Open Mathematics
Research Article
Young Bae Jun and Eun Hwan Roh*

MBJ-neutrosophic ideals of $B C K / B C I$-algebras

https://doi.org/10.1515/math-2019-0106
Received September 6, 2018; accepted February 19, 2019

Abstract

The notion of MBJ-neutrosophic ideal is introduced, and its properties are investigated. Conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal are provided. In a BCK/BCI-algebra, a condition for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal is given. In a $B C K$-algebra, a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal is given. In a $B C I$-algebra, conditions for an MBJ-neutrosophic ideal to be an MBJ-neutrosophic subalgebra are considered. In an (S)-BCK-algebra, we show that every MBJ-neutrosophic ideal is an MBJ-neutrosophic o-subalgebra, and a characterization of an MBJ-neutrosophic ideal is established.

Keywords: MBJ-neutrosophic set, MBJ-neutrosophic subalgebra, MBJ-neutrosophic ideal, MBJ-neutro-sophic o-subalgebra

MSC: 06F35, 03G25, 03E72

1 Introduction

Different types of uncertainties are encountered in many complex systems and/or in many practical situations like behavioral, biologial and chemical etc. In order to handle uncertainties in many real applications, the fuzzy set was introduced by L.A. Zadeh [1] in 1965. The intuitionistic fuzzy set on a universe X was introduced by K. Atanassov in 1983 as a generalization of fuzzy set. As a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set, the notion of neutrosophic set is developed by Smarandache [2-4]. Neutrosophic algebraic structures in $B C K / B C I$-algebras are discussed in the papers [5-14] and [15]. In [16], the notion of MBJ-neutrosophic sets is introduced as another generalization of neutrosophic set, it is applied to $B C K / B C I$-algebras. Mohseni et al. [16] introduced the concept of MBJ-neutrosophic subalgebras in $B C K / B C I$-algebras, and investigated related properties. They gave a characterization of MBJ-neutrosophic subalgebra, and established a new MBJneutrosophic subalgebra by using an MBJ-neutrosophic subalgebra of a $B C I$-algebra. They considered the homomorphic inverse image of MBJ-neutrosophic subalgebra, and discussed translation of MBJ-neutrosophic subalgebra.

In this paper, we apply the notion of MBJ -neutrosophic sets to ideals of $B C K / B I$-algebras. We introduce the concept of MBJ-neutrosophic ideals in $B C K / B C I$-algebras, and investigate several properties. We provide a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a BCK-algebra. We provide conditions for an MBJ-neutrosophic set to be an MBJ-neutrosophic ideal in a BCK/BCI-algebra.

[^0]We discuss relations between MBJ-neutrosophic subalgebras, MBJ-neutrosophic o-subalgebras and MBJneutrosophic ideals. In a BCI-algebra, we provide conditions for an MBJ-neutrosophic ideal to be an MBJneutrosophic subalgebra. In an (S)-BCK-algebra, we consider a characterization of an MBJ-neutrosophic ideal.

2 Preliminaries

By a BCI-algebra, we mean a set X with a binary operation * and a special element 0 that satisfies the following conditions:
(I) $\left(\left(x^{\star} y\right) \star\left(x^{\star} z\right)\right)^{\star}\left(z^{\star} y\right)=0$,
(II) $\left(x^{\star}\left(x^{\star} y\right)\right) \star y=0$,
(III) $x^{\star} x=0$,
(IV) $x^{\star} y=0, y^{\star} x=0 \Rightarrow x=y$
for all $x, y, z \in X$. If a $B C I$-algebra X satisfies the following identity:
(V) $(\forall x \in X)\left(0{ }^{\star} x=0\right)$,
then X is called a $B C K$-algebra.
By a weakly BCK-algebra (see [17]), we mean a BCI-algebra X satisfying $0^{\star} x \leq x$ for all $x \in X$.
Every BCK/BCI-algebra X satisfies the following conditions:

$$
\begin{align*}
& (\forall x \in X)\left(x^{\star} 0=x\right), \tag{2.1}\\
& (\forall x, y, z \in X)\left(x \leq y \Rightarrow x^{\star} z \leq y^{\star} z, z^{\star} y \leq z^{\star} x\right), \tag{2.2}\\
& (\forall x, y, z \in X)\left(\left(x^{\star} y\right)^{\star} z=\left(x^{\star} z\right)^{\star} y\right), \tag{2.3}\\
& (\forall x, y, z \in X)\left(\left(x^{\star} z\right)^{\star}\left(y^{\star} z\right) \leq x^{\star} y\right), \tag{2.4}
\end{align*}
$$

where $x \leq y$ if and only if $x^{\star} y=0$. Any BCI-algebra X satisfies the following conditions (see [17]):

$$
\begin{align*}
& (\forall x, y \in X)\left(x^{\star}\left(x^{\star}\left(x^{\star} y\right)\right)=x^{\star} y\right) \tag{2.5}\\
& (\forall x, y \in X)\left(0^{\star}\left(x^{\star} y\right)=\left(0^{\star} x\right)^{\star}(0 \star y)\right) \tag{2.6}
\end{align*}
$$

A BCI-algebra X is said to be p-semisimple (see [17]) if

$$
\begin{equation*}
(\forall x \in X)\left(0^{*}\left(0^{\star} x\right)=x\right) \tag{2.7}
\end{equation*}
$$

In a p-semisimple $B C I$-algebra X, the following holds:

$$
\begin{equation*}
(\forall x, y \in X)\left(0^{\star}\left(x^{\star} y\right)=y^{\star} x, x^{\star}\left(x^{\star} y\right)=y\right) \tag{2.8}
\end{equation*}
$$

A BCI-algebra X is said to be associative (see [17]) if

$$
\begin{equation*}
(\forall x, y, z \in X)\left(\left(x^{\star} y\right) \star z=x^{\star}\left(y^{\star} z\right)\right) \tag{2.9}
\end{equation*}
$$

By an (S)-BCK-algebra, we mean a $B C K$-algebra X such that, for any $x, y \in X$, the set

$$
\left\{z \in X \mid z^{\star} x \leq y\right\}
$$

has the greatest element, written by $x \circ y$ (see [18]).
A nonempty subset S of a $B C K / B C I$-algebra X is called a subalgebra of X if $x * y \in S$ for all $x, y \in S$. A subset I of a $B C K / B C I$-algebra X is called an ideal of X if it satisfies:

$$
\begin{align*}
& 0 \in I \tag{2.10}\\
& (\forall x \in X)(\forall y \in I)\left(x^{\star} y \in I \Rightarrow x \in I\right) \tag{2.11}
\end{align*}
$$

A subset I of a $B C I$-algebra X is called a closed ideal of X (see [17]) if it is an ideal of X which satisfies:

$$
\begin{equation*}
(\forall x \in X)\left(x \in I \Rightarrow 0^{\star} x \in I\right) \tag{2.12}
\end{equation*}
$$

By an interval number we mean a closed subinterval $\tilde{a}=\left[a^{-}, a^{+}\right]$of I, where $0 \leq a^{-} \leq a^{+} \leq 1$. Denote by $[I]$ the set of all interval numbers. Let us define what is known as refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in $[I]$. We also define the symbols " \succeq ", " \preceq ", "=" in case of two elements in [I]. Consider two interval numbers $\tilde{a}_{1}:=\left[a_{1}^{-}, a_{1}^{+}\right]$and $\tilde{a}_{2}:=\left[a_{2}^{-}, a_{2}^{+}\right]$. Then

$$
\begin{aligned}
& \operatorname{rmin}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\min \left\{a_{1}^{-}, a_{2}^{-}\right\}, \min \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \operatorname{rmax}\left\{\tilde{a}_{1}, \tilde{a}_{2}\right\}=\left[\max \left\{a_{1}^{-}, a_{2}^{-}\right\}, \max \left\{a_{1}^{+}, a_{2}^{+}\right\}\right], \\
& \tilde{a}_{1} \succeq \tilde{a}_{2} \Leftrightarrow a_{1}^{-} \geq a_{2}^{-}, a_{1}^{+} \geq a_{2}^{+},
\end{aligned}
$$

and similarly we may have $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1}=\tilde{a}_{2}$. To say $\tilde{a}_{1} \succ \tilde{a}_{2}$ (resp. $\tilde{a}_{1} \prec \tilde{a}_{2}$) we mean $\tilde{a}_{1} \succeq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$ (resp. $\tilde{a}_{1} \preceq \tilde{a}_{2}$ and $\tilde{a}_{1} \neq \tilde{a}_{2}$). Let $\tilde{a}_{i} \in[I]$ where $i \in \Lambda$. We define

$$
\operatorname{rinf}_{i \in \Lambda} \tilde{a}_{i}=\left[\inf _{i \in \Lambda} a_{i}^{-}, \inf _{i \in \Lambda} a_{i}^{+}\right] \text {and } \operatorname{rsup}_{i \in \Lambda} \tilde{a}_{i}=\left[\sup _{i \in \Lambda} a_{i}^{-}, \sup _{i \in \Lambda} a_{i}^{+}\right] .
$$

Let X be a nonempty set. A function $A: X \rightarrow[I]$ is called an interval-valued fuzzy set (briefly, an IVF set) in X. Let $[I]^{X}$ stand for the set of all IVF sets in X. For every $A \in[I]^{X}$ and $x \in X, A(x)=\left[A^{-}(x), A^{+}(x)\right]$ is called the degree of membership of an element x to A, where $A^{-}: X \rightarrow I$ and $A^{+}: X \rightarrow I$ are fuzzy sets in X which are called a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote $A=\left[A^{-}, A^{+}\right]$.

Let X be a non-empty set. A neutrosophic set (NS) in X (see [3]) is a structure of the form:

$$
A:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\},
$$

where $A_{T}: X \rightarrow[0,1]$ is a truth membership function, $A_{I}: X \rightarrow[0,1]$ is an indeterminate membership function, and $A_{F}: X \rightarrow[0,1]$ is a false membership function. For the sake of simplicity, we shall use the symbol $A=\left(A_{T}, A_{I}, A_{F}\right)$ for the neutrosophic set

$$
A:=\left\{\left\langle x ; A_{T}(x), A_{I}(x), A_{F}(x)\right\rangle \mid x \in X\right\} .
$$

We refer the reader to the books $[17,18]$ for further information regarding $B C K / B C I$-algebras, and to the site "http://fs.gallup.unm.edu/neutrosophy.htm" for further information regarding neutrosophic set theory.

Let X be a non-empty set. By an MBJ-neutrosophic set in X (see [16]), we mean a structure of the form:

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\},
$$

where M_{A} and J_{A} are fuzzy sets in X, which are called a truth membership function and a false membership function, respectively, and \tilde{B}_{A} is an IVF set in X which is called an indeterminate interval-valued membership function.

For the sake of simplicity, we shall use the symbol $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ for the MBJ-neutrosophic set

$$
\mathcal{A}:=\left\{\left\langle x ; M_{A}(x), \tilde{B}_{A}(x), J_{A}(x)\right\rangle \mid x \in X\right\} .
$$

Let X be a $B C K / B C I$-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an $M B J$ neutrosophic subalgebra of X (see [16]) if it satisfies:

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}\left(x^{\star} y\right) \geq \min \left\{M_{A}(x), M_{A}(y)\right\}, \tag{2.13}\\
\tilde{B}_{A}\left(x^{\star} y\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(y)\right\}, \\
J_{A}\left(x^{\star} y\right) \leq \max \left\{J_{A}(x), J_{A}(y)\right\} .
\end{array}\right)
$$

3 MBJ-neutrosophic ideals of $\operatorname{BCK} / B C I$-algebras

Definition 3.1. Let X be a $B C K / B C I$-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an MBJ-neutrosophic ideal of X if it satisfies:

$$
(\forall x \in X)\left(\begin{array}{l}
M_{A}(0) \geq M_{A}(x) \tag{3.1}\\
\tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x) \\
J_{A}(0) \leq J_{A}(x)
\end{array}\right)
$$

and

$$
(\forall x, y \in X)\left(\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\} \tag{3.2}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\} \\
J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}
\end{array}\right)
$$

An MBJ-neutrosophic ideal $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ of a $B C I$-algebra X is said to be closed if

$$
(\forall x \in X)\left(\begin{array}{l}
M_{A}\left(0^{\star} x\right) \geq M_{A}(x) \tag{3.3}\\
\tilde{B}_{A}\left(0^{\star} x\right) \succeq \tilde{B}_{A}(x) \\
J_{A}\left(0^{\star} x\right) \leq J_{A}(x)
\end{array}\right)
$$

Example 3.2. Consider a set $X=\{0,1,2, a\}$ with the binary operation * which is given in Table 1. Then $(X ; \star, 0)$ is a $B C I$-algebra (see [17]). Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 2.

Table 1: Cayley table for the binary operation " "".

\star	0	1	2	a
0	0	0	0	a
1	1	0	0	a
2	2	2	0	a
a	a	a	a	0

Table 2: MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$.

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.7	$[1.0,1.0]$	0.2
1	0.5	$[0.2,0.6]$	0.2
2	0.4	$[0.2,0.6]$	0.7
a	0.3	$[0.2,0.6]$	0.7

It is routine to verify that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a closed MBJ-neutrosophic ideal of X.
Proposition 3.3. Let X be a BCK/BCI-algebra. Then every MBJ-neutrosophic ideal $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ of X satisfies the following assertion.

$$
x^{\star} y \leq z \Rightarrow\left\{\begin{array}{l}
M_{A}(x) \geq \min \left\{M_{A}(y), M_{A}(z)\right\} \tag{3.4}\\
\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(z)\right\}, \\
J_{A}(x) \leq \max \left\{J_{A}(y), J_{A}(z)\right\}
\end{array}\right.
$$

for all $x, y, z \in X$.

Proof. Let $x, y, z \in X$ be such that $x^{\star} y \leq z$. Then

$$
\begin{aligned}
& M_{A}\left(x^{\star} y\right) \geq \min \left\{M_{A}\left(\left(x^{\star} y\right)^{\star} z\right), M_{A}(z)\right\}=\min \left\{M_{A}(0), M_{A}(z)\right\}=M_{A}(z), \\
& \tilde{B}_{A}\left(x^{\star} y\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(x^{\star} y\right) \star z\right), \tilde{B}_{A}(z)\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}(0), \tilde{B}_{A}(z)\right\}=\tilde{B}_{A}(z),
\end{aligned}
$$

and

$$
J_{A}\left(x^{\star} y\right) \leq \max \left\{J_{A}\left(\left(x^{\star} y\right)^{\star} z\right), J_{A}(z)\right\}=\max \left\{J_{A}(0), J_{A}(z)\right\}=J_{A}(z)
$$

It follows that

$$
\begin{aligned}
& M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}=\min \left\{M_{A}(y), M_{A}(z)\right\}, \\
& \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(z)\right\},
\end{aligned}
$$

and

$$
J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}=\max \left\{J_{A}(y), J_{A}(z)\right\} .
$$

This completes the proof.
Theorem 3.4. Every MBJ-neutrosophic set in a BCK/BCI-algebra X satisfying (3.1) and (3.4) is an MBJneutrosophic ideal of X.

Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X satisfying (3.1) and (3.4). Note that $x^{\star}\left(x^{\star} y\right) \leq y$ for all $x, y \in X$. It follows from (3.4) that

$$
\begin{aligned}
& M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}, \\
& \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x \star y), \tilde{B}_{A}(y)\right\},
\end{aligned}
$$

and

$$
J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.
Theorem 3.5. Given an MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in a BCK/BCI-algebra X, if $\left(M_{A}, J_{A}\right)$ is an intuitionistic fuzzy ideal of X, and B_{A}^{-}and B_{A}^{+}are fuzzy ideals of X, then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.

Proof. It is sufficient to show that \tilde{B}_{A} satisfies the condition

$$
\begin{equation*}
(\forall x \in X)\left(\tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x)\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(\forall x, y \in X)\left(\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\}\right) \tag{3.6}
\end{equation*}
$$

For any $x, y \in X$, we get

$$
\tilde{B}_{A}(0)=\left[B_{A}^{-}(0), B_{A}^{+}(0)\right] \succeq\left[B_{A}^{-}(x), B_{A}^{+}(x)\right]=\tilde{B}_{A}(x)
$$

and

$$
\begin{aligned}
\tilde{B}_{A}(x) & =\left[B_{A}^{-}(x), B_{A}^{+}(x)\right] \\
& \succeq\left[\min \left\{B_{A}^{-}\left(x^{\star} y\right), B_{A}^{-}(y)\right\}, \min \left\{B_{A}^{+}\left(x^{\star} y\right), B_{A}^{+}(y)\right\}\right] \\
& =\operatorname{rmin}\left\{\left[B_{A}^{-}\left(x^{\star} y\right), B_{A}^{+}\left(x^{\star} y\right)\right],\left[B_{A}^{-}(y), B_{A}^{+}(y)\right]\right. \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\} .
\end{aligned}
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.

If $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of a $B C K / B C I$-algebra X, then

$$
\begin{aligned}
{\left[B_{A}^{-}(x), B_{A}^{+}(x)\right] } & =\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\} \\
& =\operatorname{rmin}\left\{\left[B_{A}^{-}\left(x^{\star} y\right), B_{A}^{+}\left(x^{\star} y\right),\left[B_{A}^{-}(y), B_{A}^{+}(y)\right]\right\}\right. \\
& =\left[\min \left\{B_{A}^{-}\left(x^{\star} y\right), B_{A}^{-}(y)\right\}, \min \left\{B_{A}^{+}\left(x^{\star} y\right), B_{A}^{+}(y)\right\}\right]
\end{aligned}
$$

for all $x, y \in X$. It follows that $B_{A}^{-}(x) \geq \min \left\{B_{A}^{-}(x * y), B_{A}^{-}(y)\right\}$ and $B_{A}^{+}(x) \geq \min \left\{B_{A}^{+}(x * y), B_{A}^{+}(y)\right\}$. Thus B_{A}^{-} and B_{A}^{+}are fuzzy ideals of X. But $\left(M_{A}, J_{A}\right)$ is not an intuitionistic fuzzy ideal of X as seen in Example 3.2. This shows that the converse of Theorem 3.5 is not true.

Given an MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in a $B C K / B C I$-algebra X, we consider the following sets.

$$
\begin{aligned}
& U\left(M_{A} ; t\right):=\left\{x \in X \mid M_{A}(x) \geq t\right\}, \\
& U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right):=\left\{x \in X \mid \tilde{B}_{A}(x) \succeq\left[\delta_{1}, \delta_{2}\right]\right\}, \\
& L\left(J_{A} ; s\right):=\left\{x \in X \mid J_{A}(x) \leq s\right\},
\end{aligned}
$$

where $t, s \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$.
Theorem 3.6. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in a BCK/BCI-algebra X is an MBJ-neutrosophic ideal of X if and only if the non-empty sets $U\left(M_{A} ; t\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; s\right)$ are ideals of X for all $t, s \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$.

Proof. Suppose that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X. Let $t, s \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$ be such that $U\left(M_{A} ; t\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; s\right)$ are non-empty. Obviously, $0 \in U\left(M_{A} ; t\right) \cap U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right) \cap$ $L\left(J_{A} ; s\right)$. For any $x, y, a, b, u, v \in X$, if $x{ }^{\star} y \in U\left(M_{A} ; t\right), y \in U\left(M_{A} ; t\right), a^{\star} b \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right), b \in$ $U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right), u^{\star} v \in L\left(J_{A} ; s\right)$ and $v \in L\left(J_{A} ; s\right)$, then

$$
\begin{aligned}
& M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\} \geq \min \{t, t\}=t, \\
& \tilde{B}_{A}(a) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(a^{\star} b\right), \tilde{B}_{A}(b)\right\} \succeq \operatorname{rmin}\left\{\left[\delta_{1}, \delta_{2}\right],\left[\delta_{1}, \delta_{2}\right]\right\}=\left[\delta_{1}, \delta_{2}\right], \\
& J_{A}(u) \leq \max \left\{J_{A}\left(u^{\star} v\right), J_{A}(v)\right\} \leq \min \{s, s\}=s,
\end{aligned}
$$

and so $x \in U\left(M_{A} ; t\right), a \in U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $u \in L\left(J_{A} ; s\right)$. Therefore $U\left(M_{A} ; t\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; s\right)$ are ideals of X.

Conversely, assume that the non-empty sets $U\left(M_{A} ; t\right), U\left(\tilde{B}_{A} ;\left[\delta_{1}, \delta_{2}\right]\right)$ and $L\left(J_{A} ; s\right)$ are ideals of X for all $t, s \in[0,1]$ and $\left[\delta_{1}, \delta_{2}\right] \in[I]$. Assume that $M_{A}(0)<M_{A}(a), \tilde{B}_{A}(0) \prec \tilde{B}_{A}(a)$ and $J_{A}(0)>J_{A}(a)$ for some $a \in X$. Then $0 \notin U\left(M_{A} ; M_{A}(a)\right) \cap U\left(\tilde{B}_{A} ; \tilde{B}_{A}(a)\right) \cap L\left(J_{A} ; J_{A}(a)\right.$, which is a contradiction. Hence $M_{A}(0) \geq M_{A}(x)$, $\tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x)$ and $J_{A}(0) \leq J_{A}(x)$ for all $x \in X$. If

$$
M_{A}\left(a_{0}\right)<\min \left\{M_{A}\left(a_{0} \star b_{0}\right), M_{A}\left(b_{0}\right)\right\}
$$

for some $a_{0}, b_{0} \in X$, then $a_{0}{ }^{\star} b_{0} \in U\left(M_{A} ; t_{0}\right)$ and $b_{0} \in U\left(M_{A} ; t_{0}\right)$ but $a_{0} \notin U\left(M_{A} ; t_{0}\right)$ for $t_{0}:=\min \left\{M_{A}\left(a_{0} \star\right.\right.$ $\left.\left.b_{0}\right), M_{A}\left(b_{0}\right)\right\}$. This is a contradiction, and thus $M_{A}(a) \geq \min \left\{M_{A}(a \star b), M_{A}(b)\right\}$ for all $a, b \in X$. Similarly, we can show that $J_{A}(a) \leq \max \left\{J_{A}(a \star b), J_{A}(b)\right\}$ for all $a, b \in X$. Suppose that $\tilde{B}_{A}\left(a_{0}\right) \prec \operatorname{rmin}\left\{\tilde{B}_{A}\left(a_{0} \star b_{0}\right), \tilde{B}_{A}\left(b_{0}\right)\right\}$ for some $a_{0}, b_{0} \in X$. Let $\tilde{B}_{A}\left(a_{0}{ }^{\star} b_{0}\right)=\left[\lambda_{1}, \lambda_{2}\right], \tilde{B}_{A}\left(b_{0}\right)=\left[\lambda_{3}, \lambda_{4}\right]$ and $\tilde{B}_{A}\left(a_{0}\right)=\left[\delta_{1}, \delta_{2}\right]$. Then

$$
\left[\delta_{1}, \delta_{2}\right] \prec \operatorname{rmin}\left\{\left[\lambda_{1}, \lambda_{2}\right],\left[\lambda_{3}, \lambda_{4}\right]\right\}=\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right],
$$

and so $\delta_{1}<\min \left\{\lambda_{1}, \lambda_{3}\right\}$ and $\delta_{2}<\min \left\{\lambda_{2}, \lambda_{4}\right\}$. Taking

$$
\left[\gamma_{1}, \gamma_{2}\right]:=\frac{1}{2}\left(\tilde{B}_{A}\left(a_{0}\right)+\operatorname{rmin}\left\{\tilde{B}_{A}\left(a_{0} \star b_{0}\right), \tilde{B}_{A}\left(b_{0}\right)\right\}\right)
$$

implies that

$$
\begin{aligned}
{\left[\gamma_{1}, \gamma_{2}\right] } & =\frac{1}{2}\left(\left[\delta_{1}, \delta_{2}\right]+\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right]\right) \\
& =\left[\frac{1}{2}\left(\delta_{1}+\min \left\{\lambda_{1}, \lambda_{3}\right\}\right), \frac{1}{2}\left(\delta_{2}+\min \left\{\lambda_{2}, \lambda_{4}\right\}\right)\right]
\end{aligned}
$$

It follows that

$$
\min \left\{\lambda_{1}, \lambda_{3}\right\}>\gamma_{1}=\frac{1}{2}\left(\delta_{1}+\min \left\{\lambda_{1}, \lambda_{3}\right\}\right)>\delta_{1}
$$

and

$$
\min \left\{\lambda_{2}, \lambda_{4}\right\}>\gamma_{2}=\frac{1}{2}\left(\delta_{2}+\min \left\{\lambda_{2}, \lambda_{4}\right\}\right)>\delta_{2}
$$

Hence $\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right] \succ\left[\delta_{1}, \delta_{2}\right]=\tilde{B}_{A}\left(a_{0}\right)$, and therefore $a_{0} \notin U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)$. On the other hand,

$$
\tilde{B}_{A}\left(a_{0} \star b_{0}\right)=\left[\lambda_{1}, \lambda_{2}\right] \succeq\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right]
$$

and

$$
\tilde{B}_{A}\left(b_{0}\right)=\left[\lambda_{3}, \lambda_{4}\right] \succeq\left[\min \left\{\lambda_{1}, \lambda_{3}\right\}, \min \left\{\lambda_{2}, \lambda_{4}\right\}\right] \succ\left[\gamma_{1}, \gamma_{2}\right],
$$

that is, $a_{0}{ }^{\star} b_{0}, b_{0} \in U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)$. This is a contradiction, and therefore $\tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x \star y), \tilde{B}_{A}(y)\right\}$ for all $x, y \in X$. Consequently $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.

Theorem 3.7. Given an ideal I of a BCK/BCI-algebra X, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by

$$
M_{A}(x)=\left\{\begin{array}{l}
t \text { if } x \in I, \tag{3.7}\\
0 \text { otherwise },
\end{array} \quad \tilde{B}_{A}(x)=\left\{\begin{array}{l}
{\left[\gamma_{1}, \gamma_{2}\right] \text { if } x \in I,} \\
{[0,0] \quad \text { otherwise },}
\end{array} \quad J_{A}(x)= \begin{cases}s \text { if } x \in I \\
1 \text { otherwise }\end{cases}\right.\right.
$$

where $t \in(0,1], s \in[0,1)$ and $\gamma_{1}, \gamma_{2} \in(0,1]$ with $\gamma_{1}<\gamma_{2}$. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X such that $U\left(M_{A} ; t\right)=U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)=L\left(J_{A} ; s\right)=I$.

Proof. Let $x, y \in X$. If $x^{\star} y \in I$ and $y \in I$, then $x \in I$ and so

$$
\begin{aligned}
& M_{A}(x)=t=\min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\} \\
& \tilde{B}_{A}(x)=\left[\gamma_{1}, \gamma_{2}\right]=\operatorname{rmin}\left\{\left[\gamma_{1}, \gamma_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\} \\
& J_{A}(x)=s=\max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}
\end{aligned}
$$

If any one of $x^{\star} y$ and y is contained in I, say $x{ }^{\star} y \in K$, then $M_{A}(x * y)=t, \tilde{B}_{A}\left(x^{\star} y\right)=\left[\gamma_{1}, \gamma_{2}\right], J_{A}\left(x^{*} y\right)=s$, $M_{A}(y)=0, \tilde{B}_{A}(y)=[0,0]$ and $J_{A}(y)=1$. Hence

$$
\begin{aligned}
& M_{A}(x) \geq 0=\min \{t, 0\}=\min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}, \\
& \tilde{B}_{A}(x) \succeq[0,0]=\operatorname{rmin}\left\{\left[\gamma_{1}, \gamma_{2}\right],[0,0]\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\}, \\
& J_{A}(x) \leq 1=\max \{s, 1\}=\max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\} .
\end{aligned}
$$

If $x{ }^{\star} y, y \notin K$, then $M_{A}(x \star y)=0=M_{A}(y), \tilde{B}_{A}(x \star y)=[0,0]=\tilde{B}_{A}(y)$ and $J_{A}(x \star y)=1=J_{A}(y)$. It follows that

$$
\begin{aligned}
& M_{A}(x) \geq 0=\min \{0,0\}=\min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\} \\
& \tilde{B}_{A}(x) \succeq[0,0]=\operatorname{rmin}\{[0,0],[0,0]\}=\operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\} \\
& J_{A}(x) \leq 1=\max \{1,1\}=\max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}
\end{aligned}
$$

It is obvious that $M_{A}(0) \geq M_{A}(x), \tilde{B}_{A}(0) \succeq \tilde{B}_{A}(x)$ and $J_{A}(0) \leq J_{A}(x)$ for all $x \in X$. Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X. Obviously, we have $U\left(M_{A} ; t\right)=U\left(\tilde{B}_{A} ;\left[\gamma_{1}, \gamma_{2}\right]\right)=L\left(J_{A} ; s\right)=I$.

Theorem 3.8. For any non-empty subset I of X, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X which is given in (3.7). If $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X, then I is an ideal of X.

Proof. Obviously, $0 \in I$. Let $x, y \in X$ be such that $x * y \in I$ and $y \in I$. Then $M_{A}(x * y)=t=M_{A}(y)$, $\tilde{B}_{A}\left(x^{\star} y\right)=\left[\gamma_{1}, \gamma_{2}\right]=\tilde{B}_{A}(y)$ and $J_{A}\left(x^{\star} y\right)=s=J_{A}(y)$. Thus

$$
\begin{aligned}
& M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}=t, \\
& \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\}=\left[\gamma_{1}, \gamma_{2}\right], \\
& J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}=s,
\end{aligned}
$$

and hence $x \in I$. Therefore I is an ideal of X.
Theorem 3.9. In a BCK-algebra, every MBJ-neutrosophic ideal is an MBJ-neutrosophic subalgebra.
Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of a BCK-algebra X. Since $\left(x^{\star} y\right){ }^{\star} x \leq y$ for all $x, y \in X$, it follows from Proposition 3.3 that

$$
\begin{aligned}
& M_{A}\left(x^{\star} y\right) \geq \min \left\{M_{A}(x), M_{A}(y)\right\}, \\
& \tilde{B}_{A}\left(x^{\star} y\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(y)\right\}, \\
& J_{A}\left(x^{\star} y\right) \leq \max \left\{J_{A}(x), J_{A}(y)\right\}
\end{aligned}
$$

for all $x, y \in X$. Hence $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of a $B C K$-algebra X.
The converse of Theorem 3.9 may not be true as seen in the following example.
Example 3.10. Consider a $B C K$-algebra $X=\{0,1,2,3\}$ with the binary operation * which is given in Table 3. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 4. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X, but it is not an MBJ-neutrosophic ideal of X since

$$
\tilde{B}_{A}(1) \nsucceq \operatorname{rmin}\left\{\tilde{B}_{A}(1 * 2), \tilde{B}_{A}(2)\right\}
$$

Table 3: Cayley table for the binary operation " " ".

\star	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	1	0	2
3	3	3	3	0

Table 4: MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$.

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.7	$[0.3,0.8]$	0.2
1	0.4	$[0.2,0.6]$	0.3
2	0.4	$[0.3,0.8]$	0.4
3	0.6	$[0.2,0.6]$	0.5

We provide a condition for an MBJ-neutrosophic subalgebra to be an MBJ-neutrosophic ideal in a BCKalgebra.

Theorem 3.11. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic subalgebra of a BCK-algebra X satisfying the condition (3.4). Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.

Proof. For any $x \in X$, we get

$$
\begin{aligned}
M_{A}(0)= & M_{A}\left(x^{\star} x\right) \geq \min \left\{M_{A}(x), M_{A}(x)\right\}=M_{A}(x), \\
\tilde{B}_{A}(0) & =\tilde{B}_{A}\left(x^{\star} x\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(x)\right\} \\
& =\operatorname{rmin}\left\{\left[B_{A}^{-}(x), B_{A}^{+}(x)\right],\left[B_{A}^{-}(x), B_{A}^{+}(x)\right]\right\} \\
& =\left[B_{A}^{-}(x), B_{A}^{+}(x)\right]=\tilde{B}_{A}(x),
\end{aligned}
$$

and

$$
J_{A}(0)=J_{A}\left(x^{\star} x\right) \leq \max \left\{J_{A}(x), J_{A}(x)\right\}=J_{A}(x)
$$

Since $x^{\star}\left(x^{*} y\right) \leq y$ for all $x, y \in X$, it follows from (3.4) that

$$
\begin{aligned}
& M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}, \\
& \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\}, \\
& J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}
\end{aligned}
$$

for all $x, y \in X$. Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.
Theorem 3.9 is not true in a BCI-algebra as seen in the following example.
Example 3.12. Let $(Y, \star, 0)$ be a $B C I$-algebra and let $(\mathbb{Z},-, 0)$ be an adjoint $B C I$-algebra of the additive group $(\mathbb{Z},+, 0)$ of integers. Then $X=Y \times \mathbb{Z}$ is a $B C I$-algebra and $I=Y \times \mathbb{N}$ is an ideal of X where \mathbb{N} is the set of all non-negative integers (see [17]). Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by

$$
M_{A}(x)=\left\{\begin{array}{l}
t \text { if } x \in I, \tag{3.8}\\
0 \text { otherwise },
\end{array} \quad \tilde{B}_{A}(x)=\left\{\begin{array}{l}
{\left[\gamma_{1}, \gamma_{2}\right] \text { if } x \in I,} \\
{[0,0] \quad \text { otherwise },}
\end{array} \quad J_{A}(x)= \begin{cases}s \text { if } x \in I \\
1 \text { otherwise }\end{cases}\right.\right.
$$

where $t \in(0,1]$, $s \in[0,1)$ and $\gamma_{1}, \gamma_{2} \in(0,1]$ with $\gamma_{1}<\gamma_{2}$. Then $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X by Theorem 3.7. But it is not an MBJ-neutrosophic subalgebra of X since

$$
\begin{gathered}
\left.M_{A}((0,0) \star(0,1))=M_{A}((0,-1))=0<t=\min \left\{M_{A}((0,0)), M_{A}(0,1)\right)\right\}, \\
\left.\tilde{B}_{A}((0,0) \star(0,2))=\tilde{B}_{A}((0,-2))=[0,0] \prec\left[\gamma_{1}, \gamma_{2}\right]=\operatorname{rmin}\left\{\tilde{B}_{A}((0,0)), \tilde{B}_{A}(0,2)\right)\right\},
\end{gathered}
$$

and/or

$$
\left.J_{A}((0,0) \star(0,3))=J_{A}((0,-3))=1>s=\max \left\{J_{A}((0,0)), J_{A}(0,3)\right)\right\}
$$

Definition 3.13. An MBJ-neutrosophic ideal $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ of a $B C I$-algebra X is said to be closed if

$$
\begin{equation*}
(\forall x \in X)\left(M_{A}\left(0^{\star} x\right) \geq M_{A}(x), \tilde{B}_{A}\left(0^{\star} x\right) \succeq \tilde{B}_{A}(x), J_{A}\left(0^{\star} x\right) \leq J_{A}(x)\right) \tag{3.9}
\end{equation*}
$$

Theorem 3.14. In a BCI-algebra, every closed MBJ-neutrosophic ideal is an MBJ-neutrosophic subalgebra.
Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be a closed MBJ-neutrosophic ideal of a BCI-algebra X. Using (3.2), (2.3), (III) and (3.3), we have

$$
M_{A}\left(x^{\star} y\right) \geq \min \left\{M_{A}\left(\left(x^{\star} y\right)^{\star} x\right), M_{A}(x)\right\}=\min \left\{M_{A}\left(0^{\star} y\right), M_{A}(x)\right\} \geq \min \left\{M_{A}(y), M_{A}(x)\right\}
$$

$$
\tilde{B}_{A}\left(x^{\star} y\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(x^{\star} y\right) \star x\right), \tilde{B}_{A}(x)\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}(0 \star y), \tilde{B}_{A}(x)\right\} \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(x)\right\},
$$

and

$$
J_{A}\left(x^{\star} y\right) \leq \max \left\{J_{A}((x \star y) \star x), J_{A}(x)\right\}=\max \left\{J_{A}(0 \star y), J_{A}(x)\right\} \leq \max \left\{J_{A}(y), J_{A}(x)\right\}
$$

for all $x, y \in X$. Hence $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X.
Theorem 3.15. In a weakly BCK-algebra, every MBJ-neutrosophic ideal is closed.
Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of a weakly $B C K$-algebra X. For any $x \in X$, we obtain

$$
\begin{aligned}
& M_{A}\left(0^{\star} x\right) \geq \min \left\{M_{A}\left(\left(0^{\star} x\right)^{\star} x\right), M_{A}(x)\right\}=\min \left\{M_{A}(0), M_{A}(x)\right\}=M_{A}(x), \\
& \tilde{B}_{A}\left(0^{\star} x\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(\left(0^{\star} x\right)^{\star} x\right), \tilde{B}_{A}(x)\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}(0), \tilde{B}_{A}(x)\right\}=\tilde{B}_{A}(x),
\end{aligned}
$$

and

$$
J_{A}(0 \star x) \leq \max \left\{J_{A}\left(\left(0^{\star} x\right)^{\star} x\right), J_{A}(x)\right\}=\max \left\{J_{A}(0), J_{A}(x)\right\}=J_{A}(x)
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a closed MBJ-neutrosophic ideal of X.
Corollary 3.16. In a weakly BCK-algebra, every MBJ-neutrosophic ideal is an MBJ-neutrosophic subalgebra.
The following example shows that any MBJ-neutrosophic subalgebra is not an MBJ-neutrosophic ideal in a BCI-algebra.

Example 3.17. Consider a $B C I$-algebra $X=\{0, a, b, c, d, e\}$ with the ${ }^{*}$-operation in Table 5. Let $\mathcal{A}=\left(M_{A}\right.$, $\left.\tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in X defined by Table 6 . It is routine to verify that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X. But it is not an MBJ-neutrosophic ideal of X since

$$
\begin{aligned}
& M_{A}(d)<\min \left\{M_{A}\left(d^{\star} c\right), M_{A}(c)\right\}, \\
& \tilde{B}_{A}(d) \prec \operatorname{rmin}\left\{\tilde{B}_{A}\left(d^{\star} c\right), \tilde{B}_{A}(c)\right\},
\end{aligned}
$$

and/or

$$
J_{A}(d)>\max \left\{J_{A}\left(d^{\star} c\right), J_{A}(c)\right\}
$$

Table 5: Cayley table for the binary operation " " ".

\star	0	a	b	c	d	e
0	0	0	c	b	c	c
a	a	0	c	b	c	c
b	b	b	0	c	0	0
c	c	c	b	0	b	b
d	d	b	a	c	0	a
e	e	b	a	c	a	0

Table 6: MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$.

X	$M_{A}(x)$	$\tilde{B}_{A}(x)$	$J_{A}(x)$
0	0.7	$[0.4,0.9]$	0.3
a	0.4	$[0.04,0.45]$	0.6
b	0.7	$[0.4,0.9]$	0.3
c	0.7	$[0.4,0.9]$	0.3
d	0.4	$[0.04,0.45]$	0.6
e	0.4	$[0.04,0.45]$	0.6

Theorem 3.18. In a p-semisimple BCI-algebra X, the following are equivalent.
(1) $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a closed $M B J$-neutrosophic ideal of X.
(2) $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X.

Proof. (1) \Rightarrow (2). See Theorem 3.14.
(2) \Rightarrow (1). Suppose that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X. For any $x \in X$, we get

$$
\begin{gathered}
M_{A}(0)=M_{A}\left(x^{\star} x\right) \geq \min \left\{M_{A}(x), M_{A}(x)\right\}=M_{A}(x), \\
\tilde{B}_{A}(0)=\tilde{B}_{A}\left(x^{\star} x\right) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(x)\right\}=\tilde{B}_{A}(x),
\end{gathered}
$$

and

$$
J_{A}(0)=J_{A}\left(x^{\star} x\right) \leq \max \left\{J_{A}(x), J_{A}(x)\right\}=J_{A}(x) .
$$

Hence $M_{A}(0 * x) \geq \min \left\{M_{A}(0), M_{A}(x)\right\}=M_{A}(x), \tilde{B}_{A}(0 * x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(0), \tilde{B}_{A}(x)\right\}=\tilde{B}_{A}(x)$ and $J_{A}(0 * x) \leq$ $\max \left\{J_{A}(0), J_{A}(x)\right\}=J_{A}(x)$ for all $x \in X$. Let $x, y \in X$. Then

$$
\begin{aligned}
M_{A}(x) & =M_{A}(y \star(y \star x)) \geq \min \left\{M_{A}(y), M_{A}(y \star x)\right\} \\
& =\min \left\{M_{A}(y), M_{A}(0 \star(x \star y))\right\} \\
& \geq \min \left\{M_{A}(x \star y), M_{A}(y)\right\}, \\
\tilde{B}_{A}(x) & =\tilde{B}_{A}(y \star(y \star x)) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(y \star x)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}\left(0 \star\left(x^{\star} y\right)\right)\right\} \\
& \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x \star y), \tilde{B}_{A}(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x) & =J_{A}(y *(y \star x)) \leq \max \left\{J_{A}(y), J_{A}(y \star x)\right\} \\
& =\max \left\{J_{A}(y), J_{A}\left(0 \star\left(x^{\star} y\right)\right)\right\} \\
& \leq \max \left\{J_{A}(x \star y), J_{A}(y)\right\} .
\end{aligned}
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a closed MBJ-neutrosophic ideal of X.
Since every associative $B C I$-algebra is p-semisimple, we have the following corollary.
Corollary 3.19. In an associative BCI-algebra X, the following are equivalent.
(1) $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a closed MBJ-neutrosophic ideal of X.
(2) $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X.

Corollary 3.20. In a BCI-algebra X, consider the following conditions
(1) every element x in X is minimal.
(2) $X=\left\{0^{\star} x \mid x \in X\right\}$.
(3) $(\forall x, y \in X)\left(x^{\star}(0 * y)=y^{\star}(0 \star x)\right)$.
(4) $(\forall x \in X)\left(0^{\star} x=0 \Rightarrow x=0\right)$.
(5) $(\forall a, x \in X)\left(a^{\star}\left(a^{\star} x\right)=x\right)$.
(6) $(\forall a \in X) X=\{a \star x \mid x \in X\}$.
(7) $(\forall x, y, a, b \in X)\left(\left(x^{\star} y\right) \star(a \star b)=\left(x^{\star} a\right) \star(y \star b)\right)$.
(8) $(\forall x, y \in X)\left(0^{\star}\left(y^{\star} x\right)=x^{\star} y\right)$.

If one of the conditions above is valid, then the following are equivalent.
(1) $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is a closed MBJ-neutrosophic ideal of X.
(2) $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic subalgebra of X.

Definition 3.21. Let X be an (S)-BCK-algebra. An MBJ-neutrosophic set $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ in X is called an MBJ-neutrosophic o-subalgebra of X if the following assertions are valid.

$$
\begin{align*}
& M_{A}(x \circ y) \geq \min \left\{M_{A}(x), M_{A}(y)\right\}, \\
& \tilde{B}_{A}(x \circ y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(y)\right\}, \tag{3.10}\\
& J_{A}(x \circ y) \leq \max \left\{J_{A}(x), J_{A}(y)\right\}
\end{align*}
$$

for all $x, y \in X$.
Lemma 3.22. Every MBJ-neutrosophic ideal of a BCK/BCI-algebra X satisfies the following assertion.

$$
\begin{equation*}
(\forall x, y \in X)\left(x \leq y \Rightarrow M_{A}(x) \geq M_{A}(y), \tilde{B}_{A}(x) \succeq \tilde{B}_{A}(y), J_{A}(x) \leq J_{A}(y)\right) \tag{3.11}
\end{equation*}
$$

Proof. Assume that $x \leq y$ for all $x, y \in X$. Then $x^{\star} y=0$, and so

$$
\begin{aligned}
& M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}=\min \left\{M_{A}(0), M_{A}(y)\right\}=M_{A}(y), \\
& \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\}=\operatorname{rmin}\left\{\tilde{B}_{A}(0), \tilde{B}_{A}(y)\right\}=\tilde{B}_{A}(y),
\end{aligned}
$$

and

$$
J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}=\max \left\{J_{A}(0), J_{A}(y)\right\}=J_{A}(y)
$$

This completes the proof.
Theorem 3.23. In an (S)-BCK-algebra, every MBJ-neutrosophic ideal is an MBJ-neutrosophic \circ-subalgebra.
Proof. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic ideal of an (S)-BCK-algebra X. Note that $(x \circ y) \star x \leq y$ for all $x, y \in X$. Using Lemma 3.22 and (3.2) implies that

$$
\begin{aligned}
& M_{A}(x \circ y) \geq \min \left\{M_{A}\left((x \circ y)^{\star} x\right), M_{A}(x)\right\} \geq \min \left\{M_{A}(y), M_{A}(x)\right\}, \\
& \tilde{B}_{A}(x \circ y) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}((x \circ y) \star x), \tilde{B}_{A}(x)\right\} \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(x)\right\},
\end{aligned}
$$

and

$$
J_{A}(x \circ y) \leq \max \left\{J_{A}\left((x \circ y)^{\star} x\right), J_{A}(x)\right\} \leq \max \left\{J_{A}(y), J_{A}(x)\right\}
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic o-subalgebra of X.
We provide a characterization of an MBJ-neutrosophic ideal in an (S)-BCK-algebra.

Theorem 3.24. Let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in an (S)-BCK-algebra X. Then $\mathcal{A}=\left(M_{A}\right.$, \tilde{B}_{A}, J_{A}) is an MBJ-neutrosophic ideal of X if and only if the following assertions are valid.

$$
\begin{equation*}
M_{A}(x) \geq \min \left\{M_{A}(y), M_{A}(z)\right\}, \tilde{B}_{A}(x) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(z)\right\}, J_{A}(x) \leq \max \left\{J_{A}(y), J_{A}(z)\right\} \tag{3.12}
\end{equation*}
$$

for all $x, y, z \in X$ with $x \leq y \circ z$.
Proof. Assume that $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X and let $x, y, z \in X$ be such that $x \leq y \circ z$. Using (3.1), (3.2) and Theorem 3.23, we have

$$
\begin{aligned}
M_{A}(x) & \geq \min \left\{M_{A}\left(x^{\star}(y \circ z)\right), M_{A}(y \circ z)\right\} \\
& =\min \left\{M_{A}(0), M_{A}(y \circ z)\right\} \\
& =M_{A}(y \circ z) \geq \min \left\{M_{A}(y), M_{A}(z)\right\}, \\
\tilde{B}_{A}(x) & \succeq \operatorname{rmin}\left\{\tilde{B}_{A}\left(x^{\star}(y \circ z)\right), \tilde{B}_{A}(y \circ z)\right\} \\
& =\operatorname{rmin}\left\{\tilde{B}_{A}(0), \tilde{B}_{A}(y \circ z)\right\} \\
& =\tilde{B}_{A}(y \circ z) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(y), \tilde{B}_{A}(z)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
J_{A}(x) & \leq \max \left\{J_{A}\left(x^{\star}(y \circ z)\right), J_{A}(y \circ z)\right\} \\
& =\max \left\{J_{A}(0), J_{A}(y \circ z)\right\} \\
& =J_{A}(y \circ z) \leq \max \left\{J_{A}(y), J_{A}(z)\right\} .
\end{aligned}
$$

Conversely, let $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ be an MBJ-neutrosophic set in an (S)-BCK-algebra X satisfying the condition (3.12) for all $x, y, z \in X$ with $x \leq y \circ z$. Sine $0 \leq x \circ x$ for all $x \in X$, it follows from (3.12) that

$$
\begin{aligned}
& M_{A}(0) \geq \min \left\{M_{A}(x), M_{A}(x)\right\}=M_{A}(x), \\
& \tilde{B}_{A}(0) \succeq \operatorname{rmin}\left\{\tilde{B}_{A}(x), \tilde{B}_{A}(x)\right\}=\tilde{B}_{A}(x),
\end{aligned}
$$

and

$$
J_{A}(0) \leq \max \left\{J_{A}(x), J_{A}(x)\right\}=J_{A}(x)
$$

Note that $x \leq\left(x^{\star} y\right) \circ y$ for all $x, y \in X$. Hence we have

$$
M_{A}(x) \geq \min \left\{M_{A}\left(x^{\star} y\right), M_{A}(y)\right\}, \tilde{B}_{A}(x) \succeq \min \left\{\tilde{B}_{A}\left(x^{\star} y\right), \tilde{B}_{A}(y)\right\} \text { and } J_{A}(x) \leq \max \left\{J_{A}\left(x^{\star} y\right), J_{A}(y)\right\}
$$

Therefore $\mathcal{A}=\left(M_{A}, \tilde{B}_{A}, J_{A}\right)$ is an MBJ-neutrosophic ideal of X.

References

[1] Zadeh L.A., Fuzzy sets, Information and Control, 1965, 8(3), 338-353.
[2] Smarandache F., Neutrosophy, Neutrosophic Probability, Set, and Logic, ProQuest Information \& Learning, Ann Arbor, Michigan, USA, 1998.
[3] Smarandache F., A unifying field in logics, Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999.
[4] Smarandache F., Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 2005, 24(5), 287-297.
[5] Borzooei R.A., Mohseni Takallo M., Smarandache F., Jun Y.B., Positive implicative neutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, 2018, 23, 126-141.
[6] Borzooei R.A., Zhan X.H., Smarandache F., Jun Y.B., Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry, 2018, 10, 350, doi:10.3390/sym10080350.
[7] Jun Y.B., Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann. Fuzzy Math. Inform., 2017, 14(1), 75-86.
[8] Jun Y.B., Kim S.J., Smarandache F., Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, $2018,7,23$.
[9] Jun Y.B., Smarandache F., Bordbar H., Neutrosophic \mathcal{N}-structures applied to BCK/BCI-algebras, Information, 2017, 8, 128.
[10] Jun Y.B., Smarandache F., Song S.Z., Khan M., Neutrosophic positive implicative \mathcal{N}-ideals in BCK/BCI-algebras, Axioms, 2018, $7,3$.
[11] Khan M., Anis S., Smarandache F., Jun Y.B., Neutrosophic \mathcal{N}-structures and their applications in semigroups, Ann. Fuzzy Math. Inform., 2017, 14(6), 583-598.
[12] Öztürk M.A., Jun Y.B., Neutrosophic ideals in $B C K / B C I$-algebras based on neutrosophic points, J. Inter. Math. Virtual Inst., 2018, 8, 1-17.
[13] Saeid A.B., Jun Y.B., Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann. Fuzzy Math. Inform., 2017, 14(1), 87-97.
[14] Song S.Z., Khan M., Smarandache F., Jun Y.B., A novel extension of neutrosophic sets and Fs application in BCK/BI-algebras, New Trends in Neutrosophic Theory and Applications (Volume II), Pons Editions, Brussels, Belium, EU 2018, 308-326.
[15] Song S.Z., Smarandache F., Jun Y.B., Neutrosophic commutative \mathcal{N}-ideals in BCK-algebras, Information, 2017, 8, 130.
[16] Mohseni Takallo M., Borzooei R.A., Jun Y.B., MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Systems, 2018, 23, 72-84.
[17] Huang Y.S., BCI-algebra, Beijing: Science Press, 2006.
[18] Meng J., Jun Y.B., BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.

[^0]: Young Bae Jun: Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea;
 E-mail: skywine@gmail.com
 *Corresponding Author: Eun Hwan Roh: Department of Mathematics Education, Chinju National University of Education, Jinju 52673, Korea; E-mail: ehroh9988@gmail.com

