International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

437

MAYHAM — A New Hash Function

Naila Shakeel, Ghulam Murtaza, and Nassar Ikram
(Corresponding author: Ghulam Murtaza)

National University of Sciences and Technology, Sector H-10, Islamabad, Pakistan
(Email: {nailashakeel, azarmurtaza}@hotmail.com, dr_nassar_ikram@yahoo.com)

(Received Mar. 15, 2011; revised and accepted Nov. 15, 2011)

Abstract

With the succumbing of various Hash functions to collision
attacks, there have been serious research efforts to design
new Hash functions which are robust against various
contemporary attacks. MAYHAM is one such hash
function that has been designed keeping in view the
cryptographic properties needed yet resistant to all the
publically known attacks. MAYHAM is designed as a
simple and efficient hash function as compared to other
dedicated hash functions. Main operations involved in
MAYHAM’s hash computation include S-box, MDS
Matrix multiplication, data mixing, XOR, addition and
interleaving. MAYHAM supports parallel processing in its
compression function and can be efficiently implemented
by using lookup tables.

Keywords: Data mixing, hash function, MDS matrix,
nonlinearity, S-Box

1 Introduction

A hash function is a one way function that maps an input of
arbitrary length into a fixed length output sequence of bits.
An account of cryptographic hash functions can be found in
Menezes et al. [4]; while a more recent survey is provided
by Preneel [5]. A secure cryptographic hash function has to
satisfy the requirements of preimage resistance, second
preimage resistance and collision resistance [3].

The recent attacks on MD4 [9], MD5 [2, 6, 11], SHA-0
[12] and SHA-1 [10, 14] by Wang et al have given a major
impetus to research in designing new cryptographic hash
functions as well as cryptanalysis of the existing ones. The
cryptographic community is now on the lookout for a new
hash function aimed at replacing SHA-1. NIST has opened
a new competition for SHA-3 pressing the need for more
robust and secure hash function, similar initiative was
earlier taken under NESSIE and CRYPTREC [8, 13, 15,
16]. This paper proposes a new hash function, MAYHAM
that is resistant to various attacks which are presently
known. It offers attributes of speed as well as simplicity in
implementation on processors of different bits.

The paper is organized as follows: Section 2 gives
design specification and details of MAYHAM, Section 3
explains design rationale, Section 4 treats the security

analysis, Section 5 covers the performance analysis and
Section 6 gives the conclusion.

2 Design Specifications

The algorithm is divided into two stages: preprocessing and
hash computation. The former is akin to the structure used
in MD4. Preprocessing involves the padding of the
message (to make it divisible by 512), parsing the padded
message into m-bit blocks of 512 bits each, and setting
initialization values to be used in the second stage i.e., hash
computation. In this stage, a compression function is used
iteratively on each block of 512 bits to compress them all
into an output of 256 bits. Main operations involved in
MAYHAM’s hash computation include S-box, MDS
Matrix multiplication, data mixing, XOR, addition and
interleaving. Lookup tables based implementations of S-
box (8x16) and MDS Matrix (4x2) enable realization of
competitive speed, a highly desired attribute for hash
algorithms.

2.1 Parameters and Acronyms
The following parameters are used in MAYHAM:

Ho®, H{9,..., His@ Initial Hash values
X Message to be hashed
M Message length in bits

X" Message block i, with a size of m
~ bits.
X® The j" word of the i message
block, where X, is the left-most
word of message block i
Ao, A4, ..., Ais Working variables that are 32-bit
words used in the computation of
the hash values
a; " byte of the i"" working variable
K; Constant value to be used for
iteration t of the hash computation
Ho©"H, ..., H/9 Current message block hash value
Ho® H,®...., H;® Final hash value
M Matrix
MT Transpose of the Matrix M
DM Data Mixing

mailto:dr_nassar_ikram@yahoo.com

International Journal of Network Security, Vol.15, No.6, PP.437-4

Round Function
Out Function

Maximum Differential
Probability
Differential Probability

Look Up Table
Substitution Permutation Network
Initialization Vector

Fr
Fo
MDP

DP
LUT
SPN

2.2 Notations

The following symbols are used in MAYHAM, and each
operates on 32-bit words:

@ bit-wise exclusive-or operation
B Addition modulo 2%
X Interleaving of bits into 32 bits

2.3 Constants

MAYHAM uses a sequence of sixty-four constants of size
32-bit each i.e., Ko, Ky, ..., Kgs that are generated randomly
In hex, these constant words are (from left to right):

2678d3b9; a2100094; 1251db5d; e425eb7f; 6f23988f ;
2cabadf6; ce079e3b; 27267f75; 7cc590c6; 565d7491;
fb224be5; 3b3abdOc; 8343ccc9; 13ald2ba; bb55ea81;
cbdcea9a; 71c4174d; c0140686; b05a834d; d7b354f2;
e7a0728b; 3bd428db; f3d50b01; 73f3c61f; 37b07377;
236f4b6e; 3c4619b8; 1e85e207; 00f8992a; 695f5f9c;
9b3c5aea; 090513bd; 94631527; 3fddce78; 55034ff5;
bb70bc6d; £304007b; 599cb5d8; 50d7dbe6; 15606536;
325b23ba; 7484a4ba; 0a923572; 0c458ef1; 5f887fe8;
d882d15e; a6276cld; 8e45e65f; 8786ecal; 6a8a2132;
0754ea2b; 4cb946f4; 508daebd; 1fofo707; 1ee8c64d;
18862cc4; abd6ea86; 59ed86d5; 664de184; 97ab6llec;
e078cd00; 972840e8; eee48181; c3d41980

2.4 Initial Hash Value (H©)

The initial hash value, H® consists of the following sixteen
32-bit words, in hex that are generated randomly in
preprocessing stage:

Ho© = cfc09a62;
H;© = d7da6ca0;
H.© = 6b041292;
Ho® = dd6afobd;
H., 9= 6779c7fb;
H,:© = c6c49d5d

H,© = bd126f78;
H:© = 96029774;
H© = 269b1c20;
H,,© = 7409aae8;
H,,© =2826f702;

H,© = 06d956d1;
H,© = b92c2d82;
H,© = 34605d71;
Hyo® = d16e2adb;
H,,@ = f8fddfcd;

2.5 The Algorithm MAYHAM

The algorithm is divided into two stages which, in order, are:

preprocessing and hash computation. Preprocessing is done
in three steps: padding the message, parsing the padded
message into message blocks of size 512 bits each, and
setting the initialization values mentioned in Para 2.3 and
2.4. After preprocessing, each message block X% of 512 bit

45, Nov. 2013 438

is divided into sixteen 32 bit words i.e., Xo®, X;?,..., X;5%
and successively processed through MAYHAM function
comprising of the following (refer to Figure 1):

HE

K l
E H")
Fo [isevs 256 bits

4- rounds

Ho I A

s
€

om |1

X! M
512 bits |i| 512 bits

512 bits,

Figure 1: MAYHAM hash algorithm

XOR Operation. Message words X9's are XORed with
the initial values H;® to get the working variables A; where
0<j<1s.

H %X = A,

where X is the j" word of the i" message block and
© 0<j<I5.

Data Mixing (DM) Function. Data mixing function is
shown in the following figure.

After data mixing the following transformations of the
working variables are obtained:

Ag=8AGHAA+2AgHAATHAAAHAGHA+AGHAGH2 A o+
2A11+2A05+Agat Agg+2Ass.

As=2A0+2A,+2 A0+ 2 Ag+AA+ 2AcHAGH2 A+ 2 Ag AgtA
+2A11+ A+ A2 A2 A s,

Ay=2Ag+2A, HAAHAAGH2 A+ Act Agt2Ar+4 A2 AgHA
+2A01 A+ At At Ags.

As=4Ag+2 A1+ 2 A0+ A A+ AL+ As+2Ag+2 At Ag+Agt At
Ap+4A+2A s+ Ay t2Ass.

A= Ag+tA+HAFAHAALF2 A5+ A2 A4 Ag+2 Ag+2 Aot
4A11+ A+ A2 A1+ 2 A

As=4Ag+2 A1+ A2 Azt A+ Ast+AgtAr+2Ag+2 Ag+4 A+
4A;+2A+AtT Ay t2Ass.

A6:2A0+A1+A2+2A3+A4+A5+2A6+2A7+2A8+2A9+2A10+
2A1+4A+2A 3+ Ayt 2A s,

Ar=AGHA 2 A2 AgH2 A+ AsHAGH2AABAGHAAGH2 A o+
4A1+ALRTART AytAgs.

Ag=AgtA+2 A2 A5 +2 A+ Ast+AG+2A+16Ag+8Ag+4A
+8A11+2A+2A13+2A 4 +2A 5.

Ag=2Ag+ A1+ A+ 2 A+ A+ As+2As+H2 A+ A AgH4 Ag+A A o+
4A 1 +8AL+AA 2 A +AA s,

Ag=8AgH2A+ A2 A+ A+ AstAg A+ A AgHIAGHBA o+
8A+AA T2 A3 +2A 4 +4A s,

A= AGHA A AGHIA+2 A Agt2A+8Ag+HAAGHAA o+
8A11+2A12+2A13+4A14+4A15.

A=At 2 A+ 2 A+ AR AL Ast2Act 2A+2 Ag+2AgH
2A10+ 2A11+8A12+4A13+2A14+4A15.

Agsm2Ag+2A, HAAHAAGH2 A+ At Agt2A+8 Ag+AAg+
2A10+4 A +2A0+2A13+2 A4+ 2A 5,

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

Ay J’T F T g e
AZ ’I\J/ AT B
PN] -
ray
A: J:]\ e -
A) 1]
PN
Ac , ik
A, AT])
AlO T\L i
All TJ/ A
A12
) L L
A)
A, Ll
Figure 2: Data Mixing (DM) function
A4 a'4,0 a4,1 a'4,2
Ap=2A0+2A+2A0+2 Ag+AA A2 A+ Ag+2 A+ 4 Ag+2 Ag+
2A10+4A11+2A12 + 2A13+4A14+4A15. A5 a5 0 a5 1 a5 2
As=8A+4A+2A+4 A+ A+ Ast At A+2AgH2Agt M, = ’ ' ’
AAHAAHAA s+ 2A 5+ 2A 4+ AP s, A a,, 4a, a,
Round Function (Fg). Round function Fg operates 4 times _a7,0 a7,1 a7,2
for every message block of size 512 bits. After every
iteration, the resultant value of the round function Fg will
become the next input for the round function Fr. The -
Round Function Fg is illustrated in Figure 3 and comprises A, ag,g ag,l ag,z
of sub processes involving Matrix Transposition, g-
function, MDS Matrix multiplication and S-function before A ag,o ag,l ag‘z
giving its output. Each of these processes has been Ms=
explained hereunder. AiO alo,o a10,1 aw,z
Ad ey, &y, ay,
M, 128-bits N”_T 128-bits _ [| 128-bits I@E-Hmts +-function 128-bits
I E s
M, 128-bits . M,T 128-bits u | 128-bits . |MDS |64-bits 128-bitg
My 128-bits N’ET 128-bits, *c 128-bits @E-‘-b\ti lZS-b\t; _a1 a1 al
i 2,0 21 2,2
. A,
M, 128-hits o, M,T_128-hits n 128-hitss, (MD5 |B4-hits s-function 128-hifs
s o | " A, Ayo &y A,
. . 4=
Figure 3: Round function (Fg) A, (’3114'0 a14,1 a14,z
Where ° _a15,o a15,1 a15,2
AO a'O,O aO,l a'0 2 a'0,3
Transpose Matrix. M, " is the transpose of matrices My, M,"
M. = A _ 0 1 2 3 is the transpose of matrices M, and so on. After taking
! A, a a a a transpose of each matrix, these matrices are now passed
A 2,0 21 2.2 2.3 through the g-Function.
a3,0 a3,1 as,z a3,3(4x4)

439

(4x4)

J(4x4)

(4x4)

g-Function. Following equations define the g-Function

A4 = A4+Ao.

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

Ag = A9+A5.
A= AutAg.

A3 = A3+A15.

MDS Matrix. MDS Matrix of order (4x2) defined over
irreducible polynomial 283 (in decimal) is used in
MAYHAM. The working variables A;’s, previously of size
32-hits each, get reduced to 16-bits each (Appendix A)
after passing through MDS Matrix.

s-function. It consists of S-box of size 8 x 16, sixty four 32-
bits round constants and interleaving of two consecutive
output bits from the S-box into 32 bits. Interleaving is
performed in a usual way in which output bits of S-Box
when accessed the first time are placed in odd position
while output bits of S-Box when accessed the second time
are placed in even positions. The s-function operates the
following way:

8-bit 16-bit

RN prey

8-bit .
16-bit
—| 5
64-bits 5-Box
'
i

A

l K.32-bit
32-bit

——»]
128-5it
—_—
| 1 i
‘ ' :
B-hit 16-bit
——*| s-Box
8- bit

32-bit
16-bit T @

5-Box I

K. 32-bit

Figure 4: s-function

IVV-Assignment. After 4 iterations of round function Fg, the initial
hash values are replaced with working variable values, i.e.

H®= A where 0 <j <15.
Out Function - Fo. The Fgis described by the following
equation:

Hj(c) = A2j + A2j+1’ Where 0 S_] <7.

Final Hash Value.

H® =H® +H©, where 0<j<7.
Test vectors for MAYHAM hash algorithm are given in
Appendix B.

3 Design Rationale

Each component of MAYHAM algorithm individually
complies with its respective security criteria, thus ensuring
that the algorithm is secure and collision free.. Rationale
for selecting different sub-functions within each stage i.e.
Preprocessing and Hash Computation either from the

440

perspective of security or efficient implementation, is given
below:

1. Padding in preprocessing stage pads the original input
data to thwart attacks based on fixed points [7]. In such
attacks, the attacker tries to produce second preimages or
collisions, by inserting extra blocks into the input.

2. The iteration mode used in Hash Computation stage is
based on the well known Merkle-Damgard construction
[1], which enables compression function to be collision
resistant.

3. In data mixing function of Hash Computation stage,
parallel processing is done to mix the data in 4 steps and
so is done for round function Fg for -efficient
implementation. Other operations used in MAYHAM
include addition 2%, interleaving, XOR and LUTs
ensure efficient realization.

4. Different round constants, though generated in
Preprocessing stage but used in Hash computation, are
employed for each round. This improves the security of
the overall hash function.

5. In order to get the best possible diffusion, MDS Matrix
is used which has the maximum branch number. The
MDS is efficiently implemented with two LUTSs.

6. g-Function is used to add global diffusion for round
function Fg.

7. s-function is used to add confusion and non linearity to
the data. S-box used in the s-function is balanced having
nonlinearity of 84. Interleaving is used to mix the output
bits of two consecutive S-boxes.

8. Round function Fy is processed 4 times, considered most
appropriate to get complete data diffusion for g-function.

9. Fy is irreversible function in order to prevent preimage.

4 Security Analysis
Following security attributes are offered by MAYHAM:

1. Nonlinearity.
The nonlinearity comes mostly from S-box of size 8 x
16 and interleaving of 32 bits. This is better than merely
combining additions and XORs (i.e., using the carry
bits) and it affects all the output bits, not just the
neighboring bits.

2. Resistance against Differential Analysis.
The round function of MAYHAM is of SPN type
structure and uses S-box having MDP of 2-6. In first
round the structure ensures 8 active S-boxes which
increases to 32 active S-boxes each in the following
three rounds. For all four rounds there are 104 active S-
boxes which together give a DP of 2-624 which is much
lesser than 2-256. In addition, g-function and
interleaving of 32 bits destroys differential patterns and
adds complexity for differential analysis.

3. Protection against Slide Attack.
Different round constants are used in each round to
avoid the slide attack.

4. Avalanche Effect.
There is a strong avalanche; each message bit affects all
the output bits due to SPN type structure.

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

5 Performance Analysis

Software implementations of MAYHAM were tested on
system with Intel based CPUs Dual Core 3.34GHz with 1
GB RAM. The comparison is given in the following table
for various hash functions tested on 0.8 Mb data file. It
shows that MAYHAM has the third fastest output after
RIPEMD-128 and RIPEMD-160.

Table 1: Comparison of software implementation of
MAYHAM with MD5, SHA-256, SHA-224, SHA-512,
RIPEMD-128 and RIPEMD-160

Algorithm Time(ms)
MAYHAM 282
MD5 312
SHA-256 437
SHA-224 453
SHA512 422
RIPEMD-128 250
RIPEMD-160 250

6 Conclusion

In this paper we proposed a new 256-bit hash function
which is designed not only to be secure but also faster and
simpler than other known hash functions. MAYHAM
possesses the property of being resistant to collision.
However, unlike other dedicated hash functions,
MAYHAM uses S-box, MDS Matrix and Data mixing
function, together these functions offer security attributes
distinct from others in withstanding various cryptanalytic
attacks. MAYHAM is processed in parallel and is fast in
software using Look wup tables. Its hardware
implementation is also envisaged to be efficiently realized.

References

[1] I. Damgard, A Design Principle for Hash Functions,
http://saluc.engr.uconn.edu/refs/algorithms/hashalg/da
mgard89adesign.pdf

V. Klima, “Finding MD5 collisions on a notebook PC
using multi-message modifications”, Cryptology ePrint
Archive, 2005. http://eprint.iacr.org/2005/102.pdf

L. R. Knudsen, “Small size hashes with enhanced
security”, International Journal of Network Security,
vol. 2, no. 1, pp. 41-42, 2006.

A. J. Menezes, P. C. Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press,
Washington, D.C., 1997.

B. Preneel, Hash functions-Present State of Art,
ECrypt Conference on Hash Functions, 2005.
http://www.ecrypt.eu.org/stvl/hfw/

R. Rivest, The MD5 Message-Digest Algorithm.
Request for Comments (RFC) 1321, Internet Activities
Board: Internet Privacy Task Force, 1992.
http://tools.ietf.org/html/rfc1321

B. V. Rompay, Analysis and Design of Cryptographic
Hash Functions, MAC Algorithms and Block Ciphers,
Thesis, Katholieke University Leuven, 2004.

[2]

(3]

[4]

[5]

[6]

[7]

441

[8] R. Tirtea, “Cryptographic hash functions, trends and
challenges,” Journal of Computer and System Sciences,
vol. 2, pp. 62-65, 2009.

X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu,
“Cryptanalysis of the hash functions MD4 and
RIPEMD,” in Eurocrypt 2005, LNCS 3494, pp. 1-18,
Springer-Verlag, Heidelberg, 2005.

[10] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in
the full SHA-1,” in Crypto 2005, LNCS 3621, pp. 17-
36, Springer-verlag, Heidelberg, 2005.

[11]1X. Wang and H. Yu, “How to break MD5 and other
hash functions,” in Eurocrypt 2005, LNCS 3494, pp.
19-35, Springer-Verlag, Heidelberg, 2005.

[12] X. Wang, H. Yu, and Y. L. Yin, “Efficient collision
search attacks on SHA-0,” in Crypto 2005, LNCS
3621, pp. 1-16, Springer, Heidelberg, 2005.

[13]CRYPTography Research and Evaluation Committees
(CRYPTEC).
http://lwww.ipa.go.jp/ security/enc/CRYPTREC/index-
e.html

[14] National Institute of Standards and Technology.
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2.pdf

[15] National Institute of Standards and Technology (NIST),
http://csrc.nist.gov/groups/ST/hash/index.html

[16] New European Schemes for Signature, Integrity, and
Encryption (NESSIE). https://www.cosic.esat.kuleu-
ven.ac.be/nessie/deliverables/press_release_feb27.pdf

(9]

Naila Shakeel received her M.Phil. degree in Statistics
from Government College University, Lahore, Pakistan in
2004. She is currently a PhD Student/Research Associate in
National University of Sciences and Technology (NUST),
Pakistan. Her current research interest includes Digital
Signal Processing and Cryptography.

Ghulam Murtaza received his M.Sc. degree in
Mathematics from Government College University, Lahore,
Pakistan in 2000. He worked as a software engineer in
public/private sector organizations for 5 years. He did M.S.
Information Security from Sichuan University, Chengdu,
China in 2007. He is currently a Research Associate in
National University of Sciences and Technology (NUST),
Pakistan. He also works in symmetric key cryptology at
Horizon, Islamabad, Pakistan. His current research interest
includes Block Cipher Design & Analysis and Multiple
Layered Ciphers.

Nassar Ikram graduated in Electrical Engineering from
NED, Karachi, Pakistan in 1987. He received his M.Sc. in
Military Electronics and Systems Engineering from Royal
Military College of Sciences, Shrivenham, Cranfield
University, UK in 1995 and PhD in Information Security
from Bradford University, UK in 1999. He is currently
Professor at National University of Sciences and
Technology, Islamabad, Pakistan. His current research
interests include multimedia system security and

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

Cryptography.

Appendix: A

S-Box(in hexadecimal):

442

The words of the padded message block are assigned to X,
X4,...,X15. These variables are the input for the MAYHAM
hash Algorithm and are shown below:

Xo = 61626380
X4 =00000000
Xg = 00000000
X12= 00000000

X1 =00000000
Xs = 00000000
Xy = 00000000
X13= 00000000

Xz =00000000
Xs = 00000000
X10= 00000000
X14= 00000000

X3 =00000000
X7 =00000000
X1;= 00000000
Xi5= 00000018

Message blocks XORed with the initial hash values to get
the working variables Aq, Ay,...,Ass,

aea2f9e2
b92c2d82
269b1c20
6779c7b

6536536f
357814d5
954bd381
4de6cafa

06d956d1 bd126f78
96029774 6b041292
dd6afobd d16e2adb
fafddfcd 2826702
Data Mixing
9bbe8ef8 82266
bf2636f0 376d209b
0ffc08ed 5ab35b05
571al3la be3011f6

d7da6ca0

34605d71

7409aae8
c6c49d45

bed5c848
2860ce28
3cOcda7b
71cdb621

Intermediate results for the first round of Fg
After transposing the data

659bf8be
35bf3728
950f5a3c
4d57be71

659bf8be
9b5h2fe6
950f5a3c
4d57be71

AF6F | 5BSE | 888B | 9E79 | 97A9 | 60E4 | 6B3E | C6AC
B61D | ADOO | D349 | 4018 | 65C3 | F5AC | 1E7F | 7539
2347 | 4D9F | 2B10 | CD1D | 78E2 | BFA3 | 385A | E48D
75C5 | 122E | F648 | A086 | C281 | F7BO | AOAB | 3C55
8C72 | ED77 | E57A | 6855 | E11C | 40DF | 5AA 3EE2
B67D | CCA4 | A89C | CAD3 | EC14 | 60F9 | 8758 5B59
A48A | B998 | AF6C | C72 2921 | F640 | BAD6 | 8FD3
D36A | 42DF | 6B19 | 8BF8 | 2FA0 | 501A | EF2 E93
3096 | 758D | 992F | 256F | 111B | FAB4 | 2F37 | 25E6
283E | DFFD | 7303 | DD43 | BCCC | 5A46 | D79C | 6312
7ACC | 8622 | DB12 | 8F36 | F698 | 102F | D229 | 1E81
E4FF | F165 | 95CA | FD23 | A1E9 | 36D6 | 530F | 5F3A
84CF | 5A3C | 5D93 | 236B | BB4B | 779B | CB11 | A32D
CF14 | 4813 | 1EE6 | B5C F802 | 3C7A | 679E | 3F44
2FOF | 4635 | F DE67 | 67B2 | 7E40 | 9415 EF50
2CC7 | A284 | 97CA | AEE8 | BDFO | 82C5 | F86D | D2A8
16F 3EBD | F5AD | 61A5 | FE7 E26C | D5B7 | 1693
60E2 | 5911 | C176 | 6820 | 40F9 | 8113 | 149 7DB7
11CC | 43DF | 41E6 | 5FE7 | 18E3 | DAG0 | C1E7 | E34
3FDD | 27D BA28 | CC44 | 9BF0 | 274E | BO5A | CC36
6475 | 5427 | 559 5F12 | 26D8 | C6CF | D6C4 | 8FAC
1C3F | FDED | C49E | 6AF0 | 2288 | 9637 | 32C1 | 9A86
2BB1 | 8AFB | ES8BC | 9F82 | 12C2 | 27DE | AACC | B378
F4 57FD | 9894 | 5369 | 9A81 | 7D91 | 5D4E | 14BA
20CC | 8823 | B3F8 | C078 | 9A13 | 91B1 | D7B6 | FOBF
9F48 | E9C2 | 211E | 4102 | B184 | 5C5F | D902 | E9C5
3819 | 3845 | C71D | 74B9 | 8C48 | 7BB1 | DFF0 | 9428
F9E2 | D53B | 99C5 | 4165 | C23 F346 | 94F9 164A
E2B0 | 900 45AC | A901 | AFF5 | 3285 | 91C6 | 2006
7EEA | 6FB5 | E2DF | 6BB6 | FF76 | 8873 | DC73 | 7001
2B3A | EE89 | 3A76 | 85BD | 78D1 | 322F | C14A | 5087
EC7E | 9371 | 6C2B | 1F6F | 279B | 9ED4 | 6EB3 | 2549

1 1

1 51

MDS =

51 el

el 1
Appendix: B

Test Vectors

All results are given in Hex format.
Test Vectors (Single block message)

Message: M, be the 24-bit ASCII string “abc”, which is
equivalent to the following binary string:

01100001 01100010
The initial hash value, H?, is
Ho®= cfc09a62 H,®@=06d956d1
H,®=h92c2d82 Hs®»=96029774
He®=269b1c20 Ho®=dd6afobd
H,®=6779c7fb Hy@=f8fddfcd

01100011

H,®=hd126f78

He®=6b041292
Hlo(o) = d16e2adb

H.,© = 2826702

36bef2d5 538ef2c8
78266d60 143620ce
4bfch30c d3085h4a
e61a30cd c41311b6
g-Function
36bef2d5 538ef2c8
78266d60 143620ce
c423206¢ d3085bh4a
e61a30cd 971b6d00

6ff86648
d5f09b28
81ed057b
falaf621

6a135c69

d5f09b28

81ed057b
falaf621

MDS, S-Box, Interleaving and XORing with round

d3ch954a
25f6e9a8
894d7799
14729458

constants
54befb63 78060437
aee21c8e 8ceb4b7c
2e4d9dcd b0c8a857
f05f29aa d0a99b91

947t59¢5
dch77a38
223f1df9
676dd073

Intermediate results for the second round of Fg
After transposing the data

d3547894
25ae8cdc
892eb022
14f0d067

d3547894
9030570

H;®=d7dabcad0 892eb022
H,©=34605d71 14f0d067
Hy,®@=7409aae8

H 15(0):C6C49d5d

cbbeb67f 95fh0459
f6e2ebb7 e91c4b7a
4d4dc83f 779da81d
725fa96d 94299bd0
g-Function
cbbeb67f 95fh0459
f6e2ebb7 e91c4h7a
4430b3f6 779da81d
725fa96d Obc743ed

constants

4a6337¢5
a88e7c38
99cd57f9
58229173

a30dc938
a88e7c38
99cd57f9
58229173

MDS, S-Box, Interleaving and XORing with round

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

6al554ca
a95dced3
e14dc057
d468c475

69c2581a caa3az2lc 465ch6ac
e882h6cc 2c63b141 dcd54aea
a9e56hb1 c85f8cfe ea64ed6b
924c32ab 5c16¢32¢c 258a057a

Intermediate results for the third round of Fg

6a69cad6
a9%e82cdc
ela9c8ea
d4925¢c25

6a69cad6
1451722
ela9c8ea
d4925c25

After transposing the data

15c2a35¢ 5458a2b6 calalcac
5d8263d5 ceb6bl4a d3ccdlea
4de55164 c06b8ced 57b1febb
684c168a c432¢305 75ab2c7a
g-Function
15c2a35¢ 5458a2h6 3fc54926
5d8263d5 ceb6bl4a d3ccdlea
ab67¢339 c06b8ced 57b1febb
684c168a 849e4ff2 75ab2c7a

MDS, S-Box, Interleaving and XORing with round

b934cc54
ebh82592¢
85b1d819
c3aB8aa2l

constants
eaee008b ae3f9d65 512f9951
7fc9b245 cd2b6366 888f8al5
6774bf45 d7042570 534d6ba6
28edd2fd 2e6eec3d 229069¢ea

Intermediate results for the Fourth round of Fg

b9eaae51
eb7fcdss
8567d753
€3282e22

b9eaae51
a56a7bd9
8567d753
€3282e22

After transposing the data

34ee3f2f cc009d99 548h6551
82c92h8f 59b2638a 2¢456615
b174044d d8bf256hb 194570a6
a8ed6e90 aad2ec69 21fd3dea
g-Function
34ee3f2f ¢c009d99 7688a33b
82c92b8f 59b2638a 2¢456615
343d2fdc d8bf256h 194570a6
aBed6e90 839211d4 21fd3dea

MDS, S-Box, Interleaving and XORing with round

74€9678c
6e4d02b5
f53c8ff6
e02eeOba

4da61595
71e9c531

constants
d8bcae09 91bbcbea bba62376
b561e82b 3dec94cl bdfael35
7cad353b 67b1bfb0 122259f7
3b8e2a82 71241208 bc29a41c
Hash:
4d61ef60 23aeeael fhe775f6
79d419a7 1bbd0b3c 2dce9624

Test Vectors (Multiple Block Message)

Let the message, M, be the 448-bit, ASCII string
"abcdbcdecdefdefgefghfghighijhijkijkljklmkimnlmnomnop

nopq".

Thus, the final padded message consists of two blocks.

Ho© = cfc09a62
H,© = b92c2d82
Hg® = 269b1c20

The initial hash value, HO, is

H,®=06d956d1 H,®=bd126f78 H;® = d7da6cad
Hs®= 96029774 He®=6b041292 H,® =34605d71
Ho® = dd6afobd Hy©=d16e2adb Hi;,® = 7409aae8

H1,® = 6779c7fb

H5® = f8fddfed

443

H.,©=2826f702 H;5® = c6c49d5d

The words of the padded message block are assigned to Xo,
X3,...,X15. These variables are the input for the MAYHAM
hash Algorithm and are shown below:

Xo = 61626364
X4 =65666768
Xg = 696a6b6c
X1z = 6d6e6f70

X1 = 62636465
X5 = 66676869
Xq = 6abb6c6d
Xi13 = 6e6f7071

X, = 63646566
Xs = 6768696a
X10= 6b6c6d6e
X14= 80000000

X3 = 64656667
X7 = 68696a6b
X11 = 6c6d6e6f
X15= 00000000

Message blocks XORED with the initial hash values to get
the working variables Aq, Ay,...,Ass,

aea2f906
dcdadaea
Aff1774c
0al7a88b

55422793
bde88008
26c01439
76a0d273

64ba32b4 de760ale
f065ff1d 0c6c7bf8
b70195d0 ba0247b5
9692afbc a826f702
Data Mixing
21cabb7c 8532f05e
370ee3fb e3785aa7
2160c0b7 6f0361b1
2d5db697 elfcdlac

b3bfOac7
5c09371a
1864c487
c6¢49d5d

121285bb
€600746d
bfcaab63
e1757fb5

Intermediate results for the first round of Fg
After transposing the data

55218512
125968f8
26216fbf
762delel

55218512
125968f8
26216fbf
762delel

42ca3212 276bf085
€80e7800 80e35a74
a86e7hca 14c061ab
a05dfc75 e776a32a
g-Function
42ca3212 276bf085
€80e7800 80e35a74
aB86e7hca 14c061ab
a05dfc75 e776a32a

07140b70
08fha76d
39b7b163
7397ach5

07140b70
08fha76d
39b7b163
7397ach5

MDS, S-Box, Interleaving and XORing with round

db3ad11d
adel2da8
061f1fd0
255chd1f

constants
70aa6140 a310f0dc
ebcdee9d4 cl5b4ald
d8565f45 11a36242
842c52bd b4d18818

6473bc71
bObf3d2e
854299c9
21993570

Intermediate results for the second round of Fg
After transposing the data

db70a364
adebc1b0
06d81185
2584b421

db70a364
895c6514
06d81185
2584b421

3aaal073 d161f0bc
elc45hbf 2deeda3d
1f56a342 1f5f6299
5c2cd199 bd528835
g-Function
3aaal073 d161f0bc
elc45bbf 2deeda3d
011aff01 156299
5c2cd199 dcbleace

1d40dc71
ag8941d2e
d04542c9
1fbd1870

3cfdf4el
a8941d2e
d04542c9
1fbd1870

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

MDS, S-Box, Interleaving and XORing with round

701a61f9
1c46ce29
aeb7cfbh4
c636637a

constants
3018¢685 d9c1d18b
180abd26 d914a903
194f94ad 63b32624
25d51d88 6b2bf391

50f97fbl
a276f851
d458bh82
Oba54c07

Intermediate results for the third round of Fg
After transposing the data

7030d950
1c18d9a2
ae1963d4
¢6256b0b

7030d950
8c49h2f2
2e1963d4
€6256b0b

1a18c1f9 61c6d17f
460a1476 cebdadf8
b74fb358 cf9426bb
36d52ba5 631df34c
g-Function
1a18c1f9 61c6d17f
460a1476 cebda9f8
fd59c7ce cf9426bb
36d52bas 32b21a07

f9858bb1
29260351
b4ad2482
7a889107

740elch8
29260351
b4ad2482
72889107

MDS, S-Box, Interleaving and XORing with round

59aaf4c7
9e04bbbd
241387h2
ee8ad686

constants
6276d043 df2a5902
8facfd09 h861f5c8
cd639fd1 07522e9%
f0191f32 f4df8025

728e475f
ec9cflal
9e6c84df
d1447066

Intermediate results for the Fourth round of Fg
After transposing the data

5962df72
9e8fb8ec
24cd079e
eef0f4dl

5962df72
f7f2985e
24cd079e
eefOf4dl

aa762a8e f4d05947
04ac619c bbfdf5f1
1363526¢ 879f2e84
8a19df44 d61f8070
g-Function
aa762a8e f4d05947
04ac619c bbfdf5f1
180fb408 879f2e84
8al19df44 5dbeaef4

c743025f
bd09c8al
b2d19edf
86322566

4d7527¢5
bd09c8al
b2d19edf
86322566

MDS, S-Box, Interleaving and XORing with round

603847f1
a4956eee
€70de886
9de98151

constants
1e98746f c59ca864
5f777d4a 655e145f
6710092 7b580061
b58352al 684863el

5afee300
cb03baa0
5820828
28b1c6a0

The hash value for the first message block, H®

7ed0bc60
4e2ce918

Ho® = 603847f1
H,® =a4956eee
Hg® = 70de886
H1,® =9de98151

209b8h64
d3860889

The initial hash value, H?, is

H,©® =1e98746f
Hs©® =5f777d4a
Ho® = 6710092
H,:®=b58352al

040cec38
536¢d3f2

H,© = c59ca864
He® =655e145f
H1©=7b580061
H1,®=684863e1

3061ceff
90fa2a81

H;® =5afee300
H;® = cb03baa0
H1,9 =582¢0828
H15(O) = 28bl1c6a0

444

The words of the padded message block are assigned to X,
X4,...,X15. These variables are the input for the MAYHAM
hash Algorithm and are shown below:

Xo = 00000000
X4 =00000000
Xg =00000000
X1, = 00000000

X; =00000000
Xs = 00000000
Xg =00000000
X153 = 00000000

X, = 00000000
Xs = 00000000
X0 = 00000000
X14 = 00000000

X3 = 00000000
X7 =00000000
X112 = 00000000
X15 =000001c0

Message blocks XORED with the initial hash values to get
the working variables Ag , A,...,Ass,

603847f1
a4956eee
€70de886
9de98151

4802eb51
235576¢1
85848607
962e8d30

1e98746f c59ca864
5f777d4a 655e145f
6710092 7b580061
b58352al 684863el
Data Mixing
61d2dc36 9ea83e35
038f6e75 9f327d54
7ef0fdbd 9903aaad
1938f155 382289

5afee300
cb03baal
582e0828
28b1c760

d822fe68
T4calefa
5a9465d3
e83e2d5f

Intermediate results for the first round of Fg
After transposing the data

48619ed8
23039174
857e995a
961938e8

48619ed8
6b653e4c

857e995a

961938e8

02d2a822 ebdc3efe
558f32ca 766e7d1le
8400394 86fdaa65
2e38223e 8dfle82d
g-Function
02d2a822 ebdc3efe
558f32ca 766e7d1e
da7f365e 86fdaa65
2e38223e 14ef9292

51363568
c17554fa
07bdadd3
3055f95f

818c2ec?
cl17554fa
07bdadd3
3055f95f

MDS, S-Box, Interleaving and XORing with round

0d4e435f
8496906
c2f8f542
2d86cdcl

constants
63ee5bac 6317cf55
d9f09262 €24271b8
eb4a3774 b34dbcOd
b140f8b0 68db04cl

€78b1351
342hdf28
ec24874e
7791c76e

Intermediate results for the second round of Fg
After transposing the data

0d6363c7
f8d9e234
c2ebb3ec
2db16877

0d6363c7
063d45fh
c2ebb3ec
2db16877

4eeel78b 435bcfl3
49f0422b 699271df
f84a4d24 f537bc87
8640db91 cdf804c7
g-Function
4eeel78b 435bcfl3
49f0422b 699271df
423a8f4f f537bc87
8640db91 c32fclde

5fac5551
0662b828
42740d4e
c1b0cl6e

215d16bf
0662b828
42740d4e
c1b0cl6e

MDS, S-Box, Interleaving and XORing with round
constants

International Journal of Network Security, Vol.15, No.6, PP.437-445, Nov. 2013

9f959de7 1307a3eb 78a5efbd 894975c2
1d1f59f2 8faabf7c 2c6leael 2efcf621
e63eddb6 c00814e4 67db7684 db54bfod
al48544e 95a39f5f 7fc34c9a 05521140

Intermediate results for the third round of Fg
After transposing the data

9f137889 9507a549 9da3ef75 e7ebbdc2
1d8f2c2e 1faablfc 596feaf6 f27cel2l
e6¢067db 3e08db54 dd1476bf b6e4840d
a1957f05 48a3c352 549f4c11 4e5f9a40
g-Function
9f137889 9507a549 9da3ef75 364b5802
bca2adh7 1faablfc 596feaf6 f27cel2l
e6¢067db 5db33d50 dd1476bf b6e4840d
al1957f05 48a3c352 31b3c2d0 4e5f9a40

MDS, S-Box, Interleaving and XORing with round

constants
892419 1827887 2d9d9588 c681b0e2
6437f0e2 7b6b63c7 21665683 1a48860a
637d4578 add43197 693d8859 4e0d935¢c
4098b881 cea20fd2 a3014aca ec8f26h2

Intermediate results for the Fourth round of Fg
After transposing the data

891e2dc6 f2829d81 4f7895b0 9e8788e2
647balla 376b6648 f0635686 e2c7830a
63ad694e 7dd43dod 45318893 7897595¢
40cea3ec 98a2018f b80f4a26 81d2cabh2
g-Function
891e2dc6 f2829d81 4f7895b0 20525394
ed99cee0 376b6648 f0635686 e2c7830a
63ad694e b53fa355 45318893 7897595¢
40cea3ec 98a2018f fd40d2b9 81d2cabh2

MDS, S-Box, Interleaving and XORing with round

constants
0e8668dd fca6f4la fc299ffa 07f4b3f6
2aeb5f9a 08b2b78a 8b2c1697 9c6927ec
€8188810 6577996¢ 149ff396 2¢5d2b90
b3c3a0bf aa7307f5 1439362 80c4103b

The hash value for the second message block is the final
hash value, H®

899e1957 24b9df54 37ab035¢c 57f70d82
7bbd0a94 148327af bla37cab 3101cele

445

