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Abstract

A critical challenge in microbiome data analysis is the existence of many non-biological

zeros, which distort taxon abundance distributions, complicate data analysis, and

jeopardize the reliability of scientific discoveries. To address this issue, we propose the

first imputation method for microbiome data—mbImpute—to identify and recover

likely non-biological zeros by borrowing information jointly from similar samples,

similar taxa, and optional metadata including sample covariates and taxon phylogeny.

We demonstrate that mbImpute improves the power of identifying disease-related

taxa from microbiome data of type 2 diabetes and colorectal cancer, and mbImpute

preserves non-zero distributions of taxa abundances.

Introduction

Microbiome studies explore the collective genomes of microorganisms living in a certain

environment such as soil, sea water, animal skin, and human gut. Numerous studies have

confirmed the importance of microbiomes in natural environments and human bodies

[1]. For example, new discoveries have revealed the important roles microbiomes play in

complex diseases such as obesity [2], diabetes [3], pulmonary disease [4, 5], and cancers

[6]. These studies have shown the potential of human microbes as biomarkers for disease

diagnosis or as therapeutic targets for disease treatment [7].

The development of high-throughput sequencing technologies has advanced micro-

biome studies in the last decade [8]. Two sequencing technologies are primarily used:

the 16S ribosomal RNA (rRNA) amplicon sequencing and the shotgun metagenomic

sequencing. The 16S rRNA amplicon sequencing measures 16S rRNAs, which can be

used to identify and distinguish microbes [9]. The 16S rRNA sequencing reads are either

clustered into operational taxonomic units (OTUs) [10] or mapped to amplicon sequence

variants (ASVs) [11, 12]. The shotgunmetagenomic sequencing, also known as the whole-

genome sequencing (WGS), sequences all DNAs in a microbiome sample, including

whole genomes of microbial species and host DNAs [10, 13–19]. The WGS sequencing

reads are mapped to known microbial genome databases to quantify the abundances of
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microbial species. Despite the vast differences between the two technologies, 16S and

WGS data can both be processed into the same data structure containing abundances of

microbes in microbiome samples: a taxon count matrix with rows as microbiome sam-

ples (which often correspond to subjects or individuals) and columns as taxa (i.e., OTUs

or ASVs for 16S rRNA data and species for WGS data), and each entry corresponds to

the number of reads mapped to a taxon in a microbiome sample. It is worth noting that

the total read count per microbiome sample, i.e., the sum of entries in a row of the count

matrix, differs by five orders of magnitude between the two technologies: ∼ 103 per

sample for 16S rRNA data and ∼ 108 for WGS data [20].

A critical challenge in microbiome data analysis is the existence of many zeros in taxon

counts, an ubiquitous phenomenon for both 16S rRNA andWGS data [20]. The large pro-

portion of zeros belongs to three categories by origin: biological, technical, and sampling

zeros [21]. Biological zeros represent true zero abundances of non-existent taxa in micro-

biome samples. In contrast, technical and sampling zeros are non-biological zeros with

different origins: technical zeros arise from pre-sequencing experimental artifacts (e.g.,

DNA degradation during library preparation and inefficient sequence amplification due

to factors such as GC content bias) [22], while sampling zeros are due to limited sequenc-

ing depths. Although WGS data have much larger per-sample total read counts than

16S data have, they still suffer from sampling zeros because they sequence more nucleic

acid sequences (microbial genomes instead of 16S rRNAs) and their effective sequencing

depths are reduced by widespread host DNA contaminations [23–25].

This data sparsity issue challenges microbiome data analysis, as most state-of-the-art

methods have poor performance on data containing too many zeros. Adding a pseudo-

count of one to zeros is a common, simple approach [26, 27], but it is ad hoc and

suboptimal because it cannot distinguish biological zeros from technical and sampling

zeros [28, 29]. Kaul et al. [30] developed an approach to distinguish these three types of

zeros and to correct only the sampling zeros; however, their correction is still a simple

addition of a pseudo-count of one, ignoring the fact that the (unobserved) actual counts

of sampling zeros may not be exactly one.

In particular, this data sparsity issue hinders the differentially abundant (DA) taxon

analysis, which aims to identify the taxa that exhibit significantly different abundances

between two groups of samples [13]. Microbiome researchers employ two major types of

statistical methods to identify DA taxa. Methods of the first type use parametric mod-

els [7, 26, 31–38]. For example, the zero-inflated negative binomial generalized linear

model (ZINB-GLM) is used in [7, 31, 32], the negative binomial regression is used in the

DESeq2-phyloseq method [33, 34], and the zero-inflated Gaussian model is used in the

metagenomeSeq method [35]. However, these parametric model assumptions may not

hold for a particular dataset [39]. Methods of the second type perform non-parametric

statistical tests that do not assume specific data distributions. Widely used methods

include the Wilcoxon rank-sum test [14–19] and ANCOM [27]. A major drawback of

these non-parametric methods is that a taxon would be called DA if its zero proportions

differ significantly between two groups of samples, but this difference is unlikely biolog-

ically meaningful due to the prevalence of technical and sampling zeros. Note that both

types of DA methods require the input taxon abundances to be in one of three units:

counts [7, 31, 32, 34], log-transformed counts [35], and proportions (i.e., each taxon’s

count is divided by the sum of all taxa’s counts in a sample) [26, 27, 36–38]; regardless of
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the unit, DA taxon analysis is always biased by the prevalence of technical and sampling

zeros.

In addition to DA taxon analysis, other microbiome data analyses, such as the con-

struction of taxon interaction networks [40–43], are also impeded by the data sparsity

challenge. Although zero-inflated modeling is commonly used for sparse data, it requires

a specific model formulation for each analysis task, which is often complicated or unre-

alistic for most microbiome researchers. Hence, a flexible and robust approach is needed

to address the sparsity issue of microbiome data.

Imputation is a widely used technique to recover missing data and facilitate data

analysis. It has successful applications in many fields, e.g., recommender systems (e.g.,

the Netflix challenge [44]), image and speech reconstruction [45–47], imputation of

unmeasured epigenomics datasets [48], missing genotype prediction in genome-wide

association studies [49], and themore recent gene expression recovery in single-cell RNA-

sequencing (scRNA-seq) data [50–54]. Microbiome and scRNA-seq data have the same

count matrix structure if one considers microbiome samples and taxa as analogs to cells

and genes, respectively; both data have large proportions of non-biological zeros. Given

the successes of scRNA-seq imputationmethods, we hypothesize that imputation can also

relieve the data sparsity issue in microbiome data. Although there are methods utilizing

matrix completion in the microbiome field, their main purpose is to perform community

detection or dimension reduction instead of imputation [55, 56]. Two distinct features

of microbiome data make it suboptimal to directly apply existing imputation methods.

First, microbiome data are often accompanied by metadata including sample covariates

and taxon phylogeny, which, however, cannot be used by existing imputation methods. In

particular, phylogenetic information is known to be valuable for microbiome data anal-

ysis [57–64], as closely-related taxa in a phylogeny are likely to have similar functions

and abundances in samples [65–68]. Second, microbiome data have a much smaller num-

ber of samples (often in hundreds) than the number of cells (often in tens of thousands)

in scRNA-seq data, making those deep-learning based imputation methods inapplicable

[54, 69]. On the other hand, the smaller sample size allows microbiome data to afford an

imputation method that focuses more on imputation accuracy than computational time.

Here, we propose mbImpute, the first imputation method designed for microbiome

data including both 16S and WGS data. The mbImpute method identifies and corrects

the zeros and low counts that are unlikely biological (for ease of terminology, we will

refer to them as non-biological zeros in the following text) in microbiome taxon count

data. The goal of mbImpute is to provide a principled data-driven approach to relieve

the microbiome data sparsity issue due to prevalent non-biological zeros. To achieve

this, mbImpute leverages three sources of information: a taxon count matrix, sample

covariates (e.g., sample library size and subjects’ age, gender, and body mass index), and

taxon phylogeny, with the latter two sources being optional. There are two main steps

in mbImpute (Fig. 1): first, mbImpute identifies likely non-biological zeros; second, it

imputes these zeros by borrowing information from similar taxa (determined by both

phylogeny and counts), similar microbiome samples (in terms of taxon counts), and sam-

ple covariates if available (see an illustration of the imputation step in Additional file 1:

Figure S1). The imputed data are expected to contain recovered taxon counts and would

thus facilitate various downstream analyses, such as the identification of DA taxa and the

construction of taxon interaction networks. Microbiome researchers can use mbImpute
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Fig. 1 An illustration of mbImpute. After mbImpute identifies likely non-biological zeros, it imputes them

(e.g., the abundance of taxon 2 in sample 2) by jointly borrowing information from similar samples, similar

taxa, and sample covariates if available (details in Methods)

to avoid the hassle of dealing with sparse data in individual analysis tasks and to enjoy the

flexibility of building up data analysis pipelines.

Results

mbImpute outperforms non-microbiome imputation methods in recovering missing taxon

abundances and empowering DA taxon identification

As there are no imputation methods for microbiome data, we benchmark mbImpute

against five state-of-the-art imputation methods designed for non-microbiome data: four

popular scRNA-seq imputation methods (scImpute [50], SAVER [52], MAGIC [51], and

ALRA [53]) and a widely used general imputationmethod softImpute [70].We design two

simulation studies, and the common goal is to obtain a “complete” microbiome dataset

without non-biological zeros, so that we can evaluate imputation accuracy by comparing

the imputed data with the complete data. In the first study, we simulate complete data

from a generative model fitted to a WGS dataset of type 2 diabetes (T2D) samples [18];

In the second, more realistic simulation study, we extract a sub-dataset with fewer than

15% zeros as the complete data from another WGS dataset of T2D samples [19]. In both

simulation studies (see Additional file 1: Simulation 1 and Simulation 2 [1–3, 6–8, 10, 13–

19, 26, 27, 30–32, 50, 52, 54, 70–101]), we introduce non-biological zeros into the com-

plete data by mimicking the observed zero patterns in real datasets, obtaining what we

call the zero-inflated data. After applying the six imputation methods to the zero-inflated

data in both studies, we compare these methods’ imputation accuracy in three aspects:

(1) the mean squared error (MSE) between the imputed data and the complete data, (2)

each taxon’s Pearson correlation between its imputed abundances and complete abun-

dances, and (3) the Wasserstein distance between the distributions of taxa’s abundance

mean/(standard deviation) ratios in the imputed data and the complete data. Figure 2a–

d illustrate the comparison results, indicating that mbImpute achieves the best overall

performance in all three aspects. In particular, Fig. 2c–d and Additional file 1: Figure S2

show that the imputed data by mbImpute best resemble the complete data, verifying the

advantage of mbImpute in recovering missing taxon abundances in microbiome data.

We next demonstrate that mbImpute is a robust method. The core of mbImpute is to

borrow three-way information from similar samples, similar taxa, and sample covariates

to impute non-biological zeros in microbiome data (see Methods). In the aforementioned

second simulation study (Additional file 1: Simulation 2), we scramble samples in the real

T2DWGS data when we select the complete data, a situation not optimal for mbImpute;
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Fig. 2 mbImpute outperforms state-of-the-art imputation methods designed for non-microbiome data and

enhances the identification of DA taxa. aMean squared error (MSE) and bmean Pearson correlation of taxon

abundances between the complete data and the zero-inflated data (“No imputation,” the baseline) or the

imputed data by each imputation method (mbImpute, softImpute, scImpute, SAVER, MAGIC, and ALRA) in

Simulations 1 and 2 (see Additional file 1). c–d For each taxon, the mean and standard deviation (SD) of its

abundances are calculated for the complete data, the zero-inflated data, and the imputed data by each

imputation method in Simulation 1; c shows the distributions of the taxon mean/SD and the Wasserstein

distance between every distribution and the complete distribution; d the taxa in two coordinates, mean vs.

SD, and the average Euclidean distance between the taxa in every (zero-inflated or imputed) dataset and the

complete data in these two coordinates. e Accuracy (precision, recall, and F1 scores) of five DA methods

(Wilcoxon rank-sum test, ANCOM, metagenomeSeq, DESeq2-phyloseq, and Omnibus test) with the FDR

threshold 0.05 on raw data (light color) and imputed data by mbImpute (dark color) in the 16S data simulation

however, mbImpute still outperforms existing imputation methods (Fig. 2a, b). To fur-

ther test for the robustness of mbImpute, we design a third simulation study including

four simulation schemes, where the information useful for imputation is encoded in sam-

ple covariates only, samples only, taxa only, or three sources together (see Additional

file 1: Simulation 3). Additional file 1: Figure S3 shows that mbImpute effectively recovers

non-biological zeros and reduces the MSE under every scheme. These results verify the

robustness of mbImpute in selectively leveraging the information useful for imputation.

To further evaluate the performance of mbImpute on 16S rRNA sequencing data, we

use a 16S simulator sparseDOSSA [89] to generate the abundances of 150 taxa in 100

samples under two conditions (see Additional file 1: Simulation 4). Among these 150

taxa, 45 are predefined as truly DA taxa. We apply five state-of-the-art DA methods: the

Wilcoxon rank-sum test, ANCOM [27], metagenomeSeq [35], DESeq2-phyloseq [33, 34],

and Omnibus test [102]. To evaluate the accuracy of DA taxon identification, we calcu-

late the precision, recall, and F1 score (i.e., the harmonic mean of precision and recall) of

each method, with or without using mbImpute as a preceding step, by comparing each

method’s detected DA taxa to the truly DA taxa. Note that metagenomeSeq uses the



Jiang et al. Genome Biology          (2021) 22:192 Page 6 of 27

zero-inflated Gaussian linear model for log-transformedmicrobiome data, but this model

does not fit well to imputed data, which have many zeros removed; hence, we use the

Gaussian linear model without zero-inflation to evaluate metagenomeSeq on imputed

data. Under the false discovery rate (FDR) thresholds of 0.05 (Fig. 2e) and 0.1 (Additional

file 1: Figure S4), the mbImpute-empowered DA methods consistently have better recall

rates and F1 scores than those of the same DA methods without imputation. Notably,

mbImpute improves both precision and recall rates of metagenomeSeq.

To evaluate the robustness of mbImpute to sequencing depth, we simulate 16S rRNA

sequencing data based on real data for 300 taxa in 54 samples with four sequencing

depths: 1000, 2000, 5000, and 10,000 reads per sample (see Additional file 1: Simulation

5). Additional file 1: Figure S5a shows that mbImpute has better imputation accuracy

as sequencing depth increases. This is an expected result because a larger sequencing

depth leads to fewer missing data so that mbImpute can be better trained with more

non-missing data. We further evaluate the performance of the five non-microbiome

imputation methods along with mbImpute. Additional file 1: Figure S6 shows that soft-

Impute and ALRA, the two low-rank matrix factorization methods, also have better

imputation accuracy as sequencing depth increases, yet their accuracies are worse than

those of mbImpute at all sequencing depths. Unexpectedly, the four other imputation

methods developed for scRNA-seq data—SAVER, scImpute, MAGIC, and ALRA—show

no improvement over the baseline, “no imputation.” One possible reason is that the

sequencing depths used in this simulation (∼ 103) are much lower than those of typ-

ical scRNA-seq data (∼ 106). These results again suggest that scRNA-seq imputation

methods are unsuitable for microbiome 16S rRNA sequencing data. We also check the

robustness of mbImpute to outlier samples. Taking the sample with the 2000-read per-

sample sequencing depth, we generate one or two outlier samples by assigning large

abundance values to 62 lowly abundant taxa in the existing 54 samples and setting other

taxa’s abundance to zero (see Additional file 1: Simulation 5). Additional file 1: Figure S5b

shows that the imputation accuracy of mbImpute is robust to the introduction of outlier

samples. Additional file 1: Figure S7 shows the abundance distributions of four example

taxa with outlier values before and after imputation. We observe that the existence of

outliers does not distort the post-imputation distribution of non-outlier samples.

mbImpute empowers DESeq2-phyloseq in DA taxon analysis

We find that mbImpute works well with DESeq2-phyloseq [33, 34], a widely used DA

method for microbiome data, on real WGS datasets. We perform DA analysis on two

T2D WGS datasets [18, 19] and four CRC WGS datasets [14–17], with or without using

mbImpute as a preceding step. The goal of DA analysis is to identify the DA taxa between

the diseased and control samples. These DA taxa may serve as potential targets for early

detection or treatment of disease [14]. Note that mbImpute does not utilize the samples’

group information (whether each sample belongs to the diseased or control group) for its

imputation, so that mbImpute will not falsely increase sample similarity within groups.

We start with the five DA methods—Wilcoxon rank-sum test, ANCOM, metagenome-

Seq, DESeq2-phyloseq, and Omnibus test—for identifying disease-related DA taxa in the

two T2D and four CRC datasets. Under the FDR threshold 0.05, only DESeq2-phyloseq

and Omnibus test identify DA taxa in all datasets (Additional file 1: Table S1). Hence,

we focus on evaluating the accuracy of DESeq2-phyloseq and Omnibus test on the orig-
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inal and imputed data (for DESeq2-phyloseq applied to the imputed data, we refer to it

as mbImpute-empowered DESeq2-phyloseq). For a sanity check on the DA taxon iden-

tification results in each dataset, we plot the distribution of taxa’s p values calculated

by DESeq2-phyloseq or Omnibus test before and after mbImpute is applied (Additional

file 1: Figures S8–9). We find that all the p value distributions for DESeq2-phyloseq

match our expectation (i.e., the expected p value distribution should have a mode near

zero and be uniform elsewhere). However, the p value distributions for Omnibus test

exhibit abnormality for the Karlsson et al. T2D dataset [18] and Vogtmann et al. CRC

dataset [17]. Specifically, the distributions have an unexpected mode near one for the

Karlsson et al. T2D dataset [18] after imputation and for the Vogtmann et al. CRC

dataset [17] before and after imputation. This phenomenon suggests that the distribu-

tional assumption of Omnibus test does not hold for these data. Hence, we focus on the

comparison between DESeq2-phyloseq and mbImpute-empowered DESeq2-phyloseq in

the following analysis.

To investigate whether the DA taxa identified by DESeq2-phyloseq or mbImpute-

empowered DESeq2-phyloseq are meaningful disease markers, we evaluate the predictive

power of the identified DA taxa for sample disease conditions (control or diseased).

For each microbiome dataset, we use the DA taxa, identified by DESeq2-phyloseq or

mbImpute-empowered DESeq2-phyloseq, as features and apply the random forest algo-

rithm to predict sample disease conditions. We use the 5-fold cross-validated precision-

recall area under the curve (PR-AUC) to evaluate the prediction accuracy (Fig. 3a). We

observe that mbImpute-empowered DESeq2-phyloseq leads to overall better prediction

accuracy than DESeq2-phyloseq does across the six datasets.

Then, we focus on the Karlsson et al. T2D dataset [18] and the Vogtmann et al. CRC

dataset [17], which exhibit the largest improvement in prediction accuracy when the DA

taxa identified by mbImpute-empowered DESeq2-phyloseq are used. For the Karlsson

et al. T2D dataset [18], we observe that mbImpute-empowered DESeq2-phyloseq out-

puts a greater number of small p values than DESeq2-phyloseq does (Additional file 1:

Figure S7), suggesting that more taxa are identified as DA after imputation (in fact, all

the DA taxa identified before imputation are still found as DA after imputation). Hence,

the improvement in prediction accuracy implies that the DA taxa identified only after

imputation contribute to the distinction between control and T2D samples. In particu-

lar, we examine three example taxa (Ruminococcus species) identified as DA only after

imputation. Figure 3b shows the distributions of these three taxa’s abundances (on the

log-scale) before and after imputation. For each taxon, we observe that the imputed abun-

dances and the original non-zero abundances have similar ranges and both suggest that

the taxon is more abundant in T2D samples than in control samples. However, this abun-

dance difference is obscured by the prevalent zeros before imputation and thus cannot be

captured by DESeq2-phyloseq. Literature evidence is consistent with the post-imputation

result of the first two taxa. Specifically, the first taxon, Ruminococcus sp_5_1_39BFAA, has

decreased abundances in T2D patients after the Acarbose treatment [103]. The second

taxon, Ruminococcus callidus, is shown to be enriched in T2D mouse models [104].

For the Vogtmann et al. CRC dataset [17], the 5-fold cross-validated PR-AUC increases

by almost 10% when the DA taxa identified after imputation, instead of those identi-

fied before imputation, are used as features. In fact, fewer taxa are identified as DA

after imputation (Additional file 1: Figure S8). At the q value threshold 0.05, DESeq2-
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Fig. 3 mbImpute empowers DESeq2-phyloseq in identifying DA taxa. a The barplots show classification

accuracy, measured by 5-fold cross-validated precision-recall area under the curve (PR-AUC), by the random

forest algorithm for predicting samples’ disease conditions in two T2D datasets [18, 19] and four CRC datasets

[14–17]. The features are the DA taxa detected by DESeq2-phyloseq (light color) or mbImpute-empowered

DESeq2-phyloseq (dark color; labeled as mbImpute + DESeq2-phyloseq). b The histograms show the

distributions of three taxa in control and T2D samples in [18] before and after mbImpute is applied. The three

taxa, Ruminococcus sp_5_1_39BFAA, Ruminococcus callidus, and Ruminococcus albus, are identified as

enriched in T2D samples only after imputation. c The histograms show the distributions of three taxa in

control and CRC samples in [17] before and after mbImpute is applied. The three taxa, Ruminococcus gnavus,

Lachnospiraceae bacterium_2_1_58FAA, and Granulicatella adiacens, are identified as enriched in CRC samples

only after imputation. In b and c, adjusted p values calculated by DESeq2-phyloseq are listed

phyloseq identifies 53 DA taxa, while mbImpute-empowered DESeq2-phyloseq identifies

40 DA taxa, with only 17 taxa in overlap. This result suggests that the 23 DA taxa identi-

fied only after imputation contribute much to the distinction between control and CRC

samples. We examine three of these 23 taxa: Ruminococcus gnavus, Lachnospiraceae bac-

terium_2_1_58FAA, and Granulicatella adiacens. Figure 3c shows that each taxon has its

imputed abundances and its original non-zero abundances in similar ranges; its imputed

and original non-zero abundances both suggest it to be more abundant in CRC samples

than in control samples. However, this abundance difference is obscured by the prevalent

zero abundances before imputation and thus cannot be captured by DESeq2-phyloseq.

To confirm the post-imputation result, we find literature evidence for the three taxa.
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First, several studies have reported that Ruminococcus gnavus is associated with a higher

risk of CRC [99, 105–107]. Second, two studies have shown that Lachnospiraceae bac-

terium_2_1_58FAA is positively associated with colorectal neoplasms, from which CRC

arises [99]. Third,Granulicatella adiacens is reported to be associated with CRC progres-

sion in both human [83] and mouse studies [108]. We also examine the taxa identified as

DA before imputation but not as DA after imputation, and we find that these taxa only

differ in zero proportions and have similar non-zero abundance distributions between

control and CRC samples (Additional file 1: Figure S10). We argue that such taxa are

unlikely to be truly DA because it is questionable whether zero proportion differences are

biologically meaningful given the prevalence of technical and sampling zeros. Together,

our analysis results on the Karlsson et al. T2D dataset [18] and the Vogtmann et al.

CRC dataset [17] suggest that compared to DESeq2-phyloseq, mbImpute-empowered

DESeq2-phyloseq can detect DA taxa that are more predictive of sample conditions, and

we verify that some DA taxa only detected by mbImpute-empowered DESeq2-phyloseq

are functionally relevant by literature evidence.

For all the DA taxa identified byDESeq2-phyloseq andmbImpute-empoweredDESeq2-

phyloseq in the two T2D and four CRC data datasets, we query the GMrepo database

[99] and find two T2D- and one CRC-related functional terms. For each term, we per-

form the Fisher’s exact test to check its enrichment in the DA taxa identified from the

corresponding disease-related datasets. Our results show that all three terms are more

enriched in the DA taxa identified after mbImpute is applied (Table 1; Additional files 1, 2,

3, 4, 5, 6 and 7), providing functional support to the efficacy of mbImpute in empowering

DESeq2-phyloseq.

Furthermore, we analyze the overlap of the DA taxa identified in the two T2D datasets

[18, 19]. There is no overlap in the two sets of DA taxa identified by DESeq2-phyloseq,

but Clostridium bolteae is identified by mbImpute-empowered DESeq2-phyloseq in both

datasets. In fact, Clostridium bolteae has been reported as enriched in T2D samples in

the Qin et al. dataset [19] but not in the Karlsson et al. dataset [18] In our analysis on

the Karlsson et al. T2D dataset [18], Clostridium bolteae has FDR-adjusted p values 0.347

and 0.036 before and after imputation, respectively (abundance distributions in Addi-

tional file 1: Figure S11). Literature evidence suggests thatClostridium bolteae is positively

associated with T2D in both human [109] and mouse studies [110].

For the four CRC datasets [14–17], we analyze the DA taxa identified in at least

two datasets before and after imputation. Specifically, DESeq2-phyloseq and mbImpute-

empowered DESeq2-phyloseq respectively identify four and 18 taxa (with three taxa in

Table 1 Fisher’s exact test p values about the enrichment of T2D- and CRC-related functional terms

in the DA taxa found by DESeq2-phyloseq or mbImpute-empowered DESeq2-phyloseq

DAmethod T2D term 1* T2D term 2** CRC term***

DESeq2-phyloseq 0.54 0.76 0.0027

mbImpute-empowered DESeq2-phyloseq 0.03 0.17 0.0010

For each term, the DA taxa identified by each method from the corresponding datasets are pooled to do the test.

*T2D term 1: “The time period before the development of symptomatic diabetes. For example, certain risk factors can be

observed in subjects who subsequently develop INSULIN RESISTANCE as in type 2 diabetes (DIABETES MELLITUS, TYPE 2).”

**T2D term 2: “A cluster of symptoms that are risk factors for CARDIOVASCULAR DISEASES and TYPE 2 DIABETES MELLITUS. The

major components of metabolic syndrome include ABDOMINAL OBESITY; atherogenic DYSLIPIDEMIA; HYPERTENSION;

HYPERGLYCEMIA; INSULIN RESISTANCE; a proinflammatory state; and a prothrombotic (THROMBOSIS) state.”

***CRC term: “Tumors or cancer of the COLON or the RECTUM or both. Risk factors for colorectal cancer include chronic

ULCERATIVE COLITIS; FAMILIAL POLYPOSIS COLI; exposure to ASBESTOS; and irradiation of the CERVIX UTERI”
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overlap) that have significantly lower abundances in CRC samples than in normal sam-

ples. Among these taxa, DESeq2-phyloseq only identifies Bifidobacterium animalis, while

mbImpute-empowered DESeq2-phyloseq additionally identifies three other Bifidobac-

terium species: Bifidobacterium bifidum, Bifidobacterium catenulatum, and Bifidobac-

terium longum. Additional file 1: Figures S12–14 show the distributions of these three

taxa’s abundances (on the log-scale) before and after imputation. Literature evidence indi-

cates that Bifidobacterium is beneficial to the immune system against CRC [111–113]

and has been used as probiotics [114]; all the four Bifidobacterium species detected by

mbImpute-empowered DESeq2-phyloseq have been reported to have significantly lower

abundances in CRC samples [115, 116]. Together, our overlap analysis on T2D and CRC

datasets suggests that mbImpute helps recover the DA taxa that are detected in one

dataset but missed in another due to prevalent zeros.

mbImpute preserves distributional characteristics of taxa’s non-zero abundances and

recovers downsampling zeros

In the DA analysis described in the last section, we observe that mbImpute can well

maintain the distributions of taxa’s non-zero abundances, see Fig. 3b, c. To further ver-

ify the property of mbImpute in preserving characteristics of non-zero abundances, we

examine pairwise taxon-taxon relationships in the two T2DWGS datasets: Karlsson et al.

and Qin et al. datasets [18, 19]. For a pair of taxa, we calculate two Pearson correla-

tions based on the raw data on the log-scale: one using all the samples (“raw all-sample

correlation”) and the other using only the samples where both taxa have non-zero abun-

dances (“raw non-zero-sample correlation”). In this section, we perform our analysis on

the log-scale of the taxa count matrix since one of the assumptions for Pearson corre-

lation is the normality of both variables, and microbiome count data on the log-scale

better resemble a continuous normal distribution. For the same pair of taxa, we also

calculate a Pearson correlation based on the imputed data by mbImpute on the log-

scale, using all the samples (“imputed all-sample correlation”). As shown in Fig. 4a, b,

there are vast differences between the raw all-sample correlations and the correspond-

ing raw non-zero-sample correlations. However, the imputed all-sample correlations

better resemble the corresponding raw non-zero-sample correlations, suggesting that

mbImpute well preserves pairwise taxon-taxon correlations encoded in taxa’s non-zero

abundances.

We also explore the linear relationship of each taxon pair using the standard major

axis (SMA) regression, which, unlike the least-squares regression, treats two taxa sym-

metrically. For a pair of taxa, we perform two SMA regressions on the raw data: one

using all the samples (“raw all-sample regression”) and the other using only the samples

where both taxa have non-zero abundances (“raw non-zero-sample regression”). We also

perform the SMA regression on the imputed data by mbImpute, using all the samples

(“imputed all-sample regression”). Figure 4a, b show that the raw all-sample regressions

and the raw non-zero-sample regressions return vastly different lines. Especially, the

two lines between Eubacterium sirasum and Ruminococcus obeum in the Karlsson et al.

T2D dataset [18] (Fig. 4b bottom left) have slopes with opposite signs. In contrast, the

imputed all-sample regressions output lines with slopes similar to those of the raw non-

zero-sample regressions. This result again confirms mbImpute’s capacity for preserving

characteristics of taxa’s non-zero abundances in microbiome data.
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Fig. 4 mbImpute preserves distributional characteristics of taxa’s non-zero abundances. a Top: two scatter

plots show the relationship between the abundances of Dorea formicigenerans and Ruminococcus torques in

Qin et al.’s control samples [19], with or without using mbImpute as a preceding step. The left plot shows two

standard major axis (SMA) regression lines and two corresponding Pearson correlations based on the raw

data (black: based on all the samples; blue: based on only the samples where both taxa have non-zero

abundances). The right plot shows the SMA regression line (blue) and the Pearson correlation using all the

samples in the imputed data. Bottom: two scatter plots for the same two taxa in Qin et al.’s T2D samples [19],

with lines and legends defined the same as in the top panel. b Four scatter plots show the SMA regression

lines and correlations between Eubacterium sirasum and Ruminococcus obeum in Karlsson et al.’s control and

T2D samples [18], with lines and legends defined the same as in a. c Each bar shows the Pearson correlation

between taxon-taxon correlations in raw data (light gray) or imputed data (dark gray) using all samples and

taxon-taxon correlations in raw data using non-zero samples only. The two correlations are calculated for two

T2D datasets and four CRC datasets using diseased samples, control samples, and whole data

Furthermore, we systematically evaluate the performance of mbImpute in preserving

raw non-zero-sample correlations on the two T2D WGS datasets and the four CRC

WGS datasets, with each dataset containing samples in two groups: diseased and control.

Figure 4c show that the imputed all-sample correlations resemble the raw non-zero-

sample correlations much better than the raw all-sample correlations do, on every dataset

including all samples (“whole” in Fig. 4c). Moreover, within each sample group in each

dataset (“diseased” and “control” in Fig. 4c), the imputed all-sample correlations still bet-

ter resemble the raw non-zero-sample correlations than the raw all-sample correlations

do. Note that the resemblance is defined based on the Pearson correlation of two sets of
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correlations. Additional file 1: Figure S15 shows that the same conclusion holds when the

resemblance is defined based on the Spearman correlation. Note that mbImpute does not

use the group information of each sample in its imputation process.

Our results echo existing concerns about spurious taxon-taxon correlations in micro-

biome data due to excess non-biological zeros [117, 118]. In other words, taxon-taxon

correlations cannot be accurately estimated from raw data using all samples. Without

imputation, an intuitive approach is to use taxa’s non-zero abundances to estimate taxon-

taxon correlations; however, this approach reduces the sample size for estimating each

taxon pair’s correlation because it does not use the samples containing zero abundances

for either taxon, and it also makes different taxon pairs’ correlation estimates rely on

different samples. To address these issues, mbImpute provides another approach: its

imputed data allow taxon-taxon correlations to be estimated from all samples. Moreover,

we observe that mbImpute makes log-transformed taxon abundances closer to be nor-

mally distributed (Additional file 1: Figure S16); thus, the Pearson correlation is a more

meaningful measure for taxon-taxon associations on the imputed data than on the raw

data.

In addition, based on the T2D WGS dataset generated by Qin et al. [19], we verify

mbImpute’s capacity to identify non-biological zeros generated by downsampling. In each

sample (i.e., each row in the sample-by-taxon count matrix), we assign every taxon a sam-

pling probability proportional to its count, i.e., the larger the count, the more likely the

taxon is to be sampled; based on these probabilities, we sample 60% or 30% of the non-

zero taxon counts, and we set the unsampled counts to zeros (corresponding to a removal

rate of 40% or 70%); we repeat the downsampling independently for ten times. After

applyingmbImpute to the downsampled count matrices, we find that mbImpute correctly

identifies 95.83% and 92.83% (on average) of the newly introduced non-biological zeros

under the two removal rates. Before imputation, the average Pearson correlations between

the downsampled matrices and the original matrix (on the log-scale) are 0.76 and 0.53

under the two removal rates. After applying mbImpute to all the three matrices, the cor-

relations are increased to 0.87 and 0.76 (Table 2). This result confirms the effectiveness of

mbImpute in recovering zeros due to downsampling.

mbImpute increases the similarity of microbial community structure between 16S rRNA

andWGS data

We further show that mbImpute can enhance the similarity of taxon-taxon correlations

inferred from microbiome data measured by two technologies—16S rRNA sequencing

Table 2 Effectiveness of mbImpute in identifying zeros due to downsampling of Qin et al.’s T2D

WGS dataset [19]. For each of two removal rates 40% and 70%, we repeat independent

downsampling for ten times

Removal rate 40% 70%

% of downsampling zeros identified 95.83% ± 0.46% 92.83% ± 0.92%

Pearson correlation before imputation 0.7565 ± 0.0023 0.5261 ± 0.0016

Pearson correlation after imputation 0.8747 ± 0.0100 0.7582 ± 0.0235

For each removal rate (column), the first row lists the average percentage of downsampling zeros identified by mbImpute; the

second row lists the average Pearson correlation between a downsampled matrix and the original matrix (on the log-scale)

before imputation; the third row lists the average Pearson correlation (on the log-scale) after mbImpute is used. Each average

calculated across the ten downsampling and is accompanied with an error margin, i.e., 1.96 times the standard error over the ten

downsampling
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andWGS. We use two microbiome datasets of healthy human stool samples: a 16S rRNA

dataset from the Human Microbiome Project [119] and a WGS dataset from the control

samples in Qin et al. [19] We compare the genus-level taxon-taxon correlations between

these two datasets, and we perform the comparison again after applying mbImpute.

Figure 5 shows that mbImpute increases the similarity between the taxon correlation

structures in the two datasets. Before imputation, the Pearson correlation between the

two correlation matrices (one computed from 16S rRNA taxon abundances and the other

fromWGS taxon abundances) is 0.59; mbImpute increases the correlation to 0.64. In par-

ticular, we observe three taxon groups (highlighted bymagenta, green, and purple squares

in Fig. 5) supported by both 16S rRNA and WGS data after imputation. Notably, in the

magenta squares, Acidaminococcus has correlations with Dialister and Blautia only after

Fig. 5 mbImpute improves the similarity of taxon-taxon correlations between 16S and WGS data of

microbiomes in healthy human stool samples. Four Pearson correlation matrices are calculated based on a

common set of genus-level taxa’s abundances in 16S and WGS data, with or without using mbImpute as a

preceding step. Before imputation, the Pearson correlation between the two correlation matrices is 0.59, and

this correlation increases to 0.64 after imputation. For illustration purposes, each heatmap shows square

roots of Pearson correlations, with the bottom 40% of values truncated to 0. The magenta, green, and purple

squares highlight three taxon groups, each of which contains strongly correlated taxa and is consistent

between the 16S and WGS data after imputation
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imputation, and this result is consistent with the literature: Acidaminococcus and Dial-

ister are both reported to have low abundances in healthy human stool samples [120];

Acidaminococcus and Blautia are both associated with risks of T2D and obesity, lipid pro-

files, and homeostatic model assessment of insulin resistance [121]. The green squares

contain three bile-tolerant genera: Alistipes, Bilophila, and Bacteroides [122]. The raw

16S and WGS data only reveal the correlation between Bacteroides and Alistipes, but

mbImpute recovers the correlations Bilophila has with Alistipes and Bacteroides. The

purple squares indicate a strong correlation between Sutterella and Prevotella after impu-

tation, yet this correlation is not observed in raw WGS data. We verify this correlation

in the MACADAM database [123], which contains metabolic pathways associated with

microbes. Out of 1260 pathways, Sutterella and Prevotella are associated with 154 and

278 pathways, respectively, and 122 pathways are in common; Fisher’s exact test finds that

the overlap is statistically significant (p value < 2.2 × 10−16), suggesting that Sutterella

and Prevotella may be functionally related. Overall, our results indicate that mbImpute

can facilitate meta-analysis of 16S and WGS data by alleviating the hurdle of prevalent

non-biological zeros.

We perform a negative control study to confirm that the increased similarity between

16S rRNA andWGS data is not an artifact introduced by mbImpute. We use a 16S rRNA

dataset of human oral samples and a WGS dataset of human stool samples, which are

expected to have different genus-level taxon-taxon correlations. Same as in the previ-

ous study, we compare the genus-level taxon-taxon correlations between the two datasets

before and after applying mbImpute. Additional file 1: Figure S17 shows that mbIm-

pute decreases the similarity between the taxon correlation matrices of the two datasets.

Before imputation, the Pearson correlation between the two correlation matrices is 0.21;

mbImpute decreases the correlation to 0.09.

Discussion

A critical challenge in microbiome data analysis is statistical inference of taxon abun-

dance from highly sparse and noisy data. Our proposed method, mbImpute, will address

this challenge and facilitate analysis of both 16S and WGS data; mbImpute works by cor-

recting non-biological zeros and retaining taxa’s non-zero abundance distributions after

imputation. As the first imputation method designed for microbiome data, mbImpute is

shown to outperform multiple state-of-the-art imputation methods developed for other

data types. In the DA analysis, we show that mbImpute-empowered DESeq2-phyloseq

has better performance in selecting predictive taxa for disease conditions comparing

to DESeq2-phyloseq. The reason is that mbImpute-empowered DESeq2-phyloseq is

able to identify the taxa missed by the DESeq2-phyloseq (due to excess zeros) but

should be called DA (i.e., having non-zero abundances that exhibit significantly differ-

ent means between two sample groups). We then demonstrate that mbImpute preserves

taxa’s non-zero abundance distributions. As a result, taxon-taxon correlations calcu-

lated from all samples after imputation better resemble the taxon-taxon correlations

calculated from non-zero counts only. Hence, mbImpute can facilitate taxon network

analysis by allowing all taxon pairs to have meaningful correlations computed from all

samples. Moreover, mbImpute improves the reproducibility of DA taxon identification

across studies and the consistency of microbial community detection between 16S and

WGS data.
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In the application of mbImpute, two practical concerns are what normalization method

and phylogenetic distance metric work the best with mbImpute. First, the goal of

normalization is to make taxon counts comparable across samples, a necessary assump-

tion of mbImpute. In our results, we think our way of normalization is sufficient to

meet this assumption. However, the appropriate normalization method for mbImpute

is case by case in future applications, depending on whether confounders such as batch

effects are observable; hence, users’ judgment is indispensable. We recognize that bench-

marking normalization methods for microbiome data is a separate project. Hence, we

refer users to benchmark papers [20, 124] to guide their choice of benchmark meth-

ods. Second, users may specify the phylogenetic distances between taxa based on their

domain knowledge. In our results, we define the phylogenetic distance between two

taxa as the number of branches connecting them in a phylogenetic tree, but alterna-

tive choices exist, such as the total lengths of the branches. If users want to choose

a distance metric, we recommend that they supply the phylogenetic distances defined

by candidate metrics into mbImpute and choose the metric that leads to the small-

est cross-validated MSE, i.e., the cross-validated imputation error of mbImpute on

non-missing data.

Regarding the mbImpute-empowered DA analysis, we note that it offers a new perspec-

tive of identifying DA taxa from microbiome 16S and WGS data after imputation. We

have summarized three statistical definitions of DA taxa inmicrobiome data in Additional

file 1: Statistical definitions of DA taxa. Note that mbImpute-empowered DA analysis

is advantageous in that it alleviates the existence of non-biological zeros, and it uses all

available samples for DA testing. A controversial question is, if a taxon has few zeros in

condition 1 but few non-zeros in condition 2, and the non-zero values have similar magni-

tudes in the two conditions, whether or not should this taxon be called DA. We note that

mbImpute is unlikely to impute the predominant zeros in condition 2 because it would

treat these zeros as biological zeros. Hence, mbImpute-empowered DA analysis is likely

to call such a taxon as DA.

There has been a long-standing concern about sample contamination in micro-

biome sequencing data, e.g., contamination from DNA extraction kits and laboratory

reagents [125, 126]. Existing studies have attempted to address this issue via calibrated

sequencing operations [126–128] and computationalmethods [129, 130].We recommend

researchers to perform contamination removal before applying mbImpute. Moreover, by

its design, mbImpute is robust to certain types of sample contamination that result in out-

lier taxa and samples. For each outlier taxon, mbImpute would borrow little information

from other taxa to impute this outlier taxon’s abundances. Similarly, mbImpute is robust

to the existence of outlier samples that do not resemble any other sample.

In statistical inference, a popular and powerful technique is the use of indirect evi-

dence by borrowing information from other observations, as seen in regression, shrinkage

estimation, empirical Bayes, among many others [131]. Imputation follows the indirect

evidence principle, where the most critical issue is to decide what observations to bor-

row information from so as to improve data quality instead of introducing excess biases.

To achieve this, mbImpute employs penalized regression to selectively leverage similar

samples, similar taxa, and sample covariates to impute likely non-biological zeros, whose

identification also follows the indirect evidence principle by incorporating sample covari-

ates into consideration. Also, mbImpute provides a flexible framework to make use of
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microbiome metadata: it selectively borrows metadata information when available, but it

does not rely on the existence of metadata (see Methods).

In the comparison of mbImpute with softImpute, a general matrix imputation method

widely used in other fields, we observe that softImpute’s imputed taxon abundances

exhibit artificial spikes and smaller variances than those of the original non-zero abun-

dances, possibly due to its low-rank assumption. In contrast, mbImpute is a regression-

basedmethod that focusesmore on local matrix structures, and we find that it retains well

the original non-zero abundance distributions. We will investigate the methodological

differences between mbImpute and softImpute in a future study.

Moreover, we observe that, similar to each taxon’s non-zero abundances, the imputed

abundances exhibit a bell-shaped distribution across samples on the log-scale. This sug-

gests that statistical methods utilizing normal distributional assumptions become suitable

and applicable to imputed taxon abundances. A possible use of imputed microbiome data

is to construct a taxon-taxon interaction network, to which network analysis methods

may be applied to find taxon modules and hub taxa [132]. As a preliminary exploration,

we construct Bayesian networks of taxa based on the two T2D datasets [18, 19] after

applying mbImpute. Interesting changes are observed in taxon interactions from control

samples to T2D samples (Additional file 1: Figures S18–19). For example, two genera,

Ruminococcus and Eubacterium, have interactive species in control samples but not in

T2D samples. In future research, differential network analysis methods can be applied to

find taxon communities that differ between two sample groups.

Methods

mbImpute methodology

Here, we describe mbImpute, a statistical method that corrects prevalent non-biological

zeros in microbiome data. As an overview, mbImpute takes a taxon count matrix as

input; pre-processes the data; identifies the likely non-biological zeros and imputes them

based on the input count matrix, sample covariates, and taxon phylogeny; and outputs an

imputed count matrix.

Notations

We denote the sample-by-taxon taxa count matrix as M = (Mij) ∈ Z
n×m
≥0 , where n is

the number of microbiome samples and m is the number of taxa. We denote the sample

covariate matrix (i.e., metadata) as X ∈ Rn×q, where q equals the number of covariates

plus one (for the intercept). (By default, mbImpute includes sample library size as a covari-

ate.) In addition, we define a phylogenetic distance matrix of taxa as D = (Djj′) ∈ Z
m×m
≥0 ,

where Djj′ represents the number of branches connecting taxa j and j′ in the phylogenetic

tree or user-specified distance between taxa j and j′.

Data pre-processing

mbImpute requires every taxon’s counts across samples to be on the same scale before

imputation. If this condition is unmet, normalization is needed. However, how to prop-

erly normalize microbiome data is challenging, and multiple normalization methods have

been developed in recent years [29, 133, 134]. Regarding the choice of an appropriate

normalization method, users may refer to benchmark papers [20, 124]. To give users

the flexibility of choosing an appropriate normalization method, mbImpute allows users
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to input a normalized count matrix by specifying that the input matrix does not need

normalization. Otherwise, mbImpute normalizes samples by library size.

Default normalization (optional) To account for the varying library sizes (i.e., total

counts) of samples, mbImpute first normalizes the count matrix M by row. The normal-

ized count matrix is denoted asM(N ) =
(

M
(N )
ij

)

∈ R
n×m
≥0 , where

M
(N )
ij = 106 ·

Mij
∑m

j′=1Mij′
.

After this normalization, every sample has a total count of 106.

mbImpute applies the logarithmic transformation to the normalized counts so as to

reduce the effects of extremely large counts [82]. The resulted log-transformed normal-

ized matrix is denoted as Y = (Yij) ∈ R
n×m
>0 , with

Yij = log10

(

M
(N )
ij + 1.01

)

,

where the value 1.01 is added to make Yij > 0 to avoid the occurrence of infinite values

in a later parameter estimation step, following [50, 81]. This logarithmic transformation

allows us to fit a continuous probability distribution to the transformed data, thus simpli-

fying the statistical modeling. In the following text, we refer to Y as the sample-by-taxon

abundance matrix.

mbImpute step 1: identification of taxon abundances that need imputation

mbImpute assumes that each taxon’s abundances, i.e., a column in Y, follow a mixture

model. The model consists of two components: a Gamma distribution for the taxon’s

likely non-biological zeros and low abundances and a normal distribution for the taxon’s

actual abundances, with the normal mean incorporating sample covariate information

(including sample library size as a covariate). Specifically, mbImpute assumes that the

abundance of taxon j in sample i, Yij, follows the following mixture distribution:

Yij ∼ pj · Ŵ
(

αj,βj

)

+ (1 − pj) · N
(

XT
i·γj, σ

2
j

)

,

where pj ∈ (0, 1) is the missing rate of taxon j, i.e., the probability that taxon j is falsely

undetected, Ŵ
(

αj,βj

)

denotes the Gamma distribution with shape parameter αj > 0 and

rate parameter βj > 0, and N

(

XT
i·γj, σ

2
j

)

denotes the normal distribution with mean

XT
i·γj and standard deviation σj > 0. In other words, with probability pj, Yij is a missing

value that needs imputation; with probability 1 − pj, Yij is sampled from the non-missing

abundance distribution of taxon j and does not need imputation. mbImpute models the

normal mean parameter as a linear function of sample covariates: XT
i·γj, where Xi· ∈ Rq

denotes the ith row in the covariate matrix X, i.e., the covariates of sample i, and γj ∈ Rq

represents the q covariates’ effects (including the intercept) on taxon j’s abundance. This

formulation allows a taxon to have similar expected abundances (when not missing) in

samples with similar covariates.

The intuition behind this model is that taxon j’s non-missing abundance in a sample

is drawn from a normal distribution, whose mean depicts the expected abundance given

the sample covariates. However, due to library preparation and under-sampling issues in

sequencing, false zero or low counts could have been introduced into the data, creating

another mode near zero in taxon j’s abundance distribution. mbImpute models that mode

using a Gamma distribution with mean αj/βj, which is close to zero.
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mbImpute fits this mixture model to taxon j’s abundances using the expectation-

maximization (EM) algorithm to obtain the maximum likelihood estimates p̂j, α̂j, β̂j, γ̂j,

and σ̂ 2
j . Additional file 1: Figure S20 shows four examples where the fitted mixture model

well captures the bimodality of an individual taxon’s abundance distribution. However,

some taxa are observed to have an abundance distribution containing a single mode that

can be well modeled by a normal distribution.When that occurs, the EM algorithmwould

encounter a convergence issue. To fix this, mbImpute uses a likelihood ratio test (LRT) to

first decide if the Gamma-normal mixture model fits to taxon j’s abundances significantly

better than a normal distribution Yij ∼ N

(

XT
i·ηj,ω

2
j

)

does. Given the maximum likeli-

hood estimates η̂j and ω̂2
j and under the assumption that Yij’s are all independent, the LRT

statistic of taxon j is:

	j = −2 ln

∏n
i=1 fN

(

Yij;X
T
i·η̂j, ω̂

2
j

)

∏n
i=1

[

p̂j · fŴ

(

Yij; α̂j, β̂j

)

+ (1 − p̂j) · fN

(

Yij;X
T
i·γ̂j, σ̂

2
j

)] ,

which asymptotically follows a chi-square distributionwith 3 degrees of freedom (because

the mixture model has three more parameters than in the normal model) under the null

hypothesis that the normal model is the correct model. We summarize the LRT p values

calculated on six real WGS datasets and observe that few taxa have p values greater than

0.05 (see Additional file 1: Figure S21a). Additional file 1: Figure S21b shows the distri-

bution of one randomly picked taxon with LRT p value greater than 0.05 in each dataset;

these taxa’s log-transformed counts do not have a mode close to zero. If the LRT p value

≤ 0.05, mbImpute uses the mixture model to decide which abundances of taxon j need

imputation. Specifically, mbImpute decides if Yij needs imputation based on the estimated

posterior probability that Yij comes from the Gamma component:

dij =
p̂j · fŴ

(

Yij; α̂j, β̂j

)

p̂j · fŴ

(

Yij; α̂j, β̂j

)

+ (1 − p̂j) · fN

(

Yij;X
T
i·γ̂j, σ̂

2
j

) ,

where fŴ(·; α̂j, β̂j) and fN (·;XT
i·γ̂j, σ̂

2
j ) represent the probability density functions of the

estimated Gamma and normal components in the mixture model. Otherwise, if the LRT

p-value > 0.05, mbImpute concludes that none of taxon j’s abundances need imputation

and sets d1j = · · · = dnj = 0.

Based on the dij’s, mbImpute defines a set 
 of (sample, taxon) pairs whose abundances

are unlikely missing and thus do not need imputation:


 =
{

(i, j) : dij < dthre, i = 1, . . . , n; j = 1, . . . ,m
}

,

and a complement set 
c containing other (sample, taxon) pairs whose abundances need

imputation:


c =
{

(i, j) : dij ≥ dthre, i = 1, . . . , n; j = 1, . . . ,m
}

.

Although dthre = 0.5 is used as the default threshold on dij’s to decide the abundances that

need imputation, mbImpute is fairly robust to this threshold choice because most dij’s are

concentrated around 0 or 1. We show this phenomenon in Additional file 1: Figure S22,

which displays the distribution of all the dij’s in the data from [14–19].
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To summarize, mbImpute does not impute all zeros in the taxon count matrix; instead,

it first identifies the abundances that are likely missing using a mixture-modelling

approach, and it then only imputes these values in the next step.

mbImpute step 2: imputation of themissing taxon abundances

In step 1, mbImpute identifies a set 
 of the (sample, taxon) pairs whose abundances do

not need imputation. To impute the abundances in
c, mbImpute first learns inter-sample

and inter-taxon relationships from
 by training a predictive model for Yij, the abundance

of taxon j in sample i. The rationale is that taxon j should have similar abundances in sim-

ilar samples, and that in every sample, the taxa similar to taxon j should have abundances

similar to taxon j’s abundance. In addition, sample covariates are assumed to carry pre-

dictive information of taxon abundances. Hence, for interpretability and stability reasons,

mbImpute uses a linear model to combine the predictive power of similar taxa, similar

samples, and sample covariates:

Yij = Y T
i·κj + Y T

·j τi + XT
i·ζj + ǫij ,

where Yi· ∈ Rm
>0 denotes the m taxa’s abundances in sample i, Y·j ∈ Rn

>0 denotes taxon

j’s abundances in the n samples, Xi· ∈ Rq denotes sample i’s covariates (including the

intercept), and ǫij is the error term. The parameters to be estimated include κj ∈ Rm, τi ∈

R
n and ζj ∈ Rq, i = 1, . . . , n; j = 1, . . . ,m. Note that κj represents them taxa’s coefficients

(i.e., weights) for predicting taxon j, with the jth entry set to zero, so that taxon jwould not

predict itself; τi represents the n samples’ coefficients (i.e., weights) for predicting sample

i, with the ith entry set to zero, so that sample i would not predict itself; ζj represents

the coefficients of sample covariates for predicting taxon j. In the model, the first term

Y T
i·κj borrows information across taxa, the second term Y T

·j τi borrows information across

samples, and the third term XT
i·ζj borrows information from sample covariates. The total

number of unknown parameters is m(m − 1) + n(n − 1) + mq, while our data Y and X

together have nm + nq values only. Given that often m ≫ n, the parameter estimation

problem is high dimensional, as the number of parameters far exceeds the number of data

points. mbImpute performs regularized parameter estimation by using the Lasso-type ℓ1

penalty, which leads to good prediction and simultaneously selects predictors (i.e., similar

samples and similar taxa) to ease interpretation. That is, mbImpute estimates the above

parameters by minimizing the following loss function:

L
(

{

κj, ζj
}m

j=1
, {τi}

n
i=1

)

:=
∑

(i,j)∈


[

Yij −
(

Y T
i·κj + Y T

·j τi + XT
i·ζj

)]2

+ λ

⎛

⎝

m
∑

j=1

m
∑

j′ �=j

D
ψ

jj′ |κjj′ | +

n
∑

i=1

n
∑

i′ �=i

|τii′ |

⎞

⎠ ,

where λ,ψ ≥ 0 are tuning parameters chosen by cross-validation, Djj′ represents the

phylogenetic distance between taxa j and j′, κjj′ represents the j
′th element of κj, and τii′

represents the i′th element of τi. Here D
ψ

jj′ , i.e., Djj′ to the power of ψ , represents the

penalty weight of |κjj′ | (in our R package implementation, thembImpute function can take

any distance matrix D as input that reflects the relationship among taxa specified by the

user.) The intuition is that if two taxa are closer in the phylogenetic tree, they are more

closely related in evolution and tend to have more similar DNA sequences and biological

functions [95, 100], and thus, we want to borrow more information between them. For
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example, if Dj1j2 > Dj1j3 , i.e., taxa j1 and j2 are farther away than taxa j1 and j3 in the

phylogenetic tree, then the estimate of κj1j2 is more likely to be shrunk to zero than the

estimate of κj1j3 , and mbImpute would use taxon j3’s abundance more than taxon j2’s to

predict taxon j1’s abundance. The tuning parameter ψ is introduced because the distance

Djj′ , the number of branches connecting taxa j and j′, may not be the best penalty weight

for the prediction purpose. Choosing ψ by cross-validation is expected to enhance the

predication accuracy.

mbImpute performs the estimation using the R package glmnet [74] and obtains the

parameter estimates: κ̂j ∈ Rm, τ̂i ∈ Rn, and ζ̂j ∈ Rq, i = 1, . . . , n; j = 1, . . . ,m. Finally, for

(i, j) ∈ 
c, the abundance of taxon j in sample i is imputed as:

Ŷij = Y T
i· κ̂j + Y T

·j τ̂i + XT
i·ζ̂j ,

and mbImpute does not alter Yij if (i, j) ∈ 
.

Note that mbImpute does not require the availability of the sample covariate matrix X

or the phylogenetic tree. In the absence of sample covariates, the loss function becomes

L
(

{κj}
m
j=1, {τi}

n
i=1

)

:=
∑

(i,j)∈


(

Yij −
(

Y T
i·κj + Y T

·j τi

))2
+λ

⎛

⎝

m
∑

j=1

m
∑

j′ �=j

D
ψ

jj′ |κjj′ |+

n
∑

i=1

n
∑

i′ �=i

|τii′ |

⎞

⎠ ,

minimizing which returns the parameter estimates: κ̂j ∈ Rm and τ̂i ∈ Rn, i = 1, . . . , n;

j = 1, . . . ,m. Finally, for (i, j) ∈ 
c, the abundance of taxon j in sample i is imputed as:

Ŷij = Y T
i· κ̂j + Y T

·j τ̂i ,

and mbImpute does not alter Yij if (i, j) ∈ 
. In the absence of the phylogenetic tree,

mbImpute sets Djj′ = 1 for all j �= j′ ∈ {1, . . . ,m}.

When m is large, mbImpute does not estimate m(m − 1) + n(n − 1) + mq parameters

but uses the following strategy to increase its computational efficiency. For each taxon j,

mbImpute selects the k taxa closest to it (excluding itself ) in phylogenetic distance and

sets the other (m − k) taxa’s coefficients in κj to zero. This strategy reduces the number

of parameters tomk + n(n − 1) + mq and decreases the computational complexity from

O(m2) to O(m).

In summary, mbImpute step 2 includes two phases: training on 
 and prediction

(imputation) on 
c, as illustrated in Additional file 1: Figure S1.
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Imputation methods
We compare mbImpute with five existing imputation methods designed for non-microbiome data: softImpute and four

scRNA-seq imputation methods (scImpute, SAVER, MAGIC, and ALRA). All these imputation methods take a count matrix

as input and ouput an imputed count matrix with the same dimensions.

1. softImpute
We use R package softImpute (version 1.4) and the following command to impute an taxon count matrix (a

sample-by-taxon matrix):

complete(taxa_count_matrix, softImpute(taxa_count_matrix, rank.max =

cv.rankmax))

where rank.max is chosen by 10-fold cross-validation.

2. scImpute
We use R package scImpute (version 0.0.9) with the input as a taxon-by-sample count matrix (transpose of the matrix

in Fig. 1):

scimpute(count_path = "taxa_count_matrix_trans.csv", Kcluster = 1, out_dir =

"sim_imp")

where taxa_count_matrix_trans.csv is the input file containing the transposed taxon count matrix.

3. SAVER
We use R package SAVER (version 1.1.2) with the input as a taxon-by-sample count matrix (transpose of the matrix in

Fig. 1):

saver(t(taxa_count_matrix), ncores = 1, estimates.only = TRUE)

4. MAGIC
We use Python package MAGIC (version 2.0.3) and the following commands to impute an taxon count matrix:

magic_op = magic.MAGIC()

magic_op.set_params(n_pca = 40)

magic_op.fit_transform(taxa_count_matrix)

5. ALRA
We apply R functions normalize_data, choose_k, and alra, which were released on Aug 10, 2019 at https://

github.com/KlugerLab/ALRA, and the following commands to impute a taxon count matrix:

normalized_mat = normalize_data(taxa_count_matrix)

k_chosen = choose_k(normalized_mat, K = 49, noise_start = 44)$k

alra(normalized_mat, k = k_chosen)$A_norm_rank_k_cor_sc

DA analysis methods
In simulation studies, we compare five existing DA methods: the Wilcoxon rank-sum test, ANCOM, metagenomeSeq,

DESeq2-phyloseq, and Omnibus test. We apply each method to taxon counts, with or without using mbImpute as a

preceding step. When mbImpute is used as a preceding step, we call the resulting method a mbImpute-empowered DA

http://jsb.ucla.edu
https://github.com/KlugerLab/ALRA
https://github.com/KlugerLab/ALRA
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method. In real data studies, we compare mbImpute-empowered DESeq2-phyloseq and mbImpute-empowered

Omnibus test with DESeq2-phyloseq and Omnibus test, respectively. Each method calculates a p value for each taxon

and identifies the DA taxa by setting a p value threshold to control the FDR. See Additional file 1 for the statistical

definitions of DA taxa.

1.Wilcoxon rank-sum test
We implement the Wilcoxon rank-sum test using the R function pairwise.wilcox.test in the package stats

(version 3.5.1). For each taxon, we perform the test on its counts in two sample groups to obtain a p value, which

suggests if this taxon is DA between the two groups. In simulations, we use the following command to implement a

two-sided test for each taxon:

pairwise.wilcox.test(x = taxon_counts, g = condition, p.adjust.method = "none")

2. ANCOM
We use the ANCOM.main function released on Sep 27, 2019 at https://github.com/FrederickHuangLin/ANCOM [27].

Since this function does not provide an option for a one-sided test, we use its default settings and report its identified DA

taxa based on a two-sided test with a significance level 0.05 (sig = 0.05), in both simulations and real data analysis.

We note that no external FDR control is implemented. Specifically, we use the following command to obtain the result of

ANCOM:

ANCOM.main(taxa_count_matrix, covariate_matrix, adjusted = F, repeated = F,

main.var = "condition", adj.formula = NULL, repeat.var = NULL, multcorr = 2, sig

= 0.05, prev.cut = 0.90, longitudinal = F)

where taxa_count_matrix is a sample-by-taxon count matrix and covariate_matrix is a sample-by-covariate

matrix, same as the input of mbImpute.

3. metagenomeSeq
We use two R packages, metagenomeSeq (version 1.28.2) and phyloseq (version 1.30.0). Specifically, we use the

following command to obtain the result:

mseq_obj <- phyloseq_to_metagenomeSeq(physeq2)

pd <- pData(mseq_obj)

mod <- model.matrix(∼1 + condition, data = pd)

ran_seq <- fitFeatureModel(mseq_obj, mod)

where physeq2 is an object created from a count matrix and sample covariates using the phyloseq package.

4. DESeq2-phyloseq
We use the DESeq2 (version 1.26.0) package combined with phyloseq (version 1.30.0). Specifically, we use the

following command to obtain the result of DESeq2:

Deseq2_obj <- phyloseq_to_deseq2(physeq2, ∼ condition)

results <- DESeq(Deseq2_obj, test="Wald", fitType="parametric")

where physeq2 is an object created from a count matrix and sample covariates using the phyloseq package.

5. Omnibus test
We use the R package mbzinb (version 0.2). Specifically, we use the following command to obtain the result of

Omnibus test:

mbzinb_data <- mbzinb.dataset(taxa_count_matrix, covariate_matrix)

mbzinb_test_result <- mbzinb.test(mbzinb_data, group = "condition")

For the Wilcoxon rank-sum test, MetagenomeSeq, DESeq2-phyloseq, and Omnibus test, after obtaining the p values of all

taxa and collecting them into a vector p_values, we adjust them for FDR control using the R function p.adjust in

the package stats (version 3.5.1):

p.adjust(p_values, method = "fdr")

Then, we set the FDR threshold to 0.05 in both simulation and real data analysis. The taxa whose adjusted p values do not

exceed this threshold are called DA. ANCOM directly outputs the DA taxa.

Classification
We use a 5-fold cross-validated precision-recall area under the curve (PR-AUC) to evaluate the classification results using

identified DA taxa as features and diseased/control group as classification labels. We use the R package

randomForest (version 4.6-14) to perform the random forest classification and the R package PRROC (version 1.3.1)

to calculate the PR-AUC.

T2D and CRC datasets
We apply mbImpute to six real microbiome datasets, each corresponding to an independent study on the relationship

between microbiomes and the occurrence of a human disease. All the six datasets were generated by the whole

genome shotgun sequencing and are available in the R package curatedMetagenomicData [87]. We compare the

disease-enriched DA taxa identified by DESeq2-phyloseq and mbImpute-empowered DESeq2-phyloseq. Below is the

description of the six datasets and our analysis.

Two T2D datasets [18, 19]. The Karlsson et al. dataset [18] contains 145 fecal samples from 70-year-old European

women to study the relationship between human gut microbiome compositions and T2D status. The samples/subjects

https://github.com/FrederickHuangLin/ANCOM
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are in three groups: 53 women with T2D, 49 women with impaired glucose tolerance (IGT), and 43 women as the normal

control (CON). The eleven sample covariates include the subject’s age, the number of reads in each sample, the

triglycerides level, the hba1c level, the ldl (low-density lipoprotein cholesterol) level, the c peptide level, the cholesterol

level, the glucose level, the adiponectin level, the hscrp level, and the leptin level. In our analysis, we consider the 147

species-level taxa (having at least 10% non-zero counts in both T2D and CON groups) with phylogenetic information

available in the R package curatedMetagenomicData. Qin et al. [19] performed deep shotgun metagenome

sequencing on 369 Chinese T2D patients and non-diabetic controls (CON). The two sample covariates include the body

mass index, and the number of reads in each sample. We analyze 156 species-level taxa (having at least 10% non-zero

counts in both T2D and CON groups) with phylogenetic information. From both datasets, we identify DA taxa by

comparing the T2D and CON groups.

Four CRC datasets [14–17]. Zeller et al. [14] and Feng et al. [15] studied CRC-related microbiomes in three conditions:

CRC, small adenoma (ADE; diameter < 10 mm), and control (CON). Zeller et al. [14] sequenced the fecal samples of

patients across two countries (France and Germany) in these three groups: 191 patients with CRC, 66 patients with ADE,

and 42 patients in CON. The sample covariates include the subject’s age category, gender, body mass index and country,

and the number of reads in each sample. We include 188 species-level taxa (having at least 10% non-zero counts in both

CRC and CON groups) with phylogenetic information. Feng et al. [15] sequenced samples from 154 human subjects

aged between 45–86 years old in Australia, including 46 patients with CRC, 47 patients with ADE, and 61 in CON. The

sample covariates include the subject’s age category, gender, body mass index, and number of reads in each sample. We

include 182 species-level taxa that have at least 10% non-zero counts in both CRC and CON groups. Yu et al. [16] and

Vogtmann et al. [17] studied CRC-related microbiomes in two conditions: CRC vs. CON. In detail, [16] sequenced 128

Chinese samples, including 75 patients with CRC and 53 patients in CON. The only sample covariate is the number of

reads in each sample. We study 173 species-level taxa that have at least 10% non-zero counts in both CRC and CON

groups. Vogtmann et al. [17] included 104 samples from Washington DC and sequenced their fecal samples, including

52 with CRC and 52 in CON. The sample covariates include the subject’s age category, gender, body mass index, and the

number of reads in each sample. We include 167 species-level taxa that have at least 10% non-zero counts in both CRC

and CON groups. From all the four datasets, we identify DA taxa by comparing the CRC and CON groups.

16S rRNA sequencing datasets
We include two 16S rRNA sequencing datasets from the R package HMP16SData [135] (version 1.6.0). The two datasets

correspond to the healthy human stool samples and healthy human oral samples. The healthy stool 16S dataset includes

187 samples and 43140 OTUs, and the healthy oral 16S data includes 190 samples and 43140 OTUs.

Software and code
The mbImpute R package is available at https://github.com/ruochenj/mbImpute [136]. The source code and data for

reproducing the results are available at https://doi.org/10.5281/zenodo.4840266 [137]. Both the R package and the

source code are under the MIT license.
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