratio of the bottom
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quark mass and the Higgs vacuum expectation value, see

e.g. [29,30]. Apart from its appearance through the Yukawa

coupling we will set the bottom quark mass to zero. While the

renormalisation of y0
b is well known in cdr, for fdh/dred

this constitutes an additional calculational step. Using the ms

scheme we get

y0
b = yb

[
1 + as S−1

ǫ CF

(
−3

ǫ
− nǫ

2 ǫ

)

+ a2
s S−2

ǫ C2
F

(
9

2 ǫ2
− 3

4 ǫ
+ 2 nǫ

ǫ2
− nǫ

ǫ
+ 3 n2

ǫ

8 ǫ2
− 9 n2

ǫ

16 ǫ

)

+ a2
s S−2

ǫ CACF

(
11

2 ǫ2
− 97

12 ǫ
+ nǫ

4 ǫ2
− 19 nǫ

24 ǫ
− n2

ǫ

4 ǫ2
+ n2

ǫ

4 ǫ

)

+a2
s S−2

ǫ CF NF

(
− 1

ǫ2
+ 5

6 ǫ
− nǫ

4 ǫ2
+ nǫ

8 ǫ

)]
. (2.3)

Similar to (2.2) we again have set equal the renormalised(!)

couplings ae = as . The Yukawa renormalisation can be

obtained from the UV divergences of an off-shell compu-

tation of the H →bb̄ Green functions; however a technically

simpler determination is also possible [31] by taking the on-

shell form factor and subtracting the IR divergences obtained

from the known general structure [26].

2.1.1 H → bb̄ in FDH/DRED

In the following we consider one- and two-loop corrections

to H →bb̄ in fdh and dred. Our discussion follows closely

[16] (for NLO) and [17] (for NNLO) where the correspond-

ing calculations for the process e+e− → γ ∗ → qq̄ are dis-

cussed. To start, we notice that disentangling the ǫ-scalar con-

tributions is actually simpler for H →bb̄ than for γ ∗ →qq̄ .

This is due to the fact that the tree-level interaction is not

mediated by a gauge boson and, accordingly, we therefore

only have to split the gluon field in the one-loop contribu-

tions. Moreover, the major difference between fdh and dred

is in the treatment of so-called ‘regular’ vector fields, see e.g.

Table 1 of [16]. As in the present case only ‘singular’ vector

fields contribute, the virtual correction is the same in both

schemes, i.e.

Afdh(H →bb̄) ≡ Adred(H →bb̄) ≡ A, (2.4)

see also Fig. 1. Using form factor coefficients F (n) of loop-

order n, the bare amplitude for H →bb̄ can be written as

Abare = A
(0)
bare

[
1 +

∑

n

(
μ2

0

−M2
H

)n ǫ

Sn
ǫ F

(n)
bare

]
, (2.5)

including the regularisation scale μ0 and the Higgs mass MH .

The tree-level amplitude A
(0)
bare = i y0

b ū(pb)v(pb̄) results in

the tree-level decay width Ŵ(0) =2 M2
H y2

b/(2MH ).

Fig. 1 The one-loop vertex correction to the H →bb̄ amplitude. The

diagram only contains a ‘singular’ gluon field. In dred and fdh there

is an additional diagram with the gluon replaced by an ǫ-scalar

NLO

The NLO virtual corrections are directly related the one-loop

form factor for which we get in fdh/dred

F
(1)
bare = a0

s CF

[
− 2

ǫ2
−2+ π2

6
+O(ǫ)

]

+ a0
e CF nǫ

[1

ǫ
+2+O(ǫ)

]
. (2.6)

The well-known cdr result which is given e.g. in [29,30] is

obtained by setting nǫ →0. Identifying the (bare) couplings

in (2.6) before making replacement (2.1) corresponds to so-

called ‘naive’ fdh and it has been shown that this leads to

inconsistent results at higher orders [32–34]. Instead, we first

have to renormalise a0
s and a0

e and only then we are allowed

to identify the renormalised couplings ae =as .

Integrating over the phase space and using the conventions

of [16] we then obtain for the UV-renormalised virtual cross

section

Ŵ
(v)

ds
= Ŵ(0) CF �2(ǫ) cŴ(ǫ) s−ǫ

{
as

[
− 4

ǫ2
− 6

ǫ
−4+2 π2+O(ǫ)

]

+ ae

[
+ nǫ

ǫ
+O(ǫ0)

]}
, (2.7)

where we introduce the ǫ-dependent prefactors

cŴ(ǫ) = (4π)ǫ
Ŵ(1 + ǫ) Ŵ2(1 − ǫ)

Ŵ(1 − 2ǫ)
= 1 + O(ǫ), (2.8a)

�2(ǫ) =
(4π

s

)ǫ Ŵ(1 − ǫ)

Ŵ(2 − 2ǫ)
= 1 + O(ǫ), (2.8b)

�3(ǫ) =
(4π

s

)2ǫ 1

Ŵ(2 − 2ǫ)
= 1 + O(ǫ). (2.8c)

The subscript ds in (2.7) and in what follows indicates that

the results for all dimensional schemes can be obtained from

this expression. For the evaluation of the real contribution we

use the setup and notation of [16] and arrive at
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Ŵ
(r)

ds
= Ŵ(0) CF �3(ǫ)

{
as

[
+ 4

ǫ2
+ 6

ǫ
+21−2 π2+O(ǫ)

]

+ ae

[
− nǫ

ǫ
+O(ǫ0)

]}
. (2.9)

As for the virtual cross section, the result is the same in fdh

and dred which is due to the absence of ‘regular’ gauge

bosons at NLO for the considered process. The presence of

a ‘singular’ gluon, however, leads to as contributions (which

stem from the d-dimensional gluon) and ae contributions

(which stem from the associated ǫ-scalar gluon). Again, at

NLO such a distinction is of course not strictly necessary; at

NNLO, however, the different renormalisation of as and ae

has to be taken into account, see also Sect. 2.3.

Finally, since cŴ �2s−ǫ/�3 = 1+O(ǫ3), the cancellation

of singularities between (2.7) and (2.9) takes place and leaves

us with the well known finite answer

Ŵ(1) = Ŵ(0) + Ŵ
(v)

ds
+ Ŵ

(r)

ds

∣∣∣
d→4

= Ŵ(0)
[
1 + as 17 CF

]
.

(2.10)

In particular, the evanescent contributions ∝ aenǫ drop out.

NNLO

In the following we provide separately the double-virtual,

double-real, and real-virtual contributions to Ŵ in fdh/dred.

All of these results are new and have not been published else-

where before. For brevity reasons we keep the dependence

on nǫ explicit in the divergent terms, but drop finite nǫ terms.

Setting nǫ → 0 (2ǫ) then yields the cdr (fdh/dred) result.

As before, we give the UV-renormalised results after having

set ae ≡as .

Writing the double virtual corrections as

Ŵ
(vv)

ds
= Ŵ(0) �2(ǫ) a2

s CF

[
CF Ŵ

(vv)

ds
(CF )

+ CA Ŵ
(vv)

ds
(CA) + NF Ŵ

(vv)

ds
(NF )

]
, (2.11)

we then obtain for the individual parts

Ŵ
(vv)

ds
(CF ) = + 8

ǫ4
+ 24 − 4nǫ

ǫ3
+ 1

ǫ2

(
34 − 28π2

3
− 23nǫ

)

+ 1

ǫ

(109

2
−12π2− 184ζ3

3
− 62nǫ + 20π2nǫ

3
+ 31n2

ǫ

8

)

+ 128− 40π2

3
+ 137π4

45
−116ζ3, (2.12a)

Ŵ
(vv)

ds
(CA) = +22 − nǫ

2 ǫ3
+ 1

ǫ2

(32

9
+ π2

3
− 19nǫ

18
+ n2

ǫ

2

)

+ 1

ǫ

(
− 961

54
− 11π2

6
+26ζ3+ 761nǫ

108
+ π2nǫ

12

)

− 934

81
+ 701π2

54
− 8π4

45
+ 302ζ3

9
, (2.12b)

Ŵ
(vv)

ds
(NF ) = − 2

ǫ3
+ 1

ǫ2

(
− 8

9
+ nǫ

2

)
+ 1

ǫ

(65

27
+ π2

3
− 3nǫ

4

)

+ 400

81
− 55π2

27
+ 4ζ3

9
. (2.12c)

We note that in (2.11) we could have pulled out additional

prefactors such as c2
Ŵ , in analogy to (2.7). This would of

course modify the subleading poles and finite terms of (2.12)

(as well as (2.13) and (2.14) below). The conclusions, how-

ever, we will draw in Sect. 2.3 are not affected by the choice

of the prefactor.

As mentioned before, the one- and two-loop renormali-

sation of the Yukawa coupling is included in (2.12) in order

to get consistent results. We would like to stress, that in fdh

and dred there are finite terms associated with the ms renor-

malisation factors. The terms ∝ nm
ǫ /ǫn (m, n > 0) that are

potentially finite when setting nǫ =2ǫ cancel when combin-

ing the double-virtual with the real-virtual and double-real

contribution, as will be shown below. However, if the double-

real (and real-virtual) corrections are computed by doing the

algebra in four dimensions, the nǫ terms are not disentangled

any longer and, therefore, all these terms need to be included

to obtain a consistent result. Moreover, as no ǫ-scalars are

present at the tree level, (2.1) is sufficient for the renormali-

sation of a0
s and a0

e .

Splitting the real-virtual and double-real contributions in

a similar way as before, we then get

Ŵ
(rv)

ds
(CF ) = −16

ǫ4
− 48−8nǫ

ǫ3

+ 1

ǫ2

(
−146+ 64π2

3
+42nǫ − n2

ǫ

2

)

+ 1

ǫ

(
−524+46π2+ 848ζ3

3
+147nǫ

− 37π2nǫ

3
− 13n2

ǫ

2

)

− 1879+170π2− 38π4

9
+624ζ3, (2.13a)

Ŵ
(rv)

ds
(CA) = − 2

ǫ4
− 62−5nǫ

3 ǫ3

+ 1

ǫ2

(
−52+ 7π2

3
+nǫ − n2

ǫ

2

)

+ 1

ǫ

(
−209+ 158π2

9
+ 16ζ3

3
+ 25nǫ

2
− 17π2nǫ

9

)

− 4769

6
+ 355π2

6
− 47π4

36
+ 2000ζ3

9
, (2.13b)

Ŵ
(rv)

ds
(NF ) = + 8

3 ǫ3
+ 1

ǫ2

(
4 − nǫ

)
+ 1

ǫ

(
14− 14π2

9
− 5nǫ

2

)

+ 127

3
− 7π2

3
− 200ζ3

9
(2.13c)

123



Eur. Phys. J. C (2021) 81 :250 Page 7 of 61 250

and

Ŵ
(rr)

ds
(CF ) = + 8

ǫ4
+ 24−4nǫ

ǫ3

+ 1

ǫ2

(
112−12π2−19nǫ + n2

ǫ

2

)

+ 1

ǫ

(939

2
−34π2− 664ζ3

3
−85nǫ + 17π2nǫ

3
+ 21n2

ǫ

8

)

+ 7695

4
− 488π2

3
+ 53π4

45
−544ζ3, (2.14a)

Ŵ
(rr)

ds
(CA) = + 2

ǫ4
+ 58−7nǫ

6ǫ3
+ 1

ǫ2

(436

9
− 8π2

3
− 89nǫ

18

)

+ 1

ǫ

(12247

54
− 283π2

18
− 94ζ3

3
− 2111nǫ

108
+ 65π2nǫ

36

)

+ 333595

324
− 2047π2

27
+ 89π4

69
− 2860ζ3

9
, (2.14b)

Ŵ
(rr)

ds
(NF ) = − 2

3ǫ3
+ 1

ǫ2

(
− 28

9
+ nǫ

2

)

+ 1

ǫ

(
− 443

27
+ 11π2

9
+ 13nǫ

4

)

− 12923

162
+ 136π2

27
+ 268ζ3

9
. (2.14c)

To get the double-real contribution we used the integrals of

[35] and the FORM code of [36]. As for the process γ ∗ →qq̄

[17], the double-real corrections in dred/fdh are simply

obtained by integrating the four-dimensional matrix element

squared over the phase space. Their determination is there-

fore significantly simplified compared to the case of cdr.

Finally, combining these results, we can extend (2.10) to

NNLO as4

Ŵ(2) = Ŵ(1) + Ŵ
(vv)

ds
+ Ŵ

(rv)

ds
+ Ŵ

(rr)

ds

∣∣∣
d→4

(2.15a)

= Ŵ(0)
[
1 + as 17 CF + a2

s C2
F

(691

4
−6π2−36ζ3

)

+ a2
s CF CA

(893

4
− 11π2

3
−62ζ3

)

+ a2
s CF NF

(
− 65

2
+ 2π2

3
+8ζ3

)]
(2.15b)

in agreement with [37]. As expected, the divergent nǫ parts

cancel in the final result which is nothing but the scheme-

independence of the physical result.

2.1.2 γ → qq̄ in FDH/DRED

The scheme dependence of the cross section e+e− →γ ∗ →
qq̄ at NNLO is discussed in detail in [17]. For this particu-

lar process the individual results in dred and fdh differ, as

in dred there are ǫ-scalar photons present in the tree-level

4 Let us remark that this cancellation is obtained after individually inte-

grating contributions that are divergent in four dimensions and combin-

ing them to obtain a finite remainder. In Sect. 3, we provide the main

ingredients towards a local cancellation at integrand level.

process. While [17] mainly deals with dred, here we only

recall a few points that are relevant for the comparison of

fdh with fdr. In particular, we want to extend to NNLO the

investigation of the interplay between fdh and fdr presented

at NLO in [16].

NLO

Copying the results given in Section 2.3 of [16], we write the

virtual and real cross sections as

σ
(v)
FDH = σ (0) CF �2(ǫ) cŴ(ǫ) s−ǫ

×
{

as

[
− 4

ǫ2
− 6

ǫ
−16+2π2+O(ǫ)

]

+ ae

[
+ nǫ

ǫ
+O(ǫ0)

]}
, (2.16)

σ
(r)
FDH = σ (0) CF �3(ǫ)

×
{

as

[
+ 4

ǫ2
+ 6

ǫ
+19−2π2+O(ǫ)

]

+ ae

[
− nǫ

ǫ
+O(ǫ0)

]}
, (2.17)

where σ (0) = e4/(4π) Qq Nc/(3s) includes the electric

charge and the colour number of the quark as well as the

flux factor 1/(2s). Combining these two contributions we find

the well-known regularisation-scheme independent physical

cross section

σ (1) = σ (0) + σ
(v)

fdh
+ σ

(r)

fdh

∣∣∣
d→4

= σ (0)
[
1 + as 3 CF

]
.

(2.18)

NNLO

Moving on to NNLO, we first split the cross section into a

double-virtual, a double-real, and a real-virtual part, i.e.

σnnlo

fdh
= σ

(vv)

fdh
+ σ

(rr)

fdh
+ σ

(rv)

fdh
. (2.19)

For the comparison with fdr in Sect. 2.3, we here focus on the

NF part of the respective contributions. The double-virtual

part can be extracted from the dred result given in (3.8b) of

[17] as

σ
(vv)

fdh
(NF ) = σ (0) �2(ǫ) a2

s CF NF

[
− 2

ǫ3

− 8

9ǫ2
+ 1

ǫ

(92

27
+ π2

3

)
+ 1921

81
− 91π2

27
+ 4

9
ζ3

]
.

(2.20)

The other two contributions are given by

σ
(rv)

fdh
(NF ) = σ (0) �2(ǫ) a2

s CF NF

123
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Fig. 2 The one-loop correction to the bottom mass

×
[ 8

3ǫ3
+ 4

ǫ2
+ 1

ǫ

(32

3
− 14π2

9

)

+ 94

3
− 7π2

3
− 200

9
ζ3

]
, (2.21)

σ
(rr)

fdh
(NF ) = σ (0) �2(ǫ) a2

s CF NF

×
[
− 2

3ǫ3
− 28

9ǫ2
+ 1

ǫ

(
− 380

27
+ 11π2

9

)

− 5350

81
+ 154π2

27
+ 268

9
ζ3

]
. (2.22)

The combination of all three parts results in

σ
(vv)

fdh
(NF ) + σ

(rv)

fdh
(NF ) + σ

(rr)

fdh
(NF )

= σ (0) a2
s CF NF

[
−11+8ζ3

]
(2.23)

in agreement with the literature [38,39]. Note that the con-

stant terms of (2.21) and (2.22) differ from the corresponding

results in dred, as given in (3.20) and (3.17b) of [17].

2.2 FDR: four-dimensional regularisation/renormalisation

2.2.1 H → bb̄ in FDR

NLO

Here we describe the fdr NLO calculation of the decay rate

ŴH→bb̄(g). The strong coupling constant does not appear at

the tree-level and as in Sect. 2.1 we use the ms value with

a = αs/4π . As for the unrenormalised bottom mass, it is

denoted by m0 and again it is taken to be different from zero

only in the Yukawa coupling. The one-loop relation between

m0 and the physical pole mass m, defined as the value of

the four-momentum at which the bottom quark propagator

develops a pole, is obtained by evaluating the diagram of

Fig. 2,

m0 = m(1 + aδm), δm = −CF (3L ′′ + 5),

L ′′ := ln μ2 − ln m2. (2.24)

The unphysical mass μ2 in (2.24) is the fdr UV regulator,

which in the present calculation is taken to coincide with the

fdr IR regulator.5 Once the decay amplitude is renormalised

(namely expressed in terms of physical quantities only) all

5 This is done in such a way that one- and two-loop scaleless Feynman

integrals are still set to zero in fdr.

the μ2s of UV origin get replaced by physical scales, and the

remaining ones are IR regulators which cancel in the sum of

virtual and real contributions. As a matter of fact, we will

encounter two additional combinations besides L ′′,

L ′ := ln μ2 − ln(−s − i0+) and L := ln μ2 − ln s,

(2.25)

where for H → bb̄ we have s = M2
H , the Higgs mass

squared. The amplitude contributing to H → bb̄ can be

written as

A2 = m0 A
(0)
2 (1 + a A

(v)
2 ), (2.26)

where A
(0)
2 is the tree level result and the one-loop correction

of Fig. 1 reads

A
(v)
2 = −CF (L ′)2. (2.27)

Inserting (2.24) in (2.26) produces the renormalised one-loop

amplitude

A
(1)
2 = m A

(0)
2

[
1 − aCF

(
5 + 3L ′′ + (L ′)2

)]
. (2.28)

Upon integration over the 2-body phase-space, the square of

(2.28) gives the virtual part of the NLO corrections,

Ŵ
(v)
FDR(m2) = −aCFŴ(0)(m2)

×Re
[
2(L ′)2 + 6L ′′ + 10

]
. (2.29)

This can be translated to the ms scheme by expressing m2 in

terms of the running ms bottom mass m2(M2
H ) [40]

m2 = m2(M2
H )

[
1 + aCF

(
8 − 6 ln

m2

M2
H

)
]

= m2(M2
H )

[
1 + aCF

(
8 − 6(L − L ′′)

)]
. (2.30)

With the corresponding change in the Yukawa we obtain

Ŵ
(v)
FDR = −aCFŴ(0)

Re
[
2(L ′)2 + 6L + 2

]
, (2.31)

which can be directly compared with (2.7). The real coun-

terpart is obtained by squaring the diagrams of Fig. 3 and

integrating over a 3-body phase-space in which all final-state

particles acquire a small mass μ [41],

Ŵ
(r)
FDR = ŴR

H→bb̄g

= aCFŴ
(0)

H→bb̄
(m2)

[
2L2 + 6L + 19 − 2π2

]
. (2.32)

Replacing Re(L ′)2 = L2 +π2, the sum of (2.31) and (2.32)

gives the UV and IR finite decay rate up to the NLO accuracy

Ŵ
(1)
FDR = Ŵ(0) [1 + 17aCF ] , (2.33)

which agrees with (2.10).
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Fig. 3 The two diagrams contributing to the H → bb̄g amplitude. In

dred and fdh there are additional diagrams with gluons replaced by

ǫ-scalars

NNLO, NF part

The NF parts contributing to the NNLO cross section in fdr

are given in (4.19) of [25] in terms of the Yukawa coupling

defined through the pole mass of the bottom quark. If we

express these results in terms of the ms Yukawa couplings,

as done for (2.31), we get

Ŵ
(vv)

fdr
(NF ) = Ŵ(0) a2

s CF NF

[
− 8

9
L3+ 2

9
L2

+ L
(278

27
+ 4

9
π2

)
+ 3425

162
− 40

27
π2− 16

3
ζ3

]
,

(2.34)

Ŵ
(rv)

fdr
(NF ) = Ŵ(0) a2

s CF NF

[
+ 4

3
L3+4L2 + L

(38

3
− 4

3
π2

)]
,

(2.35)

Ŵ
(rr)

fdr
(NF ) = Ŵ(0) a2

s CF NF

[
− 4

9
L3− 38

9
L2 − L

(620

27
− 8

9
π2

)

− 4345

81
+ 58

27
π2+ 40

3
ζ3

]
. (2.36)

2.2.2 γ → qq̄ in FDR

NLO

The computation of γ → qq̄ in fdr at NLO has been dis-

cussed in [16]. Here we just list the results for the virtual and

real corrections, as given in (5.2) and (5.35) of [16]. They

read

σ
(v)
FDR = σ (0) as CF

[
−2L2−6L−14+2π2

]
, (2.37)

σ
(r)
FDR = σ (0) as CF

[
+2L2+6L+17−2π2

]
, (2.38)

where L is defined in (2.25), with s now the centre-of-mass

energy squared.

NNLO, NF part

The NF parts contributing to the NNLO cross section in fdr

are given in (5.13) of [25] and read

σ
(vv)

fdr
(NF ) = σ (0) a2

s CF NF

[
− 8

9
L3+ 2

9
L2

+ L
(278

27
+ 4

9
π2

)
+ 3355

81
− 76

27
π2− 16

3
ζ3

]
,

(2.39)

σ
(rv)

fdr
(NF ) = σ (0) a2

s CF NF

[
+ 4

3
L3+4L2 + L

(34

3
− 4

3
π2

)]
,

(2.40)

σ
(rr)

fdr
(NF ) = σ (0) a2

s CF NF

[
− 4

9
L3− 38

9
L2

+ L
(
− 584

27
+ 8

9
π2

)
− 4246

81
+ 76

27
π2+ 40

3
ζ3

]
.

(2.41)

2.3 Relations between FDH and FDR

NLO

The relation between IR divergences of virtual (and there-

fore real) one-loop results obtained in fdh and fdr has been

established in (5.41) of [16] for the process γ ∗ → qq̄ and

reads

1

ǫ2
↔ 1

2
L2,

1

ǫ
↔ L . (2.42)

These relations are here confirmed by the results of H →bb̄.

In fact, (2.9) and (2.32) are related through (2.42) and so

are (2.7) and (2.31) if the ms mass (2.30) is used. Moreover,

if ǫ = 0 in prefactors that are related to integration in d

dimensions, i.e. cŴ(ǫ=0), �2(ǫ =0), and �3(ǫ =0) in (2.8),

the finite terms of the individual parts are the same in fdh

and fdr, including the π2 terms.

In order to find similar transition rules at NNLO, we also

follow a second approach for the comparison between fdh

and fdr which is slightly different. To start, we multiply

a generic virtual one-loop result obtained in fdh by an ǫ-

dependent function φ1(ǫ) and demand equality with the cor-

responding fdr result, i.e.

φ1(ǫ) Ŵ
(v)

fdh
≡ Ŵ

(v)

fdr
, φ1(ǫ) σ

(v)

fdh
≡ σ

(v)

fdr
(2.43)

with

φ1(ǫ) = 1 + ǫ b11 + ǫ2 b12. (2.44)

The coefficients b11 and b12 are so far unknown and can be

obtained by inserting known fdh and fdr results. Before we

can do this, however, we have to rescale powers of 1/ǫ by

using

(1

ǫ

)k1 → (λ1 L)k1 , k1 ∈ {1, 2}. (2.45)
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The scale factor λ1 is so far unknown and sets the size of the

fdh 1/ǫ-pole with respect to the fdr logarithm L at NLO.

Evaluating (2.43) by using for instance (2.16) and (2.37)

we find after expanding, applying shift (2.45), and dropping

O(ǫ) terms

b11 = −3

2
+ 3

2 λ1
, (2.46a)

b12 = +9

4
− 9

4 λ1
, (2.46b)

(λ1)
2 = 1

2
. (2.46c)

Equations (2.44)–(2.46) are equivalent to (2.42) in that they

allow to translate virtual (and therefore real) one-loop results

obtained in fdh to fdr and vice versa, including the finite

terms. The validity of the rules has been checked explicitly

for NLO corrections to H →bb̄ and γ ∗ →qq̄ .

NNLO, double-virtual

We start our NNLO comparisons with the IR divergences in

the NF part of the double-virtual contributions. As mentioned

repeatedly, to get correct and unitary NNLO results in fdh it

is crucial to distinguish evanescent couplings at NLO, see for

instance (2.6) and the text below as well as (2.16). In fdr, on

the other hand, unitarity is restored by treating UV-divergent

one-loop subdiagrams appearing in two-loop amplitudes in

the same way they are treated at NLO. This can be achieved

by introducing ‘extra-integrals’, as explained in Appendix

A of [25]. After taking this contribution into account, it is

possible to compare the IR divergences of the double-virtual

results obtained in fdh and fdr.

In order to find transition rules between the two schemes

we follow the approach described in the previous section and

adjust the involved quantities accordingly, i.e. we demand

φ2(ǫ) Ŵ
(vv)

fdh
(NF ) ≡ Ŵ

(vv)

fdr
(NF ),

φ2(ǫ) σ
(vv)

fdh
(NF ) ≡ σ

(vv)

fdr
(NF ) (2.47)

with

φ2(ǫ) = 1 + ǫ b21 + ǫ2 b22 + ǫ3 b23 (2.48)

and get after the rescaling

(1

ǫ

)k2 → (λ2 L)k2 , k2 ∈ {1, 2, 3} (2.49)

and the use of (2.12c) and (2.20) the two-loop coefficients

b21 = −4

9
− 1

9 (λ2)2
, (2.50a)

b22 = 154

81
− 139

27 λ2
+ 4

81 (λ2)2
+π2

(1

6
− 2

9 λ2

)
, (2.50b)

b23 = −7621

729
+ 556

243 λ2
− 154

729 (λ2)2

− π2
(23

54
− 8

81 λ2
+ 1

54 (λ2)2

)
+ 26

9
ζ3, (2.50c)

(λ2)
3 = 4

9
. (2.50d)

Similar to the one-loop case, we have reabsorbed the differ-

ence between the two schemes in the prefactor φ2(ǫ), includ-

ing the finite terms. Restricting ourselves to the NF part of the

double-virtual corrections for a single process, (2.48)–(2.50)

can be seen as using four parameters {λ2, b21, b22, b23} to

enforce four equalities between the Ln and ǫ−n terms for

n ∈ {3, 2, 1, 0}. What is remarkable is that the same rela-

tions hold for H → bb̄ and γ ∗ → qq̄ . Despite their appar-

ent similarity, these two processes have a completely differ-

ent behaviour regarding UV renormalisation. The question

whether these rules also apply to the C2
F and CA CF part of

the aforementioned processes or to other processes can not

be answered at the moment. Of course, the precise form of

the subleading poles depends on whether or not prefactors

like c2
Ŵ(ǫ) are factored out in the fdh results. This explains

the π2 and ζ3 terms in (2.50b) and (2.50c). Moreover, note

that the two-loop scaling factor (2.50d) is different from the

one-loop scaling (2.46c).

NNLO, real-virtual

Regarding the real-virtual corrections we first notice that for

the considered processes the NF part solely stems from the

(sub)renormalisation of the bare couplings in the real one-

loop result. In other words, it is given by the product of two

one-loop quantities: the real NLO contribution (which con-

tains double and single IR divergences) times a one-loop

renormalisation constant (which contains a single UV diver-

gence).

In fdh, the corresponding terms originate from inserting

(2.1a) and (2.1b) in (2.9) and (2.17) as the Yukawa cou-

pling y0
b does not depend on NF at NLO. Similar to the

double-virtual contributions it is crucial to distinguish gauge

and evanescent couplings in order to avoid the wrong UV-

renormalisation of the ae terms. Ignoring this distinction,

however, leads to results in ‘naive’ fdh which are different

from fdh:

fdh: Ŵ
(rv)

fdh
(NF ) = 8

3 ǫ3
+ 4

ǫ2
+ 1

ǫ

(
12− 14π2

9

)
+ O(ǫ0),

(2.51)

σ
(rv)

fdh
(NF ) ∝ 8

3 ǫ3
+ 4

ǫ2
+ 1

ǫ

(32

3
− 14π2

9

)
+ O(ǫ0),

(2.52)

‘naive’ fdh: Ŵ
(rv)

fdh
′ (NF ) = 8

3 ǫ3
+ 4

ǫ2
+ 1

ǫ

(38

3
− 14π2

9

)
+ O(ǫ0),

(2.53)
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σ
(rv)

fdh
′ (NF ) ∝ 8

3 ǫ3
+ 4

ǫ2
+ 1

ǫ

(34

3
− 14π2

9

)
+ O(ǫ0).

(2.54)

In fdr, the corresponding results are given in (2.35) and

(2.41) and read

fdr: Ŵ
(rv)

fdh
(NF ) = 4

3
L3+4L2+L

(38

3
− 4

3
π2

)
, (2.55)

σ
(rv)

fdh
(NF ) = 4

3
L3+4L2+L

(34

3
− 4

3
π2

)
. (2.56)

Similar to fdh, they stem from the as-renormalisation in

(2.32) and (2.38), see also (3.1) and (3.2) of [25]. In con-

trast to the double-virtual contributions, however, the differ-

ent renormalisation of ae and as is not taken into account via

‘extra-integrals’. Accordingly, (2.55) and (2.56) correspond

to ‘naive’ fdh, i.e. (2.53) and (2.54), rather than fdh. Since

only one-loop quantities are involved, the transition between

‘naive’ fdh and fdr is already known and given by e.g. (2.42)

times the transition 1/ǫuv ↔ L for the UV divergence, i.e.

1

ǫ2
ir

× 1

ǫuv

↔ 1

2
L2 × L ,

1

ǫir

× 1

ǫuv

↔ L × L ,

(ǫir)
0 × 1

ǫuv

↔ 1 × L . (2.57)

Note that the transition of the divergent π2 terms depends on

the d-dependent prefactors that have been factored out in the

fdh result, similar to the double-virtual contributions.

Regarding the finite terms it is clear that a transition

between (‘naive’) fdh and fdr can not exist. The reason

is that for the considered processes the NF part of the real-

virtual contribution in fdr is obtained via multiplying (2.32)

and (2.38) by a pure UV divergence. As a consequence,

(2.55) and (2.56) only contain pure divergences (which are

parametrized as powers of L) and no finite terms. Therefore,

the NF part of the real-virtual contribution alone does not

contain a finite part which is different from any dimensional

scheme.

NNLO, double-real

In the previous section we have seen that a transition rule

for real-virtual contributions between fdh and fdr does not

exist. As the physical result has to be scheme independent,

this is also the case for the double-real contributions. Given

the fact that a transition rule exists for the double-virtual part,

however, it is clear that (2.48) can also be used to translate

the sum of the real-virtual and double-real components from

fdh to fdr. This is due to the fact that the divergences are the

same (apart from their sign) and that the finite term is given

by the difference between the physical result and the finite

part of the double-virtual contribution. We have checked this

explicitly and find indeed

φ2(ǫ)

[
Ŵ

(rv)

fdh
(NF ) + Ŵ

(rr)

fdh
(NF )

]
= Ŵ

(rv)

fdr
(NF ) + Ŵ

(rr)

fdr
(NF ),

(2.58)

φ2(ǫ)

[
σ

(rv)

fdh
(NF ) + σ

(rr)

fdh
(NF )

]
= σ

(rv)

fdr
(NF ) + σ

(rr)

fdr
(NF ).

(2.59)

Unitarity restoration in FDH and FDR

As we have commented many times, fdh and fdr use dif-

ferent strategies to restore unitarity. In this paragraph, we

report on an attempt towards a comparison of the two unitar-

ity restoration methods.

Our starting point is ‘naive’ fdh in which no distinction

is made between gauge and evanescent couplings, and we try

to extract from fdr the contribution of the fdh evanescent

ae terms. This is achieved by interpreting the fdr ‘extra-

integrals’ as UV-divergent dimensionally regulated integrals

subtracted at the integrand level, as explained in Section 6

of [24].6 By dropping the subtraction term, one obtains the

so called ‘extra-extra-integrals of type b’ (E E Ib).7 These

integrals contain now 1/ǫ poles of UV origin suitable to be

combined with the ‘naive’ fdh expressions. For the regarded

processes, their contribution corresponds to the evanescent ae

terms in (2.6) and (2.16), respectively, times the difference of

the renormalisation constants δZ =(Zαe −Zαs ), whose value

in the ms-scheme is given in (2.2),

Ŵ
(vv)
E E Ib

= Ŵ(0) × δZ × CF nǫ

[2

ǫ
+ 4

]
, (2.60a)

σ
(vv)
E E Ib

= σ (0) × δZ × CF nǫ

[1

ǫ
+ 1

]
. (2.60b)

More precisely, (2.6) and (2.16) are reproduced if the con-

tribution of (2.60) is added to the ‘naive’ FDH results. Note

that, since δZ =O(ǫ−1) and nǫ =2ǫ, the E E Ib are of O(ǫ−1)

and that (2.60) refers to the full contributions, not only the

NF parts. Finally, it should be mentioned that the contribu-

tions in (2.60) have been extracted from off-shell diagrams,

while the unitarity restoring fdr procedure to be used on-

shell is slightly different [25], although differing at most by

finite terms. We leave a deeper study of this for future work.

6 Although it is not studied in this manuscript, it would be very inter-

esting to establish a comparison between the fdr ‘extra-integrals’ and

the integrals one obtains after applying the local UV renormalisation

summarised in Sect. 3.3.

7 The E E Ib do not belong to the FDR calculation procedure. They are

introduced only for the sake of comparison with fdh.
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2.4 Discussion

We have presented new results for H → bb̄ in dred and

fdh, and have compared, up to NNLO, the fdh and fdr

calculations of the NF part of H →bb̄ and γ →qq̄ .

The situation at NLO is very satisfactory. There is a uni-

versal transition rule for each individual part between fdr

and fdh. In principle, this allows one to perform the virtual

computation in one scheme, the real in another, and consis-

tently combine them to obtain the correct physical result.

At NNLO, we have identified the prefactor which trans-

forms from fdh to fdr the double-virtual and the sum of

real-virtual and double-real components, i.e. (2.48)–(2.50).

However, the real-virtual and double-real contributions trans-

form differently, so that only their sum can be translated from

one scheme to the other. Here we have focused on the trans-

formation properties of the contribution proportional to NF ,

but it is conceivable that an analogous treatment also exist

for the CF and CA parts. At the moment, this cannot be con-

firmed due to the lack of the fdr NNLO calculations of the

CF and CA components.

Finally, we have started a preliminary comparison between

the unitarity restoration mechanisms of fdh and fdr.

Many open questions remain that could be interesting sub-

ject for further investigation.

3 FDU: four-dimensional unsubtraction

Even if subtraction methods have been widely used for the

computation of higher-order corrections in perturbative QFT,

their applicability to multi-particle multi-loop processes is

being challenged by the intrinsic computational complexity.

One of the main limitations is related to the treatment of the

non-local cancellation of IR/UV singularities which forces

the introduction of counterterms in the real and virtual com-

ponents. Besides, the non-local issue is enhanced by the fact

that most of the computations require some kind of additional

regularisation, such as dreg.

With the aim of by-passing these difficulties, the four-

dimensional unsubtraction (fdu) [42–46] approach consti-

tutes a radically-new alternative to the traditional subtrac-

tion technique. It is based on the loop-tree duality (ltd) the-

orem [47–50], which establishes a connection among loop

and dual integrals. The main advantage of the dual repre-

sentation is that integrals are defined in the Euclidean space,

closely related to the usual real-emission phase-space. In this

way, the method provides a natural way to implement an

integrand-level combination of real and virtual contributions,

thus leading to a fully local cancellation of IR singularities.

Besides that, the ltd theorem leads to dual representations

of local UV counterterms [51–53], which allows to repro-

duce the proper results in standard renormalisation schemes

by performing a purely four-dimensional numerical compu-

tation.

In the following, we describe general properties of the

ltd theorem, focusing on the innovative multi-loop dual rep-

resentation [54–57].8 Then, we discuss on the structure of

the kinematical mappings that allow to combine the real and

virtual corrections in a single integral. Also, general com-

ments about the local renormalisation procedure are pre-

sented, making emphasis mainly on the two-loop extension

of the formalism. Finally, we depict the application of the

fdu framework to obtain the NNLO QED corrections to the

N f terms associated to γ ∗ →qq̄(g).

We would like to highlight that the fdu/ltd frame-

work has been extended and improved since the last Work-

Stop/ThinkStart meeting in 2016 [16]. Therefore, we briefly

review the new features and properties that have been recently

improved.

3.1 Dual representations from the LTD theorem

The ltd theorem is based on a clever application of Cauchy’s

residue theorem (CRT) to the loop integrals. The original ver-

sion was developed in Refs. [47,49], where CRT was used to

integrate out the energy component of each loop momenta.

This procedure reduces loop amplitudes to collections of

tree-level-like diagrams with a modification of the customary

Feynman prescription. Thus, given a loop line associated to

the momentum qi , we should use the rule

G F (qi ) = 1

q2
i − m2

i + ı0
→ G D(qi ; q j )

= 1

q2
i − m2

i + ı η · (q j − qi )
, (3.1)

to replace the Feynman propagators when the momentum

q j is set on-shell. In this expression, η is a future-like vector

that defines the explicit dependence of the prescription on the

momentum flow, and the integration contours are closed on

the lower half-plane such that only those poles with negative

imaginary components are selected. It is important to notice

that this dual representation is equivalent to the usual Feyn-

man tree theorem (ftt) [63,64], and the multiple cut informa-

tion is encoded within the momentum-dependent dual pre-

scription.

Recently, a new representation of dual integrals was

achieved through the iterated calculation of residues, leading

to what we call nested residues [54–57]. This strategy turns

out to be more efficient computationally, since it allows a

straightforward algorithmic implementation. Hence, in order

to elucidate how ltd formalism works, let us consider an L-

loop scattering amplitude with N external legs, {p j }N and n

8 Alternative representations have been presented by other authors [58–

62].
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internal lines, in the Feynman representation,

A
(L)
N (1, . . . , n) =

∫

ℓ1,...,ℓL

A
(L)
F (1, . . . , n)

=
∫

ℓ1,...,ℓL

N ({ℓs}L , {p j }N ) G F (1, . . . , n). (3.2)

This amplitude is naturally defined over the Minkowski space

of the L loop momenta, {ℓs}L . The singular structure is asso-

ciated to the denominators introduced by the Feynman prop-

agators,

G F (1, . . . , n) =
∏

i∈1∪...∪n

(G F (qi ))
ai , (3.3)

with

G F (qi ) = 1

q2
i − m2

i + ı0

= 1(
qi,0 − q

(+)
i,0

) (
qi,0 + q

(+)
i,0

) , (3.4)

where the qi , mi and +ı0 correspond to the loop momen-

tum, its mass, and the infinitesimal Feynman prescription.

Furthermore, we explicitly pull out the dependence on the

energy component of the loop momentum qi,0 together with

its on-shell energy,

q
(+)
i,0 =

√
q2

i + m2
i − ı0, (3.5)

that is expressed in terms of the spatial components of the

loop momentum.

Besides, ai and {1, . . . , n} in Eq. (3.2) correspond to the

arbitrary positive integers, raising the powers of the prop-

agators, and sets containing internal momenta of the form

qi j
= k j + ℓi ∈ i , respectively. In the following, the a j

exponents will not be included in the notation because the

treatment of the expressions is independent of their explicit

values.

As in the previous ltd representation, the dual contribu-

tions are obtained by integrating out one degree of freedom

per loop through the Cauchy residue theorem. Iterating this

procedure, we can write [54],

A
(L)
D (1, . . . , r; r + 1, . . . , n)

= −2π ı
∑

ir ∈r

Res(A
(L)
D (1, . . . , r − 1; r, . . . , n),

Im(η · qir ) < 0), (3.6)

starting from

A
(L)
D (1; 2, . . . , n)

= −2π ı
∑

i1∈1

Res(A
(L)
F (1, . . . , n), Im(η · qi1) < 0).

(3.7)

All the sets in Eq. (3.6) before the semicolon contain one

propagator that has been set on shell, while all the prop-

agators belonging the sets that appear after the semicolon

remain off shell. The sum over all possible on-shell config-

urations is implicit. Regarding the prescription, the contour

choice is the same used in the original ltd formulation. It is

worth mentioning that the ltd representation is independent

of the coordinate system, and that there are some non-trivial

cancellations when iterating the residue loop-by-loop. The

last result implies that only those poles whose loci is always

on the lower complex half-plane will lead to non-vanishing

contributions; the others, called displaced poles will cancel at

each iterative step [57]. Moreover, these contributions can be

mapped onto the usual cut diagrams, thus allowing a graph-

ical interpretation.

Finally, we would like to emphasise that the ltd repre-

sentation corresponds to tree-level like objects integrated in

the Euclidean space. In this way, the application of this novel

representation of multi-loop scattering amplitudes allows to

open loops into trees, aiming at finding a natural connection

with the structures exhibited in the real emission contribu-

tions.

3.2 Local cancellation of IR singularities through

kinematic mappings

Once the ltd theorem is applied to any multi-loop multi-leg

scattering amplitude, we obtain a representation involving

tree-level like objects and phase-space integrals. This leads

to an important conceptual simplification to understand the

origin of IR and threshold singularities, at integrand level.

By analysing the intersection of the integration hyperboloids

associated to the dual contributions for different cuts [65–67],

it is possible to detect those internal states that are simultane-

ously set on shell and lead to singular propagators. Moreover,

it turns out that the intersection of positive (forward) and neg-

ative (backward) hyperboloids is responsible of the physical

IR singularities of multi-loop amplitudes, and it is localised

within a compact region of the integration domain [42–44].

A recent re-interpretation and extension of this analysis [68]

was found useful to identify the origin of causal and anoma-

lous thresholds, whose contributions are integrable but still

introduce numerical instabilities.

The knowledge of the IR and threshold singular structure

of multi-loop scattering amplitudes is important for com-

puting higher-order corrections to physical IR-safe observ-

ables. Due to the Kinoshita–Lee–Nauenberg (KLN) theo-

rem [69,70], summing over all the degenerated states con-

tributing to a certain observable lead to a finite result. Thus,
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from the theoretical perspective, adding real-emission pro-

cesses to the multi-loop amplitudes will produce a cross-

cancellation of IR singularities present in the different terms.

Within dreg, the divergent contributions manifest as ǫ-poles

after performing the d-dimensional integrals, which forces to

use semi-numerical methods and reduces the efficiency of the

cancellations. On the contrary, the fdu approach aims at an

early-stage cancellation, before the integration, by putting

together the real and dualised virtual contributions through

proper momenta mappings.

The fdu formalism has been successfully proven to deal

with NLO corrections to physical observables, such as cross

sections and decay rates [42–44,71]. This involved the com-

bination of one-loop scattering amplitudes with tree-level

extra-radiation processes (i.e. processes with one additional

particle), through the application of suitable momenta map-

ping which are very similar to the ones applied in the Catani–

Seymour (CS) [72,73] or Frixione–Kunszt–Signer (FKS)

[74] algorithms. These mappings relate the on-shell states

in the virtual corrections with the momenta of the additional

particles.

For the sake of simplicity, let us consider a process involv-

ing only final-state radiation (FSR) singularities, such as an

n-particle decay. The LO contribution is given by,

σ (0) =
∫

dPS1→n|M(0)
n |2 S0({pi }), (3.8)

with |M(0)
n |2 the Born squared amplitude and S0 the IR-safe

measure function that defines the physical observable. On the

one hand, the virtual one-loop contribution is

σ
(1)
V =

∫
dPS1→n

∫

ℓ

2Re(M(1)
n M

(0),∗
n )S0({pi }), (3.9)

where Re(M
(1)
n M

(0),∗
n ) corresponds to the interference

between the one-loop and the Born amplitude, including also

factors that might be related to self-energy contributions. On

the other hand, we need to take into account the real-emission

contribution,

σ
(1)
R =

∫
dPS1→n+1 |M(0)

n+1|2 S1({p′
i }), (3.10)

which is characterised by the presence of an additional exter-

nal particle. Notice that the measure function, S1({p′
i }), is

extended to include the extra radiation and it must fulfil the

reduction property S1 → S0 in the IR limits. Moreover, the

corresponding IR singularities can be disentangled and iso-

lated into disjoint regions of the real-emission phase-space.

Following a slicing strategy, we introduce a partition Ri and

define

σ
(1)
R,i =

∫
dPS1→n+1 dσ

(1)
R Ri , (3.11)

that fulfils
∑

i σ
(1)
R,i = σ

(1)
R and that only one IR divergent

configuration is allowed inside different Ri .

Regarding the virtual contribution, the application of

ltd to Eq. (3.9) will produce a sum of cuts leading to dual

contributions, namely

σ
(1)
D =

∫
dPS1→n

N∑

i=1

∫


ℓ
Ii (qi )S0({pi })

≡
∫

dPS1→n

N∑

i=1

σ
(1)
D,i , (3.12)

with N the number of different internal lines. Each line is

characterised by a momenta qi , which is set on shell in

the different dual terms. The presence of this extra on-shell

momenta allows to establish a connection with the real emis-

sion contributions, through a proper momentum mapping.

Explicitly, for the NLO case, we have a bijective transforma-

tion,

Ti ({p1, . . . pn, qi }) → {p′
1, . . . p′

n+1} (3.13)

restricted to some partition Ri . At this point, the dual con-

tributions can be understood as local counterterms for the

real corrections, whilst the development of the transforma-

tions Ti is guided by the structure of the partition Ri . This

partition is based on the FKS or CS strategy, i.e. splitting

the phase-space into disjoint regions containing at most one

infrared singularity. Then, through a proper study of the cut

structure, a connection among dual integrals and partitions is

established, in such a way that a mapping Ti exists and leads

to local cancellations of IR singularities.

3.3 Multi-loop local UV renormalisation

The successful identification and cancellation of IR singu-

larities lead to cross sections with only UV singularities.

The standard procedure to remove those divergences requires

renormalisation of the field wave-functions and couplings,

this is what we aim to reach through the construction of local

UV counterterms. Since all these elements have to cast only

UV divergences in the ltd framework, it is important to

study carefully the analytic properties of the UV integrands

that will be added to the real radiation. At one-loop, it has

been considered the regime of massless and massive parti-

cles propagating in the loop [42–44]. The transition between

massless and massive renormalisation constants has found

to be smooth and singularities are well understood in this

framework. Let us point out a crucial difference between the

standard renormalisation constant in dreg and ltd.

Wave-function renormalisation constants emerge from the

computation of self-energy diagrams. In particular, massless

bubble diagrams in dreg do not present any problem since

the IR and UV divergences are considered as equal, there-
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fore, the full integral vanishes. On the contrary, the same inte-

gral in the fdu/ltd framework will contribute to the IR and

UV regions because they are treated separately, therefore, the

integral cannot be removed even if the full integral is actually

zero. We stress that integrands in the fdu/ltd are split into

the IR and UV domains, and they have to be keep in this way

in order to render the full integrands free of singularities in

the fdu formalism.

Let us review the basic ideas of one-loop renormalisa-

tion constant; these ideas are implemented and improved for

the two-loop case and beyond. The massive wave-function

renormalisation constant, in the Feynman gauge, at one-loop

can be obtained from,

�Z2(p1)

= −g2
s CF

∫

ℓ

G F (q1) G F (q3)

[
(d − 2)

q1 · p2

p1 · p2

+ 4 M2

(
1 − q1 · p2

p1 · p2

)
G F (q3)

]
, (3.14)

which represent the unintegrated form. This integral is

obtained by the standard Feynman rules procedure. It is

important to remark that the limit of massless case is straight-

forward achieved from Eq. (3.14), so this expression is the

most general of �Z2(p1; M). Since �Z2(p1; M) contains

singularities associated to the UV domain, it is important to

find the UV component of the Eq. (3.14), �ZUV
2 , and sub-

tract it in order to find the UV-free wave-function renormali-

sation constant, �Z IR
2 . The UV part is extracted by perform-

ing an expansion of the integrand around the UV propagator

G F (qUV) = (q2
UV−μ2

UV+ı0)−1. In particular, for Eq. (3.14),

it is found

�ZUV
2 (p1) = (2 − d) g2

s CF

×
∫

ℓ

[
G F (qUV)

]2
(

1 + qUV · p2

p1 · p2

)

×
[
1−G F (qUV)(2 qUV · p1 + μ2

UV)

]
. (3.15)

Finally, �Z IR
2 is given by,

�Z IR
2 = �Z2 − �ZUV

2 , (3.16)

which contains only IR singularities and they are needed to

cancel the remaining singularities at the cross section level.

We focus now on subtraction of UV singularities for two-

loop amplitudes. In general, for the two-loop case, the inte-

grand involved is cumbersome, therefore, we will use this

document to emphasise the procedure to renormalise locally

the UV behaviour of any two-loop amplitude. The procedure

is valid if the integrand is free of infrared singularities. In

this sense, it is mandatory to subtract first all IR divergences

and then apply the following algorithm. This algorithm has

been extensively discussed in [51–53], with applications of

one- and two-loop scattering amplitudes.

Let us now consider a generic two-loop scattering ampli-

tude free of IR singularities,

A
(2) =

∫

ℓ1

∫

ℓ2

I(ℓ1, ℓ2), (3.17)

where the integrand is a function of the integration variables

ℓ1 and ℓ2. UV divergences shall appear when the limit of

|
ℓ1| and |
ℓ2| go to infinity. In the two-loop case, there are

three UV limits to be considered. The limit when |
ℓ1| goes

to infinity and |
ℓ2| remains fixed, the other way around, and

when |
ℓ1| and |
ℓ2| go to infinity simultaneously. Based on

the ideas developed at one-loop, the UV divergences can be

extracted from the integrand by making the replacement,9

S j,UV : {ℓ2
j |ℓ j · ki } → {λ2q2

j,UV

+ (1 − λ2)μ2
UV|λ q j,UV · ki }, (3.18)

for a given loop momentum ℓ j and expanding the expression

up to logarithmic order around the UV propagator. This con-

struction is represented by the Lλ operator. It is worth men-

tioning that the result shall generate a finite part after integra-

tion that has to be fixed to reproduce the correct value of the

integral. Therefore, the first counterterms will be obtained by

A
(2)
j,UV = Lλ

(
A

(2)
∣∣∣
S j,UV

)

− d j,UV μ2
UV

∫

ℓ j

(G F (q j,UV))3, (3.19)

where d j,UV is the fixing parameter which makes the finite

part of integral to be zero in the MS scheme.

Now, after the complete subtraction of these counterterms,

the remaining divergences shall occur when both |
ℓ1| and |
ℓ1|
approach to infinity simultaneously. In this case, the follow-

ing replacement is implemented,

SUV2 : {ℓ2
j |ℓ j · ℓk |ℓ j · ki }

→ {λ2q2
j,UV + (1 − λ2)μ2

UV|λ2q j,UV · qk,UV

+ (1 − λ2) μ2
UV/2|λ q j,UV · ki } (3.20)

on the subtracted integrand. Then, the application of the Lλ

operation has to be made and the fixing parameter is again

needed in order to build properly the counterterm, A
(2)

UV2 .

9 An interesting though not explored strategy is interplaying the Laurent

expansion in the UV region with the rewriting of Feynman propagators,

discussed in Sect. 4. This treatment of the UV might elucidate, for

instance, the way how |
ℓ1| and |
ℓ2| will behave in the UV limits.
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Fig. 4 Tree, one- and NF two-loop Feynman diagrams for γ ∗ → qq̄

Explicitly,

A
(2)

UV2 = Lλ

⎛
⎝
⎛
⎝A

(2) −
∑

j=1,2

A
(2)
j,UV

⎞
⎠

∣∣∣∣
SUV∈

⎞
⎠

− dUV2 μ4
UV

∫

ℓ1

∫

ℓ2

(G F (q1,UV))3(G F (q12,UV))3,

(3.21)

where dUV2 is the fixing parameter of the double limit.

Finally, the original amplitude can be renormalised by the

subtraction of all UV counterterms, such that10

A
(2)
R = A

(2) − A
(2)
1,UV − A

(2)
2,UV − A

(2)

UV2 , (3.22)

is free of IR and UV singularities.

Before closing this discussion, let us deepen into the multi-

loop case. In this scenario, multiple ultraviolet poles will

appear, since all loops have the possibility to tend to infin-

ity at different speed. However, if the amplitude is free of

IR singularities, the algorithm presented along this section is

still valid. For an L-loop integral, there are 2L − 1 UV coun-

terterms at most with the same number of fixing parameters.

Therefore, after the proper knowledge of all UV countert-

erms, the renormalisation of the original L-loop amplitude

is achieved and the four-dimensional representation of the

integrand can be obtained.

3.4 γ ∗ → qq̄ at NNLO

Let us first consider the kinematics of decay of γ ∗ → qq̄ , in

which, to keep a simple structure at integrand level, we work

with massless particles in the loop. We remark that this choice

does not generate difficulties in the evaluation of integrals,

within the ltd framework. The latter pattern is because of the

way how integrands are expressed, which are inherit of the

masses. Equivalently, their dependence is stored in the fixed

energy components, q
(+)
i,0 . Hence, here and in the following

processes, k = p1 + p2 + · · · + pn , with p2
i = 0, k2 = s

and n ≤ 4. With this notation in mind, the squared tree-level

10 We remark that (3.22), differently from the approach of Sect. 2.1.1

is locally carried out. Namely, all singularities, IR and UV, are canceled

out at integrand level. This allows for an evaluation of the integrals in

four space-time dimensions as carried out in [52,53].

amplitude can be cast as,

ω0 =
∣∣∣A(0)

qq̄

∣∣∣
2

=
〈
A

(0)
qq̄

∣∣∣A(0)
qq̄

〉
= 2

3
e2 Q2

q Nc (d − 2) s, (3.23)

with Qq = 1
3
,− 2

3
and Nc the electric charge and the colour

number of the quarks, respectively.

3.4.1 Virtual contributions

The contribution at one-loop, after only performing Dirac

algebra and expressing scalar product in terms of denomina-

tors, becomes,

〈
A

(0)
qq̄

∣∣∣A(1)
qq̄

〉

= ı CF g2
s ω0

[
2s I

(1)
111 − (d − 8)I

(1)
101 + 2

s
I
(1)
1−11

+ 2

s

(
I
(1)
010 − I

(1)
100 − I

(1)
001

)
− 2

(
I
(1)
110 + I

(1)
011

) ]
, (3.24)

with,

I (1)
α1α2α3

=
∫

ℓ1

3∏

i=1

G F

(
q

αi

i

)
,

q1 = ℓ1, q2 = ℓ1 − p1, q3 = ℓ1 − p12. (3.25)

As mentioned in the former sections, we would like to empha-

sise that within ltd and, therefore, fdu, scaleless integrals

are not set directly to zero as conventionally carried out in

dreg. The main reason to do this is to achieve a complete

cancellation of singularities at integrand level by keeping as

much as possible control on the local structure of the inte-

grands. Thus, if we were in dreg, one finds that the second

line in Eq. (3.24) vanishes and,

I
(1)
1−11 = − s

2
I101. (3.26)

These relations amount to

〈
A

(0)
qq̄

∣∣∣A(1)
qq̄

〉
= ı CF g2

s ω0

[
2s I

(1)
111 − (d − 7)I

(1)
101

]
, (3.27)

where it is straightforward to identify the IR and UV singu-

larities, which come from I
(1)
111 and I

(1)
101, respectively. This

is indeed what is traditionally carried out by means of the

tensor reduction.

In ltd, we keep scaleless integrals to perform a local UV

renormalisation as well as IR subtraction from real correc-

tions, following the lines of the fdu scheme. Thus, applying

ltd to Eq. (3.24),

〈
A

(0)
qq̄

∣∣∣A(1)
qq̄

〉
= ı CF g2

Sω0

∫

ℓ1

[
− Id

101

2s

(
−4

(
q

(+)
1,0

)2
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+4
(

q
(+)
2,0

)2
+ (2d − 15)s

)

+ 2

s

(
I

d
010 − I

d
100

)
+ 2sId

111 − 4I
d
110

]
, (3.28)

with

I
d
100 = 1

2q
(+)
1,0

, I
d
010 = 1

2q
(+)
2,0

, (3.29a)

I
d
101 = − 1

4
(

q
(+)
1,0

)2

(
1

λ+
3

+ 1

λ−
3

)
, (3.29b)

I
d
110 = − 1

4q
(+)
1,0 q

(+)
2,0

(
1

λ+
1

+ 1

λ−
1

)
, (3.29c)

I
d
111 = 1

4
(

q
(+)
1,0

)2
q

(+)
2,0

(
1

λ+
1 λ−

1

+ 1

λ+
1 λ−

2

+ 1

λ−
1 λ+

2

)
,

(3.29d)

where,

λ±
1 = q

(+)
1,0 + q

(+)
2,0 ±

√
s

2
, λ±

2 = 2q
(+)
1,0 ∓ √

s, (3.29e)

We remark that the integrands of Eq. (3.28) are computed,

without the loss of generality, in the center-of-mass frame,

allowing us to have q
(+)
3,0 = q

(+)
1,0 . Additionally, the inte-

grands (3.29) are expressed in the multi-loop ltd represen-

tation, displaying structure depending only on physical sin-

gularities. A noteworthy comment on the structure of (3.29)

is in order. The structure of these integrands can easily be

related to one-, two- and three-point functions, which have

been explicitly computed, independently on the number of

loops, in [55]. Although there a simple recipe for the cal-

culation of dual integrals through ltd, it as possible to

profit of the explicit causal structure of multi-loop topolo-

gies. This is indeed what is carried out in the two- and

three-point integrands, where their structure correspond to

the Maximal-Loop and Next-to-Maximal-Loop topologies,

respectively. A detailed discussion of the structure and the

features of these topologies is presented in [55,57,68]. Inter-

estingly from Eq. (3.29), the treatment of physical thresholds

is straightforward because of the structure the latter hold. In

this configuration, in fact, it is possible to obtained up to

two “entangled causal” thresholds that are observed from

the structure of λ±
i .

Hence, by following the idea presented in the one-loop

case, we generate the two-loop contribution, in which we

elaborate, for the sake of simplicity, on the two-loop integral,

I (2)
α1···α7

=
∫

ℓ1,ℓ2

7∏

i=1

G F

(
q

αi

i

)
, (3.30)

Fig. 5 Tree level Feynman diagrams for γ ∗ → qq̄g and γ ∗ → qq̄q ′q̄ ′

with

q1 = ℓ1, q5 = ℓ1 − p12,

q2 = ℓ2, q6 = ℓ2 − p12,

q3 = ℓ1 − p1, q7 = ℓ2 − p1.

q4 = ℓ1 + ℓ2 − p1, (3.31)

Let us remark that the integrand obtained from the Feynman

diagram depicted in Fig. 4c one only has five propagators,

the additional ones, q6 and q7, are needed to express all scalar

products in terms of denominators. This is done to simplify

the structure of the integrand, but it is not mandatory and this

step can be avoided. In fact, the explicit dependence on the

energy component of the loop momenta can always pull out.

Hence, with the above considerations, the two-loop con-

tribution turns out to be,

〈
A

(0)
qq̄

∣∣∣A(2)
qq̄

〉
= CF NF g4

Sω0

[
some two-loop integrals

]
.

(3.32)

These two-loop integrals can be further reduced by means of

the integration-by-parts identities (IBPs). Moreover, in order

not to alter the local structure of the integrands, we do not

make use of the zero sector symmetries and loop momentum

redefinition. This is done to carefully combine and thus match

virtual with real corrections.

3.4.2 Real contributions

In this section, we list the tree-level amplitudes that are

needed to perform a cancellation of the IR singularities,

γ ∗ → qq̄g and γ ∗ → qq̄q ′q̄ ′.
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γ ∗
→ qq̄ g

〈
A

(0)
qq̄g

∣∣∣A(0)
qq̄g

〉
=

2(d − 2)e2 NcCF Q2
f g2

S

s12s23

×
(
(d − 2) (s12 + s23)

2 + 4 (s13s123 − s23s12)

)
, (3.33)

with s123 = s12 + s23 + s13.

γ ∗
→ qq̄q′ q̄′

〈
A

(0)

qq̄q ′q̄ ′

∣∣∣A(0)

qq̄q ′q̄ ′

〉
=

4e2 NcCF Q2
f g4

S

s2
23s2

123s2
234

[
4(d − 2)Q2s23s123s234

− s1234

(
(d − 2)s2

123

(
(d − 2)s2

23

+4s34s23 + 4 (s34 − s234)
2
)
+ 2s234s123

+ (s23 (((d − 10)d + 20)s23 + 2(d − 2)s34)

+2(d − 2)s12 (s23 + 2s34 − 2s234))

+ (d − 2)s2
234

(
(d − 2)s2

23 + 4s2
12 + 4s23s12

) )

+ s23s123s234

(
4(d − 2)s2

12

+ 4s12 (−(d − 2)s123 + (d − 4) (s234 − 2s34) + 2s23)

+ 4(d − 2)s2
34 + (d − 2)2s2

123

+ 4s34 (2s23 − (d − 2)s234)

+ (d − 2)
(
(d − 2)s2

234 +4s2
23 − 4s234s23

)

+ 2s123 ((d − 4) ((d − 4)s234 + 2s34)

−2(d − 2)s23)

)]
. (3.34)

In this equation, we have not performed any additional col-

lection of terms.

It is remarkable the simplicity of the full squared ampli-

tudes displayed in (3.33) and (3.34). However, to keep track

of the divergencies, within the ltd/fdu framework, one

can consider individual Feynman diagrams and perform the

match between real and virtual corrections. In fact, by keep-

ing the ordering of the diagrams depicted in Fig. 5, one

notices that, when squaring the amplitude, the interference

terms account for contributions coming from the virtual dia-

grams. While the remaining diagrams account for the wave

function corrections.

3.4.3 Mappings

As stated in the former sections, one of the distinctive fea-

tures of the fdu approach is the real-virtual integrand-level

combination through kinematical mappings. At NNLO, these

mappings should relate the one- and two-loop amplitudes

with the double-real emission terms. A similar strategy to the

phase-space slicing method must be applied, but now there

will be more singular regions, which might also overlap. In

this way, a generic NNLO mapping could be a complicated

transformation with highly non-trivial dependencies.

However, when computing the NNLO QCD corrections

proportional to N f for the process γ ∗ → qq̄ , a huge simpli-

fication takes place: only the double-virtual (i.e. two-loop)

and the double-real emission contributes. Thus, we will need

a transformation to generate a 1 → 4 physical configuration

starting from double-cuts, which are described by a physical

1 → 2 process plus two additional on-shell momenta (i.e. the

cut lines, qi and q j ). A preliminar proposal for such mapping

is the following,

p′
k = qi , p′

l = q j , p′
1 = p1 + αi qi + α j q j ,

p′
1 = p1 + (1 − αi )qi + (1 − α j )q j , (3.35)

where momentum conservation is automatically fulfilled and

the coefficients αi and α j must be adjusted to verify that

(p′
1)

2 = p2
1 and (p′

2)
2 = p2

2 . We can appreciate that the cut

lines behave as real final state radiation, and we expect this

transformation to link the IR singularities present in both con-

tributions to achieve a fully local cancellation in four space-

time dimensions.11

3.5 Discussion

The ultimate goal of the ltd/fdu framework consists in

achieving a fully local regularisation of both IR and UV sin-

gularities, thus leading to a four-dimensional representation

of physical observables. The key observations are:

• IR singularities cancel among virtual and real contribu-

tions, which is supported by the well-known KLN theo-

rem;

• and IR singularities inside the dualised virtual terms

can be isolated into a compact region of the integration

domain.

In this way, the singular regions in both contributions can be

mapped to the same points, leading to a complete cancellation

and skipping the need of introducing additional regularisa-

tion techniques (such as dreg). Alternatively, we can think

that real emission is being used as an IR local counterterm

for the dual contributions. Of course, renormalisation coun-

terterms must be introduced, as well as potential initial-state

radiation (ISR) subtraction terms.

Since the first proof-of-concept of the fdu framework, we

have developed several new strategies to tackle the problem

of obtaining integrable representations of IR-safe observ-

ables in four space-time dimensions. In particular, during last

11 More details will be provided in a forthcoming article, in which we

will carefully explain how to define the mappings in a more general

case.
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year, we have progressed a lot in understanding the location

of IR and threshold singularities in the virtual amplitudes, as

well as elucidating a novel dual representation through the

application of nested residues. The path looks very promising

to address some of the current limitations of our approach,

namely a fully automated multi-loop local renormalisation

and the cancellation of ISR singularities in a universal way.

Other strategies, such as qT -subtraction/resummation have

shown to be perfectly adapted to attack these problems,

although they still lack of locality. Thus, we believe that a

conceptual combination of other methodologies might shed

light to solve the current limitations to extend the ltd/fdu

framework.

4 IREG: implicit regularisation

Envisaging beyond NLO calculations, let us generalise the

procedure discussed in [16] within the non-dimensional ireg

framework. We summarise the rules applicable to a general

n-loop Feynman amplitude A
(L)
N with N external legs. Let

kl be the internal (loop) momenta (l = 1, . . . , L) and pi be

the external momenta. After performing the usual Diracology

and spacetime algebra in the physical dimension and internal

symmetry contractions, the UV content of A
(L)
N can be cast

in terms of well-defined basic divergent integrals (BDI’s),

which are independent on the physical momenta. In order to

define a massless renormalisation scheme, the explicit mass

dependence in the BDI’s can be removed via regularisation

independent identities which gives rise to a renormalisation

scale. It was shown in [75] that BDI, as defined in ireg,

comply with the Bogoliubov–Parasiuk–Hepp–Zimmerman

(BPHZ) program [1,76–79], which is a consistent renormal-

isation program applicable to arbitrary loop order in pertur-

bation theory. Based on the topology of a Feynman graph, the

subtraction of UV divergences is organised by the Zimmer-

mann’s forest formula in a regularisation independent way.

The forest formula can be cast into a counterterm language by

means of Bogoliubov’s recursion formula, respecting local-

ity, Lorentz invariance, unitarity and causality. Thus, in ireg,

after subtracting, using the counterterms of lower (n − 1)th ,

the nth-order counterterms can themselves be cast as BDI,

without explicit evaluation.

Clearly care must be exercised as the symmetry content of

the underlying model increases because finite regularisation

dependent terms can lead to spurious symmetry breakings. In

order to evaluate finite Green’s functions in a symmetry pre-

serving fashion, the BPHZ program allied to quantum action

principles can be used for an all-order proof of renormalis-

ability of gauge field theories. By adopting a gauge invari-

ant scheme a general proof can be constructed in a minimal

subtraction scheme and then generalised to arbitrary gauge

invariant schemes [80,81]. A proof for all order abelian gauge

invariance of ireg can be found in [82].

4.1 IREG procedure

The steps that accomplish the above mentioned issues are as

follow.

1. Perform the internal symmetry group and the usual Dirac

algebra in the physical dimension avoiding symmetric

integration in divergent amplitudes as such an operation

is ambiguous [83]. The anticommutation {γ5, γμ} = 0

inside divergent amplitudes must not be used even in the

physical dimension as they lead to spurious terms as well

[22,84,85].

2. Starting at one loop remove external momenta depen-

dence from the divergent part of the amplitude by apply-

ing the identity12

1

(kl − pi )2 − μ2

=
n

(kl )

i −1∑

j=0

(−1) j (p2
i − 2pi · kl)

j

(k2
l − μ2) j+1

+ (−1)n
(kl )

i (p2
i − 2pi · kl)

n
(kl )

i

(k2
l − μ2)n

(kl )

i

[
(kl − pi )2 − μ2

] , (4.1)

in the propagators, where ni is chosen so that the internal

momentum kl of the l-th loop renders the integral power

counting ultraviolet finite. Logarithmically BDI’s appear

as13

Ilog(μ
2) ≡

∫

k

1

(k2 − μ2)2
,

I
ν1···ν2r

log (μ2) ≡
∫

k

kν1 · · · kν2r

(k2 − μ2)r+2
, (4.2)

with the definition
∫

k
=

∫
d4k

(2π)4 . The UV finite part in

the limit where μ approaches zero from above μ → 0

has logarithmical dependence in the physical momenta

which is the characteristic behaviour of the finite part of

massless amplitudes.

12 We would like to remark that the method of pulling out the UV

behaviour of the amplitude can be traced back to the original papers

regarding the BPHZ theorem [1,76–79], used in [86–88] and has

recently been reconsidered in [89].

13 We point out that this procedure of extracting the UV behaviour of

multi-loop scattering amplitudes, directly from the Feynman propaga-

tors, can be compared with the procedure described in Sect. 3.3. In fact,

in ireg, all propagators are rewritten without performing any Laurent

expansion in the UV region as opposed to fdu [75].
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3. BDI’s with Lorentz indices ν1 · · · ν2r may be written as

linear combinations of BDI’s without Lorentz indices

plus well defined surface terms (ST’s), e.g.

ϒ
(1)μν
0 =

∫

k

∂

∂kμ

kν

(k2 − μ2)2

= 4

[
gμν

4
Ilog(μ

2) − I
μν
log(μ2)

]
, (4.3)

ST’s vanish if and only if momentum routing invariance

(MRI) holds in the loops of Feynman diagrams. Moreover

these requirements automatically deliver gauge invari-

ant amplitudes [90–94] which has been demonstrated for

abelian gauge theories to arbitrary loop order [82,84] and

verified for non-abelian gauge models [95–97]. Rephras-

ing it, unless MRI is verified, a symmetric integration

leads to a finite definite value for the arbitrary surface

term which potentially breaks (gauge) symmetry. By per-

forming a general routing calculation it can be shown that

setting ST’s=0 cancels routing dependent terms (which

they systematically multiply), see e.g. [82]. This may

explain why dimensional regularisation, where surface

terms vanish in d dimensions, ensures MRI.14

4. An arbitrary positive (renormalisation group) mass scale

λ appears via regularisation independent identities,

Ilog(μ
2) = Ilog(λ

2) + i

(4π)2
ln

λ2

μ2
, (4.4)

which enables us to write a BDI as a function of λ2 plus

logarithmic functions of μ2/λ2. The BDI can be absorbed

in the renormalisation constants [100] and renormalisa-

tion functions can be computed using the regularisation

independent identity:

λ2 ∂ Ilog(λ
2)

∂λ2
= − i

(4π)2
. (4.5)

At two-loop order a similar program can be devised, which

allows to express the UV divergent content in terms of BDI

in one loop momentum only. As an example, consider an UV

divergent two-loop massless scalar integral

A =
∫

k1,k2

G(p1, . . . , pL , k1, k2)

× H1(p1, . . . , pL , k1)H2(p1, . . . , pL , k2). (4.6)

Following the algorithm proposed in [75], one identifies

the different regimes in which the internal momenta can go

14 By promoting the space-time dimensions from four to d and tak-

ing into account dreg, ϒ
(1)μν
0 = 0, which can be understood from

integration-by-parts identities [98,99].

to infinity (k1 → ∞, k2 fixed; k2 → ∞, k1 fixed; k1 → ∞,

k2 → ∞); for each case, uses identity (4.1) in the internal

momenta that goes to infinity regarding all other momenta

as external. This procedure allows to automatically identify

the UV-counterterms required by Bogoliubov’s recursion for-

mula in terms of BDI’s. Explicitly,

Ak1→∞ =
∫

k2

H̄2(p1, . . . , pL , k2)Ilog(λ
2),

Ak2→∞ =
∫

k1

H̄1(p1, . . . , pL , k1)Ilog(λ
2),

Ak1→∞,k2→∞ = F(p1, . . . , pL)Ilog(λ
2), (4.7)

where the function H̄1 contains terms generated by integrat-

ing in k2, and similarly to H̄2. In this example, the first two

terms are going to be canceled by 1-loop counterterms while

the last one will contribute to the 2-loop counterterm. Further

contributions to the 2-loop counterterm are also automati-

cally identified, which will be of the form

Āk1→∞ =
∫

k2

H̄2(p1, . . . , pL , k2) ln

(
−k2

1 − μ2

λ2

)
,

Āk2→∞ =
∫

k1

H̄1(p1, . . . , pL , k1) ln

(
−k2

2 − μ2

λ2

)
, (4.8)

or integrals in k1 (k2) with no dependence on the scale λ. The

above integrals give rise to BDI’s of two-loop order defined

by

I
(2)
log(μ2) ≡

∫

k

1

(k2 − μ2)2
ln

(
−k2 − μ2

λ2

)
, (4.9)

This approach can be extended to tensorial and/or arbitrary

loop order integrals, as sketched by the steps below

1. At higher loop order the divergent content can be

expressed in terms of BDI in one loop momentum after

performing n −1 integrations. The order of such integra-

tions is chosen systematically to display the counterterms

to be subtracted in compliance with the Bogoliubov’s

recursion formula [1,75–79]. The general form of the

terms of a Feynman amplitude after l integrations is

I ν1...νm =
∫

kl

Aν1...νm (kl , qi )∏
i [(kl − qi )2 − μ2] lnl−1

(
−k2

l − μ2

λ2

)
,

(4.10)

where l = 1, . . . , n and qi is an element (or combina-

tion of elements) of the set {p1, . . . , pL , kl+1, . . . , kn}.
Aν1...νm (kl , qi ) represents all possible combinations of kl

and qi compatible with the Lorentz structure.
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2. Apply relation (4.1) in (4.10) by choosing n
(kl )
i such that

all divergent integrals are free of qi . Therefore, the diver-

gent integrals are cast as a combination of

I
(l)
log(μ

2) ≡
∫

kl

1

(k2
l − μ2)2

lnl−1

(
−k2

l − μ2

λ2

)
,

(4.11)

I
(l)ν1···ν2r

log (μ2) ≡
∫

kl

k
ν1

l · · · k
ν2r

l

(k2
l − μ2)r+1

lnl−1

(
−k2

l − μ2

λ2

)
,

(4.12)

The surface terms derived from higher loop BDI’s are

obtained through the identity

ϒ
(l)ν1···ν2 j

2i ≡
∫

k

∂

∂kν1

kν2 · · · kν2 j

(k2 − μ2)1+ j−i
lnl−1

×
[

− (k2 − μ2)

λ2

]
. (4.13)

For instance,

I
(l) μν
log (μ2) =

l∑

j=1

(
1

2

) j
(l − 1)!
(l − j)!

×
{

gμν

2
I
(l− j+1)

log (μ2) − 1

2
ϒ

(l) μν
0

}
.

(4.14)

3. A renormalisation group scale is encoded in BDI’s. At

nth-loop order a relation analogous to (4.4) is obtained

via the regularisation independent identity

I
(l)
log(μ

2) = I
(l)
log(λ

2) − b

l
lnl

(
μ2

λ2

)

− b

l−1∑

j=1

(l − 1)!
(l − j)! lnl− j

(
μ2

λ2

)
, (4.15)

where λ2 �= 0, b ≡ i
(4π)2 .

4. BDI’s can be absorbed in renormalisation constants. A

minimal, mass-independent scheme amounts to absorb

only I
(l)
log(λ

2). To evaluate RG constants, BDI’s need not

Fig. 6 NF two-loop Feynman diagram for γ ∗ → bb̄

be explicitly evaluated as their derivatives with respect to

the renormalisation scale λ2 are also BDI’s. For example

[82],

λ2
∂ I

(n)
log (λ2)

∂λ2
= −(n − 1) I

(n−1)
log (λ2) − b α(n),

λ2
∂ I

(n) μν
log (λ2)

∂λ2
= −(n − 1)I

(n−1) μν
log (λ2) − gμν

2
b β(n).

(4.16)

where n ≥ 2, α(n) = (n − 1)! and β(n) may be obtained

from α(n) via relation (4.14).

4.2 Disentangling UV and IR divergences: a two-loop

example

We consider the process γ ∗ → qq̄ at two-loop level. In

order to illustrate the method, we evaluate the contribution

that contains a quark loop of flavour d and external quarks of

flavour b as depicted in Fig. 6. The amplitude can be written

as

M
μ
ab =

∫

q1,q2

CF Q e g4
s δab × ū(p2, mb)Nμ(md , mb, p2, p3, q1, q2)v(p3, mb)

((q1 + p2)2 − m2
b)(q

2
1 − μ2)2[(q1 − p3)2 − m2

b](q2
2 − m2

d)[(q2 + q1)2 − m2
d ] (4.17)

where
∫

q
=

∫
d4q/(2π)4 and we have shifted the momen-

tum variables such that q1 → q ′
1 = −(q1−p2) and relabelled

q ′
1 back to q1. N in the numerator stands for

Nμ = 4m2
d [−2/q1(p2 − p3 + q1)

μ

+γ μ(−2p2 · p3 + 2p2 · q1 − 2p3 · q1 + q2
1 )

+mb(/q1γ
μ + γ μ

/q1)]
+4γ μ

/q1/q2(p2 · q1 + 2p2 · q2)

−8γ μ(p2 · q1)(p3 · q2)

−4/q2/q1γ
μ(p3 · q1 + 2p3 · q2)

123



250 Page 22 of 61 Eur. Phys. J. C (2021) 81 :250

−4γ μ(p2 · q2)(2p3 · q1 + 4p3 · q2 − q2
1 )

−2q2
1 (/q1γ

μ
/q2 + /q2γ

μ
/q1 + 2γ μ p3 · q2)

+8/q1(p2 − p3)
μq1 · q2

+8/q1q
μ
1 q1 · q2 − 8γ μ(p2 · q1)(q1 · q2)

+8γ μ(p2 · p3 + p3 · q1)(q1 · q2)

−4γ μq2
1 q1 · q2 + 8/q2

×((q1 − q2)
μq2

1 + 2q
μ
1 q1 · q2)

+8/q1q2
2 (p2 − p3)

μ

−8γ μq2
2 (p2 · q1 + p2 · p3 + p3 · q1)

−4mb(/q1γ
μ + γ μ

/q1)(q
2
2 + q1 · q2), (4.18)

Q = −1/3, (a, b) are colour indices of the external quarks,

CF is the quadratic Casimir for the fundamental representa-

tion and μ is a fictitious mass for the gluon propagator.

The integration over q2 is performed according to the ireg

rules, by first applying Eq. (4.1) to separate its divergent

content, which is expressed as an internal Ilog(λ
2), from the

finite contribution encoded as Z0(p2, m2
1, m2

2) plus possible

local terms, both multiplying the q1 integrand, as follows

M
μ
ab = −2

9
Q e CF g4

s δab × ū(p2, mb)

×
[ ∫

q1

I
μ(p2, p3, mb, md , q1, μ, λ)

︸ ︷︷ ︸
�μ

]
v(p3, mb) (4.19)

where

I
μ =

(
[q2

1 (−4p2 · p3 − 2p3 · q1 + q2
1 )

+2p2 · q1(2p3 · q1 + q2
1 )]γ μ

+4q2
1 [mbq

μ
1 − (p2 − p3 + q1)

μ
/q1]

)

×
[ −3 Ilog(λ

2) + 3 b Z0(q
2
1 , m2

d , λ2) + b

[(q1 + p2)2 − m2
b](q2

1 − μ2)2[(q1 − p3)2 − m2
b]

+ 6 b m2
d Z0(q

2
1 , m2

d , m2
d)

[(q1 + p2)2 − m2
b](q2

1 − μ2)3[(q1 − p3)2 − m2
b]

]
.

(4.20)

Here

Z0(p2, m2
1, m2

2) ≡
∫ 1

0

dx ln
( p2x(x − 1) + m2

1

m2
2

)
, (4.21)

and we have used relation (4.4). Notice that Z0 is scale λ

dependent in the first term in the square brackets of (4.20),

and independent on it in the second term in the brackets.

According to the features of BDI mentioned in the begin-

ning with respect to the Bogoliubov’s recursion formula, the

term proportional to Ilog(λ
2) in (4.20) corresponds to a sub-

divergence and is exactly cancelled by the counterterm graph

corresponding to the one mass-independent renormalisation

of the down-quark loop.

Fig. 7 Diagrams entering in the UV renormalisation of scattering pro-

cess γ ∗ → bb̄

Thus M̃
μ
ab, the amplitude which defines the two-loop

order UV divergence after subtracting the subdivergences,

is obtained by substituting Iμ by

Ĩ
μ =

(
[q2

1 (−4p2 · p3 − 2p3 · q1 + q2
1 )

+2p2 · q1(2p3 · q1 + q2
1 )]γ μ

+4q2
1 [mbq

μ
1 − (p2 − p3 + q1)

μ
/q1]

)

×
[

3 b Z0(q
2
1 , m2

d , λ2) + b

[(q1 + p2)2 − m2
b](q2

1 − μ2)2[(q1 − p3)2 − m2
b]

+ 6 b m2
d Z0(q

2
1 , m2

d , m2
d)

[(q1 + p2)2 − m2
b](q2

1 − μ2)3[(q1 − p3)2 − m2
b]

]
,

(4.22)

to define M̃
μ
ab as depicted in Fig. 7.

In the next section we address the two-loop order specific

UV divergences and their removal.

4.2.1 Virtual contribution: UV part

In this particular example, after the removal of the one-loop

subdivergence, the divergent part of the amplitude is either

UV or IR divergent, there is no overlap of UV and IR diver-

gent contributions. The two-loop UV renormalisation con-

stant can be extracted as a BDI from the UV divergent part

of �̃μ (remember definition in (4.19)):

�̃μ
∣∣∣
U V

=
∫

q1

(
q4

1γ μ − 4q2
1 q

μ
1 /q1

)

×
[

3 b Z0(q
2
1 , m2

d , λ2) + b

[(q1 + p2)2 − m2
b](q2

1 − μ2)2[(q1 − p3)2 − m2
b]

]
,

(4.23)

Using the rules of IReg, we isolate a BDI as a UV bare bone

object free of masses by taking the limit where q1 ≫ md in

Z0(q
2
1 , m2

d , λ2) to yield
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Table 1 We have denoted s ≡
(p2 + p3)

2 = 2(p2 · p3 + m2
b),

S ≡ s − 4m2
b, F(s, S, μ) ≡

ln2
(

2μ2
√

sS−S

)
− ln2

(
−2μ2

√
sS+S

)

and Z0(p2, m2
1, m2

2) is defined

as in Eq. (4.21)

Integrals IR divergences

∫
q1

p2·p3

(q2
1 −μ2)[(p2+q1)2−m2

b][(q1−p3)2−m2
b]

−(s−2m2
b)

4
√

sS
F(s, S, μ)

∫
q1

(p2·q1)(p3·q1)

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b] − 1

4
ln

(
m2

b

μ2

)

∫
q1

p2·p3 Z0(q2
1 ,m2

d ,λ2)

(q2
1 −μ2)[(p2+q1)2−m2

b][(q1−p3)2−m2
b]

−(s−2m2
b)

4
√

sS
ln

(
m2

d

λ2

)
F(s, S, μ)

∫
q1

(p2·q1)(p3·q1)Z0(q2
1 ,m2

d ,λ2)

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b] − 1

4
ln

(
m2

b

μ2

)
ln

(
m2

d

λ2

)

∫
q1

q2
1 Z0(q2

1 ,m2
d ,m2

d )

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b]

− ln(m2
d /m2

b)

2
√

sS
F(s, S, μ)

∫
q1

(p2·q1)Z0(q2
1 ,m2

d ,m2
d )

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b]

ln(m2
d /m2

b)

4m2
bsS

[
m2

b

√
sS F(s, S, μ) + sS ln

(
m2

b

μ2

)]

∫
q1

(p3·q1)Z0(q2
1 ,m2

d ,m2
d )

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b] − ln(m2

d /m2
b)

4m2
bsS

[
m2

b

√
sS F(s, S, μ) + sS ln

(
m2

b

μ2

)]

∫
q1

q
μ
1 /q1 Z0(q

2
1 , m2

d , m2
d )

− ln(m2
d /m2

b)

4mbsS2

{
mb S

√
sS F(s, S, μ)γ μ

× 1

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b] + 2(p

μ
2 − p

μ
3 )

[
m2

b

√
sS F(s, S, μ) + sS ln

(
m2

b

μ2

)]}

∫
q1

q
μ
1 Z0(q2

1 ,m2
d ,m2

d )

(q2
1 −μ2)2[(p2+q1)2−m2

b][(q1−p3)2−m2
b]

(p2−p3)μ ln(m2
d /m2

b)

2m2
bsS2

[
m2

b

√
sS F(s, S, μ) + sS ln

(
m2

b

μ2

)]

∫
q1

(q1·p2)(q1·p3)Z0(q2
1 ,m2

d ,m2
d )

(q2
1 −μ2)3[(p2+q1)2−m2

b][(q1−p3)2−m2
b]

ln(m2
d /m2

b)F(s,S,μ)

8
√

sS
+

(
ln(m2

d /m2
b)

4m2
b

+ 1

24m2
d

)
ln

(
m2

b

μ2

)

�̃μ
∣∣∣
U V

=
∫

q1

[
γ μ − 4q

μ
1 /q1

(q2
1 − μ2)

]

×
[ 3 b ln

(
− q2

1 −μ2

λ2

)
− 5b

[(q1 + p2)2 − m2
b][(q1 − p3)2 − m2

b]

]
.(4.24)

The integrals above are only UV-logarithmic divergent,

therefore, the BDI’s can be easily extracted as

�̃μ
∣∣∣
U V

= bγ μ
[
3I

(2)
log(λ2) − 5Ilog(λ

2)

]

−4bγ μ

[
3

4
I
(2)
log(λ2) + 3

8
Ilog(λ

2) − 5

4
Ilog(λ

2)

]
,

(4.25)

where we made use of Eqs. (4.14) and (4.15) while setting

ST’s to zero. Finally, the two-loop UV counterterm corre-

sponding to this amplitude reads

M
μ
ab

∣∣∣
2 loop ct

U V
= Q e CF g4

s δab ū(p2, mb)γ
μv(p3, mb)

×b

3
Ilog(λ

2) (4.26)

Upon subtracting it from M̃
μ
ab, defined by (4.19) with

(4.22), one obtains the renormalised amplitude. The next task

is to identify the infrared divergences in the renormalised

amplitude.

4.2.2 Virtual contribution: IR part

In Table 1, we summarise the results which are relevant to

isolate the IR divergences of different natures as lnn μ as

μ → 0 in a non-dimensional regularisation scheme.15 The

IR divergent part is parametrized as ln of the parameter μ2.

Notice that this is a fictitious mass introduced in propagators

to regularise the IR div. We have made use of FeynCalc

[101–103] and Package- X [104] to compute the integrals.

Moreover in order to express the function Z0(k
2, m2

1, λ
2) in a

propagator like form we have used Z0 =
∫
(∂ Z0/∂m2

1)dm2
1,

with

∂ Z0(k
2, m̃2, λ2)

∂m̃2
=

∫ 1

0

dx
−1

k2x(1 − x) − m̃2
. (4.27)

Notice that since one is dealing with massive quarks, the inte-

gral in the Feynman parameter x of (4.21) is more involved

as opposed to the example of the electron self-energy we

performed in section 4.1 of [16].

Putting all the results displayed in Table 1 in the amplitude

we finally obtain for its infrared content

M
μ
ab

∣∣∣
2 loop

I R
= Q e CF g4

s δab ū(p2, mb)[ (p2 − p3)
μ

×A + γ μ
B ]v(p3, mb), (4.28)

with

A = 16 b m2
d

3 S
ln

(m2
d

m2
b

)

×
[

− mb√
s S

F(s, S, μ) − 1

mb

ln
(m2

b

μ2

)]

15 Some simplification due to the presence of external spinors was

already applied. Also, an identity matrix in Dirac space should be

implicitly understood in the second term inside the brackets.
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B = 2 b

3

[
ln

(m2
b

μ2

)
ln

(m2
d

λ2

)

−4 m2
d

m2
b

ln
(m2

d

m2
b

)
ln

(m2
b

μ2

)

+ 2 m2
b

3
√

s S

(
3 ln

(m2
d

λ2

)
+ 1

)
F(s, S, μ)

−1

3

√
s

S

(
3 ln

(m2
d

λ2

)
+ 1

)
F(s, S, μ)

−4
m2

d√
s S

ln
(m2

d

m2
b

)
F(s, S, μ)

]
. (4.29)

The expression in (4.28) corresponds to the IR-divergent

part of the amplitude that is going to be cancelled when

adding the adequate real contributions to the process γ ∗ →
qq̄ , leading to scales and finite terms that must still be

obtained.

4.3 Discussion

One of the main goals of the ireg scheme is to represent the

UV-divergent content of a given multi-loop Feynman inte-

gral in terms of well-defined Basic Divergent Integrals (BDI)

which do not need to be explicitly evaluated. Such program is

compatible with the BPHZ theorem, assuring locality, causal-

ity and Lorentz invariance. Further understanding of the rela-

tion between ireg and dimensional schemes was achieved

recently [97], with prospects to map BDI’s into poles in ǫ−n

for a UV n-loop calculation in general.

Regarding symmetries, the method complies with abelian

gauge symmetry at arbitrary loop level, and non-abelian the-

ories have also been tested up to two-loop level. A general

proof based on the quantum action principle is still lacking,

however, some of the main ingredients were proved to be ful-

filled by the method in recent years [22]. Besides, a more gen-

eral picture of dimension-specific objects and their proper-

ties (such as the γ5 matrix) in the context of four-dimensional

schemes has emerged. In particular, it was shown, quite sur-

prisingly, that consistent four-dimensional methods such as

ireg need to deal with γ5 problems, in a way similar to dimen-

sional schemes.

Finally, from the point of view of infrared divergences,

some proof-of-principle computations are still lacking for

a NNLO calculation. In particular, the knowledge of the

double-real and virtual-real contributions for the process

studied in this work is underway.

5 Local analytic sector subtraction: the Torino scheme

This section is devoted to the Local Analytic Sector subtrac-

tion scheme that has been recently proposed [105] for NLO

and NNLO QCD calculations with coloured particles in the

final state only. In order to present the NLO implementation

of Local Analytic Sector subtraction we start by introducing

a generic differential cross section with respect to an IR-safe

observable X

dσNLO

d X
= lim

d→4

{∫
d�n Vn δn(X)

+
∫

d�n+1 Rn+1 δn+1(X)

}
, (5.1)

where d is the space-time dimension set equal to 4−2ǫ, with

ǫ < 0, and n is the number of final state, coloured partons

involved in the Born process. The symbol d�i identifies the

i-body phase space, while Vn is the UV-renormalised one

loop correction and Rn is the tree level squared amplitude

for a single real radiation. Finally, δi (X) ≡ δ(X − X i ) sets

the observable X to be computed in the i-body kinematics.

In dimensional regularisation the virtual matrix element fea-

tures up to a double pole in ǫ, while the real correction, finite

in d = 4, is characterised by up to two singular limits of

IR nature in the radiation phase space. By integrating R in

d dimensions over the phase space, its implicit singularities

become manifest as 1/ǫ poles.

Although the sum on the r.h.s. of Eq. (5.1) is finite in

d = 4 thanks to the KLN theorem [69,70], it is unfeasi-

ble to estimate the differential distribution in this form. The

complexity of a typical collider process requires to exploit

numerical algorithms to treat the phase space integration.

Indeed the integration over the unresolved phase space has

to be performed in d = 4, therefore the IR singularities must

be canceled prior to the integration: this goal can be achieved

via a subtraction method.

The subtraction procedure consists in adding ad subtract-

ing in Eq. (5.1) a counterterm that reproduces the singular

behaviour of the real matrix element, and can be integrated

analytically in the single-radiative phase space. Such a coun-

terterm and its integrated counterpart can be defined in full

generality as

dσNLO
ct

d X
=

∫
d�n+1 K n+1, In =

∫
d�rad K n+1, (5.2)

with d�rad = d�n+1/d�n being the factorised single-

radiative phase space. The subtracted differential cross sec-

tion then reads

dσNLO

d X
=

∫
d�n

[
Vn + In

]
δn(X)

+
∫

d�n+1

[
Rn+1 δn+1 − K n+1 δn(X)

]
, (5.3)

where both terms in squared brackets are separately finite

and integrable in d = 4.

The specific implementation of the counterterm is not

unique and requires various technical aspects, which char-
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acterise the different subtraction methods. Several solutions

to the IR subtraction problem are indeed already available

and well tested at NLO, such as the schemes by Frixione-

Kunszt-Signer [74,106] (FKS) and Catani-Seymour (CS)

[73,107]. At NNLO the variety of subtraction procedures

is much richer [5,9,15,44,108–112], but despite this consid-

erably wide range of sophisticated schemes, many of them

rely on demanding numerical calculations or involved inte-

gration procedures. In order to overcome such bottlenecks,

the local analytic sector subtraction scheme provides an alter-

native NLO subtraction method that aims at combining the

most advantageous aspects of the FKS and the CS schemes,

complementing a minimal subtraction structure with an effi-

cient integration strategy. These key aspects are suitable for

a natural generalisation to NNLO.

We stress that all matrix elements entering the NLO

and the NNLO corrections, are assumed to be treated with

conventional dimensional regularisation, and renormalised

within the MS scheme. Accordingly, the IR kernels that enter

the counterterms have been then computed with the same reg-

ularisation approach. The radiative phase space parameteri-

sation and the consequent integration strategy have been con-

veniently chosen according to dimensional regularisation.

Changing the regularisation scheme would mean re-thinking

the counterterm definition (and integration), as well as the

precise correspondence between different contributions to

the NNLO computation.

5.1 NLO subtraction

The key characteristic of the Local Analytic Sector subtrac-

tion at NLO is the locality of the counterterm K n+1 as well

as the analytic procedure adopted to compute its integrated

counterpart In , as introduced in Eq. (5.2). The counterterm

has indeed to mimic the infrared behaviour of the real matrix

element locally in the phase space, and at the same time, it

has to be simple enough to allow for analytic integration in

the single-unresolved phase space. These two fundamental

features are also crucial for the NNLO generalisation, as will

be explained in Sect. 5.2. To present the method in its core

structure at NLO, we introduce the following notation: we

set the squared centre-of-mass energy to be s, the centre-

of-mass four momentum to be qμ =
(√

s, 
0
)
, and k

μ
i the

i-th final state momentum. Moreover, the Lorentz invariants

sab = 2ka · kb, the energy fraction ei = sqi/s and the angu-

lar variable wi j = s si j/sqi sq j are also mentioned below.

The singular soft and collinear behaviour of the real matrix

element is extracted by the relevant projector operators,

Sa :soft single limit (ea → 0)

Cab:collinear single limit (wab → 0). (5.4)

To appropriately define the desired counterterms, we parti-

tion the real-radiation phase space into sectors by means of

sector functions Wi j (i, j = 1, . . . , n; i �= j), inspired by

the FKS scheme [74]. In analogy to FKS, the sectors func-

tions are designed to fulfil a set of fundamental properties:

1. they have to be a unitary partition of the phase space:∑
i, j �=i Wi j = 1,

2. they have to select a minimum number of singulari-

ties in each sector: SiWib �= 0, SiWab = 0, ∀i �=
a ; Ci jWi j �= 0, Ci jW j i �= 0 ; Ci jWab = 0, ∀ab /∈
{i, j},

3. the sum over sectors sharing the same singular config-

urations has to be one: Si

∑
k �=i Wik = 1, Ci j

(
Wi j +

W j i

)
= 1.

These constraints must hold for any explicit definition ofWi j .

An efficient realisation of such sector functions is given by

the following Lorentz invariants ratios,

Wab = σab∑
a′b′ σa′b′

, σab = 1

ea wab

. (5.5)

Then, sector by sector, the singular regimes of the real matrix

element are collected into a candidate counterterm Kn+1

Kn+1 =
∑

i, j �=i

(Kn+1)i j

≡
∑

i, j �=i

(
Si + Ci j − Si Ci j

)
R Wi j

≡
∑

i, j �=i

L
(1)
i j R Wi j , (5.6)

where the last term in round brackets avoids the double sub-

traction of the mixed soft-collinear divergences. As it is evi-

dent from the expression above, the introduction of sectors

enables a minimal definition for Ki j : a remarkable feature

that can be generalised also at NNLO.

Given the factorised structure of the real matrix ele-

ment under unresolved limits, each contribution appearing

in Eq. (5.6) can be written as a universal singular kernel and

an appropriate Born-like matrix element (for a review see for

instance [113] and the references therein). Let us stress that

the kinematics which the Born-level matrix elements depends

on is not on-shell or momentum conserving away from the

corresponding exact singular limit. The next key ingredient

of the local analytic sector subtraction is the momentum map-

ping. It enables the factorisation of the n +1 phase space into

a single radiative phase space d�rad and a remaining n-body

resolved phase space, so that the counterterm can be inte-

grated only over the former. Moreover, with a momentum

mapping we force the Born kinematics to be on-shell and

momentum conserving in the entire phase space.
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There is ample freedom in the mapping procedure, that

can be exploited to simplify the integration procedure. To this

aim, we introduce a Catani-Seymour final state mapping [73],

and define a set of n on-shell momenta {k̄}(abc) by choosing

three final-state momenta ka, kb, kc and combining them as

{k̄}(abc) ≡
{
{k}/a/b/c, k̄

(abc)
b , k̄(abc)

c

}
, (5.7)

k̄
(abc)
b = ka + kb − sab

sac + sbc

kc,

k̄(abc)
c = sabc

sac + sbc

kc,

k̄
(abc)
i = ki , ∀i �= a, b, c. (5.8)

The notation {k}/a/b/c states that we are eliminating the

momenta ki , with i = a, b, c, from the initial set of n + 1

momenta. By choosing a, b, c according to the specific coun-

terterm contribution, its integration can be carried out analyt-

ically with standard techniques. The phase space factorises

consequently in terms of the Catani-Seymour parameters

y = sab/sabc, z = sac/(sac + sbc), where 0 ≤ y ≤ 1 and

0 ≤ z ≤ 1, as

d�n+1 = d�(abc)
n d�

(abc)
rad ,

d�
(abc)
rad ≡ d�rad

(
s̄
(abc)
bc ; y, z, φ

)
, (5.9)

with φ being the azimuthal angle between 
ka and an arbi-

trary three-momentum taken as reference direction. We stress

that, referring to Eq. (5.9), the integration involves only the

variables occurring after the semicolon, while the remaining

variables indicate a functional dependence. Thus, the single

radiative phase space can be written as

∫
d�

(abc)
rad = (4π)ǫ−2

√
πŴ(1/2 − ǫ)

(
s̄
(abc)
bc

)1−ǫ
∫ π

0

dφ sin−2ǫ φ

×
∫ 1

0

dy dz [y(1 − y)2z(1 − z)]−ǫ(1 − y).

(5.10)

As already mentioned, we are free to choose partons a, b, c

differently for each contribution to the counterterm. In par-

ticular, for the soft limit we set a = i and b = l, c = m,

where i identifies the soft parton, and l, m the emitters. For

the hard-collinear component, the natural choice is a = i ,

b = j and c = r , with i, j being the collinear partons, and r

an on-shell spectator different from i and j . In the remapped

kinematics (remapped quantities are identified with a bar)

the contributions to Eq. (5.6) are then given by

Si R
(
{k}

)
= −N1

∑

l,m �=i

I
(i)
lm Blm

(
{k̄}(ilm)

)
,

Ci j R
(
{k}

)
= N1

P
μν
i j

si j

Bμν

(
{k̄}(i jr)

)
,

Si Ci j R
(
{k}

)
= 2 N1C f j

I
(i)
jr B

(
{k̄}(i jr)

)
. (5.11)

Here I
(i)
lm = δ fi g slm/(sil sim) is the eikonal kernel relative to

parton i , Blm is the colour-correlated Born matrix element,

P
μν
i j is the spin-dependent Altarelli–Parisi splitting function,

Bμν is the spin-correlated Born matrix element, C f j
is the

quadratic Casimir relevant for the colour representation of

parton j and N1 = 8παs(μ
2eγE /(4π))ǫ is a normalisation

factor. It is important to notice that the remapped contribu-

tions in Eq. (5.11) are not uniquely defined. Any definition of

the barred counterterm is indeed acceptable, provided it ful-

fils a set of consistency relations. Such relations ensure K n+1

to reproduce the correct behaviour of Rn+1 in all singular

regions of the real phase space. These constraints reduce to

the following set of relations

Ci j Ci j R = Ci j R, Si Si R = Si R,

Ci j Si Ci j R = Ci j Si R, Si Si Ci j R = Si Ci j R, (5.12)

which are verified by the definitions in Eq. (5.11).

Before integrating over the unresolved phase space, the

sum over sectors appearing in Eq. (5.6) can be organised

according to

K n+1 =
∑

i, j �=i

K i j =
∑

i

[∑

j �=i

SiWi j

]
Si R

+
∑

i, j>i

[
Ci j

(
Wi j + W j i

)]
Ci j R

−
∑

i, j �=i

[
Si Ci jWi j

]
Si Ci j R

=
∑

i

Si R +
∑

i, j>i

Ci j (1 − Si − S j ) R, (5.13)

where the combinations in square brackets have been reduced

to one, thank to the Wi j properties, preventing the sectors to

affect the integration procedure. We are then left with the

evaluation of the integrated counterterm In . To maximally

facilitate this crucial step, we choose to parametrise the phase

space according to the kinematic mapping adopted for each

contribution, as done in the Catani–Seymour scheme. Con-

sidering for instance the soft contribution, the integration

proceeds trivially,

∫
d�

(ilm)
rad Si R

(
{k}

)
∝ −

∑

l,m �=i

Blm

(
{k̄}(ilm)

) ∫
d�

(ilm)
rad I

(i)
lm

∝ −
∑

l,m �=i

Blm

(4π)ǫ−2

s̄
(ilm)
lm

Ŵ(1 − ǫ) Ŵ(2 − ǫ)

ǫ2 Ŵ(2 − 3ǫ)
,

where the factor N1 is omitted for brevity. Similar approach

can be also applied for the hard-collinear component, choos-

ing a = i, b = j, c = r in Eq. (5.9) [105]. As a conclu-

sive remark we notice that the counterterm integration is per-
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formed exactly at all orders in ǫ. This is not significant per

se, but denotes an optimised integration strategy.

This completes the discussion at NLO and points out two

remarkable aspects of the method: differently with respect to

the dipole subtraction, our counterterm is composed by dif-

ferent contributions, which reproduce separately the soft, the

collinear, and the soft collinear singularities of Rn+1. More-

over, in contrast with FKS, we have identified the counterterm

before choosing an appropriate phase space parametrisation

and mapping. This way, we have exploited the full freedom

in adapting the parametrisation to the specific counterterm

contribution, simplifying as much as possible the integration

procedure.

5.2 NNLO subtraction

To generalise the subtraction method to NNLO [105], we

have exploited the two fundamental ingredients mentioned

above, namely the sector partition of the phase space, and the

optimised mapping of the counterterms. This way, the NNLO

extension preserves the advantages of the NLO version of

the scheme, relying on its physically transparent interpreta-

tion and the minimal counterterm structure. These charac-

teristics could be in principle exploited to investigate higher

orders in perturbation theory, given the intrinsic complex-

ity of the problem [114]. In the first stages of the method

implementation [105] some key elements were missing to

provide an efficient subtraction method at NNLO: the treat-

ment of the real-virtual singularities and the integration of

the double unresolved counterterm. The lack of such ingre-

dients obviously affects the possibility to test the method for

arbitrary processes. Efforts are ongoing to tackle the above

mentioned missing ingredients, towards a general validation

of the scheme [115].

At NNLO the subtraction pattern manifests a non-trivial

degree of complexity, due to the increased number of contri-

butions to a generic observable X ,

dσNNLO

d X
= lim

d→4

{∫
d�n V Vn δn(X)

+
∫

d�n+1 RVn+1 δn+1(X)

+
∫

d�n+2 R Rn+2 δn+2(X)

}
,

where V Vn is the UV-renormalised double-virtual matrix ele-

ment, RVn+1 is the real-virtual correction and R Rn+2 is the

double-real configuration. As a consequence, more countert-

erms are needed to cancel all the singularities arising from

the unresolved radiation, and delicate cancellations have also

to occur amongst the counterterms themselves, to enable a

minimal and transparent pattern. To account for the double-

real singularities, we introduce K
(1)

that encodes the single-

unresolved configurations, and the combination K
(2)−K

(12)

which cures the double-unresolved limits. In particular, K
(2)

collects the homogenous limits, i.e. those configurations

where the two unresolved partons become soft/collinear at

the same rate, while K
(12)

mimics the ordered limits, where

one (one pair of) parton is more unresolved than the others.

Finally, the unresolved regions of the real-virtual phase space

are caught by K
(RV)

. Each counterterm has to be integrated

over the corresponding unresolved phase space, as prescribed

by the definitions

I (i) =
∫

d�rad,i K
(i)

, I (12) =
∫

d�rad,1 K
(12)

,

I (RV) =
∫

d�rad K
(RV)

, i = 1, 2, (5.14)

where d�rad,2 = d�n+2/d�n , d�rad,1 = d�n+2/d�n+1

and d�rad = d�n+1/d�n . The subtraction pattern at NNLO

then reads

dσNNLO

d X
=

∫
d�n

[
V Vn + I (2) + I (RV)

]
δn(X)

+
∫

d�n+1

[(
RVn+1 + I (1)

)
δn+1(X)

−
(
K

(RV) + I (12)
)

δn(X)

]

+
∫

d�n+2

[
R Rn+2 δn+2(X) − K

(1)
δn+1(X)

−
(
K

(2) − K
(12))

δn(X)

]
. (5.15)

As anticipated, the last line is finite in the whole phase

space by construction, and therefore it can be evaluated in

d = 4 dimensions. In the second line, the combination

RVn+1 − K
(RV)

is free of phase space divergences, but both

terms manifest explicit pole in ǫ, that do not cancel in the

sum. Those poles are subtracted in a non-trivial way: I (1)

exposes the same 1/ǫ poles as RV , due to a straightforward

consequence of the KLN theorem, while we can properly

define K
(12)

, such that its integrated counterpart reproduces

the same explicit poles as K
(RV)

. We stress that, in order to

have the second line in Eq. (5.15) finite in d = 4, the inte-

grated counterterm I (12) has to play a double role. First, it

has to cancel the explicit poles of the real-virtual countert-

erm. Second, it has to feature the same phase space singu-

larities as I (1) (up to a sign). This is in principle not guar-

anteed by the KLN and indeed requires a delicate interplay

between the definition of K
(12)

and K
(RV)

. Finally, in the first

line the combination I (RV) + I (2) returns the explicit singu-

larities of the double virtual matrix element. Provided that

proper counterterms are defined to satisfy the cancellations

just described, the three lines in Eq. (5.15) are finite in d = 4

and can be computed separately with numerical algorithms.
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To identify the singular configurations contributing to this

perturbative order we introduce the relevant projector oper-

ators

Sab: uniform double soft limit

(ea, eb → 0, ea/eb → constant)

Cabc: uniform double collinear limit involving three partons

(wab, wac, wbc → 0, wab/wac,

wab/wbc, wac/wbc → constant)

Cabcd : uniform double collinear limit

involving two pairs of partons

(wab, wcd → 0, wab/wcd → constant)

SCabc: uniform soft-collinear limit

(ea, wbc → 0 ea/wbc → constant). (5.16)

Nested compositions of these limits with the one in Eq. (5.4)

also contribute to the divergent behaviour of the double real

matrix element, and in particular the mixed action of NLO

limits onto NNLO singular configurations gives rise to the

strongly-ordered terms, collected by K
(12)

.

5.3 Real-virtual contribution

We start by analysing the real-virtual contribution to the

NNLO computation. The (unintegrated) counterterm K
(RV)

must be defined in such a way that it embeds all of the phase

space singularities of the real-virtual matrix-element RV .

To do so, we partition the phase space into NLO sectors by

means of sector functions Wi j , (the same functions used for

NLO subtractions). In each sector Wi j we then identify a

finite quantity by subtracting from RV all its singular limits

(1 − Si ) (1 − Ci j ) RV Wi j = finite. (5.17)

The contributing limits are understood to feature the kine-

matics mapping discussed in Sect. 5.1. Note that Eq. (5.17)

is a symbolic statement, which can be embedded in an effi-

cient subtraction procedure only after providing an explicit

expression for the barred projectors. We then introduce the

real-virtual counterterm:

K
(RV) =

∑

i, j �=i

L
(1)

i j RV Wi j . (5.18)

The subtraction of the real-virtual singularities proceeds sec-

tor by sector. Once the proper counterterm has been sub-

tracted from RV , the combination (RV − K
(RV)

)Wi j is free

of phase-space singularities by construction. We then have to

add the counterterm back in its integrated form, i.e. we need to

compute I (RV). Before tackling the integration problem, we

get rid of the sector functions as done at NLO (analogously

to what we have presented in Eq. (5.13) upon replacing R

with RV ), obtaining

K
(RV) =

∑

i

Si RV +
∑

i, j>i

Ci j (1 − Si − S j ) RV . (5.19)

As discussed at NLO, the quantities Ci j RV, Si RV, Si Ci j RV

are in general constrained by a set of consistency relations

forcing the barred limits reproduce the correct behaviour

of RV . This requirement implies the relations given in

Eq. (5.12), provided we substitute R with RV . The imple-

mentation of such relations mostly relies on the peculiar prop-

erties of the mapping that are applied to the singular kernels

of the real-virtual matrix.

The freedom in defining the barred projectors implies that

Ci j RV, Si RV, Si Ci j RV can benefit from extra terms that

are not present in the off-shell singular regimes, provided the

consistency relations are still satisfied. This feature can be

exploited to implement further properties of K
(RV)

, as the

cancellation of its explicit poles against the one stemming

from I (12). Such a cancellation is not protected by the KLN

theorem, and represents a specific trait of our method.

Momentum mappings and integration procedure for the real-

virtual counterterm

The core structure of barred operators contributing to K
(RV)

is designed to mimic the singular kernels known from the

literature [116,117]. To provide an example, we focus on the

collinear contribution. The singular behaviour of the real-

virtual matrix element reads [116,117]

Ci j RV = N1

si j

[
P

μν
i j Vμν − αs

4π

β0

ǫ
P

μν
i j Bμν

+N1

sǫ
i j

cos(πǫ)

(4π)2−ǫ

Ŵ(1 + ǫ)Ŵ2(1 − ǫ)

Ŵ(1 − 2ǫ)
P

(1)μν
i j Bμν

]
,

(5.20)

where β0 = (11 CA − 4 TR N f )/3, Bμν and Vμν are respec-

tively the Born and the virtual spin-correlated matrix element,

while P
μν
i j and P

(1)μν
i j are the spin-dependent Altarelli–Parisi

(AP) kernel at tree level and one-loop accuracy.

The one loop splitting function can be more easily treated

by identifying its spin-averaged and a spin-dependent com-

ponent as

P
(1)μν
i j Bμν =

(
Mi j Pi j + Ni j

)
B

+
(

Mi j Q
μν
i j + O

μν
i j

)
Bμν, (5.21)

where for each X i j ∈ {Mi j Pi j , Ni j , Mi j Q
μν
i j , O

μν
i j } one

has

X i j = δ fi gδ f j g Xgg + δ fi gδ f j {qq̄} Xgq

+ δ fi {qq̄}δ f j g Xqg + δ{ fi f j }{qq̄} Xqq , (5.22)
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with δ fi {qq̄} = δ fi q + δ fi q̄ and δ{ fi f j }{qq̄} = δ fi q δ f j q̄ +
δ fi q̄ δ f j q . The functions Pi j and Q

μν
i j are the spin components

of the AP splitting functions at tree-level, written for instance

in Eqs. (2.28-2.29) of Ref. [105]. For the gq splitting, relevant

for the process e+e− → j j , we have

Mgq(z) = 1

ǫ2

[
(2CF − CA)

(
1 − 2 F1

(
1,−ǫ; 1 − ǫ,

−z

1 − z

))

−CA 2 F1

(
1,−ǫ; 1 − ǫ,

1 − z

−z

)]

Ngq(z) = CF

CA − CF

1 − 2ǫ
(1 − ǫz), Oμν

gq (z) = 0, (5.23)

where z is the collinear energy fraction of the emitted gluon.

The structure in Eq. (5.20) provides the core structure of the

corresponding barred limit, once the virtual and the Born

spin-correlated matrices have been mapped. By choosing

the (i jr) mapping, the variable z appearing in Eq. (5.23)

coincides with the Catani–Seymour parameter z, introduced

in Eq. (5.9). Adopting this parameterisation, the terms in

Eq. (5.20) that are proportional to virtual matrix-elements,

as well as those coming from UV renormalisation (propor-

tional toβ0), can be integrated with standard techniques. With

regards to the P
(1)μν
i j contribution, the spin-dependent ker-

nels Q
μν
i j and O

μν
i j vanish when integrated over the azimuth,

while Ni j can be trivially integrated. The most involved inte-

grals are due to the Pi j Mi j term, whose main structure is of

the type

∫ π

0

dφ sin−2ǫ φ

∫ 1

0

dydz(1 − y)1−2ǫ y−1−2ǫ

×(1 − z)m−ǫzn−ǫ
2 F1

(
1,−ǫ; 1 − ǫ;− z

1 − z

)
, (5.24)

where n, m ∈ {−1, 0, 1}. For these values, the integral over

z is well defined and gives

Ŵ(m − ǫ + 2)Ŵ(n − ǫ + 1)

Ŵ(m + n − 2ǫ + 3)
3 F2

×(1, 1, n − ǫ + 1; m + n − 2ǫ + 3, 1 − ǫ; 1), (5.25)

that can be expanded in ǫ powers, using for example the

HypExp code [118,119]. The integration over the remaining

radiation phase space variables φ and y is straightforward.

All the other splitting configurations (g → gg, g → qq̄) fea-

ture the same degree of complexity as q → gq. Similar con-

clusions also hold for the core structure of the soft-collinear

barred limit, that gives at most polynomials in the z and y

variables.

Moving to the soft contribution, we can consider as the

core structure the expression in Eq.(3.30) of Ref. [117].

The integration of its contributions can be performed with

standard machinery, except for the tripole-colour-correlated

component which is slightly more involved. It is worth not-

ing that neither the I (2) counterterm, nor the double-virtual

matrix element manifest such a peculiar colour structure.

Thus, the cancellation of singularities proportional to tripole-

colour-correlated matrix elements is a crucial step of the

method, whose treatment is detailed in Ref. [115].

5.4 Double-real contribution

The methods developed to treat the NLO phase space singu-

larities of the real-virtual matrix element can be generalised at

NNLO to subtract the divergences of the double-real correc-

tion. At this perturbative order, sector functions and phase

space parametrisation combine in a more involved way to

enable the analytic integrations of the relevant singular ker-

nels.

The partition of phase space requires new sectors func-

tions Wabcd , that include as many different indices as the

maximum number of partons that can become unresolved

simultaneously. The indices run over the n + 2 legs of the

double-real matrix element. In order to account for all NNLO

singular configurations, to select a minimal set of them in

each sector, and to avoid double counting, the four indices

are chosen such that a �= b and c �= d. Furthermore, c and d

are allowed to equal b but not a (c, d �= a). Three topologies

arise from the possible choices of indices,

Wi j jk, Wi jk j , Wi jkl , i �= j �= k �= l. (5.26)

As we have done for RV , we require such sector functions

to be a unitary partition of phase space and sum to one when

considering sectors that share the same singular configura-

tions. The former condition is satisfied by defining

Wabcd = σabcd

σ
, σ =

∑

a′,b′ �=a′

∑

c′ �=a′
d ′ �=a′,c′

σa′b′c′d ′

�⇒
∑

a,b �=a

∑

c �=a
d �=a,c

Wabcd = 1. (5.27)

The latter requirement can be trivially verified once an

explicit form for Wabcd has been implemented. One pos-

sibility is choosing σabcd to be a generalisation of the NLO

σab in Eq. (5.5) as

σabcd = 1

(ea wab)α

1

(ec + δbc ea) wcd

, α > 1, (5.28)

We stress that the choice of sector functions is not unique.

For example, given the structure of Eq. (5.28), the expo-

nent α can be conveniently modulated. Also different struc-

tures could be envisaged, e.g. the energy fraction and the

angular separation relative to the first pair of indices (a, b in

Eq. (5.28)) could feature two different exponents. The sec-

tors in Eq. (5.27) together with the definition in Eq. (5.28)
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can be easily checked to fulfil the relation

Sik

⎛
⎝∑

b �=i

∑

d �=i,k

Wibkd +
∑

b �=k

∑

d �=k,i

Wkbid

⎞
⎠ = 1 (5.29)

which provides an example of the sum rules mentioned

above. Analogous relations hold for the remaining projector

operators listed in Eq. (5.16) and for their nested combina-

tions.

The collection of all singular configurations contributing

to a given sector gives,

Wi j jk R R: Si , Ci j , Si j , Ci jk, SCi jk, (5.30)

Wi j jk R R: Si , Ci j , Sik, Ci jk, SCi jk, SCki j (5.31)

Wi jkl R R: Si , Ci j , Sik, Ci jkl , SCikl , SCki j . (5.32)

As already discussed, this set of limits is a direct consequence

of our choice of sector functions. Modifications in the defini-

tion in Eq. (5.28) lead to adjustments in the lists of contribut-

ing primary limits reported in Eqs. (5.30)–(5.32). Sector by

sector, we subtract from the double-real matrix element all its

singular configurations (avoiding double counting), obtain-

ing a finite object that provides our candidate counterterm.

In the Wi jkl sector the subtracted double-real matrix element

reads

(1 − Si ) (1 − Ci j ) (1 − Sik) (1 − Ci jkl)

(1 − SCikl) (1 − SCki j ) R R Wi jkl = finite. (5.33)

Similar relations hold for the other topologies. In Eq. (5.33)

we recognise the contribution of sector Wi jkl to the integrand

function in the last line of Eq. (5.15). It is then necessary to

disentangle the single-, the double- and the mixed-unresolved

counterterms by reorganising the listed limits in Eqs. (5.30)–

(5.32) according to their kinematics. In particular, the first

two parentheses in Eq. (5.33) contain single-unresolved oper-

ators that we label collectively L
(1)

i j , as already done for

RV , while the remaining combinations feature pure double-

unresolved limits, that are collected by L
(2)

i jkl . The relation in

Eq. (5.33) can be then rewritten in the more compact form as

(1 − L
(1)

i j )(1 − L
(2)

i jkl)Wi jkl R R

= (R R − L
(1)

i j R R − L
(1)

i j L
(2)

i jkl R R)Wi jkl = finite,

(5.34)

with L
(1)

i j L
(2)

i jkl giving rise to the strongly-ordered singulari-

ties. The explicit expression for the L operators in the i jkl

sector reads

1 − L
(1)

i j = (1 − Si ) (1 − Ci j ),

1 − L
(2)

i jkl = (1 − Sik) (1 − Ci jkl) (1 − SCikl) (1 − SCki j ).

(5.35)

A fundamental requirement for the above described structure

is that it must account for all and only the actual phase space

singularities of R R. This statement implies that whatever L

is, it must match the R R behaviour under the singular lim-

its listed in Eq. (5.16). For L
(1)

i j this means to impose the

equivalent set of relations introduced in Eq. (5.12) upon con-

sidering R R instead of RV . For L
(2)

i jkl and L
(12)

i jkl the number of

consistency relations is much larger: as a general statement,

a counterterm contribution obtained nesting n primary pro-

jectors has to fulfil n consistency relations. For this reason,

finding counterterm definitions that simultaneously satisfy

all the constraints is highly non-trivial.

Assuming the existence of consistent definitions for all

the barred operators in Eq. (5.34) the counterterms can then

be defined as

K
(1) =

∑

i, j �=i

∑

k �=i
l �=i,k

L
(1)

i j R R Wi jkl ,

K
(2) =

∑

i, j �=i

∑

k �=i
l �=i,k

L
(2)

i jkl R R Wi jkl ,

K
(12)=

∑

i, j �=i

∑

k �=i
l �=i,k

L
(1)

i j L
(2)

i jkl R R Wi jkl . (5.36)

Each term has to be integrated over its proper phase space, as

defined in Eq. (5.14), and features different characteristics,

therefore we will discuss separately their properties and the

corresponding integration procedure.

Double-real: single- and mixed double- unresolved countert-

erms

The single unresolved K
(1)

and the mixed double unresolved

K
(12)

have been already analysed in Ref. [105], therefore we

only summarise the main aspects of their treatment.

Once K
(1)

and K
(12)

have locally subtracted the singular-

ities of R R sector by sector in the double-unresolved phase

space, both the counterterms have to be integrated over a

single radiative phase space, as prescribed by Eq. (5.14).

Their integrated counterparts are then combined with the

real virtual matrix element and with K
(RV)

(see the second

line of Eq. (5.15)), which are split into NLO sectors. For

this purpose, the sector functions appearing in Eq. (5.36), as

defined in Eqs. (5.27)–(5.28), must factorise into NLO func-

tions under single-unresolved limits. The generic expression

of this property reads

Si Wabcd = Wcd Si W
(α)
ab ,

Ci j Wabcd = Wcd Ci j W
(α)
ab ,

Si Ci j Wabcd = Wcd Si Ci j W
(α)
ab , (5.37)

123



Eur. Phys. J. C (2021) 81 :250 Page 31 of 61 250

where

W
(α)
i j =

σα
i j∑

a,b �=a σα
ab

�⇒ W
(1)
i j = Wi j . (5.38)

Considering as an example the pure-soft content of K
(1)

and

K
(12)

,

K
(1), s ≡

∑

i, j �=i

∑

k �=i
l �=i,k

Si R R Wi jkl ,

K
(12), s ≡

∑

i, j �=i

∑

k �=i
l �=i,k

Si Si j R R Wi jkl , (5.39)

the factorisation of NNLO sector functions into NLO sectors

guarantees the following equalities

K
(1), s =

∑

i, j �=i

∑

k �=i
l �=i,k

(
SiW

(α)
i j

)(
Si R R

)
Wkl

=
∑

i,k �=i

∑

l �=i,k

(
Si R R

)
Wkl , (5.40)

K
(12), s =

∑

i, j �=i

∑

k �=i
l �=i,k

(
SiW

(α)
i j

)(
Si Sik R R

)
SkWkl

=
∑

i,k �=i

∑

l �=i,k

(
Si Sik R R

)
SkWkl , (5.41)

where we have exploited the sector function sum properties

introduced at NLO, which hold also for W
(α)
i j . The kinematic

mapping of sector functions, namely Wkl , enables to fac-

torise the structure of NLO sectors out of the radiative phase

space, and integrate analytically only the singular kernels. By

adopting the Catani–Seymour mappings already discussed

in Eq. (5.9), and parametrising d�
(abc)
rad,1 = d�

(abc)
rad with the

(iab) mapping we can easily compute

I (1), s∝
∑

i,k �=i

∑

l �=i,k

Wkl

∫
d�rad,1 Si R R

∝
∑

i,k �=i

∑

l �=i,k

∑

a �=i
b �=i

J s
(
s̄
(iab)
ab

)

×Rab

(
{k}(iab)

)
W

(iab)

kl ,

I (12), s∝
∑

i,k �=i

∑

l �=i,k

SkWkl

∫
d�rad,1 Si Sik R R

∝
∑

i,k �=i

∑

l �=i,k

∑

a �=i
b �=i

J s
(
s̄
(iab)
ab

)

× Sk

(
Rab

(
{k}(iab)

)
W

(iab)

kl

)
, (5.42)

where the proportionality symbol understands constants and

symmetry factors that are the same in the two lines above.

The soft function J s
(
s̄
(iab)
ab

)
is defined as the integral over

the single phase space of the Lorenz invariants occurring in

the soft kernel and it can be easily computed to all orders in

ǫ,

J s
(
s̄
(iab)
ab

)
≡ 1

s̄
(iab)
ab

∫
d�

(iab)
rad,1

sab

sia sib

= (4π)ǫ−2

s̄
(iab)
ab

Ŵ(1 − ǫ)Ŵ(2 − ǫ)

ǫ2 Ŵ(2 − 3ǫ)
. (5.43)

From the explicit expressions of I (1), s and I (12), s on the

r.h.s. of Eq. (5.42) it is evident that the two counterterm share

the same phase space singularities, which then cancel in the

combination I (1), s− I (12), s. Analogous considerations apply

to the hard-collinear component, so that I (1) − I (12) is free

of implicit poles.

Applying a similar procedure also for the collinear compo-

nent, the complete single-unresolved integrated counterterm

reads

I (1) = αs

2π

(μ2

s

)ǫ ∑

h,q �=h

Whq

×
{

R
(
{k̄}

)∑

a

(C fa

ǫ2
+ γa

ǫ

)

+
∑

a,b �=a

Rab

(
{k̄}

)1

ǫ
log η̄ab

+R
(
{k̄}

)∑

a

[
δ fa g

CA + 4TR NF

6

(
log η̄ar − 8

3

)

+δ fa gCA

(
6 − 7

2
ζ2

)]

+
∑

a,b �=a

Rab({k̄}) log η̄ab

(
2 − 1

2
log η̄ab

)}
. (5.44)

Notice that after the integration, the barred variables can be

relabelled to the same real kinematics {k̄}, and that the sum

over h, q runs over the NLO partons, and barred momenta

and invariants refer to the NLO kinematics.

Double-real: pure double-unresolved counterterm

In order to integrate the NNLO kernels in the double-

unresolved phase space we need to implement NNLO map-

ping that can simplify the integration procedure. To this pur-

pose, we introduce double Catani–Seymour mappings [105],

designed as a generalisation of the NLO mapping in Eq. (5.7),

and able to reduce the initial set of n + 2 momenta to n on-

shell momenta without breaking total momentum conserva-

tion. The double mapping is defined as

{ k̄ }(abcd) =
{
{k}/a/b/c/e� f , k̄(abcd)

e , k̄
(abcd)
f

}
,

k̄(abcd)
n = kn, n �= a, b, c, d,
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k̄(abcd)
c = k̄

(abc)
b + k̄(abc)

c − s̄
(abc)
bc

s̄
(abc)
bd + s̄

(abc)
cd

k̄
(abc)
d ,

k̄
(abcd)
d = s̄

(abc)
bcd

s̄
(abc)
bd + s̄

(abc)
cd

k̄
(abc)
d . (5.45)

We then introduce the Catani–Seymour parameters

y′ = sab

sabc

, z′ = sac

sac + sbc

,

y = s̄
(abc)
bc

s̄
(abc)
bcd

, z = s̄
(abc)
bd

s̄
(abc)
bd + s̄

(abc)
cd

, (5.46)

to factorise the (n + 2)-body phase space as

d�n+2 = d� (abcd)
n d�

(abcd)
rad,2 ,

d�
(abcd)
rad,2 = d�

(abc)
rad d�

(abcd)
rad . (5.47)

The double unresolved phase space can be written as an inte-

gral over the variables (φ, y, z, x ′, y′, z′) as

∫
d�

(abcd)
rad,2 = (4π2)ǫ−4

π Ŵ2(1/2 − ǫ)
(sabcd)2−2ǫ

×
∫ 1

0

dx ′ [x ′(1 − x ′)
]−1/2−ǫ

∫ 1

0

dy′

×
∫ 1

0

dz′
∫ π

0

dφ sin−2ǫ φ

×
∫ 1

0

dy

∫ 1

0

dz
[

y′(1 − y′)2 z′(1 − z′)

×y2(1 − y)2 z(1 − z)
]−ǫ

(1 − y′) y(1 − y),

(5.48)

where y′ and z′ are the variables relative to the secondary-

radiation phase space, and x ′ parametrises the azimuth

between subsequent emissions.

As an example, we consider the contribution to the double

soft barred limit Si j R R stemming from the qq̄ configuration.

The core structure of such a limit embeds the NNLO soft

current in Eq.(96) of Ref. [113], which reads

I
(i j)

cd = sic s jd + sid s jc − si j scd

s2
i j (sic + s jc) (sid + s jd)

, (5.49)

with i, j referring to the unresolved partons, and c, d to the

emitting particles. To integrate this current we choose to

parametrise the double-unresolved phase space according to

the (i jcd) mapping. In this parametrisation, the denomina-

tors appearing in Eq. (5.49) read

si j = y′y s̄
(i jcd)

cd , sic + s jc = (1 − y′)y s̄
(i jcd)

cd ,

sid + s jd = (y′ + z − y′z)(1 − y) s̄
(i jcd)

cd , (5.50)

while in the numerators only polynomials in the Catani–

Seymour parameters appear. Note that also the dependence

on the azimuth is completely factorised and occurs only in

the numerator through s jd and sid , since

s jd = (1 − y)
[
y′z′(1 − z) + (1 − z′)z

+2(1 − 2x ′)
√

y′z′(1 − z′)z(1 − z)
]

s̄
(i jcd)

cd , (5.51)

and sid = (y′ +z− y′z)(1− y) s̄
(i jcd)

cd −s jd . The phase space

integral assumes the following form

∫
d�

(abcd)
rad,2 I

(i j)
cd ∝ (s̄

(i jcd)

cd )
−2ǫ

∫ 1

0

dx ′ [x ′(1 − x ′)
]−1/2−ǫ

×
∫ 1

0

dy′
∫ 1

0

dz′
∫ π

0

dφ sin−2ǫ φ

×
∫ 1

0

dy

∫ 1

0

dz
[

y′(1 − y′)2 z′(1 − z′)

×y2(1 − y)2 z(1 − z)
]−ǫ

× N

(y′)2 y2 (y′ + z − y′z)
, (5.52)

where the numerator reads in full generality

N = zℓ1(1 − z)ℓ2 ym1(1 − y)m2 (z′)n1

×(1 − z′)n2 (y′)r1(1 − y′)r2(1 − 2x ′)k . (5.53)

Now we sketch the integration procedure by considering one

variable at a time: the integration over φ is trivial, the one

over y returns a simple Beta function B(m1 − 1 − 2ǫ, m2 +
1 − 2ǫ), with m1, m2 ∈ Z, and the azimuth contribution is

B(1/2 − ǫ, 1/2 − ǫ) δk 0. The trivial dependence on z′ in the

numerator enables a straightforward integration that returns

B(n1 + 1 − ǫ, n2 + 1 − ǫ), with n1, n2 being integers or

semi-integers. The z variable features instead a less-trivial

structure, which however can be integrated according to

∫ 1

0

dz
zℓ1−ǫ (1 − z)ℓ2−ǫ

y′ + z − y′ z

= B(ℓ1 + 1 − ǫ, ℓ2 + 1 − ǫ) 2 F1

×(1, ℓ2 + 1 − ǫ, ℓ1 + ℓ2 + 2 − 2ǫ, 1 − y′). (5.54)

The remaining integration over y′ is tackled by applying

recursively the hypergeometric function properties until we

obtain 2 F1(−ǫ,−2ǫ, 1 − 2ǫ, 1 − y′). The series expansion

of such class of hypergeometric functions is known at all

orders in ǫ in terms of Spence functions. At this point the

poles in ǫ can be extracted using the plus prescription and

the remaining integration over y can be carried out with stan-

dard techniques.

We stress that the qq̄ case is particularly simple, since no

denominators containing the azimuth appear in the current

structure after the parametrisation. For the gg case (and for

the collinear contributions) the integration is much more

involved. However, in our approach it can be carried out with

standard techniques [115]. Similar integrals have been com-

puted in the context of other NNLO schemes, for instance
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by means of integration by parts identities and differential

equations machinery [120,121].

5.5 Double virtual contribution

Given a general strategy to define double-unresolved and

real-virtual counterterms (see Sect. 5.4) we have to identify

the IR singularities of the double-virtual matrix element, that

we assume to be already UV renormalised. From the stud-

ies carried on in the context of IR factorisation [122–124],

the infrared poles of gauge theory scattering amplitudes are

known to organise according to

A

(
pi

μ
, αs(μ), ǫ

)

= Z

(
pi

μ
, αs(μ), ǫ

)
H

(
pi

μ
, αs(μ), ǫ

)
, (5.55)

where A is a generic n-parton amplitude, H is finite for ǫ →
0 and Z is a color operator with a universal form. In Eq. (5.55)

all the color indices are understood, to simplify the notation.

The operator Z obeys a renormalisation group equation that

can be solved in terms of the anomalous dimension Ŵ as

described by the following expression

Z

(
pi

μ
, αs(μ), ǫ

)

= P exp

{∫ μ

0

dλ

λ
Ŵ
( pi

λ
, αs(λ), ǫ

)}
. (5.56)

The operator Ŵ, in turn, manifests a universal behaviour reg-

ulated by the dipole formula [122–125]

Ŵ
( pi

λ
, αs(λ), ǫ

)
= 1

2
γ̂k(αs(λ, ǫ))

×
n∑

i, j>i=1

ln

(
2 pi · p j eiπσi j

λ2

)
Ti · T j

−
n∑

i=1

γi (αs(λ, ǫ)), (5.57)

where the σi j is a phase factors that equals 1 if i, j are both

in the initial or in the final state, and vanishes otherwise.

The function γ̂k is a universal quantity related to the cusp

anomalous dimension, and the jet anomalous dimensions γi

are related to the anomalous dimensions of quark and gluon

fields. Finally, Ta are color operators [73,126]. By expanding

Ŵ at two-loop order, and then deriving the expression of Z, it

is straightforward to obtain the singular part of the squared

amplitude up to α2
s by means of Eq. (5.55). As a result, the

double virtual matrix element features infrared poles that

obey the following general structure [123] [127]:

V Vpoles =
(αs

π

)2
[

− 1

8ǫ4

(∑

i

C fi

)2
B

+ 1

4ǫ3

(∑

i

C fi

)(3

8
b0 + 2

∑

j

γ
(1)
j

)
B

+ 1

4 ǫ2

[(
− b0

2

∑

i

γ
(1)
i

− γ̂
(2)
k

4

∑

i

C fi
− 2

(∑

i

γ
(1)
i

)2)
B

+b0

4

∑

i, j �=i

ln
si j

μ2
Bi j

+1

4

∑

i, j �=i
k,l �=k

ln
si j

μ2
ln

skl

μ2
Bi jkl

]

+ 1

2ǫ

[∑

i

γ
(2)
i B − γ̂

(2)
k

4

∑

i, j �=i

ln
si j

μ2
Bi j

−
∑

i, j �=i

ln
si j

μ2
Hi j

]]

−αs

π

[
1

2ǫ2

∑

i

C fi
− 1

ǫ

∑

i

γ
(1)
i

]
V

(5.58)

with C fi
being the Casimir eigenvalue for the leg i and

b0 = (11CA − 4TR N f )/3 being the one loop β-function

coefficient. The quantity Hi j is a process-dependent finite

contribution that derives from the virtual matrix element,

while Bab and Babcd are respectively the single and double

colour-correlated Born matrix elements:

Bab ≡ 〈AB |Ta · Tb|AB〉,
Babcd ≡ 〈AB |{Ta · Tb, Tc · Td}|AB〉. (5.59)

From Eq. (5.58) it is evident that such a structure can be

implemented in the subtraction procedure only given the

knowledge of the necessary anomalous dimensions, which

however can be found in the literature. Moreover, also the

process-dependent quantity Hi j has to be considered as an

external input of the scheme.

5.6 Application: TRCF contribution to e+e− → j j at

NNLO

The validation of the subtraction scheme has been performed

for the two jet production in e+e− annihilation, considering

for the moment only the TRCF contribution [105]. The virtual

e+e− → q1q̄2, real-virtual e+e− → q1q̄2g[34], and double

real e+e− → q1q̄2q ′
3q̄ ′

4 contributions to the inclusive cross-

section are known analytically from Refs. [36,128,129]

V V = B
( αs

2π

)2
TRCF

{(μ2

s

)2ǫ[ 1

3ǫ3
+ 14

9ǫ2
+ 1

ǫ

(353

54
− 11

18
π2

)

+7541

324
− 77

27
π2 − 26

9
ζ3

]
+

(μ2

s

)ǫ[
− 4

3ǫ3
− 2

ǫ2
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+1

ǫ

(
− 16

3
+ 7

9
π2

)
− 32

3
+ 7

6
π2 + 28

9
ζ3

]}

∫
d�rad RV = B

( αs

2π

)2
TRCF

(μ2

s

)ǫ[ 4

3ǫ3
+ 2

ǫ2

+1

ǫ

(19

3
− 7

9
π2

)
+ 109

6
− 7

6
π2 − 100

9
ζ3

]

∫
d�rad,2 R R = −B

( αs

2π

)2
TRCF

(μ2

s

)2ǫ

×
[ 1

3ǫ3
+ 14

9ǫ2
+ 1

ǫ

(407

54
− 11

18
π2

)
+ 11753

324
− 77

27
π2 − 134

9
ζ3

]
.

(5.60)

We can now compute the local counterterms and their inte-

grated counterparts, showing the cancellation of the singu-

larities presented above. The double real matrix element

presents single phase space singularities corresponding to

the single collinear limit only. The double-unresolved sin-

gularities arise from the configurations where both the emit-

ted quarks are soft, or they are collinear to one of the hard

Born-level fermion. The relevant limits in the unbarred kine-

matics are Ci j R R, Si j R R, Ci jk R R, Si j Ci jk R R, on top of

the NLO limits, relevant for the real-virtual counterterm.

Here {i, j} = {3, 4}, and {i jk} = {134, 234}, and r =
{1, 2, 3, 4}, r �= i, j, k. The resulting complete set of coun-

terterms is then given by

K
(1) = C34 R R, (5.61)

K
(2) =

(
S34 + C123(1 − S34) + C234(1 − S34)

)
R R,

(5.62)

K
(12) = C34

(
S34 + C123(1 − S34)

+C234(1 − S34)

)
R R, (5.63)

K
(RV ) = αs

2π

2

3ǫ
TR

[
S[34]

+C1[34]
(
1 − S[34]

)
+ C2[34]

(
1 − S[34]

)]
R.

(5.64)

The explicit definitions of the contributing limits in the

remapped kinematic are reported in Ref. [105]. In the evalu-

ation of the corresponding integral we need to introduce an

appropriate mapping, and then apply the integration strategy

sketched in the previous sections. In particular

∫
d�rad,2 Si j R R

= N
2

1 TRCF

2∑

c,d=1

Bcd

(
{k̄}(i jcd)

) ∫
d�

(i jcd)

rad,2

×
[ sic s jd + sid s jc − si j scd

s2
i j (sic + s jc) (sid + s jd )

− sic s jc + sic s jc

s2
i j (sic + s jc)2

− sid s jd + sid s jd

s2
i j (sid + s jd )2

]

= −B
( αs

2π

)2
TRCF

(μ2

s

)2ǫ[ 1

3ǫ3
+ 17

9ǫ2

+1

ǫ

(232

27
− 7

18
π2

)
+ 2948

81
− 131

54
π2 − 38

9
ζ3

]
,

∫
d�rad,2 Ci jk R R = N 2

1

2
Bμν

(
{k̄}(i jkr)

)

×
∫

d�
(i jkr)

rad,2

P
μν
i jk

si jk

= −B
( αs

2π

)2
TRCF

(μ2

s

)2ǫ

×
[ 1

3ǫ3
+ 31

18ǫ2
+ 1

ǫ

(889

108
− 1

2
π2

)
+ 23941

648
− 31

12
π2 − 80

9
ζ3

]
.

Let us stress that the spin-dependent component of the

double-collinear Altarelli–Parisi splitting function vanishes

upon integration. Finally, the composite limit Si j Ci jk R R

coincides with the double soft contribution Si j R R, given the

fact that k and r have to be different from i, j , and in this spe-

cific process they can only coincide with 1 and 2. Summing

all the contributions, as prescribed by Eq. (5.62), we easily

obtain the double-unresolved integrated counterterm

I (2) = B
( αs

2π

)2
TRCF

(μ2

s

)2ǫ[
− 1

3ǫ3
− 14

9ǫ2

+1

ǫ

(11

18
π2 − 425

54

)

+12149

324
+ 74

27
π2 + 122

9
ζ3

]
. (5.65)

The next contribution is due to the single unresolved con-

figurations, which are entirely reproduced by the collinear

limit C34. The expression of TRCF contribution to I (1) can

be directly read from Eq. (5.44) returning

I
(1)
hq = − αs

2π

(μ2

s

)ǫ 2

3
TR

(1

ǫ
− log η̄[34]r + 8

3

)
R Whq

(5.66)

here {h, q} = {1, 2, [34]}. The mixed-double unresolved

counterterm is given by

I
(12)
hq = − αs

2π

2

3
TR

(μ2

s

)ǫ(1

ǫ
− log η̄[34]r + 8

3

)

×
[
Sh + Chq(1 − Sh)

]
R Whq . (5.67)

Finally, the real-virtual counterterm reads

K
(RV)

hq = αs

2π

2

3
TR

1

ǫ

[
Sh + Chq(1 − Sh)

]
R Whq , (5.68)

and its integrated counterpart that results

I (RV ) = αs

2π

2

3

1

ǫ
TR

∫
d�rad

[
S[34]

+C1[34](1 − S[34]) + C2[34](1 − S[34])
]

R

= B
( αs

2π

)2
TRCF

(μ2

s

)ǫ[ 4

3ǫ3
+ 2

ǫ2

+1

ǫ

(20

3
− 7

9
π2

)
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+20 − 7

6
π2 + 100

9
ζ3

]
(5.69)

We can check verify that all the expected cancellations take

place. The subtracted double real matrix element is finite by

construction, the difference K
(RV ) + I (12) has to be finite

sector-by-sector, and indeed we have

K
(RV )

hq + I
(12)
hq

= − αs

2π

2

3
TR

(
log

μ2

s[34]r
+ 8

3

)[
Sh + Chq(1 − Sh)

]
R Whq ,

(5.70)

which is clearly free of explicit poles. The real-virtual matrix

element has to be finite for ǫ → 0 when combined with I (1),

thanks to the KLN theorem. Indeed we have

RV Whq + I
(1)
hq = − αs

2π

2

3
TR

(
log

μ2

s[34]r
+ 8

3

)
R Whq .

(5.71)

The comparison between Eqs. (5.70) and (5.71) makes evi-

dent that the phase space singularities of the two objects can-

cel in the combination RV Whq + Ihq − (K
(RV)

hq + I
(12)
hq ).

Finally, the double-virtual poles are cancelled by the sum

I (2) + I (RV), as one can easily deduce by looking at the

expressions in Eqs. (5.65)–(5.69).

5.7 Discussion

In this manuscript, we have reviewed the main aspects of the

local analytic sector subtraction scheme.

We have recently computed all the integrated counterterms

that are necessary to have a fully general subtraction method

(for massless, final-state QCD).

It is evident from the discussion above that the scheme

benefits from an optimised partition and parametrisation of

the phase space, which allows for the analytic integration of

the singular kernels arising both from the double real and the

real-virtual matrix element.

Currently, the subtraction scheme is fully validated at

NLO for a generic process with final state partons. With

regards to NNLO, we have computed the CF TR contribu-

tion to the inclusive e+e− → j j cross-section. Much work

is in progress to further check the scheme in less trivial pro-

cesses, towards its the generalisation to any final state QCD

process.

Beyond this, the next steps will concern the extension of

the scheme to the treatment of initial state radiation. Very

recently, a preliminary successful study has been carried

out at NLO. Extending it to NNLO is expected to be time-

consuming, but not to present conceptual novelties. However

we foresee to be able to propose a similar structure as the one

for final-state radiation. The generalisation to the massive

case is expected to be more involved, especially concerning

the integration procedure.

6 The qT-subtraction method

In the recent years a huge effort was made by the experimental

community to increase the accuracy of high-energy physics

measurements. On the theory side, then, it has become

mandatory to aim at a deeper understanding of the perturba-

tive behaviour of the Standard Model (SM), which translates

into a need for better control on higher-order calculations, as

long as on the issues they yield.

One of them addresses the handling of IR divergences

appearing in the intermediate stages of higher-order QCD

computations. Once their cancellation is under control at

numerical level, order-by-order in the relevant coupling con-

stant, a step forward is made towards an attempt of a tentative

SM falsification, within the comparison with the experimen-

tal result.

Monte Carlo generators regularise the IR divergences

appearing in real and virtual contributions to scattering

amplitudes with subtraction prescriptions. Such subtraction

methods are not only capable of producing total cross sec-

tions as well as differential distributions, but they also allow

the implementation of the same selection cuts imposed by

the experiment.

In order to expose the cancellation of the IR divergences

between real and virtual contributions, the behaviour of the

scattering amplitudes at the boundaries of the phase space

is the key ingredient used by subtraction methods, such

as the well-established ones proposed in Refs. [73,74] for

NLO computations and those developed for NNLO calcula-

tions. Examples of them are the transverse-momentum (qT)

subtraction method [130–132], the N -jettiness subtraction

[12,13], the projection-to-Born [15], the residue subtrac-

tion [6,110] and the antenna subtraction method [108,109,

133],16 which have all been successfully applied to LHC phe-

nomenology. The qT-subtraction method was also applied

for the first time to differential cross sections (for hadron-

hadron collisions) at N3LO in Ref. [134]. Other N3LO differ-

ential computations can be found in Refs. [135–138]. Also,

N3LO differential results to jet production in deep inelas-

tic scattering (DIS) and charged current DIS were calculated

using the projection-to-Born method in Refs. [139] and [140],

respectively. Moreover, the qT-subtraction method was also

extended in order to deal with massive partons in the final

state [141,142], with initial-state QED corrections [143],

with final-state QED radiation [144] and recently with mixed

QCD–QED corrections at full NNLO [145].

16 An elaborated discussion of the antenna subtraction method shall be

presented in Sect. 7.
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6.1 The master formula of the qT-subtraction method

We consider the inclusive hard-scattering reaction

h1(p1) + h2(p2) → F({qi }) + X, (6.1)

where h1 and h2 are two hadrons colliding with momenta

p1 and p2 and triggering the final-state system F along with

an arbitrary and undetected final state X . The observed final

state F consists of a system of non-QCD partons composed

by one or more colour-singlet particles, e.g. vector bosons,

photons, Higgs bosons, Drell–Yan lepton pairs, etc., with

four-momenta qi . The total four-momentum of the system F

is denoted by q, with

q =
∑

i

qi , (6.2)

and can be expressed in terms of the total invariant mass

M , the transverse momentum qT w.r.t. the direction of the

colliding hadrons, and the rapidity

y = 1

2
log

p2 · q

p1 · q
(6.3)

in the centre-of-mass system of the collision. Since F is

colourless, the LO partonic Born cross section can be either

initiated by qq ′ annihilation, as in the case of the Drell–Yan

process, or by gluon–gluon fusion, as in the case of Higgs

boson production.

In order to describe the structure of the subtraction for-

malism we first notice that, at LO, the transverse momentum

qT =
∑

i

qTi (6.4)

of the final state system F is identically zero. Therefore, as

long as qT �= 0, the NnLO QCD contributions, with n =
1, 2, 3, are given by the Nn−1LO QCD contributions to the

triggered final state F+jet(s).17 Consequently, if qT �= 0 we

have

dσ F
NnLO(qT �= 0) ≡ dσ

F+jets

Nn−1LO
, n = 1, 2, 3. (6.5)

implying that, if qT �= 0, the IR divergences appearing in the

computation of dσ F
NnLO(qT �= 0) are those already present in

dσ
F+jets

Nn−1LO
.

The IR singularities involved in dσ F
NnLO(qT �= 0) can be

handled and cancelled by the available subtraction methods

at Nn−1LO. The only remaining singularities at NnLO are

17 The notation NnLO stands for: N0LO = LO, N1LO = NLO, N2LO

= NNLO, and so forth.

associated with the limit qT → 0 and are treated with the qT-

subtraction method.18 Since the small-qT behaviour of the

transverse-momentum cross section is well known through

the resummation program of logarithmically-enhanced con-

tributions to transverse-momentum distributions, see Refs.

[146–155], we exploit this knowledge to build the necessary

counterterms in order to subtract the remaining singularity,

thus promoting the qT-subtraction method proposed in Refs.

[130,131,156] to N3LO.

The sketchy form of the qT-subtraction method for the

NnLO cross section, see Ref. [130], is

dσ F
NnLO = H

F
NnLO ⊗ dσ F

LO

+
[
dσ

F+jets

Nn−1LO
− dσ F CT

NnLO

]
, n = 1, 2, 3, (6.6)

where dσ F CT
NnLO is the contribution of the counterterm to

the NnLO cross section which cancels the divergences of

dσ
F+jets

Nn−1LO
in the limit qT → 0. The n-order counterterm can

be written as

dσ F CT
NnLO = �F

NnLO

(
q2

T

M2

)
d2qT ⊗ dσ F

LO, (6.7)

where the symbol ⊗ stands for convolutions over momen-

tum fractions and sum over flavour indices of the partons.

More precisely, the function �F
NnLO(q2

T/M2) is the n-order

truncation of the perturbative series in αs

�F
cc̄←a1a2

(
q2

T

M2

)
=

∞∑

n=1

αs

π

n
�

F;(n)
cc̄←a1a2

(
q2

T

M2

)
, (6.8)

where the labels a1 and a2 stands for the partonic channels

of the NnLO correction to the Born cross section (dσ F
LO ≡

d
[
σ

F;(0)
cc̄

]
). Notice that at LO the only available configura-

tion is a1 = c and a2 = c̄, where cc̄ is (are) the partonic

channel(s) at which the LO cross section is initiated. The

function �F (q2
T/M2) embodies all the logarithmic terms that

are divergent in the limit qT → 0, reproducing the singular

behaviour of dσ F+jets in the small-qT limit.19 The countert-

erm is defined free of terms proportional to δ(q2
T), which are

all considered in the perturbative factor HF . The hard coeffi-

cient function HF
NnLO, that encodes all the IR finite terms of

18 This point is a great advantage for qT-subtraction, since the method

profits from lower-order results. However, this also alters the specific

IR behaviour of the contributions, preventing a fully local cancellation.

19 These counterterms have a universal structure, and are local in the

variable qT .
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the n-loop contributions, is obtained by the NnLO truncation

of the perturbative function

H
F
cc̄←a1a2

(z;αs) = δc a1 δc̄ a2 δ(1−z)+
∞∑

n=1

(αs

π

)n

H
F;(n)
cc̄←a1a2

(z),

(6.9)

where z = M2/s.20 According to the transverse momentum

resummation formula, see Eq. (10) of Ref. [131], and using

the Fourier transformation between the conjugate variables

qT and b (the impact parameter), the perturbative hard func-

tion HF and the counterterm are obtained by the fixed order

truncation of the following identity

[
�F

cc̄←a1a2

(
q2

T

M2

)
+ H

F
cc̄←a1a2

(
M2

s
; αs

)]
⊗ d

[
σ̂

F;(0)
cc̄

]

= M2

s

∫ ∞

0

db
b

2
J0(b qT) Sc(M, b)

×
∫ 1

x1

dz1

z1

∫ 1

x2

dz2

z2
dσ̂

F;(0)
cc̄ fa1/h1

(
x1

z1
,

b2
0

b2

)

× fa2/h2

(
x2

z2
,

b2
0

b2

)
⊗

[
H F C1 C2

]
cc̄;a1a2

, (6.10)

where J0(b qT) is the 0th-order Bessel function, fc/h cor-

responds to the distribution of a parton c in a hadron h and

b0 = 2e−γE (γE = 0.5772 . . . is the Euler number). The

symbolic factor dσ̂
F;(0)
cc̄ for the partonic Born cross section

σ̂
F;(0)
cc̄ denotes

dσ̂
F;(0)
cc̄ ≡ dσ̂

F;(0)
cc̄

dφ
, (6.11)

where φ represents the phase space of the final-state sys-

tem F . In the l.h.s. of Eq. (6.10) the convolution (as well as

the sum over the flavour indices of the partons) between the

resummation functions �F
cc̄ and HF

cc̄, the partonic Born cross

section and the parton distributions is symbolically denoted

by ⊗ d
[
σ̂

F;(0)
cc̄

]
.

The large logarithmic corrections are exponentiated in the

Sudakov form factor Sc(M, b) of the quark (c = q, q̄) or of

the gluon (c = g), that has the following expression

Sc(M, b) = exp

{
−

∫ M2

b2
0/b2

dq2

q2

[
Ac

(
αs

(
q2

))
log

M2

q2

+Bc

(
αs

(
q2

)) ]}
. (6.12)

20 The definition of the hard coefficients requires the computation of the

virtual matrix elements in d-dimensions, in order to explicitly remove

the poles. Thus, the real-virtual cancellation of singularities is not fully

local, as in fdu.

The functions A and B in Eq. (6.12) are perturbative series

in αs :

Ac(αs) =
∞∑

n=1

(αs

π

)n

A(n)
c , (6.13)

Bc(αs) =
∞∑

n=1

(αs

π

)n

B(n)
c . (6.14)

The structure of the symbolic factor denoted by[
H F=H C1 C2

]
cc̄;a1a2

, that strongly depends on the initial-

state channel of the Born subprocess, is explained with detail

in Refs. [132,157].

6.2 Higher-order power corrections at NLO

There are subtraction methods which are independent of

any regularising parameter and proceed by building local

counterterms and point-wisely subtracting the IR divergences

along the phase space – thus they are mentioned to be local,

while other, such as the qT-subtraction method, introduce a

regularising, or slicing, parameter, i.e. a cutoff scale, in order

to separate different IR regions.21

Such separation of the phase space introduces instabilities

in the numerical evaluation of cross sections and differential

distributions [158–161], and some care has to be taken in

order to obtain stable and reliable results. Furthermore, the

knowledge of logarithmic and power-correction terms in the

cutoff plays a relevant role in the identification of universal

structures, in the development of regularisation prescriptions

and in resummation programs [146–155,162].

In Ref. [163] a study was conducted about how power

corrections in the cutoff may affect the application of the qT-

subtraction method to the production of a colourless system

at next-to-leading order in the strong coupling constant αs –

in particular, to Drell–Yan vector (V) and Higgs (H) boson

production in gluon fusion at NLO in QCD, in the infinite

top-mass limit.

In fact, the singular terms in the small-cutoff limit are

universal and are cancelled by the application of the qT-

subtraction (or other methods), while finite and vanishing

terms are, in general, process dependent and thus, after the

subtraction procedure, a residual dependence on the cutoff

remains as power corrections. While these terms formally

vanish in the null cutoff limit, they give a non-zero numeri-

cal contribution for any finite choice of the cutoff.

If one is able to take into account such terms, not only our

understanding of the perturbative behaviour of QCD cross

21 The main advantage of qT-subtraction is its universality for achiev-

ing a cancellation of singularities, which allow to apply the method

to several processes up to NNLO. The local structure of the required

counterterms is much more complicated than the one obtained within

this formalism.
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sections increases from a theoretical point of view, but also

the numerical implementation of the subtraction becomes

more robust, since the power terms weaken the dependence

of the final result on the arbitrary cutoff. Notice that this

becomes more relevant from a numerical point of view,

when applied to higher-order calculation, as pointed out, for

example, in the evaluation of NNLO cross sections in Refs.

[160,161].

Power corrections at NLO have been extensively stud-

ied in Refs. [164–173] both for N -jettiness and transverse

momentum distributions, in the context of the N -jettiness

subtraction method, and in Refs. [174–179] within SCET-

based subtraction methods. Power corrections at NLO for

the transverse momentum of a colour singlet have been

derived for the first time at differential level in Ref. [180]

within the SCET framework. This study has been followed,

with a different method, by Ref. [163], which is considered

in more detail in the following, and by Ref. [144], which

among other new results was able to confirm the former. A

numerical extraction of power corrections in the context of

NNLL’+NNLO calculations was done in N -jettiness [162],

and a general discussion in the context of the fixed-order

implementation of the N -jettiness subtraction can be found

in Ref. [13].

6.3 Power corrections for V and H production at NLO in

QCD

In Ref. [163] it is considered the production of a colourless

system F of squared invariant mass Q2 plus a coloured sys-

tem X at a hadron collider

h1 + h2 → F + X. (6.15)

The hadronic cross section can be written as

σ =
∑

a,b

∫ 1

τ

dx1

∫ 1

τ
x1

dx2 fa(x1) fb(x2)

×
∫

dq2
T dz

dσ̂ab(qT, z)

dq2
T

δ

(
z − Q2

s

)
,

=
∑

a,b

τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
1

z

∫
dq2

T

dσ̂ab(qT, z)

dq2
T

, (6.16)

where

τ = Q2

S
, z = Q2

s
, (6.17)

fa/b are the parton densities of the partons a and b, in the

hadron h1 and h2 respectively, S is the hadronic squared

centre-of-mass energy, s is the partonic squared centre-of-

mass energy, equal to

s = S x1 x2, (6.18)

dσ̂ab is the partonic cross section for the process a + b →
F + X , qT is the transverse momentum of the system F with

respect to the hadronic beams and the luminosity function is

defined as

Lab(y) ≡
∫ 1

y

dx

x
fa(x) fb

( y

x

)
. (6.19)

The dependence on the renormalisation and factorisation

scales and on the other kinematic invariants of the process

are implicitly assumed.

In the small-qT region, i.e. qT ≪ Q, the real contribu-

tion to the perturbative partonic cross sections appearing

in Eq. (6.16) contains well-known logarithmically-enhanced

terms that are singular in the qT → 0 limit [146–155]. The

general structure of the power-correction terms, at variance

with that of the singular logarithms, is unknown. Thus, it is

useful to inquire about it, in order to find out whether it can

as well be derived a universal structure, or whether at least

part of it follows a universal behaviour in connection with its

infrared limit.

On the other hand, in order to actually extract the power

corrections, the starting point is the real contribution at small

qT to the processes, first at parton level:

σ̂<
ab(z) ≡

∫ (qcut
T )

2

0

dq2
T

dσ̂ab(qT, z)

dq2
T

. (6.20)

Since in this case the total cross section is analytically known,

one may refer to the above-qcut
T region

σ̂>
ab(z) =

∫ (qmax
T )

2

(qcut
T )

2
dq2

T

dσ̂ab(qT, z)

dq2
T

, (6.21)

where qmax
T is the maximum value for qT allowed by the

kinematics, and derive the below-qcut
T contribution as a dif-

ference.

At hadron level, when a cut on the transverse momentum is

imposed, the reality of the parton-level cross sections restricts

the z-integration

σ<
ab = τ

∫ 1− f (a)

τ

dz

z
Lab

(
τ

z

)
1

z
σ̂<

ab(z)

≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0) R̂ab(z), (6.22)

where

a = q2
T

Q2
(6.23)
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is the chosen basis for presenting the power corrections and

σ̂ (0) is the partonic Born-level cross section for the produc-

tion of the colourless system F .

In the second line of Eq. (6.22) the z-integration limit is

extended to one, aiming to make contact with the transverse-

momentum subtraction formulae, that describe the behaviour

of the cross sections in the soft and collinear limits, namely

a Born-like kinematics is required. The function R̂ab(z) is

defined within this purpose and admits a perturbative expan-

sion in αs , whose coefficient functions R̂
(n)
ab (z) can be com-

puted as power series in a. Here the interest is driven to

the NLO coefficient, whose form is well-known in literature

[181] up to the vanishing power-correction terms

R̂
(1)
ab (z) = log2(a) R̂

(1,2,0)
ab (z)

+ log(a) R̂
(1,1,0)
ab (z) + R̂

(1,0,0)
ab (z) + O

(
a

1
2 log a

)
.

(6.24)

Notice that in Refs. [131,181], the following associations

hold

R
(1,2,0)
ab (z) ↔ �

F(1;2)
cc̄←ab(z) (6.25)

R
(1,1,0)
ab (z) ↔ �

F(1;1)
cc̄←ab(z) (6.26)

H
F(1)
cc̄←ab(z) ↔ R

(1,0,0)
ab (z). (6.27)

The aim of Ref. [163] is the computation of the missing orders

in Eq. (6.24). In order to achieve such result, in a way similar

to what is showed in Eq. (6.21),22 the function Ĝab(z) is

introduced via the definition

σ>
ab = τ

∫ 1− f (a)

τ

dz

z
Lab

(
τ

z

)
1

z
σ̂>

ab(z)

≡ τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0) Ĝab(z). (6.28)

At first order in αs it holds

σ
>(1)
ab = τ

∫ 1− f (a)

τ

dz

z
Lab

(
τ

z

)
1

z
σ̂

>(1)
ab (z)

= τ

∫ 1

τ

dz

z
Lab

(
τ

z

)
σ̂ (0) Ĝ

(1)
ab (z). (6.29)

and a process-independent formula is elaborated in the paper

in order to transform an integral of the form of the first one

in Eq. (6.29) into the form of the second one, producing the

series expansion of Ĝ
(1)
ab (z) in a. Also, the procedure enables

to reach any order in the transverse momentum cut-off.

The results are lengthy and the reader is referred to the

original paper. Here, it will suffice to remember that, for

the calculation of these functions, all the terms originating

from the manipulation of the contributions proportional to the

22 The same method was used in Refs. [181,182], at leading power in

a, to extract the soft constant of the qT-subtraction hard function and the

second-order collinear coefficient functions for the qT-resummation.

Altarelli–Parisi splitting functions at the level of the partonic

cross sections constitute the so-called “universal part” of the

results.

The general form of the Ĝ
(1)
ab (z) functions reads

Ĝ
(1)
ab (z) = log2(a) Ĝ

(1,2,0)
ab (z)

+ log(a) Ĝ
(1,1,0)
ab (z) + Ĝ

(1,0,0)
ab (z)

+a log(a) Ĝ
(1,1,2)
ab (z) + a Ĝ

(1,0,2)
ab (z)

+a2 log(a) Ĝ
(1,1,4)
ab (z)

+a2 Ĝ
(1,0,4)
ab (z) + O

(
a

5
2 log(a)

)
, (6.30)

all the other coefficients being zero. The terms in the first

line of Eq. (6.30) are referred to as leading terms (LT). These

terms are either logarithmically divergent or finite in the

a → 0 limit. The terms in the sum in the second line of

Eq. (6.30) are referred to as next-to-leading terms (NLT),

the first two terms in the third line as next-to-next-to-leading

terms (N2LT), and so forth.

The results display some important features:

(i) no odd-power corrections of
√

a = qcut
T /Q appear in the

NLT and N2LT terms;

(ii) the NLT and N2LT terms are at most linearly dependent

on log(a);

(iii) the non-universal contribution in fact appears to be

highly dependent on the process at stake, thus making

impossible a generalisation of the procedure to any pro-

cess.

6.4 Discussion

Although there is not a general proof, what is found for

the inclusive cross section expanded up to (qcut
T )4, i.e. the

absence of odd-power corrections in qcut
T , is thought to be

valid even at higher orders. One is not to expect this to be

true, in general, for more exclusive quantities – to this regard,

see also Ref. [173].

Aside from this, it is useful to remark the importance of

the knowledge of power-corrections terms within the qT-

subtraction method.

In the original paper [130], the expansion in αs of

the transverse-momentum resummation formula generates

exactly the three terms in Eq. (6.24), plus extra power-

correction terms. In the formula for R̂
(1)
ab (z) that one can

build from the new expression of Ĝ
(1)
ab (z), by changing the

overall sign and adding the δ(1−z) contribution from the vir-

tual correction, the power-correction terms are exactly those

produced by the expansion of the real amplitudes. If one

is interested in using the formula for R̂
(1)
ab (z) to reduce the

dependence on the transverse-momentum cutoff, within the
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qT-subtraction method, the aforementioned extra terms need

then to be subtracted from our expression of R̂
(1)
ab (z).

On the other hand, the knowledge of power terms is also

crucial for understanding both the non-trivial behaviour of

cross sections at the boundaries of the phase space, and the

resummation structure at subleading orders. At the same

time, within the qT-subtraction method, the knowledge of

the power terms helps in reducing the cutoff dependence of

the cross sections.

While the application of the qT-subtraction method in

NLO calculations is superseded by well-known local sub-

traction methods, at NNLO it still plays a major role, also in

view of the fact that, as shown in Refs. [134,160], the sensi-

tivity to the numerical value of the cutoff increases at higher

orders. This also explains why it is of interest the calculation

of the power corrections to an NNLO cross section.

7 Antenna subtraction scheme

In this section, we present the antenna subtraction scheme for

perturbative QCD calculations. This method has been derived

in [108] and successfully applied to the calculation of the

NNLO corrections to 3-jet production and related event shape

observables in electron-positron annihilation in [183]. The

extension of the scheme to the treatment of initial state radi-

ation relevant for calculations of jet observables in hadronic

collisions at LHC has been established at NLO in [109] and at

NNLO in [133,184–190]. In a first subsection we review the

NLO version of the scheme followed by the generalisation

to NNLO. In the last subsection we provide our conclusions

on the status of the method and its current implementation

for precision phenomenological studies at the LHC.

7.1 Antenna subtraction at NLO

To specify the notation, we define the LO contribution to an

m-jet cross section by,

dσL O =
∫

d�m

dσ B J (m)
m ({pm}) (7.1)

where the partonic cross section dσ B is related to the square

of the tree level amplitude of the process, integrated over

the appropriate m-particle phase space d�m , subject to the

kinematical constraint that precisely m-jets are observed. The

latter constraint is imposed by the jet function J
(m)
m ({pm}),

that at this order selects m-jets from m-final state particles

within the four-momentum set {pm} using an IR safe jet-

algorithm.

At NLO, we consider the following m-jet cross section,

dσN L O =
∫

d�m

dσ V J (m)
m ({pm})

+
∫

d�m+1

dσ R J (m+1)
m ({pm+1}) (7.2)

where dσ V is the UV-renormalised one loop virtual correc-

tion to the m-parton Born cross section dσ B , and dσ R is

the tree-level squared amplitude for a single real radiation

emission from the Born process.

Although the sum in Eq. (7.2) is finite in d = 4 dimen-

sions, each of the two integrals is separately divergent if

d = 4. Using dimensional regularisation with space-time

dimension equal to 4 − 2ǫ, the divergences (arising from

the integration over the loop-momentum in dσ V ) appear as

explicit double 1/ǫ2 and single 1/ǫ poles. On the other hand,

the real correction dσ R being finite in d = 4, has singularities

when it is integrated over the phase space regions correspond-

ing to soft and collinear emission which are allowed by the

jet function J
(m+1)
m ({pm+1}), which selects m-jets from an

(m + 1) particle phase space. It is precisely the contribution

of unresolved emission to the m-jet cross section from the

real correction that generates the implicit IR singularities in

this contribution.

Given that the individual contributions in Eq. (7.2) live

in phase spaces of different dimensionality and in particular,

both contribute to the evaluation of an arbitrary observable,

which often requires the imposition of arbitrary sets of exper-

imental cuts on the phase space integration, it is necessary

that the IR singularities must be cancelled prior to any numer-

ical calculation.

The antenna subtraction method is a subtraction proce-

dure which allows for the isolation of the infrared singu-

larities present in intermediate steps of higher-order pertur-

bative QCD calculations. The procedure consists in adding

and subtracting a counterterm that reproduces the singular

behaviour of the real correction, that is simple enough that

it can be integrated analytically in the single-radiative phase

space and combined with the virtual contribution. The NLO

cross section becomes,

dσN L O =
∫

d�m

(
dσ V J (m)

m ({pm}) +
∫

1

dσ S J (m)
m ({pm)}

)

+
∫

d�m+1

(
dσ R J (m+1)

m ({pm+1}) − dσ S J (m)
m ({ p̃m})

)
.

(7.3)

The contribution dσ S in Eq. (7.3) is a counterterm which

reproduces the same singular divergent behaviour as the real

emission matrix element dσ R in all appropriate limits. In par-

ticular, for an IR-safe observable in a singular soft or collinear

phase space region, the following conditions are satisfied,

J (m+1)
m ({pm+1}) → J (m)

m ({pm})
J (m)

m ({ p̃m}) → J (m)
m ({pm})

dσ S → dσ R, (7.4)
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such that the bottom line in Eq. (7.3) can be integrated numer-

ically in four dimensions.

We note that the first condition in Eq. (7.4) is satisfied

automatically for all IR-safe observables, while the remain-

ing conditions are enforced by the subtraction scheme. In

particular, any QCD amplitude with the emission of one

unresolved parton in dσ R can be written as a product of

the Born amplitude times a soft and collinear factor which

contains all the singular terms. As it will be shown below,

the antenna subtraction counterterms will have the same fac-

torised structure and employ a remapping of the real emission

phase {pm+1} → { p̃m} space that preserves the on-shellness

and momentum conservation in the underlying Born con-

figuration in the counterterm contribution. This guarantees

that the remaining conditions in (7.4) are satisfied. Finally,

the counterterm contribution dσ S has to be integrated ana-

lytically over all singular regions of the 1-parton radiative

subspace, leading to explicit 1/ǫ poles that can be combined

with the virtual contribution in Eq. (7.3), thus cancelling all

the divergences and allowing the remaining numerical inte-

gration over the m-parton phase space in the first line of

Eq. (7.3) to be performed in d=4 dimensions.

A key characteristic in the antenna subtraction scheme

is the subtraction of the infrared singularities following

the singularity structure in colour-ordered amplitudes. In a

given colour basis, QCD amplitudes decompose into leading

and subleading colour contributions with the singularities

in colour-ordered amplitudes only occurring between colour

adjacent partons. In this way, a NLO real emission squared

tree-level colour ordered amplitude factorises as,

|M0
m+1(1, . . . , i, j, k, . . . , m + 1)|2
jg→0−→ Si jk |M0

m(1, . . . , i, k, . . . , m + 1)|2, (7.5)

when gluon j is soft between colour adjacent partons i and

k, with the singular eikonal factor given by,

Si jk = 2sik

si j s jk

with si j = (pi + p j )
2. (7.6)

Similarly in the limit where a quark and gluon pair become

collinear, the colour-ordered amplitudes factorise. If quark

i and gluon j become collinear and form quark k, then the

colour adjacent i, j pair gives a singular contribution,

|M0
m+1(1, . . . , i, j, . . . , m + 1)|2
i//j−→ 1

si j

Pqg→q(z)|M0
m(1, . . . , k, . . . , m + 1)|2 (7.7)

while a separated quark/gluon pair does not,

|M0
m+1(1, . . . , i, . . . , j, . . . , m + 1)|2
i//j−→ finite. (7.8)

In Eq. (7.7), z is the fraction of momentum carried by one

of the collinear partons and the collinear splitting function

Pqg→q is given by,

Pqg→q(z) =
(

1 + (1 − z)2 − ǫz2

z

)
. (7.9)

At NLO with one unresolved emission, the only kinemat-

ical configurations that generate IR singular contributions

in the real emission tree-level squared amplitudes in dσ R

are the configurations corresponding to a single soft or sin-

gle collinear emission. Looking at Eqs. (7.5) and (7.7) we

observe that in these limits, the real emission amplitudes obey

a factorisation formula in terms of universal singular fac-

tors multiplied by a born-like reduced matrix element. The

basic idea of the antenna subtraction approach is to derive

the subtraction terms with antenna functions which encap-

sulate all singular limits due to the emission of unresolved

partons between two colour-connected hard partons. The full

antenna subtraction term is then obtained by summing prod-

ucts of antenna functions with reduced matrix elements over

all possible unresolved configurations. At NLO the subtrac-

tion term reads,

dσ S =
∑

j

X0
i jk |M0

m(1, . . . , Ĩ , K̃ , . . . , m + 1)|2. (7.10)

In Eq. (7.10), X0
i jk is a tree-level three parton antenna, derived

from a properly normalised physical matrix element that

smoothly interpolates the single soft and single collinear con-

figurations. In the subtraction term, the particles Ĩ and K̃ ,

form a colour connected hard antenna that radiated particle

j . In doing so, the momenta of the radiators change to form

particles i and k. Depending on the flavour of the pair of

hard radiators, the antennae can be quark–antiquark anten-

nae, quark–gluon antennae, or gluon–gluon antennae. As an

example, the quark–antiquark antennae can be derived from

the decay of a virtual photon into a quark–antiquark pair

γ ∗ → qq̄+(partons). For the quark–gluon–antiquark final

state the corresponding antenna is:

A0
3(1q , 3g, 2q̄) = 1

s123

(
s13

s23
+ s23

s13
+ 2s12s123

s13s23

)
+ O(ǫ),

(7.11)

which in the IR limits reproduces the universal soft and

collinear singularities of tree-level QCD matrix elements,

A0
3(1, 3, 2)

3g→0−→ S132, (7.12)

A0
3(1, 3, 2)

1q//3g−→ 1

s13
Pqg→q(z), (7.13)

A0
3(1, 3, 2)

2q//3g−→ 1

s23
Pqg→q(z). (7.14)
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A key ingredient in the evaluation of the subtraction term in

equation (7.10) is the phase space mapping which relates the

original momenta pi , p j , pk describing the two hard radiator

partons i and k and the emitted parton j to a redefined on-

shell set p
Ĩ
, p

K̃
which are linear combinations of pi , p j , pk

[191,192]23

p
μ
I = x p

μ
i + r p

μ
j + z p

μ
k

p
μ
K = (1 − x) p

μ
i + (1 − r) p

μ
j + (1 − z) p

μ
k (7.15)

where,

x = 1

2(si j + sik)

[
(1 + ρ) si jk − 2 r s jk

]
,

z = 1

2(s jk + sik)

[
(1 − ρ) si jk − 2 r si j

]
,

ρ2 = 1 + 4 r(1 − r) si j s jk

si jksik

. (7.16)

The parameter r can be chosen conveniently [191,192] and

we use r = s jk/(si j + s jk). The mapping (7.15) implements

momentum conservation p
Ĩ

+ p
K̃

= pi + p j + pk and

satisfies the following properties:

p2

Ĩ
= 0, p2

K̃
= 0,

p
Ĩ

→ pi , p
K̃

→ pk when j is soft,

p
Ĩ

→ pi + p j , p
K̃

→ pk when i becomes collinear with j,

p
Ĩ

→ pi , p
K̃

→ p j + pk when j becomes collinear with k.

This guarantees the proper subtraction of infrared singulari-

ties. With this mapping, the phase space factorises,

d�m+1(p1, . . . , pi , p j , pk, . . . , pm+1)

= d�m(p1, . . . , p
Ĩ
, p

K̃
, . . . , pm+1)

·d�Xi jk
(pi , p j , pk; p

Ĩ
+ p

K̃
)

(7.17)

such that the integration over the unresolved radiative degrees

of freedom can be decoupled from the integration over the

Born configurations. We then use (7.17) in (7.10) to obtain the

integrated counterpart of each of the subtraction terms, in a

form that is suitable for the cancelation of the IR-singularities

with the virtual contribution,

∫

1

dσ S J (m)
m ({pm})

= |M0
m |2 J (m)

m ({pm}) d�m

∫
d�Xi jk

X0
i jk

= |M0
m |2 J (m)

m ({pm}) d�m X
0
i jk . (7.18)

23 Similar mappings aiming to have a local cancellation of IR diver-

gencies were studied for fdu in Sect. 3 for NLO.

This integration is performed analytically in d = 4 − 2ǫ

dimensions to make the infrared singularities explicit, yield-

ing the integrated three-parton antenna function X 0
i jk . For

the quark–gluon–antiquark final state the corresponding inte-

grated antenna is,

A
0
3(s123) = (s123)

−ǫ

[
1

3ǫ2
+ 3

2ǫ
+ 19

4
− 7π2

12
+ O(ǫ)

]

= −2I
(1)
qq̄ (ǫ, s123) + 19

4
, (7.19)

where in the last equality the infrared singularity structure of

the integrated antenna is written using the I(1)-operator [193]

which describes the singularity structure of virtual one-loop

amplitudes. This results makes the cancellations between real

and virtual corrections explicit using integrated antennae,

establishing the universality of the subtraction algorithm.

The extension of the scheme to the treatment of initial

state radiation requires antennae with one or two radiators in

the initial state (initial-final or initial-initial antennae). For

those, the IR-singularity structure of the integrated antennae

contains the poles of the virtual one-loop contribution and

simultaneously collinear poles originating from radiation off

incoming partons [109]. The latter are cancelled by redefini-

tion (mass factorisation) of the parton distributions yielding a

finite contribution, free of any poles in ǫ that can be integrated

numerically. The appropriate phase space factorisations and

allowed phase space mappings for these kinematical config-

urations are given in [109].

7.2 Antenna subtraction at NNLO

At NNLO, there are three distinct contributions due to double

real radiation dσ R R
N N L O , mixed real-virtual radiation dσ RV

N N L O

and double virtual radiation dσ V V
N N L O . The NNLO cross sec-

tion becomes,

dσN N L O =
∫

d�m+2

dσ R R
N N L O J (m+2)

m ({pm+2})

+
∫

d�m+1

dσ RV
N N L O J (m+1)

m ({pm+1})

+
∫

d�m

dσ V V
N N L O J (m)

m ({pm}). (7.20)

For each matrix element the integration is over the appro-

priate phase space subject to the constraint that precisely

m-jets are observed. As usual, the individual contributions

in the m, (m + 1) and (m + 2)-parton final states are all

separately infrared divergent. In the (m + 2)-parton final

state, two particles can become unresolved in several possi-

ble configurations: double soft, soft/collinear, double single

collinear, triple collinear. In each of these limits, the (m +2)-

parton matrix element factorises into a reduced m-parton

matrix element times a generalised double unresolved factor.

123



Eur. Phys. J. C (2021) 81 :250 Page 43 of 61 250

A detailed discussion of the kinematical definition of double

unresolved limits is available in [113,194–196]. In addition,

in the (m + 1)-parton final state, single unresolved soft and

collinear singularities arise in the real-virtual one-loop pro-

cess.

As at NLO, one has to introduce subtraction terms for the

(m + 1)- and (m + 2)-parton contributions. In this case we

will explore the factorised structure of QCD amplitudes at

NNLO to derive the form of the antenna subtraction terms.

Schematically, the NNLO m-jet cross section reads,

dσN N L O =
∫

d�m

(
dσ V V

N N L O J (m)
m ({pm}) − dσU

N N L O J (m)
m ({pm})

)

+
∫

d�m+1

(
dσ RV

N N L O J (m+1)
m ({pm+1})

−dσ
T,1
N N L O J (m+1)

m ({pm+1})

−dσ
T,2
N N L O J (m)

m ({ p̃m})
)

+
∫

d�m+2

(
dσ R R

N N L O J (m+2)
m ({pm+2})

−dσ
S,1
N N L O J (m+1)

m ({ p̃m+1})

−dσ
S,2
N N L O J (m)

m ({ p̃m})
)

. (7.21)

By construction the last line is finite after the introduction

of the subtraction terms for one-unresolved parton dσ
S,1
N N L O

and two unresolved partons dσ
S,2
N N L O in the double-real

(m + 2)-contribution. For the mixed real-virtual (m + 1)-

contribution, the explicit poles in the one-loop real-virtual

matrix element cancel against the integrated single unre-

solved real-radiation counterterms as guaranteed by the KLN

theorem, which are collected in dσ
T,1
N N L O . The remaining

counterterm dσ
T,2
N N L O is by construction free of explicit 1/ǫ-

poles and subtracts all phase space singularities of the physi-

cal real-virtual matrix-element and of the antenna subtracted

dσ
T,1
N N L O counterterm. Its contribution encodes the exact fac-

torisation formula of one-loop matrix elements in the soft

and collinear limits. Finally, the contribution dσU
N N L O con-

tains the integrated counterparts of the antenna subtraction

terms introduced at the double-real and real-virtual level and

returns the explicit singularities of the double virtual matrix

element. In this way, the three lines in (7.21) are finite in

d = 4 and can be safely evaluated with numerical methods.

7.2.1 Double-real contribution

In this section we establish the factorised form of all antenna

subtraction terms for the double-real contribution. We begin

by deriving the subtraction term for a single unresolved par-

ton in the double-real process. Since this configuration is

NLO-type we can immediately use the result obtained in

Sect. 7.1 and obtain,

dσ S,1 = dσ S,a

=
∑

j

X0
i jk |M0

m+1(1, . . . , Ĩ , K̃ , . . . , m + 1)|2.

(7.22)

With (7.22), singly unresolved limits involving parton- j

in the antenna X i jk cancel directly against the double-real

matrix element. However, contrary to the NLO case, the

single-unresolved double-real subtraction term at NNLO fac-

torises into an (m + 1)-reduced matrix element and the jet

function constrains that precisely m-jets are observed. For

this reason, singly unresolved limits as well as genuine dou-

ble unresolved limits involving the reduced matrix element

in (7.22) are allowed and need to cancel with the genuine

double-real doubly unresolved subtraction term dσ
S,2
N N L O .

For the derivation of dσ
S,2
N N L O we must distinguish the

following configurations according to the colour connection

of the double-unresolved partons:

(b) Two colour-connected unresolved partons (colour-

connected).

When two unresolved partons j and k are adjacent

between radiators i and l the subtraction term is:

dσ S,b =
∑

j

(
X0

i jkl − X0
i jk X0

I Kl − X0
jkl X0

i J L

)

×|M0
m(1, . . . , Ĩ , L̃, . . . , m)|2, (7.23)

where X0
i jkl is a tree-level four parton antenna that smoothly

interpolates all colour connected double unresolved limits.

As an example, the final state quark–gluon–gluon–antiquark

antenna derived from γ ∗ → qggq̄ obeys the following fac-

torisation properties,

A0
4(q1, g3, g4, q̄2)

3g→0,4g→0−→ S1342, (7.24)

A0
4(q1, g3, g4, q̄2)

1q//3g//4g−→ Pqgg→Q(x, y, z), (7.25)

A0
4(q1, g3, g4, q̄2)

4g→0,1q//3g−→ Sq;ggq̄ Pqg→Q(z), (7.26)
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A0
4(q1, g3, g4, q̄2)

1q//3,2q̄//4−→ Pqg→Q(z)Pq̄g→Q(y), (7.27)

where the universal double soft, triple collinear, soft/collinear

and double single collinear limits listed above have been

extensively discussed in the literature [113,194–196]. The

integrated counterpart of the four-parton antenna contribu-

tion exploits the factorisation of the double-real radiation

phase space,

d�m+2(p1, . . . , pm+2) = d�m(p1, . . . , p
Ĩ
, p

L̃
, . . . , pm+2)

·d�Xi jkl
(pi , p j , pk, pl),

(7.28)

obtained by redefining a set of four massless on-shell

momenta (radiator, two unresolved partons, radiator) into

two on-shell massless momenta. The mapping is defined as:24

p
μ
I ≡ p̃(i, j,k) = x pi + r1 p j + r2 pk + z pl ,

p
μ
L ≡ p̃(l,k, j) = (1 − x) pi

+(1 − r1) p j + (1 − r2) pk + (1 − z) pl ,

(7.29)

with p2
I = p2

L = 0. Defining skl = (pik
+ pil )

2, the coeffi-

cients are given by [197]:

r1 = s jk + s jl

si j + s jk + s jl

r2 = skl

sik + s jk + skl

x = 1

2(si j + sik + sil)

[
(1 + ρ) si jkl

−r1 (s jk + 2 s jl) − r2 (s jk + 2 skl)

+(r1 − r2)
si j skl − siks jl

sil

]

z = 1

2(sil + s jl + skl)

[
(1 − ρ) si jkl

−r1 (s jk + 2 si j ) − r2 (s jk + 2 sik)

−(r1 − r2)
si j skl − siks jl

sil

]

ρ =
[
1 + (r1 − r2)

2

s2
il s2

i jkl

λ(si j skl , sil s jk, sik s jl)

24 A preliminar proposal for mappings in fdu was provided in (3.35).

A detailed comparison between both approaches should be considered.

In fact, fdu could profit from the way how the various IR regions are

split in the antenna subtraction method.

+ 1

sil si jkl

{
2
(
r1 (1 − r2) + r2(1 − r1)

)

(
si j skl + siks jl − s jksil

)

+ 4 r1 (1 − r1) si j s jl + 4 r2 (1 − r2) sikskl

}] 1
2
,

λ(u, v, w) = u2 + v2 + w2 − 2(uv + uw + vw).

This mapping smoothly interpolates all colour connected

double unresolved singularities. It satisfies the following

properties:

p̃(i jk) → pi , p̃(lk j) → pl when j, k → 0,

p̃(i jk) → pi + p j + pk , p̃(lk j) → pl when i//j//k,

p̃(i jk) → pi , p̃(lk j) → pl + pk + p j when j//k// l,

p̃(i jk) → pi , p̃(lk j) → pl + pk when j → 0 + k// l,

p̃(i jk) → pi + p j , p̃(lk j) → p j when k → 0 + i//j,

p̃(i jk) → pi + p j , p̃(lk j) → pk + pl when i//j + k// l.

which guarantee that all double unresolved colour connected

IR-singularities are properly subtracted. Moreover, in single

unresolved limits, the momentum mapping above collapses

into an NLO mapping (7.15), thereby allowing the products

of three-parton antenna functions in (7.23) to subtract the sin-

gle unresolved limits of the associated four parton antenna.

(c) Two unresolved partons that are not colour connected but

share a common radiator (almost colour-unconnected).

There are double unresolved configurations where the

unresolved partons are separated by a hard radiator parton,

for example, i, j, k, l, m where j and l are unresolved. In this

case we take the strongly ordered approach where i, j, k form

an antenna with hard partons I and K yielding an ordered

amplitude involving I, K , l, m. The case where l is unre-

solved is then treated using an antenna K , l, m with hard

partons K ′ and M ′. The other case where first k, l, m form

an antenna followed by i, j, K is also included where the

momenta are obtained by iterative use of the NLO momen-

tum mappings. The subtraction term is,

dσ
S,c
N N L O

= −
∑

j,l

X0
i jk X0

Klm |M0
m(p1, . . . , pI , pK ′ , pM ′ , . . . , pm)|2

−
∑

j,l

X0
mlk X0

i j K |M0
m(p1, . . . , pI ′ , pK ′ , pM , . . . , pm)|2.

(7.30)
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(d) Two unresolved partons that are well separated from

each other in the colour chain (colour-unconnected).

When two unresolved partons j and o are completely

disconnected i.e. for colour ordered amplitudes of the type

M(. . . , i, j, k, . . . , n, o, p, . . .), the double-real matrix ele-

ment factorises into the product of two uncorrelated single

unresolved factors with hard partons I, K and N , P respec-

tively. The subtraction term is,

dσ
S,d
N N L O = −

∑

j,o

X0
i jk X0

nop

|M0
m(p1, . . . , pI , pK , . . . , pN , pP , . . . , pm)|2.

(7.31)

(e) Large angle soft emission.

By taking a strongly ordered subtraction of the unresolved

limits, an uncanceled contribution involving the inner and

outer antennae in the iterated subtracted structures defined

above, leads to an incomplete subtraction of large-angle soft

gluon radiation. To account for the left over single soft-gluon

emission contribution at large angles, an additional subtrac-

tion term is defined,

dσ
S,e
N N L O =

∑

j

X0
I l K

(
SI ′ j K ′ − SI j K

−Saj I ′ + Saj I − SK ′ jb + SK jb

)

×|M0
m(p1, . . . , pa, pI ′ , pK ′ , pb, . . . , pm)|2.

(7.32)

The large-angle soft subtraction term contains soft antenna

functions of the form Sajb which are simply the eikonal factor

for a soft gluon j emitted between hard partons a and b.

The soft factors are associated with an NLO antenna phase

space mapping (i, j, k) → (I, K ), followed by a second

NLO antenna phase space mapping (I, l, K ) → (I ′, K ′).

Subtraction of angular correlations

When using the antenna subtraction method to construct sub-

traction terms for higher order calculations, one encounters

the problem of angular correlations in the collinear split-

ting of a gluon into massless partons. These angular corre-

lations introduce non-factorizing terms which correlate the

hard reduced matrix element with the splitting functions. As

an example, for the gg → g splitting, the purely gluonic

four parton antenna function factorises into the correspond-

ing tensorial splitting functions and tensorial three parton

antenna functions,

F0
4 (g1, g2, g3, g4)

ig‖ jg−→ 1

si j

P
μν
gg→G(z)(F0

3 )μν((i j), k, l)

= 1

si j

Pgg→G(z)F0
3 ((i j), k, l) + ang. (7.33)

P
μν

i j→(i j) stands for the spin dependent gluon splitting func-

tion given by [73],

Pμν
gg = 2

[
−gμν

(
z

1 − z
+ 1 − z

z

)

−2(1 − ǫ)z(1 − z)
k
μ
⊥kν

⊥
k2
⊥

]
, (7.34)

while Pi j→(i j) stands for the spin averaged gluon splitting

function:

Pgg→g(z) = 2

(
z

1 − z
+ 1 − z

z
+ z(1 − z)

)
. (7.35)

The tensorial structure of the three-parton antenna function

(F0
3 )μν is obtained by leaving the polarisation index of the

gluon associated with momentum Pμ uncontracted and can

be derived by analogy with the scalar three-parton antenna

functions from physical matrix elements.

Since we use spin-averaged scalar antenna functions to

remove unresolved limits in QCD amplitudes, these do not

subtract angular correlations in gluon-splittings. However,

these angular terms vanish when the azimuthal variable of the

collinear system is integrated out. This can be seen for the sin-

gle collinear limits using the standard momentum parametri-

sation [73,198] for the ig ‖ jg limit:

p
μ
i = zpμ + k

μ
⊥ − k2

⊥
z

nμ

2p · n
,

p
μ
j = (1 − z)pμ − k

μ
⊥ − k2

⊥
1 − z

nμ

2p · n
,

with 2pi · p j = − k2
⊥

z(1 − z)
,

p2 = n2 = k⊥.p = k⊥.n = 0. (7.36)

123



250 Page 46 of 61 Eur. Phys. J. C (2021) 81 :250

Here pμ denotes the collinear momentum direction, and nμ

is an auxiliary vector. The collinear limit is approached as

k2
⊥ → 0.

In the simple collinear i ‖ j limit of the four-parton

antenna function F0
4 (lg, ig, jg, kg), one chooses n = pk to be

one of the non-collinear momenta, such that the antenna func-

tion can be expressed in terms of p, n, k⊥ and pl . Expanding

in k
μ
⊥ yields only non-vanishing scalar products of the form

pl · k⊥. Expressing the integral over the antenna phase space

in the (p, n) centre-of-mass frame, the angular average can

be carried out as

1

2π

∫ 2π

0

dφ (pl · k⊥) = 0,

1

2π

∫ 2π

0

dφ (pl · k⊥)2 = −k2
⊥

p · pl n · pl

p · n
. (7.37)

In this frame, the unsubtracted angular correlation in the

gluon–gluon collinear limit of the four-parton purely gluonic

antenna function is given by,

�F0
3
(i, j, z, k⊥) =

[
1

si j

P
μν

i j→(i j)(z, k⊥)(F0
3 )μν

− 1

si j

Pi j→(i j)(z)F0
3 (1, (i j), 2)

]

= 4

s2
i j s

2
1p2

(
s2

12s2
1p2 + s2

1ps2
p2

s2
12s2

1ps2
p2

)[
s12s1psp2 k⊥ · k⊥

−4p1 · k⊥ p2 · k⊥s1psp2

+2(p1 · k⊥)2s2
p2 + 2(p2 · k⊥)2s2

1p

]
,

(7.38)

with p and k⊥ defined in (7.36). Using (7.37), we can easily

see that (7.38) integrates to zero.

The same cancellation can be made to happen locally

(before any integration), by deriving the azimuthal angular

dependence of the angular correlation. In the (p, n) centre-

of-mass frame, it can be shown that

�F0
3
(i, j, z, k⊥) ∼ A cos(2φ + α) (7.39)

where φ is the same azimuthal angle as in (7.37). There-

fore, by combining two phase space points with azimuthal

angles φ and φ + π/2 and all other coordinates equal, the

azimuthal correlations drop out. This strategy is implemented

in the method and ensures a smooth cancellation of gluonic

collinear splittings [185,199].

The full double-real radiation subtraction term is given as

a sum of all subtraction terms defined above:

dσ S
N N L O = dσ

S,a
N N L O + dσ

S,b
N N L O

+dσ
S,c
N N L O + dσ

S,d
N N L O + dσ

S,e
N N L O , (7.40)

which correctly approximates the double real matrix ele-

ment contribution in all double and single unresolved regions.

Although individual terms in (7.40) contain spurious singu-

larities in these limits, they cancel among each other in the

sum.

7.2.2 Real-virtual contribution

As discussed in Sect. 7.2, in order to carry out the numerical

integration over the real-virtual matrix element, we need to

introduce an infrared subtraction term which removes the

explicit infrared poles of the real-virtual one-loop matrix

element and correctly describes its single unresolved lim-

its. As in the previous section, we will explore the universal

factorised form of the QCD amplitudes in the IR-singular

regions to obtain the necessary antenna subtraction terms.

Subtraction of explicit poles

It is a well known fact from NLO calculations, that the

explicit infrared poles of one-loop matrix elements cancel

with the corresponding infrared poles obtained by integrating

out all single unresolved configurations from the real radia-

tion matrix elements contributing to the same (infrared safe)

observable. We can therefore obtain an antenna subtraction

term to cancel the explicit poles of the one-loop real-virtual

matrix element with the integrated counterpart of the single

unresolved subtraction term introduced at the double real-

level dσ
S,a
N N L O . We obtain,

dσ
T,1
N N L O = dσ

T,a
N N L O = −

∫

1

dσ
S,a
N N L O

= −
∑

ik

X
0
3 (sik)|M0

m+1(p1, . . . , pi , pk, . . . , pm+1)|2

where the explicit 1/ǫ-poles in integrated antenna X 0
3 (sik)

cancel analytically with the poles of the real-virtual matrix

element as guarantee by the KLN theorem.

Subtraction of soft and collinear phase space singularities

at one-loop

In single unresolved limits, the behaviour of the (m + 1)-

parton real-virtual one-loop amplitude is described by the

sum of two different contributions [116,200–203]: a sim-

ple unresolved tree level factor times a m-parton one-loop

amplitude and a simple unresolved one-loop factor times

a m-parton tree-level amplitude. Schematically the antenna

subtraction term reproduces this factorised form,

M
1
m+1 → X0

3 M
1
m + X1

3 M
0
m, (7.41)

where we have introduced a three-parton one-loop antenna

function X1
3 derived from properly normalised one-loop
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three-parton matrix elements, in an analogous way as for

all other antennae.

However, the factorised form on the right hand side of

the limit in (7.41), contains new one-loop matrix elements

in M1
m and X1

3 with explicit 1/ǫ-poles, whose cancellation

needs to be fixed by the subtraction algorithm. The subtrac-

tion term for this contribution reads,

dσ
T,b
N N L O =

∑

j

X0
i jk

(
|M1

m(p1, . . . , pm)|2

+
∑

I K

X
0
3 (sI K )|M0

m(p1, . . . , pm)|2
)

+
∑

j

(
X1

i jk +
∑

ik

X
0
3 (sik)X0

i jk

)

×|M0
m(p1, . . . , pm)|2. (7.42)

In (7.42) we have introduced terms of the type X 0
3 X0

3 that

cancel the explicit poles introduced by reduced one-loop m-

parton matrix elements and one-loop antenna functions.

In particular, the subtraction of IR-poles from the X1
3

antenna in (7.42) is directly related to integrals of tree-

level subtraction terms introduced at the double-real level∫
1 dσ

S,b
N N L O . The remaining integrals with X1

3 , M1
m and

X0
3X 0

3 (sI K ) are genuine new contributions that can not be

related to integrals of tree-level subtraction terms. There-

fore, their contributions must cancel with parts of the two-

loop m-parton amplitude after analytic integration over the

three-parton antenna phase space.

We have therefore obtained in dσ
T,b
N N L O , a universal

antenna subtraction term, which is free from explicit 1/ǫ-

poles by construction, and moreover, it subtracts the phase

space singularities of the physical real-virtual matrix element

and simultaneously subtracts all phase space spurious singu-

larities in dσ
T,a
N N L O defined above.

Subtraction of large angle soft emission

For processes involving soft gluons the double-real chan-

nel has an additional subtraction contribution denoted by

dσ
S,e
N N L O due to large angle soft gluon radiation. This

term removed the remnant soft gluon behaviour associated

with the phase space mappings of the iterated structures

of the double-real subtraction contribution dσ
S,c
N N L O . Both

these subtracted contributions have an integrated counterpart,

which can be obtained by integrating over the soft-eikonal

factor in the former case, and over the outer antenna in the

latter case.

Both integrals are performed analytically over the fac-

torised singly unresolved radiative phase space d�Xi jk
mak-

ing their IR-singularities explicit 1/ǫ-poles. This integration

results in explicit 1/ǫ-poles whose cancellation needs to be

fixed by the subtraction algorithm. The subtraction term for

this contribution reads,

dσ
T,c
N N L O =

∑

j

X0
i jk

[
X

0
3 (sik) − X

0
3 (sai ) − X

0
3 (skb)

−X
0
3 (sI K ) + X

0
3 (saI ) + X

0
3 (sK b)

−S(sik; sik) + S(sai ; sik)

+S(skb; sik) + S(sI K ; sik)

−S(saI ; sik) − S(sK b; sik)

]

×|M0
m(p1, . . . , pm)|2, (7.43)

where S is the integrated soft-eikonal factor. With the ana-

lytic expressions for the integrated antennae and integrated

soft-factors [183] we obtain by construction a counterterm

dσ
T,c
N N L O which is free from explicit 1/ǫ-poles and has no

phase space soft or collinear singularities. In order to achieve

this constraint it is necessary to add genuine new terms of the

type X0
3X 0

3 (sI K ) to cancel the poles of the wide-angle soft

term. Such contributions must be integrated analytically over

the three-parton antenna phase space and added in integrated

form to the double-virtual m-parton contribution.

The full real-virtual subtraction term is given as a sum of

all subtraction terms constructed above:

dσ T
N N L O = dσ

T,a
N N L O + dσ

T,b
N N L O + dσ

T,c
N N L O , (7.44)

which correctly approximates the real-virtual one-loop matrix

element in all single unresolved regions and simultaneously

subtracts all of its 1/ǫ-explicit poles as guaranteed by the

KLN theorem.

7.2.3 Double-virtual contribution

The double virtual contribution involves the two-loop m-

parton matrix elements which have no implicit IR diver-

gence in any regions of the appropriate m-parton phase space.

Therefore, to make this contribution finite, all that remains is

to introduce the integrated forms of the appropriate antenna

subtraction terms such that the explicit IR-poles of the two-

loop contribution are cancelled. We begin by reviewing the

universal structure of infrared singularities in on-shell QCD

amplitudes at two-loop order in Catani’s two-loop factorisa-

tion formula [193],

Poles
(
M

2
m(1, . . . , n)

)

= 2I (1)
m (ǫ; 1, . . . , m) M

1
m(1, . . . , m)

−2I (1)
m (ǫ; 1, . . . , m)2

M
0
m(1, . . . , m)

+2e−ǫγ Ŵ(1 − 2ǫ)

Ŵ(1 − ǫ)

(
β0

ǫ
+ K

)

×I (1)
m (2ǫ; 1 . . . , m)M

0
m(1, . . . , m)

+2H (2)(ǫ)M0
m(1, . . . , m). (7.45)
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The poles of the two amplitude are organised according to the

I
(1)
m -operator given in [193] and hard function, H(2) and the

constant K , which depend on the particle content and order in

M under consideration. In the following we will obtain the

integrated antenna subtraction terms in a form which is in

one-to-one correspondence with (7.45) making the analytic

cancellation of all explicit 1/ǫ-poles in the double-virtual

contribution transparent.

The first double virtual subtraction term is the integrated

counterpart of the contribution introduced at the real-virtual

level dσ
T,b
N N L O . In that contribution, we can perform the ana-

lytic integration over the factorised singly unresolved radia-

tive phase space d�Xi jk
of the antenna function proportional

to the one-loop matrix element, obtaining,

dσ
U,a
N N L O =

∑

ik

X
0
3 (sik) |M1

m(1, . . . , m)|2

= J (1)
m (ǫ; 1, . . . , m) |M1

m(1, . . . , m)|2, (7.46)

where in the last equality we have defined an IR-singular

operator J
(1)
m containing a string of integrated three-parton

antennae which contain the IR-poles of the integrated real-

radiation contribution, in analogy with the I
(1)
m -operator

which describes the IR-poles of the virtual matrix elements.

The second double virtual subtraction term is the inte-

grated counterpart of the contributions introduced at the real-

virtual level dσ
T,c
N N L O and double-real level dσ

S,d
N N L O , which

combine and yield,

dσ
U,b
N N L O =

∑

ik

∑

ml

X
0
3 (sik)

⊗X
0
3 (sml) |M0

m(1, . . . , m)|2

= 1

2
J (1)

m (ǫ; 1, . . . , m)

⊗J (1)
m (ǫ; 1, . . . , m) |M0

m(1, . . . , m)|2, (7.47)

where we explicitly introduced the square of the J
(1)
m -

operator introduced in (7.46).

Finally, the third double virtual subtraction term is the

integrated counterpart of the contributions introduced at the

real-virtual level dσ
T,b
N N L O including the terms proportional

to the one-loop X1
3 antenna, and the contribution introduced

at the double-real level dσ
S,b
N N L O involving the four-parton

antenna X0
4 ,

dσ
U,c
N N L O =

∑

ik

(
X

0
4 (sik) + X

1
3 (sik)

−1

2
X

0
3 (sik)X

0
3 (sik)

)
|M0

m(1, . . . , m)|2

= J (2)
m (ǫ; 1, . . . , m) |M0

m(1, . . . , m)|2. (7.48)

In Eq. (7.48) we introduced an IR-singular operator contain-

ing the double unresolved integrated antenna string J
(2)
m .

The full double-virtual subtraction term is given as a sum

of all subtraction terms constructed above:

dσU
N N L O = dσ

U,a
N N L O + dσ

U,b
N N L O + dσ

U,c
N N L O , (7.49)

where in particular we can observe that dσ
U,a
N N L O and

dσ
U,b
N N L O are in one-to-one correspondence with the first two

lines in Eq. (7.45), while the contribution dσ
U,c
N N L O subtracts

the remaining IR singularities of the two-loop amplitude in

the bottom two lines in (7.45).

Application: N 2 contribution to qq̄ → gg at NNLO

In this section we present the double-virtual antenna sub-

traction term for the N 2 contribution to dijet production at

hadron colliders at NNLO. Focusing on the q1q̄2 → g3g4

channel, the subtraction term reads,

dσU
qq̄,N N L O =

∑

P(i, j)

{
J

(1)
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄)

×
(

B1
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄) − b0

ǫ
B0

4 ( ˆ̄1q , ig, jg,
ˆ̄2q̄)

)

+1

2
J

(1)
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄)

⊗J
(1)
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄) B0
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄)

+J
(2)
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄) B0
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄)

}
J

(2)
2 (pi , p j ),

(7.50)

where B1
4 and B0

4 are the leading colour renormalised colour-

ordered one-loop and tree level amplitudes for qq̄ → gg

respectively. As demonstrated in the previous section, the

IR-operators J
(1)
4 and J

(2)
4 are built with integrated antenna

strings that involve colour connected particles and that match

the poles of the virtual amplitudes. For processes with

coloured particles in the initial state these operators involve

integrated antennae with hard radiators in the initial state that

subtract radiation off incoming partons leading to initial-state

collinear poles. These IR-singularities cancel with the redef-

inition (mass factorisation) of the parton distributions. In the

example of this section we obtain,

J
(1)
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄)

= J
(1)
2 ( ˆ̄1q , ig) + J

(1)
2 (ig, jg) + J

(1)
2 ( jg,

ˆ̄2q̄), (7.51)

which when written in terms of integrated antennae and

collinear splitting functions read [133]:

J
(1)
2 ( ˆ̄1q , ig) = 1

2
D

0
3,q(s1̄i ) − Ŵ(1)

qq (x1), (7.52)

J
(1)
2 (ig, jg) = 1

3
F

0
3 (sik), (7.53)
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J
(1)
2 ( jg,

ˆ̄2q) = J
(1)
2 ( ˆ̄2q , jg) = 1

2
D

0
3,q(s2̄ j ) − Ŵ(1)

qq (x2).

(7.54)

The analogous formula for J
(2)
4 is given by,

J
(2)
4 ( ˆ̄1q , ig, jg,

ˆ̄2q̄) = J
(2)
2 ( ˆ̄1q , ig) + J

(2)
2 (ig, jg)

+J
(2)
2 ( jg,

ˆ̄2q) − J
(2)

2 ( ˆ̄1q , ˆ̄2q̄), (7.55)

where the renormalised two-parton double unresolved inte-

grated antenna strings are given by [133]:

J
(2)
2 ( ˆ̄1q , ig) = 1

2
D

0
4,q(s1̄i ) + 1

2
D

1
3,q(s1̄i )

+ b0

2ǫ

( |s1̄i |
μ2

)−ǫ

D
0
3,q(s1̄i )

−1

4

[
D

0
3,q(s1̄i ) ⊗ D

0
3,q(s1̄i )

]
(z1) − Ŵ

(2)

qq (z1),

(7.56)

J
(2)
2 (ig, jg) = 1

4
F

0
4 (si j ) + 1

3
F

1
3 (si j )

+ b0

3ǫ

(
si j

μ2

)−ǫ

F
0
3 (si j )

−1

9

[
F

0
3 (si j ) ⊗ F

0
3 (si j )

]
, (7.57)

J
(2)
2 (ig,

ˆ̄2q̄) = J
(2)
2 ( ˆ̄2q , ig), (7.58)

J
(2)

2 ( ˆ̄1q , ˆ̄2q̄) = 1

2
Ã

0
4,qq̄(s1̄2̄) + Ã

1
3,qq̄(s1̄2̄)

−1

2

[
A

0
3,qq̄(s1̄2̄) ⊗ A

0
3,qq̄(s1̄2̄)

]
. (7.59)

Analytic expressions for the integrated antennae and collinear

splitting functions introduced above can be found in [108,

109,184,186,187,189]. With these expressions we can eval-

uate (7.50) and expand in powers of ǫ to obtain:

dσU
qq̄,N N L O =

∑

P(i, j)

[
− 9

2ǫ4
+ 33

18ǫ3

+ 1

ǫ2

(
− 5

24
+ π2

8
+ 1

2

(
log2

(
s1i

μ2

)
+ log2

(
si j

μ2

)

+ log2

(
s2 j

μ2

))
+ log

(
s1i

μ2

)
log

(
si j

μ2

)

+ log

(
s2 j

μ2

)
log

(
si j

μ2

)

+ log

(
s1i

μ2

)
log

(
s2 j

μ2

)
− 37

12

(
log

(
s1i

μ2

)

+ log

(
si j

μ2

)
+ log

(
s2 j

μ2

)))

+1

ǫ

(
− 10201

288
+ 9

4
ζ3 + 7π2

144

− log2

(
s1i

μ2

)
− log2

(
si j

μ2

)
− log2

(
s2 j

μ2

)

−2 log

(
s1i

μ2

)
log

(
si j

μ2

)

−2 log

(
s2 j

μ2

)
log

(
si j

μ2

)
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(7.60)

As expected, the initial-state collinear singularities in the

integrated antennae with initial-state hard radiators can-

celled against the PDF mass-factorisation collinear subtrac-

tion included in the definitions of J
(1)
2 and J

(2)
2 , and all

the remaining singularities in (7.60), cancel explicitly and

analytically with the IR-poles of the two-loop amplitude for

qq̄ → gg as guaranteed by the KLN theorem.

7.3 Discussion

In this manuscript, we have reviewed the main aspects of the

antenna subtraction scheme for the subtraction of infrared

singularities in the calculation of jet observables at NNLO.

We introduced subtraction terms for double real radiation

at tree level and single real radiation at one loop based

on antenna functions. These antenna functions at NLO and

NNLO describe the colour-ordered radiation of unresolved

partons between a pair of hard (radiator) partons, and can be

derived from physical matrix elements [108].

We have shown how all singularities in intermediate steps

of perturbative QCD calculations can be mapped to Born-

like configurations exploiting the universal factorised struc-

ture of QCD amplitudes in the IR-limits. A key ingredient are

the phase space mappings that smoothly interpolate between

the various singular limits, and the factorisation of the real-

radiation phase space, which allows for the analytic integra-

tion of the antenna functions, decoupling it from the integra-

tion over the Born configurations. All the integrated coun-

terterms that are necessary to have a fully general subtrac-

tion method for massless final-state [108] and initial-state

[109,184,186,187,189] QCD have been computed.

Phenomenological results for jet cross sections and trans-

verse momentum distributions at NNLO at hadron colliders

have been recently obtained within this approach. The results

are obtained in the NNLOJET code framework [199] which
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is a parton-level event generator that provides the framework

for the implementation of jet production processes to NNLO

accuracy, using the antenna subtraction method. It contains

the event generator infrastructure (Monte Carlo phase-space

integration, event handling and analysis routines) and pro-

vides the unintegrated and integrated antenna functions and

the phase-space mappings for all kinematical configurations.

Processes included in NNLOJET up to now are Z and

Z + j production [204–206], W and W + j production [207,

208], W H + j production [209], H and H + j production

[210,211], H +2 j (VBF) [212], di-jet production in hadron-

hadron collisions [213–215] and in lepton-hadron collisions

[216,217], isolated γ and γ + j production [218], di-photon

production [219] as well as three-jet production in electron-

position annihilation [220]. More recently, flavour sensitive

observables at NNLO have been studied in pp → H V with

H → bb̄ and V → ll [221], and for Z +b production [222].

8 Conclusions and outlook

The purpose of this section is twofold. In the first part, we

briefly remark on the strengths (+) and weaknesses (−) of the

formalisms summarised in this manuscript and presented in

the WorkStop/ThinkStart 3.0: paving the way to alternative

NNLO strategies. Whereas in the second part, we summarise

the discussion in the closing session of the workshop.

FDH and DRED

+ The evaluation of the Lorentz algebra is significantly sim-

pler than in conventional dimensional regularisation. For

an NNLO computation in dred this is particularly true

for double-real contributions and for integrated countert-

erms of subtraction methods since the O(ǫ) terms of the

matrix elements are not required.

+ fdh is more amenable to methods that rely on strictly

four-dimensional objects like the spinor-helicity formal-

ism and unitarity. Similar to completely four-dimensional

regularisation approaches, however, this is not true for the

treatment of γ5.

+ As O(ǫ) terms cannot contain any physical information,

fdh and dred might help to improve the conceptual

understanding of regularisation and of subtraction meth-

ods. Both schemes constitute the most promising can-

didates to find links between dimensional regularisation

and strictly four-dimensional approaches like fdu, fdr,

and ireg.

− The evaluation of (master) integrals is not affected. Com-

pared to cdr we still need the same loop and phase-space

integrals.

− The UV renormalisation is slightly more complicated

than in cdr. The procedure, however, is standardised and

well understood. For an NNLO computation in fdh or

dred, the evanescent renormalisation constants at most

have to be known at one-loop order.

FDR

+ Both UV and IR divergences are regularised strictly in

four dimensions.

+ No UV counterterms need to be computed.

+ Lowest order parts of the calculation remain the same

even when embedded in higher order computations. For

instance, no O(ǫ) terms need to be included at two loops.

+ Being four dimensional, fdr is suitable for a fully numer-

ical treatment.

− One cannot rely on existing libraries and/or reduction

methods. In particular, loop and phase-space integrals

have to be computed.

− At the moment, a local cancellation algorithm for final-

state IR singularities has been implemented at NLO only.

FDU

+ Direct connection between multi-loop and tree-level

amplitudes within a common phase-space by means of

the loop-tree duality formalism. In other words, real con-

tributions are mapped onto virtual ones.

+ Local cancellation of IR and UV singularities at inte-

grand level. Namely, no need of ad-hoc and integrated

counterterms. The local cancellation allows to perform

loop and phase-space integration in four dimensions.

+ Local UV renormalisation at one- and two-loop level has

been tested with proof-of-concept calculations.

+ The integrand representation of multi-loop Feynman

integrals and scattering amplitudes in the loop-tree dual-

ity is manifestly causal, i.e. it displays only physical infor-

mation. Absence of spurious singularities.

− The subleading UV local counterterms that implement

the renormalisation scheme are still evaluated in d dimen-

sions.

− Contrary to calculations at NLO, the treatment of IR sin-

gularities at NNLO is not yet fully developed.

− Processes including initial state radiation have not yet

been studied within fdu. This is because an integrand

and local representation of the Altarelli–Parisi kernels is

currently missing.

− fdu cannot profit from current techniques for the calcula-

tion of multi-loop Feynman integrals, such as integration-

by-parts identities and differential/difference equation

methods. This is because the latter modify the local IR

and UV behaviour.
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IREG

+ Fully four-dimensional scheme for momentum integra-

tion and Clifford algebra. Although implicit four dimen-

sional schemes such as ireg share the same problems

with the γ5 matrix a well-defined procedure can avoid

inconsistencies as shown in [22,84].

+ The UV content of a given Feynman integral can be cast

in terms of a well-defined set of basic divergent integrals

which do not need to be evaluated. From the viewpoint

of anomalies in perturbation theory it is a useful scheme.

+ Generalisation to L-loops is straightforward and compat-

ible with local subtraction theorems such as the BHPZ

scheme and the Bogolyubov recursion formula.

− Although IR and UV divergences are clearly separated in

a gauge invariant way, and no extra fields are needed in the

Lagrangian (such as epsilon-scalar fields) compatibility

with factorisation theorems are yet to be studied beyond

leading order.

− Although a diagrammatic all order proof of gauge invari-

ance in abelian models can be constructed for ireg, a

general all order proof for the non-abelian case need to

be constructed based on quantum action principles.

Local analytic sector subtraction

+ IR singularities are locally cancelled at NLO (validated

for generic processes with QCD partons in the final state)

and NNLO (ongoing validation in the general case).

+ Subtraction counterterms feature a minimal structure,

thanks to the radiative phase-space partition with sector

functions (inspired by FKS).

+ An optimal phase-space parametrisation (via multiple CS

mappings) enables the analytic integration of the coun-

terterms by means of standard techniques.

+ The scheme is valid for an arbitrary number of QCD

partons in the final state. It has been tested at NNLO with

a proof-of-concept calculation of the TRCF contribution

to e+e− → 2 j .

− Several checks still need to be performed to test the can-

cellation of IR poles in the general case at NNLO.

− In order to stick to a minimal structure, a delicate tun-

ing is needed for the counterterm definition and for the

corresponding phase-space mappings.

− A complete implementation in a Monte Carlo code is still

missing.

− At NNLO, the scheme is currently designed only for

FSR and for massless partons. Preliminary investigation

is ongoing for the extension to ISR and to the massive

case.

qt-subtraction

+ The method benefits from any existing calculation for

“F+jet” production at LO, NLO, NNLO, etc, to pro-

duce results for “F” production at one corresponding

higher order of the perturbative expansion: NLO, NNLO,

N3LO, etc. In fact, the singular behaviour of “F+jet” as

qT → 0 is well-known from the resummation program

of logarithmically-enhanced contributions to qT distribu-

tions.

+ The universality of the logarithmic contributions to the

qT distributions allows to construct counterterms which

require minimal information about the process, such as

the Born subprocess and the finite remainder of the multi-

loop scattering amplitudes (at any corresponding order in

the coupling).

+ qT -subtraction is fully developed for production pro-

cesses of colourless particles and massive quarks. The

general structure is the same for any number of colourless

particles in the final state, any number of massive quarks

in the final state, or any combination between colourless

particles and massive quarks.

− The subtraction is non-local and the control on large can-

cellations is an issue. A small resolution variable, i.e. a

cutoff, leads to numerical difficulties and slower integra-

tions. Conversely, a greater value for the cutoff enhances

the contributions from power corrections in the resolu-

tion variable, which are actually neglected in the general

formulation of the subtraction.

− Real scattering amplitudes and counterterms are inte-

grated in different phase spaces, with the counterterm

always evaluated in the corresponding Born phase space.

− qT -subtraction is not fully developed for production pro-

cesses of detected massless coloured particles and/or jets.

Antenna subtraction

+ Local subtraction scheme with phase-space averaging.

Good control on the numerical accuracy of the final result

with double-real, real-virtual and double-virtual contri-

butions separately finite.

+ No need to introduce phase-space slicing parameters in

the calculation.

+ IR singularities are cancelled analytically, i.e., the explicit

ǫ-poles in the dimension regularisation parameter of

one- and two-loop matrix elements are cancelled in ana-

lytic and local form against the ǫ-poles of the integrated

antenna subtraction terms. Good control on the correct-

ness of the pole cancellation.

+ Fully general subtraction scheme at NNLO for massless

final-state and initial state QCD for any jet multiplicity.
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− The antenna functions are scalar objects and do not sub-

tract angular correlations in gluon-splittings, which van-

ish when the azimuthal variable of the collinear system

(with respect to the collinear axis, defined by the collinear

momentum and a light-like recoil momentum) is inte-

grated out. Cancellation is accomplished with the method

locally, by combining phase space points correlated by a

π/2 rotation around the collinear. axis

− Involves many re-mappings and subtraction terms as

expected for a local method. Can be improved by intro-

ducing a caching system to store the evaluation of the

phase space mappings applied to the real contributions.

Closing discussion

The closing event of the workshop was a discussion session

in which all the attendants participated and shared opinions.

Here, we present a summary of the main topics and questions

that were mentioned in that session, preserving the original

ordering in which the discussion took place.

As stated in the general introduction, the purpose of the

present workshop was to deepen into technical aspects of

modern high-precision computations for QFTs. This implies

covering several topics, several techniques and subtleties,

that might hide conceptual and/or computational issues.

These issues range from subtle definitions (e.g., what does

locality mean?) to deeper conceptual problems (e.g., does it

make sense going till NkLO in perturbation theory without

having quantitative control on the size of various corrections

of non-perturbative origin?). Since the time was limited, the

discussion focused on three points: theoretical errors, fac-

torisation breaking and γ 5 issues.

About theoretical errors

It is a fact that experiments are reaching an impressive level

of accuracy, due to the increase in the data collection and its

treatment. So, one question is: how can theory keep the pace

and produce predictions within the required precision? How

can we control the theoretical errors in a reliable way?

Nowadays there is a shared opinion within the HEP com-

munity that more legs and more loops will lead to an error

reduction, but there are not yet established precise proce-

dures to properly quantify the error estimation (see, e.g., Refs.

[223,224] and related references therein).

Moreover, regarding theoretical errors in collider observ-

ables, we need to include the non-negligible impact of PDFs.

Essentially, the predictions are being affected by perturba-

tive and non-perturbative contributions, and both of them are

potential sources of errors that need to be kept under control.

Thus, another important question is: how does the theoret-

ical framework affect our skills to extract predictions from

QFTs? PDF extractions relies not only on highly-accurate

experimental data but also on highly-precise partonic pre-

dictions (coming from multi-loop multi-leg computations).

A non-trivial interplay between perturbative uncertainties at

partonic level and ensuing PDF errors is always present. So,

it is not possible to claim a certain accuracy if there is not

a rigorous control on the errors present in all the ingredi-

ents of the calculation (see. e.g., Refs. [225,226] and related

references therein).

Factorization breaking

Most of the time, we focus our methods on trying to com-

pute NLO, NNLO and even higher-order corrections to hard-

scattering processes at hadron colliders. We rely on the valid-

ity of the factorisation theorem, but only a few times we are

(fully) aware of the potential limitations.

Our ability to compute predictions for high-energy collid-

ers strongly relies on the parton model and factorisation for-

mulae, which isolate the dominant (i.e., ‘leading twist’) non-

perturbative nature of the colliding proton inside process-

independent PDFs. If collinear factorisation is spoiled at

some perturbative orders, then PDFs would carry an implicit

dependence on the process. Correlations among initial- and

final-state partons will survive, and this will break the possi-

bility of using the factorisation theorem.

We recall that a general (process and observable indepen-

dent) proof of the factorisation theorem to all perturbative

orders is still lacking. In Ref. [227], the violation of strict

collinear factorisation at the scattering amplitude level was

pointed out. In the collinear limit, the scattering amplitude

M factorises according to

Mn(p1, . . . , pl , pl+1, . . . , pn)

→ Sp(p1, . . . , pl , P̃)

×Mn−l+1(P̃, pl+1, . . . , pn), (8.1)

where {p1, . . . , pl} ({pl+1, . . . , pn}) are the collinear (non-

collinear) momenta and P̃ denotes the light-like vector carry-

ing the total momenta of the collinear partons. The factor Sp

embodies the contributions that are singular in the collinear

region. In a naive picture, the singular factor Sp is expected

to be universal (process-independent), namely it can only

depend on the momenta and flavours of the collinear par-

tons. This picture is valid at the tree level and, more gener-

ally, in the time-like region, but, including loop corrections,

it was proven [227] that color and momentum correlations

among collinear and non-collinear partons are present in Sp

in the space-like region, i.e., in the case of collinear emission

from initial-state colliding partons. The contributions that

break strict collinear factorisation originate from absorptive

interactions that takes place in the far past (long before the

occurrence of the hard scattering) between the initial-state
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colliding partons. Owing to their absorptive origin, these con-

tributions are imaginary at the lowest perturbative order and,

therefore, they cancel at the squared amplitude level up to

NNLO (and also N3LO in pure QCD processes [227,228]).

The occurrence of such cancellation mechanism of fac-

torization breaking terms is not guaranteed at high pertur-

bative orders. Further studies and investigations [227–231]

of these factorization breaking terms (and of their precise

structure) are certainly relevant in view of the conceptual

and computational importance of the factorisation theorem

(‘assumption’) for extracting predictions within QFT. Even

if collinear-factorisation breaking contributions eventually

do not spoil the validity of the factorisation theorem, their

presence definitely introduce technical complications in the

cancellation mechanism of IR divergences for multileg hard-

scattering observables in hadron collisions. Such complica-

tions have to be overcome to extend IR-subtraction methods

beyond the NNLO.

γ 5 problems

One of the main topics of this workshop regarded the sub-

tleties that appear when extending a theory to d dimensions,

whatever d means (as in the context of dreg). However, there

are problems that also arise when d = 4: this is the case of

γ 5. Of course, in the standard four-dimensional space-time

there is a well established recipe to mathematically define γ 5.

Moreover, in any even-dimensional Minkowskian manifold

analogous objects to γ 5 are properly defined.

Regularisation involving γ5 is problematic. In dimen-

sional schemes the problems are well-known (see e.g. the

review [232]), and recent references have focused on com-

paring different γ5-prescriptions up to the two-loop level [21]

and on determining gauge invariance-restoring counterterms

for the Breitenlohner/Maison/’t Hooft/Veltman prescription

of γ5 [233]. Quite surprisingly, non-dimensional schemes

are not exempted of issues in the presence of γ5 [84,85]. The

reason boils down to requiring very basic properties such

as shift invariance and numerator-denominator consistency

to be respected, showing that virtually any regularization

scheme will need to deal with γ5-problems [22].

Therefore, consistent definition of γ5, together with full

understanding of its properties with respect to symmetries,

gauge invariance and anomaly cancellation, is crucial for

higher-order calculations. This is especially important in

the context of high-precision predictions taking into account

electroweak corrections.

Further open questions

After the exciting discussion session, many issues and ques-

tions remained opened. In particular, we would like to high-

light:

• How to re-define a QFT in such a way that no distinction

among real and virtual corrections is done?

• Even if we manage to combine the real and virtual con-

tributions from the very beginning, still threshold singu-

larities might survive. How to tackle them and develop

efficient techniques to integrate through thresholds?

Recent studies at NNLO point to computational frameworks

in which IR, UV and threshold singularities are treated in

purely four dimensions. In fact, NLO calculations in a four-

dimensional framework started to be carried out long time

ago by Soper [234] and subsequent related works. More

recently, studies that aim at achieving a complete cancella-

tion of singularities at the integrand level were presented in

Refs. [42–44,53] at NLO, and preliminary results that involve

two-loop scattering amplitudes were presented in Ref. [52].

The studies in Ref. [235], based on the knowledge of the

infrared structure of scattering amplitudes [236,237], point

towards the same direction. Furthermore, novel techniques

for the evaluation of multi-loop Feynman integrals, inspired

by the loop-tree duality approach [47,49], have shown to

display a causal representation depending only on physical

singularities (see Refs. [54–57,60–62] and related references

therein).

Alternatives approaches based on analytic and semi-

numerical techniques for NNLO calculations are summarised

in the recent review [238].

This review is an outcome of the discussions and activi-

ties of the workshop “WorkStop/ThinkStart 3.0: paving the

way to alternative NNLO strategies”, which took place on

4.–6. November 2019 at the Galileo Galilei Institute for The-

oretical Physics (GGI) in Florence. The official picture with

all the participants to the workshop is shown here, with all

authors of the review amongs them.
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