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Abstract

Background: Genome-wide association studies (GWAS) have successfully identified genetic susceptible variants for

complex diseases. However, the underlying mechanism of such association remains largely unknown. Most disease-

associated genetic variants have been shown to reside in noncoding regions, leading to the hypothesis that
regulation of gene expression may be the primary biological mechanism. Current methods to characterize gene

expression mediating the effect of genetic variant on diseases, often analyzed one gene at a time and ignored the

network structure. The impact of genetic variant can propagate to other genes along the links in the network, then
to the final disease. There could be multiple pathways from the genetic variant to the final disease, with each

having the chain structure since the first node is one specific SNP (Single Nucleotide Polymorphism) variant and

the end is disease outcome. One key but inadequately addressed question is how to measure the between-node
connection strength and rank the effects of such chain-type pathways, which can provide statistical evidence to

give the priority of some pathways for potential drug development in a cost-effective manner.

Results: We first introduce the maximal correlation coefficient (MCC) to represent the between-node connection,

and then integrate MCC with K shortest paths algorithm to rank and identify the potential pathways from genetic

variant to disease. The pathway importance score (PIS) was further provided to quantify the importance of each
pathway. We termed this method as “MCC-SP”. Various simulations are conducted to illustrate MCC is a better

measurement of the between-node connection strength than other quantities including Pearson correlation,

Spearman correlation, distance correlation, mutual information, and maximal information coefficient. Finally, we
applied MCC-SP to analyze one real dataset from the Religious Orders Study and the Memory and Aging Project,

and successfully detected 2 typical pathways from APOE genotype to Alzheimer’s disease (AD) through gene

expression enriched in Alzheimer’s disease pathway.

Conclusions: MCC-SP has powerful and robust performance in identifying the pathway(s) from the genetic variant

to the disease. The source code of MCC-SP is freely available at GitHub (https://github.com/zhuyuchen95/ADnet).

Keywords: Maximum correlation coefficient, K shortest paths algorithms, Integration method, Pathway, Alzheimer’s

disease
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Background
Over the last decade, genome-wide association studies

(GWAS) have achieved remarkable successes in identify-

ing genetic susceptible variants (e.g. SNPs, Single Nu-

cleotide Polymorphism) for a variety of complex traits or

diseases [1]. However, the underlying biological pathway

mechanism of such association remains largely un-

known. Indeed, the genetic variant can act on other mo-

lecular traits (e.g. gene expression) and they together

weave into one biological network or pathway that con-

tributes to a disease. For instance, the APOE gene has

been well identified to be associated with Alzheimer’s

disease from large scale GWAS [2–5], one possible ex-

planation is that the SNP variant in APOE can first regu-

late the APOE gene expression [6–10], then act on the

production of amyloid plaques and neurofibrillary tan-

gles, and finally lead to AD [11–13].

Most disease-associated genetic variants from GWAS

have been shown to lie in noncoding regions across the

genome [1, 14, 15], which provides the clues that regula-

tion of gene expression levels may be the primary bio-

logical mechanism through which genetic variants affect

complex disease. Certainly, the top GWAS SNP can be

also significantly detected due to the linkage disequilib-

rium with the true causal one, which could be an exonic

variant [16]. In addition, several expression quantitative

trait loci (eQTLs) studies also illustrate that the expres-

sion regulatory information may play a pivotal role in

bridging the gap between genetic variants and traits

[17–19]. Up until now, there are a few methods to

characterize the gene expression that mediates the effect

of the genetic variant on complex disease. Huang et al.

proposed a model to exploit gene expression to more

powerfully test the association between SNPs and dis-

eases by jointly modeling SNPs, gene expressions and

diseases [20, 21]. Recent transcriptome-wide association

studies (TWAS) have been widely used to integrate the

expression regulatory information from eQTL studies

with GWAS data to identify gene expression that links

the cis-SNPs (SNPs that are within a predefined gene or

other well-defined genetic region) and the complex dis-

ease [22–24]. Nevertheless, these studies commonly ana-

lyzed one gene at a time, while the genetic variant can

affect the complex disease through multiple genes and

multiple pathways. Park et al. developed the causal

multivariate mediation within extended linkage disequi-

librium (CaMMEL) method in Bayesian inference frame-

work to select target genes mediating the effect of

genetic variants on the complex disease [25]. Wei and Li

proposed the nonparametric pathways-based regression

(NPR) that can consider multiple pathways simultan-

eously and allow complex interactions among genes

within the pathways [26]. Yao et al. developed a model

to quantify the proportion of disease heritability that is

specifically mediated in cis region by the assayed expres-

sion levels of the set of all genes, and of genes in specific

functional categories [27]. Indeed, it has been well docu-

mented in GWAS that the multiple gene or pathway-

based approach can improve power [28]. Although these

methods include multiple gene expression in the model,

they ignore the complex network structure relationship

among genes, which, from the network medicine per-

spective, is hard to investigate the precise network or

molecular pathways involved in complex disease. In fact,

one single gene expression can express some mediated

effects from the SNP variant to the disease when study-

ing it alone, while this effect could change substantially

when studying it within one network or pathway, and

vice versa [29, 30]. The focus has been shifted to the

identification of pathways.

Often, there could be multiple pathways from the SNP

variant to the final disease, with each having the chain

structure since the first node is specific SNP variant and

the end outcome is the disease. One key but inad-

equately addressed question is, given such chain path-

way, how to measure the connection strength between

two nodes and detect whether such pathway is the po-

tential causal one. It is highly desirable to develop statis-

tical methods for ranking the effect of these pathways,

providing evidence to give the priority of some pathways

for potential drug development and offer drug targets in

a cost-effective and timely manner. In the context of sys-

tems epidemiology, Ji et al. developed a statistic to test

the pathway effect that contributed to a disease with a

case-control design [31]. Yuan et al. proposed a novel

chi-square statistic to identify whether one chain-type

pathway is associated with the final disease [30]. How-

ever, their methods simply use the linear regression to

represent the between-node correlation, which is insuffi-

cient to capture the complex dependency between the

nodes. Furthermore, their methods did not include the

outcome variable (complex trait or disease) into the

pathway and cannot essentially investigate the pathway

mechanism. For example, if there is one potential path-

way SNP→ gene expression 1→ gene expression 2→

AD, their methods, under linear between-node correl-

ation, can detect SNP→ gene expression 1→ gene ex-

pression 2 is significantly associated with AD, but failed

to determine whether AD is connected to gene expres-

sion 1 or gene expression 2. Given that the goal is to

rank and quantify the effect of the pathways from the

genetic variant to the complex disease, it is intuitively to

put such a question into the framework of graph theory

once the suitable quantity is found to measure the con-

nection strength between two nodes in the pathway. At

present study, we first introduced the maximal correl-

ation coefficient (MCC) to represent the between-node

connection, and then integrate MCC with the commonly
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used K shortest paths algorithm [32–34] in graph theory

to rank and identify the potential pathways from genetic

variant to disease. We further defined the pathway im-

portance score (PIS) to quantify the importance of each

pathway. We termed this method as “MCC-SP”. Various

simulations, with different sample sizes and network

structures, are conducted to illustrate MCC is better to

measure the between-node correlation than other quan-

tities including Pearson correlation, Spearman correl-

ation, distance correlation, mutual information, and

maximal information coefficient. MCC-SP, as an integra-

tion method, has always better and robust performance

in identifying the causal pathway from genetic variant to

the disease. From the Religious Orders Study and the

Memory and Aging Project (ROSMAP), we further ap-

plied MCC-SP to identify the potential causal pathway

from APOE genotype to AD through gene expression

enriched in Alzheimer’s disease pathway.

Results
Simulation

Table 1 shows the simulation results when all the

between-node correlations are linear. When the sample

size is relatively large (e.g. 300, 500), all methods except

MI-SP and MIC-SP have comparable performance as

the Pearson-SP, which is the gold standard in such case

under both all-right and range-right criteria. When the

sample size reduced to 100, the superiority of Pearson

-SP is more obvious, though the power of all methods

decreases. Figures 1 and 2 show the results of all six

integration-methods under sample size 500 and 4 differ-

ent nonlinear correlation patterns being arcuate, cosine,

quadratic and mixed pattern. Under the arcuate nonlin-

ear pattern, the MCC-SP performs better than any other

method under both criteria regardless of the proportion

of nonlinear components (Figs. 1a and 2a). Note that

under the all-right criteria, the other methods are unable

to identify the top 4 pathways at all. Under cosine non-

linear relationship, both MCC-SP and DC-SP have com-

parably better performance than that of the other

methods (Figs. 1b and 2b), even when the proportion of

nonlinear component reached 60% (Figure S1). However,

MCC-SP has the best performance under the all-right

criteria when the nonlinear proportion is 30% (Figure

S2). Similar phenomenon can be found under the sine

relationship (Figure S3). Under the mixed nonlinear rela-

tionship, MCC-SP performs best under both criteria

(Fig. 1c) and have comparable better performance with

DC-SP than that of other methods (Fig. 2c). Under the

quadratic relationship, MCC-SP still have the best per-

formance than any other methods (Fig. 1d and Fig. 2d).

The results are consistent under the exponential rela-

tionship or the reciprocal relationship (Figure S4), or

when comparing MCC-SP with the nonparametric

pathways-based regression (NPR) model (Figure S5).

The simulation results under sample size 100 and 300

are in the Figures S6, S7, S8, S9, S10, S11, S12, S13, S14,

S15, where similar phenomenon can be found.

Real data

Overall, totally 6 pathways from APOE genotype to AD

have been identified to be top 5 from all the 6 integra-

tion methods (Table 2). The findings of each method are

inconsistent. Pearson-SP, Spearman-SP, DC-SP and

MCC-SP ranked the pathway APOE genotype →APOE

gene expression →GRIN2A→CAPN2→MAPT→AD to

be first, which illustrates this pathway may play import-

ant roles in the AD mechanism. Both DC-SP and MCC-

SP ranked APOE genotype →APOE gene expression

→GRIN2A→NOS1→AD to be second, and this path-

way has been ranked to be first by MIC-SP and MI-SP,

which indicates that this pathway may also has a high

probability to involve the AD mechanism. Both

Spearman-SP and MCC-SP ranked APOE genotype

→APOE gene expression →CACNA1C→CAPN2→

MAPT→AD as the third. MCC-SP ranked APOE geno-

type →APOE gene expression→CACNA1C→NOS1→

AD as the fourth and APOE genotype →APOE gene

expression→GRIN2A→ CAPN2→MAPT→AD as the

fifth. Under the MCC between-node correlation, the PIS

for these top 5 pathways are 13.80, 12.32, 8.87, 8.84 and

7.42 respectively. The top 2 pathways have comparable

PIS, which are much higher than that of other pathways.

Thus, the top 2 pathways are likely essential for AD de-

velopment and can be chosen for further experimental

verifications. The detailed results for the rank of the

total 33 pathways are presented in the Table S1.

Discussion
Most disease-associated genetic variants lie in the non-

coding regions of the genome and gene expression levels

can bridge the gap between genetic variant and disease.

Often, there are multiple pathways from the genetic vari-

ant to the final disease, we have developed a powerful

integration method, MCC-SP, to rank and identify these

multiple potential pathways. Various simulations under

Table 1 The number of times that properly pinpoint the top 4

pathways among 500 simulations with linear between-node

correlation

Sample Criteria Pearson Spearman Distance MCC MIC MI

100 All-right 152 129 125 107 44 1

Range-right 408 402 428 378 300 46

300 All-right 271 252 248 248 88 0

Range-right 492 490 495 486 468 218

500 All-right 444 429 415 440 152 254

Range-right 500 500 500 500 500 500
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different sample size and different between-node correl-

ation pattern have shown that the proposed method has

better performance than other competing methods.

ROSMAP data analysis illustrates that the method can

partially detect the mechanism from APOE genotype to

AD through gene expression enriched in AD pathway.

The term “integration” here can be interpreted that we

have integrated the suitable between-node correlation

with the K shortest paths algorithm in graph theory.

MCC-SP is essentially network-based and has different

model assumptions from traditional TWAS. Statistically,

it will lose efficiency if we know the network structure

while ignore it during the inference. In this sense, MCC-

SP provided an alternative and complement from TWAS

to dissect the pathway mediating the genetic variant and

the complex disease. MCC-SP are not only limited to

gene expression but can be extended to other molecular

phenotypes (e.g. proteomics). Note that the relationship

among genes may be a mixture of many possible so

called “correlations” rather than endorsed to one of the

six suggested functions only. Currently, it is hard to ex-

tend MCC-SP to summary-level data. For summary level

data, one key step is to calculate the correlation matrix

among the genes and the traits. If the correlation is lin-

ear, we can implement this using some well-known

methods [35, 36]. However, as we show here, various

nonlinear relationships exist and it is hard to calculate

the complex non-linear correlation matrix using

summary-level data.

ROSMAP data analysis has found that APOE genotype

is significant associate with AD (OR = 2.8849, P = <

0.0001), it is reasonable to utilize gene expression

enriched in AD disease pathway to rank and identify the

potential pathway from APOE to AD. We chose the

overlapped genes between the ROSMAP data and those

located on the AD disease pathway into the analysis.

The top 2 pathways have comparable and much higher

pathway important scores (PIS) than other pathways,

which indicates that these two pathways may play im-

portant roles in AD development. The most important

pathway identified is APOE genotype →APOE gene

expression→GRIN2A→ CAPN2→MAPT→AD. The

APOE genotype can regulate its gene expression, in the

central nervous system (CNS), LDLR family is intimately

involved in neuronal signal transduction, modulation of

ligand-gated ion channels, and regulating neurite

Fig. 1 The proportion that correctly pinpoint the top 4 pathways among 500 simulations under two criteria when the sample size is 500 and the

proportion of nonlinear components is 40%.The nonlinear pattern is (a) φðx iÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C − x2i
p

þε, (b) φ(xi) = cos (xi) + ε, (c) mixed nonlinear pattern(6

edges having cosine and 3 edges having quadratic relationship) and (d) φðxiÞ¼x2i þε respectively
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outgrowth, synapse formation and neuronal migration.

ApoE binds to the highly conserved low-density lipopro-

tein receptor (LDLR) family [37] including LRP1 and

ApoER2, while ApoER2 was reported to bind NMDAR

(GRIN2A belongs to this family) [38, 39]. The NMDAR

is a cation channel highly permeable to calcium and

plays critical roles in governing normal and pathologic

functions in neurons. Calcium entry through NMDAR

can lead to the activation of the Ca2 + −dependent pro-

tease, calpain [39, 40]. Gene MAPT belongs to the family

of Tau and CAPN2 belongs to the family of Calpain.

Calpain-mediated tau cleavage can play an important

role under neurodegenerative conditions [38, 41]. It has

been shown that calpain activation results in the gen-

eration of several N-terminal tau fragments, which

can be detected in mitochondria present in synapto-

somal fractions obtained from AD brains [38, 41, 42].

In addition, overexpression of NMDAR2B in an in-

flammatory model of Alzheimer’s disease, which can

be modulated by NOS (NOS1 belongs to this family)

inhibitors [43]. Further independent sample validation

and experimental study can be conducted to validate

these findings.

One limitation of our method is that we assume the

network or pathway structure is assumed to be known

(e.g. AD pathway in our ROSMAP data analysis). Little

attention has been paid on the network structure learn-

ing problem, which means determining every between-

node link with highest degree of data matching, and

often one joint distribution of variables can reflect more

than one network structure. Actually, most biologists

and clinical researchers usually have some prior on the

interplay between the biological components and can

depict more or less the specific network or pathway for

the corresponding biological process. Meanwhile, nu-

merous databases (e.g. KEGG) can be further borrowed

to establish the network structure. Even so, MCC-SP is

unable to deal with the loop network. Another limitation

is that there is lack of test for the significance of the pin-

pointed pathway, for example, the proposed method is

unable to test whether the order of identified pathways

is significant or not. Some nonparametric techniques

(e.g. permutation and bootstrap) may be further devel-

oped to solve such problems. In practice, once we have

obtained the rank of the pathways, one key question is

which pathway should be selected for further

Fig. 2 The proportion that correctly pinpoint the top 4 pathways among 500 simulations under two criteria when the sample size is 500 and the

proportion of nonlinear components is 50%.The nonlinear pattern is (a) φðx iÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C − x2i
p

þε, (b) φ(xi) = cos (xi) + ε, (c) mixed nonlinear pattern(8

edges having cosine and 4 edges having quadratic relationship) and (d) φðxiÞ¼x2i þε respectively
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experimental verification. Here we have provided the

PIS to quantify the importance of each pathway, we use

q50 as the threshold to indicate that those pathways with

effect greater than the median value, will have the PIS

greater than one. Regardless of the threshold, PIS is es-

sentially the product of the “correlation” along the spe-

cific pathway. Indeed, even for two pathways with

similar PIS, MCC-SP still give the different ranks. For

example, in our real data analysis, the PIS for Path3 and

Path4 are quite close (8.87 vs 8.84). This indicates that

these two pathways may have equivalent effect and im-

portance but with different ranks. In practice, we recom-

mend choosing those pathways having comparable PIS

with the top one for further experimental verification in

a cost-effective manner.

Conclusions
We proposed an integration method called MCC-SP,

identifying the causal pathway effect within a network

from genetic variant to the disease. MCC-SP is effective

and powerful at identifying the specific pathways con-

tributing that cause disease, and can rank these potential

pathways, so it can provide new insights into underlying

mechanisms and can provide a more comprehensive ap-

proach to studying the effects of specific pathways on

disease.

Method
Six between-node correlation measures

Pearson correlation coefficient

The Pearson correlation coefficient is used as an indica-

tor to measure the strength of linear correlation between

two random variables X and Y.

r ¼
P

X − X
� �

Y − Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

X − X
� �2 P

Y − Y
� �2

q ;

where X;Y represent the mean of the two variables re-

spectively. The range of r is [−1, 1]. When r = 0, there is

no linear relationship between the two variables.

Spearman correlation coefficient

The Spearman correlation coefficient indicates the de-

gree of monotonic correlation between two variables X

and Y, which is essentially a linear correlation of the

ranks of X and Y. It is free of the distribution of variables

and is defined as follows:

ρ ¼
Pn

i¼1 ri − rð Þ si − sð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ri − rð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 si − sð Þ2

q ;

where ri (si) represents the rank of xi (yi) in sample X

(Y), and the range of ρ is [−1, 1]. When ρ = 0, there is no

monotonic relationship between the two variables.

When ρ > 0, the relationship between the two variables

increases monotonically; when ρ < 0, it decreases

monotonically.

Distance correlation

The distance-related R(X, Y) is different from the previ-

ous correlations based on the covariance matrix and

variance matrix. It measures the correlation between

variables by calculating the Euclidean distance of the

sample itself. R(X, Y) is non-negative and can be used to

measure the correlation between X and Y with any di-

mension. R(X, Y) = 0 indicates that X and Y are

independent.

Suppose the sample data is (X, Y) = {(Xk, Yk) : k = 1,…,

n}, and define the following quantities

akl ¼ Xk − X lj jp; ak: ¼
1

n

Xn

l¼1
akl; a:l

¼ 1

n

Xn

k¼1
akl; a:: ¼

1

n2

Xn

k;l¼1
akl;Akl

¼ akl − ak: − a:l þ a:::

bkl ¼ Y k − Y lj jq; Bkl ¼ bkl − bk: − b:l þ b::; k; l

¼ 1; 2;…; n:

The empirical distance covariance is defined as

Table 2 The top 5 pathways identified by each method from

APOE genotype to AD in ROSMAP study

Method Order

1 2 3 4 5

Pearson-SP Path1

(152.8)
Path2

(69.90)
Path3

(69.01)
Path4

(59.54)
Path5

(32.35)

Spearman-SP Path1

(246.54)
Path2

(154.98)
Path4

(125.08)
Path5

(96.00)
Path3

(66.61)

DC-SP Path1

(57.84)
Path3

(41.32)
Path2

(35.91)
Path4

(31.42)
Path6

(24.32)

MIC-SP Path3

(3063.17)
Path1

(1136.26)
Path6

(1099.96)
Path2

(743.01)
Path4

(380.01)

MI-SP Path3

(60.95)
Path6

(39.72)
Path2

(33.01)
Path5

(25.26)
Path1

(21.32)

MCC-SP Path1

(13.80)
Path3

(12.32)
Path4

(8.87)
Path6

(8.84)
Path2

(7.42)

Note: The pathway importance scores (PISs) were shown in the parenthesis.

Note that the PIS is only comparable across one specific method

Path1: APOE genotype →APOE

gene expression→GRIN2A→ CAPN2→MAPT→AD

Path2: APOE genotype →APOE gene

expression →GRIN2A→MAPK1→ CASP3→ AD

Path3: APOE genotype →APOE gene expression →GRIN2A→ NOS1→ AD

Path4: APOE genotype →APOE gene

expression →CACNA1C→ CAPN2→MAPT→AD

Path5: APOE genotype →APOE

gene expression→CACNA1C→MAPK1→ CASP3→ AD

Path6: APOE genotype →APOE gene expression→CACNA1C→ NOS1→ AD
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V 2
n X;Yð Þ ¼ 1

n2

Xn

k;l¼1
AklBkl;

Similarly, Vn(X) is defined by

V 2
n Xð Þ ¼ V 2

n X;Xð Þ ¼ 1

n2

Xn

k;l¼1
A2
kl:

The empirical distance correlation coefficient Rn(X, Y)

is defined as:

Rn X;Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
n X;Yð Þ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2
n X;Yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V 2
n Xð ÞV 2

n Yð Þ
q

v

u

u

t ; V 2
n Xð ÞV 2

n Yð Þ > 0

0 V 2
n Xð ÞV 2

n Yð Þ ¼ 0

8

>

>

<

>

>

:

Mutual information based on kernel density estimation (MI)

Mutual Information is a useful measure of information

in information theory. It can be seen as the amount of

information about a random variable contained in a ran-

dom variable, or a random variable due to the know-

ledge of another random variable. Mutual Information

does not need to make any assumption about the nature

of the relationship between variable characteristics and

is defined as

I X;Yð Þ ¼
Z

Y

Z

X

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ

� �

dxdy;

where p(x, y) is the joint probability density function of

(X, Y), and p(x), p(y) are the corresponding marginal

density functions of (X, Y), respectively. I(X, Y) can be

viewed as the expected value of logð pðx;yÞ
pðxÞpðyÞÞ (Point Mu-

tual Information, PMI), which is

I X;Yð Þ ¼ E log
p x; yð Þ
p xð Þp yð Þ

� �� �

:

The value of mutual information can also be expressed

as Kullback–Leibler divergence (also known as relative

entropy),

I X;Yð Þ ¼ H Yð Þ −H Y jXð Þ;

where H(Y) is the entropy of Y, referring to the un-

certainty of Y, and H(Y| X) is the uncertainty of Y

given X. Thus, I(X, Y) can be interpreted as a quantity

introduced by X to reduce the uncertainty of Y.

Therefore, the closer the relationship between X and

Y, the greater the I(X, Y). I(X, Y) = 0 when two

variables are independent.

The calculation of MI requires the estimation of the

density functions, we adopt the kernel density estimation

method. For the one-dimension marginal density, we as-

sume that the data x1, x2, …, xn, are taken from the

continuous distribution p(x). A kernel density estimate is

defined as

p̂ xð Þ¼ 1

nh

Xn

i¼1
ωi¼

1

nh

Xn

i¼1
K

x − xi

h

� �

;

where h is the bandwidth and K(∙) is the kernel function,

K(x) > 0, ∫K(x)dx = 1. At present study, we chose the

commonly used Gauss kernel function.

For the two-dimension joint density, assuming that the

data X, Y be a bivariate sample drawn from a common

distribution described by the density function. The bi-

variate kernel density estimation can be defined to be

f̂ H z;Hð Þ ¼ 1

n

Xn

i¼1
KH z − Zið Þ;

where =(x, y)T Zi = (Xi1, Yi2)
T, i = 1, 2, …, n.

Here H is the bandwidth (or smoothing) 2 × 2 matrix

which is symmetric and positive definite; K(∙) is the bi-

variate kernel function which is a symmetric multivariate

density and KHðzÞ ¼ jH j − 1
2KðH − 1

2zÞ . At present study,
we use the standard multivariate normal kernel: KHðzÞ
¼ ð2πÞ − d

2jHj − d
2 expð − 1

2
zTH − 1zÞ with d = 2.

Maximal information coefficient (MIC)

The idea of the MIC is that if there is a relationship be-

tween two variables, one can draw a grid on the scatter

plot of the two variables, which partitions the data to en-

capsulate that relationship. To calculate the MIC of a set

of two variables, we explore all grids up to a maximal

grid resolution which is dependent on the sample size,

computing for each pair of integers (X, Y) the largest

possible mutual information achievable by any X -by- Y

grid applied to the data [44]. These mutual information

values are normalized such that the grids of different di-

mensions are comparable (values between 0 and 1). We

define the characteristic matrix M (M = (mX, Y)), where

mX, Y is the largest normalized mutual information value

in all grids, and MIC is the largest value in M. Given the

current data set D, the largest mutual information value

is recorded as I(D, X, Y), which can be further standard-

ized as

M Dð Þx;y ¼
I D; x; yð Þ

log min x; yf gð Þ ;

M(D)x, y ranges between 0 and 1.

Suppose that the sample size is n, and the number of

grid divisions is less than B(n). Then the maximal infor-

mation coefficient (MIC) is defined as

MIC Dð Þ ¼ maxxy<B nð Þ M Dð Þx;yf g:

The MIC is a generalized correlation and ranges be-

tween 0 and 1. It can detect a wide range of correlations
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when the sample size is sufficiently large. When MIC =

0, X and Y are independent.

Maximal correlation coefficient (MCC)

MCC first performs the best conversion on two random

variables X and Y, and then uses the Pearson correlation

coefficient to calculate the correlation. The best trans-

form estimation is based only on the data samples and

has minimal assumptions about the data allocation and

the form of the best transform. In particular, we don’t

need the transformation functions to come from a par-

ticular parameterized family or even monotonic. Let X,

Y be random variables defined in the probability space

(X,A, P) and they are randomly selected at (X, B1) and

(Y, B2). Map X : (X,A)→ (X, B1), Y : (Y,A)→ (Y, B2) gen-

erates a subalgebra A1 = X−1(B1) and A2 = Y−1(B2) in A.

Pi is a measure of P on A, i = 1, 2. Let function φ have a

finite second moment E|φ|2 = ∫ |φ|2dP <∞, and have an

inner product (φ1, φ2) = E(φ1, φ2), and L2 = L2(P) is the

Hilbert space of A-measurable function φ; L2i ¼ L2i ðPÞ is

the Hilbert space of Ai measurable function φ with finite

second moment and same inner product. Define MCC

between X and Y as: MCC(X1, X2) = sup {ρ(φ1(X1),

φ2(X2))}, where ρ(∙) is the Pearson correlation coefficient,

and φ1ðXÞ∈L21, φ2ðY Þ∈L22.
In principle, MCC measures the cosine of the angle

between the linear subspaces of mean zero square inte-

grable real-valued random variables. The maximal cor-

relation is the supremum of ρ(φ1(X), φ2(Y)). The key is

to choose the right function to get the exact value of the

upper bound. Two variables are independent, MCC(X,

Y) = 0, is equivalent to that L2’ s two subspaces L2i (i = 1,

2) are orthogonal. If the relationship between X and Y is

linear, the MCC will degenerate into the Pearson correl-

ation coefficient. At present study, we calculate the

MCC by the commonly used ACE method, which can

be easily obtained by R package acepack [45].

K shortest paths algorithm

In a directed network, K Shortest Paths Algorithm is

used to find the path with the smallest weight from one

starting node to the end node. Here the starting node is

a genetic variant (e.g. SNP) and the end node is complex

disease (e.g. AD). Given that the goal is to find the path-

way with relatively large effect, the first step is to trans-

form the between-node correlation such that we can

apply the K Shortest Paths Algorithm. Let rij represent

the general correlation (e.g. one of the above correlation

quantities) between the two nodes Mi and Mj, and the

direction is Xi→ Xj. Suppose there is a simple path from

the SNP X to the outcome disease Y, X→M1→M2→

Y. Then, along this pathway, the effect of X on Y can be

represented as rX;M1
� rM1;M2

� rM2;Y . We transform rij
by the following equation:

rij
0 ¼ log

1

rij
;

where i, j represents nodes such as X, Y, and Mi (i = 1,

2), then the weight along this pathway is

rX;M1

0 þ rM1;M2

0 þ rM2;Y
0 ¼ log

1

rX;M1

þ log
1

rM1;M2

þ log
1

rM2;Y

¼ log
1

rX;M1
� rM1;M2

� rM2;Y
:

Such simple reciprocal function transforms the max-

imum value of the weight into its minimum, and the log

transform converts the product to the summation, then

the K Shortest Paths Algorithm can be easily imple-

mented by the commonly used deviation path algorithm

[34].

Definition of the pathway importance score (PIS)

It naturally defined the pathway effect to be the product

of between-node connection along specific pathway, for

instance, the effect of the simple pathway X→M1→

M2→ Y is defined to be rX;M1
� rM1;M2

� rM2;Y . Suppose

that there are totally Q pathways within one network

(e.g. there are 33 pathways from APOE genotype to AD

mediated by gene expression in our real data analysis),

we denote q50 to be the median of effects of all these Q

pathways, then the pathway importance score (PIS) for

the i th pathway is

PISi ¼ the effect of ith pathwayð Þ=q50;

where i = 1, …Q. Intuitively, for the pathway with effect

greater than the median value, it should be relatively im-

portant and the PIS should be greater than one, other-

wise it should be less than one. PIS provides a simple

way to quantify the importance of pathway from the

genetic variant to the outcome. In practice, once obtain-

ing the rank of all pathways, one can chose those having

comparable PIS with the top one for further experimen-

tal verification.

Simulation

Various simulations were conducted to assess the per-

formance of the above six correlation measurements to-

gether with the K Shortest paths algorithm, in

identifying the potential pathway from genetic variant to

the disease outcome. To make the simulations more

realistic, we designed the network (Fig. 3) based on the

insulin signaling pathway from KEGG, we simulated that

the genetic variant can affect disease mediated by gene
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expression enriched on the insulin signaling pathway.

We generated starting node X1 from N(0, 1) and then

generated the other nodes following the network struc-

ture (totally 56 nodes and 82 edges). If the direction for

node Xi and Xj is Xi→ Xj (i = 1, …55, j = 2, …56, i < j),

given Xi, we generate Xj as xj = μj + φ(xi) + εj, where μj is

the intercept and εj is the error term following Nð0; σ2j Þ,
the parameter μj and σj can be assigned to ensure the

mean and variance of node Xj to be zero and unit. The

function φ is pre-specified based on the designed rela-

tionship between Xi and Xj, for instance, φðxiÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

C − x2
p

, φ(xi) = xi, φðxiÞ ¼ x2i , φ(xi) = cos(xi) and

φ(xi) = sin(2xi) for the arcuate, linear, quadratic, cosine

and sine relationship, respectively. The correlation

strength between these two nodes can be measured as

the linear correlation coefficient between φ(xi) and xj,

corr(φ(xi), xj)(i = 1, 2, …, 56), which is used as the weight

between these two nodes. For instance, suppose that

there is the quadratic relationship between X1 and X2,

then X2 can be generated as x2 ¼ μ2 þ β12x
2
1 þ ε2 , where

β12 is the pre-specified parameter, ε2 is the error term

following Nð0; σ22Þ . We set σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2β212

q

and μ2 =

− β12. If the downstream xj is generated from multiple

upstream nodes, similar designs can be conducted. For

instance, the node x9 is linearly dependent on both x7
and x8, then x9 = μj + β79x7 + β89x8 + ε9, and we also en-

sured the mean and variance of x9 to be zero and unit

respectively.

The goal is to determine the suitable correlation measure

that can capture the between-node relationship in the net-

work and can correctly pinpoint the top few pathways with

large effects using the K shortest paths algorithm. Here, we

assigned 4 pathways with relatively large effect, and these 4

pathways covered 23 edges (Fig. 3). Note that here we

chose the correlation strength between nodes on these 4

pathways randomly from unif(0.75,1) and that on the other

pathways randomly from unif(0,0.25), to make these 4 path-

ways have relatively larger effects than other pathways. Two

scenarios are considered as follows: (1) all the between-

node correlations are linear, and (2) among the 23 edges,

we randomly set the proportion of the nonlinear edge (e.g.

the between-node correlation is nonlinear) to be 30, 40, 50

and 60%, respectively (See Figures S16, S17, S18, S19 for

details). The nonlinear relationship (φ(∙)) includes x2,

cos(x), sin(2x),
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C − x2
p

. Here we used φ(xi) = sin(2xi) + ε as

the sine relationship, given that the sine function is close to

linear in the interval [−π, π]. We set the proportion of

Fig. 3 The simulated network from genetic variant to disease constructed from the insulin signaling pathway from KEGG. The hypothesis is that

the genetic variant can affect the disease through the gene expression on the multiple pathways. The genes and the direction are highlighted as

the green box and the black arrow. The 23 edges included in the 4 effective pathways are highlighted in red
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nonlinear relationship to be 30% (5 edges having cosine

and 2 edges having quadratic relationship), 40% (6 edges

having cosine and 3 edges having quadratic relationship),

50% (8 edges having cosine and 4 edges having quadratic

relationship) and 60% (8 edges having cosine and 5 edges

having quadratic and 1 edge having
ffiffiffiffiffiffiffiffiffiffiffiffiffi

C − x2
p

relationship).

We kept the edges with the above nonlinear correlation

pattern to be the same in each replicate for better compari-

son. For each simulation setting, we first generated the

whole population with sample size 50,000, then we calcu-

late the 82 between-node correlations (i.e. linear or nonlin-

ear correlation between the two neighbored nodes) to

derive and obtain the true order of the effects of the path-

ways. We randomly chose the 100, 300, 500 samples with-

out replacement from 50,000 population, and replicated

500 simulations for each scenario.

We aimed to assess the performance of the methods

of the existing six correlation metrics with K shortest

paths algorithm, which can be labeled as Person-SP,

Spearman-SP, DC-SP, MI-SP, MIC-SP, MCC-SP. Here

we preferred two criteria to evaluate the ability of the six

integration methods to pinpoint the pathways with rela-

tively large effect. The two criteria are 1) all-right: it is

the most stringent and means that the top 4 pathways

can be precisely allocated with the same order as their

effects from large to small; the more times to find the

top 4 pathways, the better the method; and 2) range-

right: it means that the top 4 pathways with some effects

are ranked in top 4, while the order can be allowed to be

chaotic. For instance, if the top 4 paths are sorted as

Path1, Path2, Path3 and Path4 based on the pathway ef-

fect from large to small. The “all-right” criteria means

that the top 4 paths must be Path1, Path2, Path3, Path4,

while the “range-right” criteria means the top 4 paths

just include Path1, Path2, Path3, Path4, regardless of the

order. For example, it can be Path2, Path3, Path4, Path1
or any other order patterns.

Application datasets

We applied these six integration methods to identify the

potential causal pathway from APOE genotype to AD,

with the network constructed from KEGG-based Alzhei-

mer’s disease pathway (Figure S20). The Religious Or-

ders Study and Memory and Aging Project (ROSMAP)

Study is divided into two parts, ROS (The Religious Or-

ders Study) and The Memory and Aging Project (MAP).

Details about the ROSMAP can be found in previous

studies [46, 47] and the website https://www.synapse.

org/#!Synapse:syn3219045. In ROSMAP, Alzheimer’s

Disease status was determined by a computer algorithm

based on cognitive test performance with a series of

discrete clinical judgments made in series by a neuro-

psychologist and a clinician.

DNA has been used to characterize apolipoprotein E

allele status (APOE), and more recently, it has been used

to generate genome-wide genotyping data generated on

a Affymetrix 6.0 platform and imputed to 2.2 million

single nucleotide polymorphisms (SNPs) with HapMAP

[46, 47]. The APOE genotype is defined as a 0–1 vari-

able. Following previous studies [48–50], if one or both

genotypes are ε4, it is assigned to be 1, otherwise it is set

to be 0. The gray matter of the dorsolateral prefrontal

cortex of the subject was used to extract RNA from the

ROS and MAP cohorts. Agilent Bioanalyzer performs a

quality assessment of samples quantified by Nanodrop.

The strand-specific dUTP method [51] with poly-A se-

Fig. 4 The whole network from APOE genotype to AD constructed from KEGG-based Alzheimer’s disease pathway. The hypothesis is that the

APOE genetic variant can affect AD through the gene expression on Alzheimer’s disease pathway. Multiple pathways with chain structure can be

formulated with the staring node APOE genotype and the end node AD. The gene and directions are highlighted with a green frame and a

black arrow
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lection [52] was used in the Genomics platform of Broad

Institutes for the preparation of RNA-Seq libraries. The

quality of the RNA-Seq sample (Bioanalyzer RNA Integ-

rity (RIN) score > 5) and the number threshold (5 μg) re-

quirements were required. Sequencing was performed

on the Illumina HiSeq. Before applying RSEM to esti-

mate the expression levels of all transcripts, the non-

gapped aligner Bowtie was used to compare the reads to

the transcriptome reference. The result of the data

RNA-Seq pipeline is the FPKM value. The quantile

normalization method will first be applied to FPKM and

subsequently used to eliminate potential batch effect

using “combat” package.

The study used 364 samples (236 females and 128

males) from ROSMAP, with 163 from MAP and 201 from

ROS. The age of death was between 67 and 90 years.

Among these samples, 192 samples had AD and 172 were

normal controls. We first performed a simple logistic re-

gression between APOE genotype and AD (β = 1.0595, p <

0.0001). It is necessary to explore the pathway mechanism

behind this association. We mapped all gene expression

from ROSMAP to the KEGG Alzheimer’s disease pathway

to determine the candidate gene expression. The APOE

genotype were linked to the three genes (RTN3, ADAM10

and AOPE), which located on the left of the Alzheimer’s

disease pathway. Then, the other downstream genes are

connected following the Alzheimer’s disease pathway

structure, and finally connected to AD. There is a total of

24 genes and 26 nodes in the network. The starting node

of the whole network is the APOE genotype and the ter-

minating node is AD (Fig. 4).
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