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ABSTRACT
This paper takes advantage of the emerging multi-core com-
puter architecture to design a general framework for mit-
igating network-based complexity attacks. In complexity
attacks, an attacker carefully crafts “heavy” messages (or
packets) such that each heavy message consumes substan-
tially more resources than a normal message. Then, it sends
a sufficient number of heavy messages to bring the system to
a crawl at best. In our architecture, called MCA2—Multi-
Core Architecture for Mitigating Complexity Attacks—cores
quickly identify such suspicious messages and divert them to
a fraction of the cores that are dedicated to handle all the
heavy messages. This keeps the rest of the cores relatively
unaffected and free to provide the legitimate traffic the same
quality of service as if no attack takes place.

We demonstrate the effectiveness of our architecture by
examining cache-miss complexity attacks against Deep Pack-
et Inspection (DPI) engines. For example, for Snort DPI
engine, an attack in which 30% of the packets are malicious
degrades the system throughput by over 50%, while with
MCA2 the throughput drops by either 20% when no pack-
ets are dropped or by 10% in case dropping of heavy pack-
ets is allowed. At 60% malicious packets, the corresponding
numbers are 70%, 40% and 23%.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.3 [Computer-Communication
Networks]: Network Operations—Network management,
Network monitoring

General Terms
Design, Reliability, Performance, Security
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1. INTRODUCTION
Security devices, such as Network Intrusion Detection/Pr-

evention Systems (NIDS/NIPS), are the front defense line
against cyber attacks over the Internet. Open source ex-
amples of such devices include Snort [27] and Bro [10]. In
recent years, a trend of two-phase combined attack on secu-
rity devices is becoming common: the attackers first neu-
tralize the security device, for example, by overwhelming it
with traffic, and then, when the security device has been
knocked down, attack the assets it was protecting. For ex-
ample, a recent attack on SONY, combined a DDoS attack
with credit cards theft [29]. The combined attacks usually
have different effect on NIDS and NIPS. In NIDS, where
the stealth-mode device only monitors the traffic and issues
alerts when it detects malicious activity, these DDoS at-
tacks may force the device to stop inspecting part, or all,
of the traffic and thereby allowing another attack to pass
unnoticed. On the other hand, in-line NIPS, which inspects
the packets on their critical path, might be forced to drop
legitimate traffic and therefore practically causing a denial
of service on the servers it protects. For example, Bro and
Snort are both vulnerable to this kind of attacks [20].

This paper deals with complexity attacks, which are used
for the first phase. These attacks exploit the gap between
the amount of resources the system requires in processing
normal packets and carefully crafted packets that consume
drastically more resources (computing, memory, cache, or
other). These crafted packets, which we call heavy packets,
are, on one hand, easy to construct, while, on the other hand,
they require very intensive processing from the system. This
implies that a small effort on the attacker’s side leads the
target system to spend great effort, and therefore, it is bound
to lose.

We present MCA2—a Multi-Core Architecture for Miti-
gating Complexity Attacks. MCA2 essentially isolates the
malicious traffic to a fraction of the cores and deals with le-
gitimate traffic on the remaining cores, which are therefore
not affected by the attack.

Our MCA2 system can be configured to mitigate any com-
plexity attack with the following properties:

1. There are heavy and normal packets, where heavy pack-
ets consume considerably more resources from the se-
curity device when being processed.

2. There is a method to identify heavy packets. This
method requires very few resources.

3. Packets can be moved efficiently between system cores.



4. There is a special method that handles heavy pack-
ets more efficiently than the method used for normal
packets.1

It turns out that there are quite a few complexity at-
tacks that meet these criteria. However, we restrict our dis-
cussion to a central component of NIDS/NIPS, namely the
Deep Packet Inspection (DPI) engine. DPI is the process in
which the payload of the messages is inspected to detect pre-
defined signatures of malicious activities. We consider three
examples that have the above properties: cache-miss attack
on Snort’s signature detection engine; active states explosion
attack on the Hybrid-FA [5] regular expression detection en-
gine; and force construction attack on the Bro IDS regular
expression detection engine.2

We focus on the first example and use it to explain our
method and the above-mentioned list of properties. We then
show that the active states explosion complexity attack fits
our requirements as well. The third example is omitted due
to space consideration. We back up all our findings with
experimental results, showing the benefits of using MCA2

in conjunction with the NIDS.
In general, any complexity attack that satisfies these four

properties can be mitigated, given a proper heavy packet
identification method. We discuss in detail two examples of
such methods in this paper. Although each attack requires
a different identification method, all methods share a com-
mon general technique of scanning the first few bytes and
detecting malicious behavior as early as possible.

Specifically, considering cache-miss attacks, we target Sno-
rt’s DPI engine, which uses some variant of the Aho-Corasick
(AC) [1] algorithm for performing pattern matching. A com-
plexity attack on the AC algorithm (in a stand-alone envi-
ronment) is shown in [8]: AC uses a large deterministic finite
automaton (DFA) that cannot fit entirely in the cache. The
common traffic, however, uses only a very small part of it,
resulting in fast memory references and few cache misses.
An attacker can easily craft malicious packets that cause an
exhaustive traversal over the DFA that pollutes the cache.
In this paper, we show for the first time that Snort is indeed
vulnerable to this attack: an attack on its DPI component
degrades its overall performance by a factor of 4.2.

After establishing that the threat of this attack is real,
we turn to investigate how MCA2 mitigates such an attack.
The key challenge is how to detect and isolate malicious traf-
fic. This is done in two steps. First, training data is used to
identify and mark the common states of the DFA. These are
the states frequently visited while processing normal com-
mon traffic. Then, for each packet, we count the fraction of
non-common states visited (out of the total number of states
traversed by the packet). As soon as this fraction exceeds
a certain threshold, the packet is marked heavy. When the
fraction of heavy packets is above a certain threshold, we al-
locate one or more cores to deal with them exclusively, while
the rest of the cores continue to process only normal traffic

1This special method usually handles normal packets poorly,
otherwise it would have been used by the system in the first
place.
2Bro takes a lazy approach to cope with the large DFA size.
Namely, it constructs only the DFA parts it actually uses.
Normal traffic uses only a small part of the DFA. Hence,
a simple complexity attack forces Bro to construct a large
portion of the DFA and, by that, degrades the performance
significantly.
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Figure 1: The goodput of MCA2 for different at-
tack intensities. MCA2 with no drops maintains a
balance between all cores.

(and to detect heavy packets); each subsequent heavy packet
is moved to one of the dedicated cores. This process isolates
the effect of heavy packets and protects the private caches
of the non-dedicated cores from being polluted. MCA2 can
be further optimized by running on the dedicated cores an
implementation that is optimized for heavy packets (albeit
with penalty in the normal case).

The main performance measure we use is the goodput of
the system, namely the volume of non-malicious packets that
were processed. Our experimental results are summarized
in Fig. 1, which shows the system’s goodput under different
attack intensities (namely, in 50% attack intensity, half of
the incoming traffic is malicious). We compare the perfor-
mance of MCA2 with two implementations of the AC algo-
rithm: the first, denoted “Full Matrix AC”, is optimized for
well-behaved normal traffic, and the second, denoted “Com-
pressed AC” , is optimized to work under cache-miss attacks
(as described in Section 2.2).

When the system is not allowed to drop packets, MCA2

uses the “Full Matrix AC” on the cores that process normal
traffic and the“Compressed AC”on the dedicated cores. The
number of cores of each type is dynamically determined as
a function of the attack intensity. When there is no attack,
MCA2 is reduced to “Full Matrix AC”.

We also consider the case when the NIDS/NIPS is allowed
to drop packets. Dropping all heavy packets implies that
no dedicated threads are required, freeing up all processing
resources for the detection of heavy packets and processing
of non-heavy (mostly legitimate) packets, thus increasing
the goodput.

Our experiments show a significant goodput improvement:
MCA2 achieves up to twice the goodput of both implemen-
tations, even without dropping packets. Furthermore, it al-
ways outperforms a hybrid implementation that chooses the
best of the previous implementations at any given time, with
a goodput boost of up to 73%.

As for the second example, we use the regular expres-
sions Hybrid-FA data structure to illustrate an active states
explosion attack. Hybrid-FA uses a single “head-DFA” for
commonly-used states while other parts of the automaton
are kept as separate DFAs, which are activated simultane-
ously when required. Usually, only the “head-DFA” is ac-



tivated. Our complexity attack causes the Hybrid-FA to
activate many states in parallel, thus forcing the system to
traverse several states per input byte; this degrades system
throughput significantly. We show that MCA2 in full-drop
setup can mitigate such an attack: our experiments show
that under a mild active states explosion attack, the good-
put of the system is increased by a factor of 4.8.

This paper is organized as follows. In Section 2 we pro-
vide the necessary background on complexity attacks and
DPI. Section 3 discusses related work. Section 4 presents
the cache-miss attack and its impact on Snort. Section 5
describes the MCA2 architecture. In Sections 6 and 7 we
demonstrate how MCA2 mitigates cache-miss attacks and
active-states explosion attacks, respectively. Our experi-
mental results appear in Section 8. Finally, we conclude
in Section 9.

2. BACKGROUND

2.1 Complexity attack
In a complexity attack, the attacker exploits the system’s

worst-case performance, which differs from the average case
that the system was designed for. Crosby and Wallach
were among the first to demonstrate the phenomenon on the
commonly-used Open Hash data structure [13]: an attacker
designs an input that requires O(n) elementary operations
per insertion, instead of O(1) operations that are required
on the average.

Recent works show that many other systems and algo-
rithms are vulnerable to complexity attack, including Quick-
Sort [22], regular expression matcher [25], intrusion detec-
tion systems [8,15,26], the Linux route-table cache [33], SSL
authentication algorithm [11], and the retransmission algo-
rithm in wireless networks [7]. Complexity attacks on differ-
ent components of NIDS/NIPS were suggested in the past.
For example, Bro maintains a hash table with the IP header
fields of packets as keys; thus, by tailoring the traffic with
specific headers, one can cause the hash insert-operation to
last significantly longer, resulting in Bro failure. While in
some cases modifying the algorithm suffices to mitigate the
problem (e.g., Crosby and Wallach’s attack can be solved by
using hash functions that are not known to the attacker),
this does not hold in general. We believe that only a sys-
tem approach like MCA2, can alleviate the attack scenarios
discussed in this paper.

2.2 Deep Packet Inspection (DPI) and Snort
DPI is a crucial component in contemporary security tools,

which heavily relies on pattern matching to detect signatures
of malicious traffic. We consider the following two classes of
pattern matching: exact matching and regular expression
matching. The former usually uses a Deterministic Finite
Automaton (DFA), while the latter uses either a DFA or a
Nondeterministic Finite Automaton (NFA) for the ongoing
inspection of the input data [18].

In our main example, we focus mostly on the exact match-
ing algorithms, which use DFA. A DFA is a five-tuple 〈S,Σ, δ,
q0, F 〉, where S is a finite set of states, Σ is a finite set of
input symbols, δ : S × Σ → S is a transition function, re-
turning the next state, given the current state and any sym-
bol from the input, s0 ∈ S is the initial state, and F ⊆ S
is a set of accepting states. Aho-Corasick algorithm pro-
vides a method to build such an automaton (a.k.a. AC

DFA) from a set of patterns. Given the DFA, a packet is
inspected by traversing the automaton symbol by symbol
from s0; a pattern is detected if a state in F is reached in
this traversal. Fig. 2(a) depicts the AC DFA for the pattern
set {E,BE,BD,BCD,CDBCAB,BCAA}.

In today’s security tools, AC DFAs are huge—e.g., Snort’s
AC DFA has 77, 182 states for 31, 094 patterns—raising the
question of how to store it efficiently in memory. The alter-
natives naturally trade memory space with execution time.
Additionally, most security tools (including Snort) divide
their patterns to several sets, according to the traffic type.

Snort uses a full-matrix encoding for its AC DFAs as pre-
sented in [1]. In this representation (see Fig. 2(b)), tran-
sitions are stored in a two-dimensional array with |S| rows
and |Σ| columns. An entry at position (i, j) stores the value
of δ(si, j), implying that the number of bits in each entry is
at least log

2
|S|. Typically, input inspection of one byte at a

time results in an overall memory footprint of 256|S| log
2
|S|

(|Σ| = 256). For Snort’s AC DFAs, this translates to a com-
bined footprint of 75.15 MB. On the other hand, the main
advantage of this encoding is that a transition consists of
a single memory load operation, which reveals directly the
next state.

Alternative encodings require more than one memory ac-
cess, but offer significant memory reduction. Such encod-
ings exist in the literature [4, 8, 30]. Fig. 2(d) depicts such
encoding, as proposed in [8]; this encoding is based on a
compressed automaton as depicted in Fig. 2(c).

3. RELATED WORK
The recent proliferation of multi-core general purpose pro-

cessors motivated many researchers to reinvestigate well kn-
own problems in this new domain. Among these, there are
several works that proposed multi-core solution for DPI pro-
cessing. These papers’ main focus is on different ways to load
balance the system tasks between the available cores.

Current NIDS/NIPS systems such as Snort [27] and Bro
[10] split the load to many sequential sub-tasks in a pipeline
manner. Other works, such as [32], suggest fine-grained
pipelining for parallelizing network applications on multi-
core architectures. This partitioning is effective if the pro-
cessing cost for each sub-task is similar, which is usually not
the case for NIDS/NIPS.

A different line of research focuses on load balance the
traffic flows equally between the different cores and perform-
ing the inspection in parallel [12,17,21,23,28]. The load bal-
ancing is based on both the packet header parameters and
some layer-7 parameters. We note that such architectures
are orthogonal to MCA2 and can be applied to load balance
the work between general threads that process the normal
traffic. If MCA2 is not used in conjunction with these archi-
tectures, they are all vulnerable to complexity attacks.

Becchi et al. [6] focus on DPI and present a performance
evaluation scheme for multiprocessor systems. The proposed
design also splits the traffic between several cores with the
same DPI engine that supports regular expression matching.
Their study identifies and evaluates algorithmic and archi-
tectural trade-offs and limitations, and highlights how the
presence of caches affects the overall performance. However,
it is geared at optimizing the normal case and is vulnerable
to similar complexity attacks as we describe in the paper.
Such attacks can be mitigated by incorporating MCA2 to
this scheme as well.
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Figure 2: Example of an AC DFA and two methods to store it in memory: non-compressed (full-matrix)
encoding, and compressed encoding. The compressed encoding is derived from a compressed automaton, in
which fail transitions are taken without consuming input symbols, and transitions marked with ‘*’ indicate
that a match was found.

Another multi-core load-balancing approach is to parti-
tion the patterns among the cores (cf. [31, 34, 35]). Then
different DPI algorithms, each specializing in different kinds
of pattern sets, is run on each core. In some cases, the par-
titioning itself is done so as to balance the load between the
algorithms. It is important to note that, unlike MCA2, in
this kind of architectures, each packet is examined by sev-
eral cores (each performs only part of the inspection). In
addition, it does not take into account the incoming traffic,
and is vulnerable to an attack on each core separately.

Kumar et al. [19] present several methods to reduce regular-
expressions-based DFA size. One of the mechanisms used in
that paper is based on the assumption that normal flows
rarely match more than the first few symbols of any sig-
nature. Thus, the most frequently visited portions of the
automaton are used to build a fast path DFA, and the rest
of the automaton is represented by a separated NFA, which
is the slow path. The authors suggest a solution, which is
similar to MCA2 in that it handles heavy traffic with a dif-
ferent algorithm and applies a lightweight classification al-
gorithm to distinguish between heavy and normal traffic. In
addition, [19] proposed to protect against DoS attacks by
attaching lower priority to flows with higher probability of
being malicious. Nevertheless, that work analyzes the case
of a single core, and therefore could not benefit from the
multi-core properties as MCA2 does. Furthermore, the pro-

posed protection in [19] fails under a continuous DoS attack
because the heavy packets that receive lower priority even-
tually overload the system buffer. MCA2 is also resilient to
DoS attack of longer duration.

4. SNORT CACHE-MISS COMPLEXITY AT-
TACK

It has been shown that only a small number of states
within the AC DFA is used, when scanning normal traf-
fic [8]. Therefore, a very large fraction of the DPI memory
accesses result in a cache hit. With this information, an
adversary can launch a Cache-Miss Attack, consisting of in-
put traffic that causes the DFA to traverse a large number
of states, and therefore, having many cache misses. Such
traffic can be constructed easily, since the signatures (and
hence the AC DFA) are known publicly. These cache misses
have two negative effects. First, a main-memory access is
at least 10–20 times slower than a cache access, implying
that it takes significantly more time to deal with this ma-
licious input traffic. Second, and even more importantly,
dealing with the malicious traffic causes significant cache
pollution, which in turn slows down also the processing of
well-behaved traffic. In the stand-alone setting considered
in [8], the Cache-Miss Attack degrades the performance of
the DPI routine by a factor of four and is considered an



0 20 40 60 80 100
0

100

200

300

400

500

600

Attack Intensity [%]

T
h

ro
u

g
h

p
u

t/
G

o
o

d
p

u
t 

[M
b

p
s]

 

 

Throughput

Goodput

Figure 3: The effects of a cache-miss attack on the
throughput and goodput of Snort, facing attacks of
different intensities. All attacks do not cause any
alert from Snort NIDS.

effective algorithmic complexity attack. The circles-curve in
Fig. 1 shows the goodput reduction for different values of
attack bandwidth.

While [8] demonstrates the attack on a stand-alone AC
DFA, we show that the attack works on Snort, an entire
NIDS, which is used in practice. Recall that Snort divides
the pattern sets into classes according to traffic types. Among
these, the largest DFA is the one that represents the HTTP
traffic, with a memory footprint of about 32 MB. We de-
vise a cache-miss attack in two steps. First, we collected the
patterns for the automaton from Snort’s publicly available
signatures set. To prevent this attack from getting detected
by Snort built-in mechanisms, we omit the last character
of each pattern; this means that our attack packets, which
contain these truncated patterns, go under the radar and
do not activate any rule that alert the system. Then, we
constructed a set of HTTP traffic traces that mix attack
packets with normal HTTP traffic to the most-visited web
sites [2]. We created eight different traces that differ in the
proportion of attack traffic in them. The intensity of attack
varies from 0% (only normal traffic) to 100% (only attack
traffic).

Fig. 3 shows the overall goodput of Snort under these
traces. The throughput of Snort drops by a factor of 1.5
when attack intensity is 16%, and up to a factor of 4.2 as the
cache miss attack becomes more intense. Namely, a Snort
IDS with traffic bandwidth of 70% of its maximum capabil-
ity would be knocked down or let packets go by uninspected
under an attack that consumes only one sixth of this band-
width. This proves the claim that the exact string matching
engine is a bottleneck in Snort and shows the great impact
that a cache-miss attack may have on such systems. We note
that the exact matching in Snort is also an important build-
ing block for regular expression matchings: Snort breaks
each regular expression into several exact patterns, and in-
vokes a regular expression engine (for a single expression)
upon matching all its exact patterns.

Next, we turn to discuss the solution for the complexity
attacks that were presented in [8]. The gist of the solution is
to use a compressed data-structure that fits mostly in cache
(see Fig. 2(c)), and therefore is not prone to this kind of

attack. Recall, however, that this data structure requires
more than a single memory access per input byte.

The compressed encoding of Snort patterns requires only
1.5 MB. Compressed AC implementation has almost the
same throughput, regardless of the kind of input traffic (the
squares-curve in Fig. 1 presents the goodput of this imple-
mentation; the linear goodput decrease is due to the in-
creased bandwidth of the attack and not due to an overall
throughput degradation). However, it is two times slower
than that of the full-matrix encoding under normal traffic.
This implies that the solution in [8] recommends to always
cut the throughput by half in order to overcome cache-miss
attacks.

In this paper, we show how a multi-core architecture can
be used to break the barrier and enjoy both worlds: high
throughput on normal traffic and resiliency to cache-miss
attacks. It uses the two encodings as building blocks and
provides an efficient way to use them simultaneously, such
that each handles the kind of traffic it is best designed for.

5. THE MCA 2 SYSTEM DESCRIPTION

5.1 MCA2 Design overview
MCA2 operates over a multi-core platform as described in

Fig. 4, where each core runs one or more hardware threads
(typically two in the Intel machines). Each hardware thread
receives references to packets for inspection via its incoming-
packets queue. The Network Interface Card (NIC) receives
incoming traffic-packets and places them in main memory. It
also writes packet references to the cores’ incoming-packets
queues. We follow recent works [16, 17] to load balance the
incoming traffic between the different hardware threads in
the NIC. Note that each packet has a single copy in main
memory (created by the NIC). Sending a packet into a queue
(or moving it from one queue to another) is performed effi-
ciently by passing a pointer between the cores’ queues with-
out a message copy.

The system works either in routine-mode or in alert-mode.
In routine-mode, all threads operate the same: they receive
packets from the NIC and process them with the same mon-
itoring algorithm. However, upon switching to alert-mode,
the dedicated threads’ primary role is to handle heavy pack-
ets. Therefore, they might switch to an algorithm that is
optimized for such traffic pattern (depending on the kind
of the attack). From that point, the dedicated threads re-
ceive messages from other threads with references to heavy
packets. Thus, the dedicated thread handles the packets
references in the messages of its transfer queue, as well as
the packets in its incoming packets queue. Furthermore, the
following stealing policy is incorporated to prevent load im-
balance and increased latency for non-heavy packets that
were sent by the NIC to the dedicated threads: when a
general thread sends a heavy packet to a dedicated thread,
it “steals” one or more not-yet-processed packets from that
dedicated thread’s incoming packets queue and places them
at the head of its own incoming packets queue. Our exper-
iments show that the system becomes balanced when the
number of packets traded for a single heavy packet is be-
tween two and four, depending on the algorithms in use.

The last component of MCA2 is its stress monitor, whose
role is to monitor the percentage of heavy packets in the sys-
tem and to switch between system modes. Namely, when the
percentage of heavy packets crosses a specific threshold, the
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system switches into alert-mode; conversely another thresh-
old is used to determine when the system switches back into
routine-mode. The thresholds are determined to maximize
the system goodput.

We note that in some multi-core environments, the load
balancing is done on the flow level (that is, all packets of the
same flow are sent to the same core by the NIC) [23]. In such
cases, MCA2 should preserve this property; namely, after
classifying a packet of some flow as heavy, all the consecutive
packets of the same flow are treated as heavy packets.

5.2 Cross-Thread Communication Mechanism
Concurrency in multi-core systems usually suffers from

cross-thread communication overhead, which might become
significant in some constellations. The common cross-thread
communication techniques require synchronization mecha-
nisms that use expensive system calls and may cause block-
ing situations. In MCA2, we use a non-blocking (that is,
without any synchronization) mechanism with minimal over-
head.

Notice that the most challenging stage of the cross-thread
communication in MCA2 is when writing references of heavy
packets to the transfer queues: synchronization might be re-
quired since many general threads can transfer heavy pack-
ets to the same dedicated thread, resulting in simultaneous
access to that queue. Therefore, we implement the transfer
queue for each dedicated thread as a collection of queues,
one for each general thread that transfers heavy packets to
the corresponding dedicated thread. The dedicated thread,
in turn, reads from these queues in a round-robin manner.
Notice that each such queue is a single-writer single-reader
queue.

In order to keep track over the state of records in the
queue, the reader and writer threads use phase bits that al-

left
phase

right
phasePacket Pointer + Offset

Reader Thread – Left to Right

Writer Thread – Right to Left

Figure 5: Sketch of a record in the bad packet queue

ternate every time a round of read/write from/to the queue
is completed. Specifically, each queue is implemented as an
array of records, where each record has a left phase bit, a
right phase bit, and a content field. The content field con-
tains a pointer to the location of the packet in memory,
along with the offset in the payload, which indicates the
last byte in which the AC scan was in the root state of the
AC DFA (see Fig. 5). Moreover, each queue has two global
bit-fields that track the phases of the threads. These fields
are writer_phase, which keeps the phase of the (single) en-
queuing thread, and reader_phase, which stores the phase
of the (single) dequeuing thread. Finally, each queue has
two global pointers: head, which points to the next array
entry to write to, and tail, which points to the next array
entry to read from. All these fields are accessible to both
threads. However, head and writer_phase are only written
by the enqueuing thread, while tail and reader_phase are
only written by the dequeuing thread.

To write a packet, the enqueuing (general) thread first
checks if it does not overwrite a packet that was not de-
queued. This is done by checking whether reader_phase =
writer_phase or tail > head. It can be easily proved that
both cases of this condition imply that the dequeuing thread
is at most Q packets away from the enqueuing thread, where
Q is the length of the array.3

If the queue is full, then a packet is not enqueued; the
general thread can either process this packet or stall and
retry later. Otherwise, the enqueuing thread writes into the
queue record from right to left. It first writes writer_phase
in the right_phase field, then it writes the pointer and off-
set, and finally it writes writer_phase in the left_phase

field. If the written entry is the last entry of the array, the
thread flips the writer_phase bit and writes the next entry
to the array beginning.

The dequeuing thread reads from the queue record in the
opposite direction. It first reads the left_phase field, then
it reads the pointer and offset, and finally the right_phase

field. We distinguish between three possible cases when
reading a record from the queue:

1. left_phase 6= right_phase. This implies that the
record is now being written. The dequeuing thread
should stall shortly and retry reading the entry.

2. left_phase = right_phase 6= reader_phase. This
implies that the queue is empty (the dequeuing thread

3Proof outline: Assume that the condition does not hold.
The absolute index of the first packet to overwrite another
packet differs by exactly Q from the index of the next packet
to read. This implies that reader_phase 6= writer_phase
and tail = head (namely, tail 6> head), and hence a con-
tradiction.



should do nothing, and try to dequeue a packet from
the next queue).

3. left_phase = right_phase = reader_phase. This
implies that the record is valid for reading and pro-
cessing. The dequeuing thread starts processing the
payload of the packet, after skipping its first offset
bytes. 4

When a record is read successfully from the last entry of the
array, the dequeuing thread flips reader_phase and contin-
ues dequeuing from the first entry.

Similar mechanism is applied to all other queues in the
system (except for the input packet queues of the dedicated
threads, which use test&set locks to allow packet stealing,
as discussed in Section 5.1). Our simulations show that even
under worst-case traffic, the overhead of this communication
mechanism does not exceed 0.98% degradation in system
throughput.

5.3 Thread Allocation Scheme
The number of threads allocated to handle heavy packets

depends on the exact setup in which the NIDS/NIPS system
works. Specifically, we differentiate between two extreme
cases: a no-drop setup in which no packets are dropped by
the NIDS, and a full drop setup in which all heavy packets
are considered malicious and are dropped immediately. In
between, we also consider a limited drop setup that allows
dropping heavy packets when their percentage exceeds a cer-
tain threshold. It is important to notice that in all setups
non-heavy packets are not dropped.

The no-drop setup is adequate for an NIDS that only
alerts upon an attack. On the other hand, the limited-drop
and full-drop setups are used in NIPS; limited-drop is suit-
able when the security administrator wishes to invest only
limited resources in the process, to monitor sporadic attacks
over the network and to deal with false malicious traffic.

When deciding how many threads to allocate in each setup,
our goal is to maximize goodput assuming that the system is
balanced. Notice that this goal coincides with maximizing
the overall throughput of the system. Determining the num-
ber of dedicated threads to allocate in the full-drop setup is
trivial: no dedicated threads should be allocated and heavy
packets are dropped immediately upon their identification.
As for limited-drop setup, we need the minimal number of
threads to handle only a small fraction of the heavy packets.
This can be done either by using only a single thread or all
hardware threads in a single core, depending on the attack’s
characteristic and the multi-core architecture.

A more challenging task is to determine the number of
dedicated threads in the no-drop setup. This number de-
pends on the parameters summarized in Table 1.

Naturally, the number of dedicated threads grows along
with the fraction of the heavy packets. In addition, we take
into account the performance of the two algorithms and con-
sider how they perform while handling either only heavy
packets or only normal packets. It is important to notice
that the throughput of the algorithm usually depends on
r—the fraction of heavy packets it handles. For brevity, our

4Since the AC DFA was in its root state, when scanning the
byte in the offset position, it implies that patterns cannot
begin before that byte and end afterwards. Hence, it is safe
to skip the scanning up until this byte [9]

Parameter Description
r The fraction of heavy packets out of all traffic
AlgGh The throughput of the general threads’

algorithm running solely on heavy packets
AlgDh The throughput of the dedicated threads’

algorithm running solely on heavy packets
AlgGn The throughput of the general threads’

algorithm running solely on normal packets
AlgDn The throughput of the dedicated threads’

algorithm running solely on normal packets
N The number of available threads

Table 1: The parameters used to determine the
number of dedicated threads (no-drop setting). All
throughput values are given for a single thread.

model does not consider these exact numbers and uses only
the two extreme points.

Let β be the ratio between AlgGn and AlgDh (see Ta-
ble 1), and let T be the system’s throughput when the entire
traffic is normal (that is, no heavy packets) and all threads
are general. Thus, when the traffic has a fraction r of heavy
packets, the best allocation scheme can achieve a throughput
of

T

(

(1− r) +
r

β

)

.

This throughput is achieved when the number of dedicated
threads is

Df = N
r/β

1− r + r/β
.

Notice that Df is not an integer, and therefore, it should
be rounded to provide the required number of threads. Ac-
cording to the attack type and the multi-core architecture
on which MCA2 is running, one can choose to round Df so
that all hardware threads of the same core would be either
dedicated or general. We denote this rounded number by D
and it is the output of our model.

Note that we have presented a simplified model for de-
ciding how many dedicated threads to allocate. A more
accurate model supports additional aspects. For example,
one can use the algorithm of the general threads by a dedi-
cated thread for lower rates of r. This is beneficial when
AlgGn is significantly larger than AlgDn, and since r is
too small, most of the packets handled by the dedicated
threads are not heavy; second, one might consider the pack-
ets’ detection overhead. If it is too large as compared to the
gain in throughput, the system should not allocate any ded-
icated thread. Moreover, one can optimize the number of
packets that are exchanged between dedicated and general
threads, by taking into account the load balancing among
them. Our experimental results with the thread allocation
scheme are shown in Section 8.2.4. Finally, a useful practice
is to limit the maximal value of Df to preserve a share of
general threads under any attack intensity.

5.4 Flow Affinity
NIDS/NIPS systems are required sometimes to preserve

flow affinity; namely, all packets from the same flow should
be processed in the same core (e.g., to communicate the
results of different modules of the system, and to keep inter-
packet context). In that case, MCA2 marks heavy flows
instead of heavy packets. We note that significant research
effort has been devoted to flow affinity in multi-core envi-
ronment (cf. [16, 17]). MCA2 can be combined with any
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Figure 6: Distribution of cache-misses under normal
traffic and under attack.

method that provides flow affinity, yet to divert heavy flows
to dedicated cores and thus reduce their effect on legitimate
flows.

More specifically, given a system with a packet dispatcher
that sets flow affinity, we add a preliminary data structure
for fast determination of whether a flow was marked heavy
or not. This data structure supports insertion of flows and
deletion of flows when they either become inactive or when
they recover (namely, when they stop behaving maliciously
for a certain amount of time/packets). Due to their com-
pact memory footprint and fast lookup time, we suggest
using either a counting bloom filter [14] or a hash table with
timestamps, so that outdated records can be easily removed.

6. MCA2 FOR CACHE-MISS ATTACKS
In this section we present an algorithm for detecting heavy

packets in AC DFA complexity attack. Cache-miss attacks
are characterized by a large number of different state ma-
chine traversals that cause cache-misses (as compared with
the normal system operations), as clearly illustrated in Fig. 6:
On normal traffic,5 the system has a very low average cache-
miss per packet ratio of around 10%, where under a cache-
miss attack it is around 80%, leaving an evident margin with
a factor of more than 8.

A direct way to measure the value of this parameter is
to actually monitor the system cache-misses through the
hardware counters. However, this approach is processor-
dependent and may not be applicable in our case (either
due to lack of appropriate interface or due to the overhead
that such monitoring introduces). A more efficient way that
was used when implementing MCA2 for these attacks, is to
approximate the cache-miss upon each input symbol based
on the underlying AC DFA itself. This is done by study-
ing the set of states with training traces, ordering the states
by the number of visits, and marking as common states the
most visited states of the DFA when processing the normal
packets as discussed below.

An important parameter that should be chosen is the
number of common states (that is, in the ordered list of
states, what is the rank above which a state is marked as
common). Recall that upon normal traffic, DPI is performed
with a full-matrix encoding, where each state is represented

5Namely, real-life web traffic, see Section 8 for discussion on
this trace.
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Figure 7: CDF of the percentage of normal traffic
packets by their non-common states ratio for differ-
ent numbers of common states, 256, 512,. . . , 4096.

Non-Heavy Number of common states
packets 256 512 1024 2048 4096

99.0% 53 38 25 15 6

97.5% 50 35 22 11 5
95.0% 47 32 19 10 4

Table 2: The non-common states ratio for different
percentage of non-heavy packets and different num-
bers of common states.

by a row in a matrix of size 256 log |S| ≈ 1KB (for Snort’s
AC DFA). One may suggest to keep the number of common
states such that they all fit in the available cache bank. We
state that 1KB is an overestimate, and in fact, many more
states may fit in the cache without causing performance
degradation. The reason is that only few outgoing tran-
sitions for each state are actually accessed, implying that
only a small part of the state’s row is actually loaded into
the cache.

Prior to determining the number of common states, we
explain the interplay between this number and the fraction
of the packets that are eventually considered heavy. For
each packet, let the non-common states ratio be the ratio
between the number of non-common states visits and the
overall number of DFA traversals per packet. A packet is
marked heavy if its non-common states ratio exceeds a cer-
tain threshold. Our goal is that under well-behaved traffic
the number of packets marked heavy would be very small,
as it corresponds to false identifications. Naturally, as the
number of common states increases, the number of poten-
tially heavy packets decreases, and therefore the threshold
may be increased.

Fig. 7 considers a normal traffic and depicts a CDF show-
ing the percentage of packets by their non-common states
ratio. As one can see, this percentage grows quickly as the
number of common states increases. Table 2 shows the cor-
relation between the non-common states ratio and the per-
centage of non-heavy packets. Since the normal traffic con-
tains almost no heavy packets, we set the threshold so that
only 1% of the normal packets are marked heavy. These
thresholds, for each number of common states, are marked
in bold in Table 2.

Using the above thresholds and the thread-allocation sche-
me (see Section 5.3), we ran experiments in which we mea-
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Figure 9: CDF of the percentage of mild attack
(33%) traffic packets by their non-common states ra-
tio.

sured the system throughput for different numbers of com-
mon states. Fig. 8 depicts these measurements under mild
attack, in which 33% of the packets are malicious. Note
that there is no significant difference between set sizes below
8 KB. We have repeated these experiments for various at-
tacks scenarios and determined that the highest throughput
is achieved when the number of common states is 1,024. This
translates to a threshold of 25% traversals to non-common
states to mark a packet as heavy. Finally, we note that un-
der mild attack of 33% of the traffic, any threshold above
10% suffices; this is clearly evident by the CDF in Fig. 9.

7. MCA2 FOR ACTIVE-STATES ATTACKS
In addition to exact-string matching, contemporary DPI

engines usually support regular expression matching. How-
ever, unlike exact-string matching, a set of regular expres-
sions is not represented in a DFA, due to the infamous state
blow-up phenomenon, which implies that these DFAs have
prohibitively large memory footprint. A common approach
is to replace the DFA with a non-deterministic finite au-
tomaton (NFA) [24].6 When using an NFA, the matching
algorithm keeps a vector of active states and for each input

6Another common practice, used by Snort, is to extract
exact-string anchors from the regular expressions and use
a DFA to match these anchors. If an anchor is matched, the
regular expression engine is applied on the packet for match-
ing only the relevant expression. This reduces the problem

symbol, it computes the next state according to all active
states. Naturally, this makes NFA significantly less efficient
(namely, when k states are active at the same time on aver-
age, an NFA performs k times slower than a DFA).

Becchi et al. [5] proposed a hybrid approach that com-
bines NFA with DFA. Therefore, they have noticed that in
the process of transforming an NFA to a corresponding DFA,
the states that cause a space blow-up can be easily deter-
mined. They interrupt the transformation of these specific
states by keeping them non-deterministic, such that they
connect two deterministic automatons. This process pro-
duces a hybrid finite automaton (Hybrid-FA) that consists
of a head DFA, which is a regular DFA, though some of its
leaves are “border states”—states that are non-deterministic
and lead to another DFA, named tail DFA. As border states
are non-deterministic, reaching such a state during traver-
sal requires keeping more than one active state at a time.
Thus, this data structure trades space for time by letting
more than one active state at a time, but doing so only
when space blow-up is actually prevented.

As discussed also in [5], on certain inputs, the average
number of active states may be potentially higher by a factor
of 30 than on an average case input. This gap reveals a
potential complexity DoS attack on a system that uses the
algorithm. To illustrate the attack we used the Hybrid-FA
code [3] (provided by the authors of [5]), along with a set
of regular expressions taken from the Bro NIDS (which was
also provided in [3]). We carefully crafted one malicious
packet that causes activation of at most eight active states
simultaneously.7 To simulate an attack, we used a trace with
90% legitimate web traffic and only 10% malicious traffic.
Our experiment on this trace shows a slowdown of 83% in
goodput, implying that the system is very vulnerable even
under very mild attack.

We have replaced the pattern matching module, described
in Section 6, with the Hybrid-FA pattern matching code [3]
to combine MCA2 with Hybrid-FA. To identify heavy pack-
ets in this case we used a window of 40 bytes in which we
examined the average number of active states (Hybrid-FA
code keeps a vector of active states, therefore it is simple
to poll its size at any time). If during packet processing,
the average number of active states in a 40 bytes window
exceeds a certain threshold, then the packet is marked as
heavy. If the MCA2 system is in alert mode it can either
drop the packet or send it to a dedicated core, according to
the selected configuration.

Fig. 10 shows the distribution of the highest average num-
ber of active states per 40 bytes window, per packet, under
traffic that contains 90% real-life web packets and 10% at-
tack packets: while normal packets do not exceed 3.1 ac-
tive states per window on average, our attack packets have
maximal average of 7.1. Thus, one can easily differentiate
between legitimate and malicious traffic. In Section 8.3 we
show the results of our experiments with Hybrid-FA and
MCA2.

to the exact-string matching problem, which was discussed
in Section 6.
7To create the malicious packet we selected prefixes of reg-
ular expressions that contain a “dot-star” in them. We only
got eight active states as this is the limit of the specific
pattern-set we used, and also since it is enough to illustrate
the DoS attack. Many different such packets can be crafted,
for convenience we use one example.
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Figure 10: Distribution of maximal average number
of active states per 40 bytes window, per packet,
under real-life web traffic and under attack.

8. EXPERIMENTAL RESULTS

8.1 Experimental Environment
We use a system with Intel Sandybridge Core i7 2600

CPU, quad-core, each core has two hardware threads, 32 KB
L1 data cache (per core), 256 KB L2 cache (per core), and
8 MB L3 cache (shared among cores). The system runs
Linux Ubuntu 11.10. Since hardware threads of the same
core share the L1 and L2 caches, we have treated them to-
gether, as illustrated in Fig. 4. Thread affinity was used
to associate threads to cores. In such a way, dedicated
threads share the same core, and do not mix with the general
threads.

Two web traffic traces are used with size of 145 MB each.
These traces contain traffic from randomly selected URLs
taken from Alexa top web-sites list [2]. One of these traces
is used as our real-life web traffic trace and the other trace is
used as a training set for determining the common states set
for cache-miss attack, as described in Section 6. To simulate
a cache-miss attack, we created several cache-miss attack
traffic traces. These traces contain both normal packets,
which cause few cache misses, and flows of specific malicious
packets. The latter contains a concatenated list of all pat-
terns from the pattern-set, in order to make as many cache
misses as possible. These traces contain different volume
of such malicious packets, corresponding to the intensity of
the attack. We use cache-miss attack traffic traces with a
growing rate of malicious packets, from 0% to 100% (that is,
the 20% attack intensity trace contains 20% malicious pack-
ets and 80% normal packets). Note that these traces were
also used for Fig. 1. To simulate an active-state attack we
created another set of traces. These traces also mix normal
packets with malicious traffic, with a growing rate of mali-
cious traffic. Adversarial packets in these traces are clones
of the malicious packet described in Section 7. The intensity
of attack also varies from 0% to 100%.

8.2 Cache-Miss Attack Simulation Results

8.2.1 Goodput
Fig. 1 depicts the goodput of MCA2 when processing the

different traffic traces. Note that, as the attack intensity in-
creases, the goodput decreases, since the the non-malicious
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Figure 11: Average throughput per thread over
time, when a sudden cache-miss attack happens.
The system uses eight threads, and when alert mode
starts, two of them become dedicated threads.

traffic occupies smaller portion of the entire traffic. In addi-
tion, the penalty of identifying heavy packets (including ini-
tial inspection, packet loading, counters initialization, etc.)
becomes more significant. Upon an attack we gain a goodput
improvement of 67%–102%, as compared to the full-matrix
implementation, which do not take cache-miss attack into
consideration.

Fig. 1 also depicts the full-drop setup, as described in
Section 5.3, and also shows a significant improvements in
goodput.

Finally, we ran MCA2 on our web traffic traces. As ex-
pected, alert-mode was never activated, and a throughput
of 8219 Mbps was obtained on average. This is statistically
the same as a light (yet vulnerable) implementation with no
MCA2 at all.

8.2.2 Accuracy
To analyze the heavy packet isolation, we first examine

the isolation results of our mechanism on the real-life web
traffic and on the cache-miss attack traces. According to
the analysis in Section 6, the system would ideally identify
99% of the packets in the first trace as non-heavy. However,
as the mechanism estimates of the non-common states rate
based on the packet’s prefix, it is accurate. Our tests show
that the actual rate of packets in the real-life web traffic trace
that are identified as non-heavy is 96%. These 4% packets
would be transferred to a dedicated thread, although being
legitimate, and suffer some slowdown. Nevertheless, without
MCA2, these packets would suffer even lower throughput
under such attacks. In the cache-miss attack traces we know
exactly which packet is heavy and can measure precise values
for false identification rate. Neither one of the configurations
from Section 6 falsely classified malicious packet as normal
in more than 0.001% of the trace. We see that our detection
mechanism provides an accurate isolation.

8.2.3 Identifying Cache-Miss Attacks
In order to experiment system behavior upon a sudden

cache-miss attack, we have created a trace that consists of
the web traffic trace in which, at some point of time, 33%
of the traffic is a cache-miss attack traffic. We set the time
interval for checking the rate of heavy packets to one second



r DF
Optimal Thread

Allocation
0 0 0
0.2 0.75 2
0.33 1.26 2
0.5 2.35 4
1 8 8

Table 3: Validation of the thread allocation model
of Section 5.3.

for this experiment. We measure the approximate through-
put of each thread per intervals of 100ms each. Then, we
average the timing per interval for all general threads and
dedicated threads. Fig. 11 depicts the result of this ex-
periment. The system starts when all its eight threads are
‘general threads’. At the beginning, from time 0 to time
1, input traffic is regular web traffic. Then, at time 1, at-
tack packets begin to arrive, lowering threads throughput by
a ratio of about 68%. After a second (time 2), the system
identifies the attack and switches to alert mode. It sets a pair
of threads that belong to a single core as ‘dedicated threads’
with the compressed matching algorithm, optimized for han-
dling heavy packets. General threads now transfer heavy
packets to dedicated threads and therefore are much less
affected by them, preserving high goodput (general threads
still have to scan the first few bytes of heavy packets in or-
der to classify them as heavy. This causes the slight relative
slowdown in their throughput as compared to their perfor-
mance before the attack has started).

8.2.4 Thread Allocation
We validate our thread allocation model as described in

Section 5.3. First, we determine the value of β based on
our experiments, where all the threads are running either
the full-matrix or the compressed implementation. Specifi-
cally, we got that AlgGn = 1040.6 Mbps (per thread) and
AlgDh = 444.3 Mbps (per thread), therefore β = 2.34. Ta-
ble 3 presents the fractional number Df obtained by our
model, and compares it with the allocation that achieves
the highest throughput in our experiments (that is, for each
value of r we tried all possible thread allocations and picked
the optimal ones). Since, in our system, threads are allo-
cated in pairs, all the optimal experimental results coincide
with the model’s calculations.

8.3 Active-State Attack Simulation Results
Fig. 12 depicts the goodput of Hybrid-FA when processing

the different traffic traces, and the goodput of Hybrid-FA
when combined with MCA2 full-drop setup. The MCA2

full-drop setup provides significant improvements in goodput
(as in Section 8.2.1, goodput decreases as attack intensity
increases as the the non-malicious traffic occupies smaller
portion of the entire traffic).

Considering the other possible configurations of MCA2,
unlike for cache-miss attack, we do not have an off-the-shelf
algorithm that can be used on the dedicated cores to boost
performance on heavy packets in an active-state attack. The
designing of such an algorithm is left for future research.

In terms of accuracy of isolation, MCA2 isolates our attack
traffic from the legitimate traffic. Nevertheless, attacker can
create lighter packets that might go under the radar, how-
ever such packets are bound to induce much smaller slow-
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Figure 12: Goodput of Hybrid-FA and of Hybrid-FA
with MCA2 full-drop setup, facing different intensity
of active-state attack.

down, if any. We also note that in different legitimate traffic,
some packets may be identified as heavy (if they use more
active states), but we did not find such traffic in our traces.

9. CONCLUSION
In this paper, we expose a known security hole, the com-

plexity attack, demonstrate its effectiveness, and provide a
system solution to mitigate the attack. In the demonstrated
complexity attack, negligible effort on the attacker side re-
sults in a substantial effort (namely, resource consumption)
on the target system. This is a security hole calling for a
DDoS attack.

A simple method to mitigate a complexity attack is to
throw more computing resources into the system. Obvi-
ously, often this is a prohibitively expensive and wasteful
approach. An alternative approach is to design algorithms
that are efficient in processing malicious packets (e.g., com-
pressing states in the Aho Corasick DPI algorithm). Un-
fortunately, in many cases an algorithm that works well on
malicious packets performs worse on normal packets, thus
again requiring more computing resources at normal times.
Our MCA2 architecture provides a method to enjoy from
both, special treatment is given to suspicious (a.k.a. heavy)
packets in dedicated cores with an optimized algorithm de-
signed for the heavy, while treating the rest of the traffic
in the other cores with the best algorithm for the average
traffic. This architecture provides several advantages, first
the overall system throughput is increased; second, treat-
ing heavy packets on the side with dedicated cores isolates
the normal traffic from the suspicious traffic; third, we can
choose different treatments for heavy packets, without af-
fecting the normal packets; and finally the system may shift
gears and decide how many resources to allocate for the pro-
cessing of heavy packets.

MCA2 architecture is a general framework to deal with
different kinds of complexity attacks. While in this paper
we have demonstrated it on one domain—Deep Packet In-
spection in NIDS—we are looking to apply the framework
for the mitigation of other attacks.
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