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MCC950, a specific small molecule 
inhibitor of NLRP3 inflammasome 
attenuates colonic inflammation in 
spontaneous colitis mice
Agampodi Promoda Perera  1, Ruchira Fernando2, Tanvi Shinde1, Rohit Gundamaraju1, 
Benjamin Southam1, Sukhwinder Singh Sohal1, Avril A. B. Robertson3, Kate Schroder3,  
Dale Kunde1 & Rajaraman Eri  1

MCC950 a potent, highly specific small molecule inhibitor of canonical and noncanonical activation 
of NLRP3 inflammasome has been evaluated in a multitude of NLRP3 driven inflammatory diseases. 
However, the effect of MCC950 on colonic inflammation has not yet been reported. In the present study 
we investigated the effect of MCC950 in a spontaneous chronic colitis mouse model Winnie, which 
mimics human ulcerative colitis. Oral administration of 40 mg/kg MCC950 commencing at Winnie week 
seven for three weeks significantly improved body weight gain, colon length, colon weight to body 
weight ratio, disease activity index and histopathological scores. MCC950 significantly suppressed 
release of proinflammatory cytokines IL-1β, IL-18, IL1-α, IFNγ, TNF-α, IL6, IL17, chemokine MIP1a 
and Nitric Oxide in colonic explants. Moreover, MCC950 resulted in a significant decrease of IL-1β 
release and activation of caspase-1 in colonic explants and macrophage cells isolated from Winnie. 
Complete inhibition with MCC950 in Winnie colonic explants shows, for the first time, the contribution 
of inflammatory effects resulting exclusively from canonical and noncanonical NLRP3 inflammasome 
activation in colitis. Taken together, our results illustrate the efficacy of MCC950 in the treatment 
of murine ulcerative colitis and provides avenue for a potential novel therapeutic agent for human 
inflammatory bowel diseases.

In�ammatory bowel disease (IBD) is a group of intestinal disorders characterised by in�ammation of the gas-
trointestinal tract1. �e two major types of IBD are Crohn’s disease and ulcerative colitis. Crohn’s disease causes 
in�ammation in all parts of the intestinal tissue along the length of gastrointestinal tract while ulcerative colitis is 
restricted to the mucosa of the colon and rectum. Both diseases are characterised by a series of relapses and remis-
sions and also increases the risk of colon cancer2. �e aetiology and pathogenesis of IBD is still unclear. Emerging 
evidence support the hypothesis that the dynamic key players are dysbiosis in enteric microbiota, a dysfunctional 
epithelial barrier, and defective innate immunity3.

�e innate immune response to cell stress or infection depends on receptors such as Toll-like receptors (TLRs) 
and Nod-like receptors (NLRs)4,5. In particular NLRP3 is one of the best characterized and is associated with 
in�ammatory diseases6,7. �e NLRP3 in�ammasome is a cytoplasmic multimolecular platform composed of 
NLRP3 protein bound to an adaptor protein, apoptosis-associated speck-like protein containing a CARD (ASC) 
and procaspase-1. Activation of the in�ammasome leads to proteolytic activation of caspase-1 triggering cleav-
age and subsequent secretion of proin�ammatory cytokines IL-1β and IL-188. Kayagaki et al.9 described a novel 
non-canonical pathway resulting in NLRP3 in�ammasome activation. �is pathway is via caspase-11, which is 
widely expressed in both hematopoietic and non-hematopoietic cells, including macrophages and epithelial cells. 
Caspase-11 is activated by cytosolic gram-negative bacteria leading to pyroptosis and IL-1α and HMGB1 release, 
and NLRP3 in�ammasome assembly and maturation of IL-1β and IL-189.
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IL-1β cytokine levels are signi�cantly altered in patients su�ering from either acute or chronic gastrointestinal 
in�ammation and have been additionally implicated in tumour angiogenesis, progression, and metastasis10,11. 
Many clinical studies show evidence of increased IL-1β secretion from colonic tissues and macrophages of IBD 
patients, correlating to the severity of disease12–14. Preclinical studies imply that IL-18 contributes the patho-
genesis of colitis15,16. Moreover, IL-18 neutralization17,18 or pralnacasan inhibition of Caspase-119,20 e�ectively 
reduced severity in murine colitis. �ese clinical �ndings suggest IL-1β and IL-18 play an important role in the 
pathogenesis of IBD.

A study by Bauer et al.21 found that Nlrp3-deficient mice were significantly protected from colitis in 
DSS-induced colitis mouse model21 suggesting that the blockade of NLRP3 in�ammasome may serve as a poten-
tial target for the development of novel therapeutics for patients with colitis. However, current pharmacological 
modulators of NLRP3 in�ammasome tested in experimental colitis are not speci�c to NLRP3 in�ammasome and 
do not inactivate both canonical and noncanonical pathways22.

MCC950 is a potent highly speci�c small molecule inhibitor of both canonical and noncanonical activation 
of NLRP3 in�ammasome. In vivo, MCC950 reduced IL-1β production and attenuated the severity of experimen-
tal autoimmune encephalomyelitis, an animal model of multiple sclerosis which is known to be aggravated by 
the NLRP3 in�ammasome23. Inhibition of NLRP3 by MCC950 e�ectively rescued neonatal lethality in a mouse 
model of cryopyrin-associated periodic syndrome, a genetic disease caused by activating mutation in NLRP3. In 
agreement with cell pro�ling, MCC950 was not e�ective against an NLRP1 mutant highlighting the compounds 
speci�city in vivo. �e study provided a detailed pharmacokinetic pro�le of MCC950 but the mechanism of action 
was elusive; MCC950 did not a�ect K+ e�ux, Ca2+ �ux, NLRP3-NLRP3 or NLRP3-ASC interactions23. Further 
work by Primiano et al.24, dismissed other likely targets of MCC950 such as GST Omega 1-125, SUR1, SUR2a 
and SUR2b. Moreover MCC950 did not target cellular proteins involved in the activation of NLRP3 in�am-
masome such as caspase-1, SYK, JNK, GPR40, and GPR12024. Only very weak o�-target activity was identi�ed 
through multiple commercially available screening panels (Euro�ns Cerep, DiscoverX, Reaction Biology, Carna 
Biosciences, WuXi AppTec)24. In 2016 two independent studies discovered NEK7, a serine-threonine kinase, as 
an upstream regulator of NLRP3 in�ammasome activation26,27. �is major discovery of a new in�ammasome 
component, revealed a potential therapeutic target for the inhibitory mechanism of sulfonylurea molecules such 
as MCC950 and glyburide. We and others hypothesise that MCC950 and glyburides target of inhibition could be 
the NEK7-NLRP3 interaction28.

MCC950 is the most speci�c and well characterised NLRP3 inhibitor known to date and has been tested in 
a diverse array of NLRP3 engaged in�ammatory diseases. MCC950 shows promising therapeutic potential for 
reducing crystal-induced kidney �brosis in mice29, reversing in�ammation and blood pressure in a hypertension 
mouse model30, in valosin-containing protein associated disease31 and decreasing in�ammation associated with 
pathogenic In�uenza A Virus32. Temporal administration of MCC950 was able to reduce lung in�ammation and 
cellular in�ux33. However, MCC950 was not e�ective in reducing angiotensin II induced hypertension34 and in 
the treatment of acute procedural in�ammation in burn-injured mice35. �is was however due to the limited role 
of NLRP3 in�ammasome in these disease models.

Recently MCC950 was recommended as an ideal therapeutic candidate for the selective inhibition of NLRP3 
in colitis22. Pellegrini et al.36 suggested MCC950 treatment will de�ne anti-in�ammatory e�ects resulting exclu-
sively from inhibition of canonical and noncanonical NLRP3 in�ammasome activation in colitis36. At present, the 
majority of available studies on the e�cacy of NLRP3 inhibitors have used dextran sulfate sodium (DSS) induced 
acute colitis as the experimental model of ulcerative colitis22. �e DSS colitis model is very established due to its 
rapidity, reproducibility and controllability. �e DSS chemical exerts a toxic e�ect on colonic epithelium leading 
to a leaky tight junction and bacterial translocation37. �erefore it is re�ective more of an acute injury than an 
in�ammatory disease38. In addition DSS induced colitis development does not involve the T and B cell immunity 
which is unlike human ulcerative colitis39. Due to these limitation in DSS induced colitis there is a great need 
for clinically relevant spontaneous colitis murine models which resembles human disease for understanding the 
in�ammatory immune process of ulcerative colitis.

In this study we have used the spontaneous chronic colitis mouse model Winnie which develops spontaneous 
distal intestinal in�ammation as early as 6 weeks of age and progresses over time to severe colitis by 16 weeks40,41. 
Chronic colitis in Winnie is caused by a primary epithelial cell defect due to a point mutation in the Muc2 gene 
resulting in aberrant mucin-2 biosynthesis leading to endoplasmic reticulum stress in intestinal goblet cells and 
reduced secretion of mucus which is very similar to active ulcerative colitis in humans42,43. Winnie mice display 
symptoms of diarrhoea, ulcerations, rectal bleeding and pain at di�erent stages of colitis similar to human disease. 
Extensive studies done in Winnie has proven it to be the best available murine model to study human chronic 
colitis and its pathogenesis44–46. �e aim of this study was to investigate the therapeutic e�ect of MCC950 on 
Winnie and our results show a signi�cant reduction of colitis.

Results
MCC950 inhibits the activation of NLRP3 inflammasome in mouse macrophages. IL-1β is pro-
cessed from the inactive cytoplasmic precursor pro-IL-1β which has to be cleaved by caspase-1 to produce the 
mature active form. We examined the ability of MCC950 to inhibit the activation of pro-IL-1β by inhibiting the 
activation of NLRP3 in�ammasome. For our initial experiment we used a concentration of 0.01 µM of MCC950 
which is close to 0.0075 µM, the half-maximal inhibitory concentration (IC50) of MCC950 in bone marrow 
derived macrophages (BMDM) of C57BL/6 mice. We isolated BMDM, Intraperitoneal (IP),mesenteric lymph 
node (MLN) and lamina propria mononuclear cell (LPMC) murine macrophages from Winnie and C57BL/6 
mice. We could not isolate enough MLN and LPMC from C57BL/6 for in�ammasome activation experiments.

Our results showed IL1-β release was markedly increased in the macrophages of Winnie mice compared 
with C57BL/6 upon LPS treatment. Cells were then pre-treated with MCC950 or glyburide and then stimulated 
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with the NLRP3 agonists ATP or the ionophore nigericin. Treating cells with 0.01 µM of MCC950 and 200 µM 
glyburide signi�cantly inhibited the release of IL-1β in BMDMs (Fig. 1a), IPs (Fig. 1b) and MLNs (Fig. 1c). 
Complete inhibition of IL-1β was observed in LPMCs treated with MCC950 at 1 µM and stimulated with speci�c 
NLRP3 stimulants ATP and Nigericin (Fig. 1d). LPS-dependent TNF-α secretion was not impaired by MCC950 

Figure 1. �e e�ect of MCC950 on NLRP3 in�ammasome activation in murine macrophages. Production 
of IL-1β (a) C57BL/6 and Winnie BMDMs (b) C57BL/6 and Winnie IP Macrophages (c) Winnie MLNs (d) 
Winnie LPMCs. Unprimed (UN), primed with 10 ng/ml LPS and treated with MCC950 (MCC) (a–c) 0.01 µM, 
(d) 1 µM) and Glyburide (Gly) (200 µM) and stimulated with ATP and Nigericin as measured by ELISA. (e) 
Production of TNF-α in Winnie BMDM supernatants treated with MCC950 0.01 µM and glyburide 200 µM 
and stimulated with ATP and Nigericin as measured by ELISA. Data are expressed as the mean ± sem of three 
independent experiments carried out in duplicates. *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA with 
Tukey’s post-hoc test). (f) Western blots of cell lysates and supernatants from C57BL/6 and Winnie BMDMs 
primed with 10 ng/ml LPS and treated with MCC950 (0.01 µM) or glyburide (200 µM) and stimulated with ATP. 
�ese results are representative of three independent experiments.
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in BMDMs (Fig. 1e), which demonstrates that the inhibition of IL-1β secretion was speci�c. To investigate the 
potential cytotoxicity e�ect of MCC950, we performed the alamarBlue® cell viability assay. �e results show that 
the there is no cytotoxic e�ects on Winnie BMDM cells against MCC950 at 0.001 µM–1 µM (Fig. S1).

�e amount of active caspase-1 p10 was reduced in supernatants from MCC950 treated Winnie and Wild type 
BMDMs (Fig. 1f), suggesting that MCC950 inhibits the activation of caspase-1 by NLRP3. Correspondingly, the 
processing of IL-1β was inhibited by MCC950. Similarly, treatment with glyburide inhibited caspase-1 activation 
and IL-1β processing. Western blot analysis revealed that expression of the in�ammasome complex proteins such 
as NLRP3 and ASC were not changed during treatment with MCC950 (Fig. 1f).

MCC950 inhibits the activation of NLRP3 inflammasome in colonic explants. To further 
explore the e�ect of MCC950 on NLRP3 in�ammasome activation in colitis, we investigated the release of IL-1β 
in treated Winnie colonic tissue explants by ELISA. Non treated Winnie distal colon produces 12, 307 pg/g 
which is comparatively higher than the 7623.5 pg/g released by proximal colon tissue. MCC950 exhibited 
a concentration-dependent inhibition of IL-1β secretion from LPS treated Winnie proximal and distal colon 
explant tissue (Fig. 2a). Treating colon explant with 10 µM concentration of MCC950 signi�cantly reduced 
the release of IL-1β in proximal colon to 48.6% P < 0.001 and the distal colon to 56.2% P < 0.01 (Fig. 2b). 
LPS-dependent tumour necrosis factor-α (TNF-α) secretion was not impaired by 1 µM MCC950 and 200 µM 
glyburide (Fig. 2c) which demonstrates that the inhibition of IL-1β secretion was speci�c. �e western blot anal-
ysis showed that 1 µM MCC950 and 200 µM glyburide signi�cantly inhibited the activation of caspase-1 in to the 
cleaved form caspase-1 p10. Correspondingly, 1 µM MCC950 and 200 µM glyburide suppressed the processing of 
proIL-1β to mature IL-1β (Fig. 2d).

Oral administration of MCC950 attenuates colonic inflammation in Winnie. �e macrophage cell 
in vitro data and colon explant data suggested that MCC950 e�ectively inhibited NLRP3 in�ammasome assembly 

Figure 2. MCC950 inhibits NLRP3 in�ammasome activation in colonic explants. (a) Production of IL-1β from 
Winnie proximal and distal colons stimulated with 10 ng/ml LPS and treated with MCC950 (MCC) (0.001–
10 µM) and Glyburide (Gly) 200 µM as measured by ELISA. (b)Percentage of IL-1β release of Winnie proximal 
and distal colons stimulated with LPS no treatment compared to treated with MCC950 (10 µM) as measured 
by ELISA. (c) Production of TNF-α for proximal and distal colonic explant supernatants treated with MCC950 
(1 µM) and glyburide 200 µM as measured by ELISA. Data are expressed as the mean ± SEM of �ve independent 
experiments carried out in duplicates. *P < 0.05, **P < 0.01, ***P < 0.001 (one-way ANOVA with Tukey’s post-
hoc test). (d) Western blots of tissue lysates and supernatants from proximal and distal colons stimulated with 
10 ng/ml LPS and treated with MCC950 (1 µM) or glyburide (200 µM). �ese results are representative of three 
independent experiments.
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and may be key to controlling colitis. To assess this, we examined the e�ect of MCC950 (40 mg/kg) in seven week 
old Winnie mice, administered orally for three weeks, in a spontaneous colitis mouse model Winnie. �roughout 
the experiment, mice were monitored for the clinical symptoms of colitis. Macroscopic observation of the 10 
week control Winnie colon at experimental termination showed the colons to be visibly in�amed with shorten-
ing and thickening of colon wall with enlarged mesenteric lymph nodes when compared to MCC950 treated 10 
week Winnie in (Fig. 3a). �e mean colon length of the MCC950 treated group 8.390 ± 0.1080 was signi�cantly 
(P < 0.01) longer than the mean colon length of the control group 7.870 ± 0.01212 (Fig. 3b).

MCC950 40 mg/kg prevented the shortening of the colon which is positively related to the severity of coli-
tis. Wet colon weight, an indicator of intestinal oedema and in�ammation, was presented as the ratio of colon 
weight over body weight (g/g). �e untreated colitis group showed the highest relative weight 0.02152 ± 0.00096. 
MCC950 treatment signi�cantly (P < 0.05) reduced the mean to 0.01902 ± 0.00060 (Fig. 3c).

To determine the therapeutic potential of MCC950 on colitis we characterised the control and treatment 
group by clinical parameters such as percentage of body weight gain and disease activity index (DAI) which is 
an average score of stool consistency, and blood in stool. As shown in (Fig. 3d) in contrast to the control mice 
which gained 10.59% body weight over 21 days, MCC950 treated mice showed an average of 15.07% body weight 
increase. However the body weight increase was not statistically signi�cant between the control and treatment 
groups. MCC950 40 mg/kg signi�cantly improved the DAI as early as the 9th day of treatment showing the highest 
signi�cance at day 21 at P < 0.001(Fig. 4a). �e increase in body weight correlated with a signi�cant decrease in 
DAI for the MCC950 treated group. �e relationship between these two clinical parameters was signi�cant at 
P < 0.0001 with a spearman’s correlation of r = 0.9342.

Histological analysis showed in�ltration of neutrophils (Fig. 4c), severe surface epithelial damage (Fig. 4d), 
crypt abscesses (Fig. 4e), distortion of crypt architecture (Fig. 4e), and complete loss of cypts (Fig. 4e), particu-
larly in the distal colon of colitis mice compared to MCC950 treated mice (Fig. 4f–h). �e results of standard 
pathological examination of mouse colon re�ected in a histological score showed much improvement in patho-
logical changes in mice treated with 40 mg/kg of MCC950 which was statistically signi�cant for distal colon at a 
P < 0.001. �e comparative histological score of the mid colon was lower in the MCC950 group, however it was 
not statistically signi�cant. �ese data reveal that MCC950 improves clinical and histological changes in the colon 
associated with spontaneous colitis.

Figure 3. E�ect of MCC950 on Winnie. Winnie at 10 week were weighed on the day of termination. Lengths 
of the freshly removed colons from each group were measured from ileocecal junction to rectum. �e weight 
of the colons a�er removing luminal content was recorded. (a) Macroscopic appearances and (b) Colon Length 
for each group. (c) Ratio of colon weight over body weight. Data are expressed as the mean ± SEM (n = 10 per 
group) *P < 0.05, **P < 0.01 (two-tailed Student’s t test). (d) Body weight of mice was measured every 3 days 
and presented as a percentage of their initial weight. Data are represented as means ± SEM (n = 10 per group) 
repeated-measures analysis of variance (ANOVA).
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Figure 4. MCC950 treatment improves colitis in 10 week old Winnie. (a) Disease activity index. (b) 
Comparison of summed in�ammation scores between control and treatment Winnie mice. PC, proximal colon, 
MC, middle colon, DC, Distal Colon. Data are represented as means ± SEM (n = 10 per group) *P < 0.05, 
**P < 0.01, ***P < 0.001 (one-way ANOVA with Tukey’s post-hoc test). (c–e) Representative Winnie control 
proximal, middle and distal colon sections stained with hematoxylin and eosin at 100x and 400x. (c) Lamina 
propria in�ammatory cell in�ltrates (black arrow). (d) Epithelial surface damage (red arrow), goblet cell loss 
(black arrow). (e) Crypt abscesses with neutrophils in the lumen and nearly intact epithelium (red arrow) or 
damaged epithelium and complete crypt loss (blue arrow) and crypt architectural distortion (black arrow).  
(f–h) Representative MCC950 treated Winnie proximal, middle and distal colon sections stained with 
hematoxylin and eosin at 100x and 400x.
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Oral administration of MCC950 suppresses colonic IL-1β and IL18 expression in Winnie. To 
determine the e�ect of MCC950 on IL-1β and IL18 cytokine production in colitis mice, cytokine expression in 
colonic tissue at both mRNA and protein levels in both groups were measured. MCC950 treatment was able to 
signi�cantly (P < 0.05) suppress IL-1β cytokine in proximal and distal colon compared to control group colons 
(Fig. 5a). �e suppression of IL18 was at a signi�cant level at proximal colon at P < 0.01 and distal colon at 
P < 0.05 (Fig. 5b). Total RNA of colons were extracted and analysed for cytokine mRNA expression using quanti-
tative real time PCR method. MCC950 treatment was able to signi�cantly suppress IL-1β mRNA relative expres-
sion in proximal colon to 0.5277 (P < 0.01) and distal colon to 0.1749 (P < 0.01) (Fig. 5c) and IL18 mRNA relative 
expression in proximal colon to 0.3016 (P < 0.001) and distal colon to 0.4606 (P < 0.01) (Fig. 5d).

Oral administration of MCC950 reduces colonic proinflammatory cytokines. While the mucosal 
explants isolated from Winnie colon control group actively secreted multiple proin�ammatory cytokines (IL1-α, 
IFNγ, TNF-α, IL17 and IL6), chemokine (MIP1a) and Nitric Oxide during 24-hour culture, MCC950 treatment 
e�ectively suppressed their release (Fig. 6).

IL1-α was highly suppressed in MCC950 treated proximal and distal colons (P < 0.01) (Fig. 6a). IFNγ was 
suppressed in MCC950 treated proximal colon, however it was not statistically signi�cant. IFNγ was strikingly 
suppressed in the distal colon (P < 0.001) (Fig. 6b). TNF-α was suppressed in MCC950 treated proximal colon 
however it was not statistically signi�cant. In the distal colon TNF-α was signi�cantly suppressed (P < 0.001) 
(Fig. 6c). MIP1a also known as the CCL3 chemokine was suppressed in MCC950 treated proximal colon however 
it was not statistically signi�cant. In the distal colon MIP1a was e�ectively suppressed (P < 0.01) (Fig. 6d). IL17 
was highly suppressed in MCC950 treated proximal and distal colons (P < 0.05) (Fig. 6e). IL6 was also highly sup-
pressed in MCC950 treated proximal and distal colons (P < 0.01) (Fig. 6f). Interestingly MCC950 had no e�ect 
in blood plasma proin�ammatory cytokines (IL1-β, IL1-α, TNF-α, IFNγ, IL17 and IL6) and chemokine (MIP1a) 

Figure 5. MCC950 suppressed NLRP3 activated proin�ammatory cytokine levels in colon explant of Winnie 
mice. Protein levels of cytokines (a) IL-1β (b) IL18 in proximal and distal colon explant supernatants as 
determined by Bio-plex. Data presented as means ± SEM (n = 3 per group) *P < 0.05, **P < 0.01 (two-tailed 
Student’s t test). �e mean values of fold change in mRNA expression levels for (c) IL-1β (d) IL18 in MCC950 
treated Winnie proximal and distal colon tissue are shown relative to the untreated Winnie proximal and distal 
control samples respectively. Both control and treated values were normalised to those of the internal control 
Gapdh, with treated values representing the fold change relative to that of controls, which was converted to 1. 
Data are expressed as the mean ± SEM (n = 4 per group) *P < 0.05, **P < 0.01 ***P < 0.001 (one sample t test).



www.nature.com/scientificreports/

8SCIENTIFIC REPORTS |  (2018) 8:8618  | DOI:10.1038/s41598-018-26775-w

levels when compared to control group at the termination day at 24 hours a�er �nal treatment (Fig. 6g). Nitrite 
was measured as an index of Nitric Oxide generation and was highly suppressed in MCC950 treated proximal and 
distal colons (P < 0.01) (Fig. 6h).

MCC950 and Glyburide do not target NEK7-NLRP3 interaction. NEK7 undergoes phosphorylation 
during the interaction with NLRP3 component and the level of phosphorylation correlates to the activation of the 

Figure 6. MCC950 suppressed proin�ammatory cytokine and chemokine production in colon tissues but not 
in blood serum. Protein levels of cytokines including (a) IL1α (b) MIP1a (c) IL17 (d) IFNγ (e) TNF-α in explant 
supernatants (f) IL-1β, IL-1α, MIP1a, IL17, IFNγ, and TNF-α in blood serum were determined by Bio-plex. Data 
are presented as means ± SEM (n = 3) *P < 0.05, **P < 0.01, ***P < 0.001 (two-tailed Student’s t test).
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in�ammasome27. To examine the possibility of MCC950 and glyburide targeting the NEK7-NLRP3 interaction, 
we assessed the phosphorylation component of NEK7. We primed the murine macrophage cell line J744A.1 
with LPS and applied the inhibitors and activated the NLRP3 in�ammasome with ATP and analysed the level of 
NEK7 phosphorylation using Phos-tag SDS-PAGE. �e Phos-tag SDS-PAGE blot analysis showed that the level 
of phosphorylated NEK7 band was the same size for MCC950 and glyburide and the untreated sample (Fig. 7a). 
�is result concludes that both the inhibitors did not react by inhibiting the NEK7-NLRP3 interaction. �e IL-1β 
levels were suppressed by the inhibitors, recognizing that the inhibitors were e�ective (Fig. 7b).

Discussion
Our study describes for the �rst time the oral administration of MCC950 in the spontaneous colitis murine model 
Winnie. �e most salient �nding of the study is that MCC950 decreased the severity of chronic colitis in Winnie 
mice by speci�c inhibition of NLRP3 in�ammasome activation. In addition MCC950 treatment signi�cantly 
decreased the expression of proin�ammatory cytokines IL-1β and IL-18 at mRNA and protein level and the 
associated release of proin�ammatory cytokines and chemokine in Winnie colonic tissue. Moreover, MCC950 
resulted in a signi�cant decrease of IL-1β and active caspase-1 in Winnie explants and in vitro macrophage cells 
isolated from Winnie mice. Our data shows that the NLRP3 in�ammasome plays a negative role in the chronic 
phase of ulcerative colitis in Winnie. Our results collectively suggest that MCC950 acts as an e�ective therapeutic 
compound for the treatment of murine ulcerative colitis.

Our results show that IL1β is released more in the Winnie distal colon when compared to the proximal colon. 
�is explains why MCC950 is more e�ective in the distal colon and shows more improvement with MCC950. We 
further analyzed the Winnie explant IL-1β ELISA data treated at 10 µM, as this high dose will ensure complete 
e�cacy in NLRP3 in�ammsome inhibition even in the presence of explant serum. Our results show that the 
NLRP3 speci�c inhibitor MCC950 at 10 µM inhibited the release of IL-1β in proximal colon by 51.4% and the 
distal colon by 43.7%. �is is an important �nding as this indicates the percentage of canonical and non-canonical 
NLRP3 in�ammasome contribution to the overall IL-1β in the spontaneous colitis colon of Winnie mice. High 
NLRP3 expression has been found in the ulcerated colonic tissue and in the colon of mice with acute and chronic 
colitis47. Accumulating evidence support a pro-in�ammatory contribution of NLRP3 to colitis pathology48,49. It 
is reported that blockage of IL-1β50 or neutralization of IL-1818,51 reduces intestinal in�ammation. �ese �ndings 
support the detrimental role of the NLRP3 in�ammasome in the development of spontaneous colitis in Winnie 
which is supported by both DSS model21 and IL-10−/− model of colitis52. �e explant results show that selective 
inhibition of the NLRP3-in�ammasome with MCC950 dose dependently reduces activated IL-1β secretion from 
colon tissue simulating a clinically feasible treatment regimen.

A study by Bauer et al.21 has proved that the mechanism of NLRP3/ASC/caspase-1-mediated activation of 
proin�ammatory IL1-β and IL18 is essential for experimental colitis21. �e western blot results of the in vitro 
experiments showed that treatment with MCC950 signi�cantly reduced the active caspase-1 p10 and IL-1β in 
BMDMs and colon explants suggesting that MCC950 inhibits the activation of NLRP3 in�ammasome in the 
colitis model. Similarly, treatment with glyburide inhibited caspase-1 activation and IL-1β processing as seen in 
protein quanti�cation assays.

For our in vitro experiments we chose to use primary macrophages because NLRP3 and ASC complex is 
mainly expressed in these innate immune cells53 and they have a vigorous in�ammasome activation and IL-1β 
production. �e primary macrophage cells isolated from Winnie had a higher secretion of IL-1β in compar-
ison to C57BL/6 indicating active colitis in Winnie. Similarly it is seen in murine DSS models54 and human 
colitis patients14 where active colitis and its severity has been correlated to high levels of IL-1β secreted by acti-
vated macrophages. Intestinal in�ammation is associated with in�ltration of macrophages into the colon lamina 

Figure 7. J774A.1 cells were primed with 100 ng/ml LPS and inhibited with 1 µM MCC950 or 200 µM 
Glyburide then stimulated with 5 mM ATP. (a) �e phosphorylation state of NEK7 was analysed using Phos-
tag SDS-PAGE. �ese results are representative of three independent experiments. (b) ELISA analysis of IL-1β 
in the culture supernatant of J774A.1 cells treated as in (a). Data are expressed as the mean ± sem of three 
independent experiments carried out in duplicates. ***P < 0.001 (one-way ANOVA with Tukey’s post-hoc test).
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propria where a variety of in�ammatory cytokines are produced in response to intestinal microbes. A very recent 
research in gut microbiota has shown that NLRP3 is absent in the epithelium but present in the deeper residing 
lamina propria monoculear cells55. Our in vitro results on LPMCs show complete inhibition of IL-1β by 1 µM 
of MCC950, which explains how MCC950 attenuated colonic in�ammation in our in vitro spontaneous colitis 
model Winnie.

For in vitro experiments apart from MCC950 we have also used glyburide, another speci�c inhibitor of 
NLRP3 in�ammasome56. A recent study investigated the e�ect of glyburide in IL10−/− spontaneous Crohn’s dis-
ease mouse model57. Very similar to our results with MCC950 in Winnie mice, glyburide e�ectively suppressed 
NLRP3 in�ammasome activation in IL-10−/− mice, leading to attenuation and prevention of colitis. Moreover, 
glyburide also e�ectively inhibited the release of proin�ammatory cytokines and chemokines in a similar manner 
to MCC950 e�ect in the Winnie model. Our in vitro results with glyburide shows that it is e�ective in inhibit-
ing NLRP3 in�ammasome in a spontaneous ulcerative colitis mouse model. Further in vivo studies should be 
conducted to evaluate the potency of glyburide in Winnie. However in comparison to glyburide, MCCC950 has 
superior pharmacological characteristics such as higher potency (7.5 nM), oral bioavailability (68%), temporal 
application and no known side e�ects23. Current experimental NLRP3 inhibitors of colitis are applied parenter-
ally58,59, however in our study we have shown e�ective oral administration with MCC950 which is more clinically 
desirable than parenteral application.

In our study MCC950 treatment signi�cantly improved clinical parameters of body weight gain, colon length, 
bloody stool and stool consistency. Similarly histopathological findings supported that MCC950 protected 
Winnie mice from surface epithelial erosion, in�ammatory cell in�ltration, loss of goblet cells and disruption of 
crypt architecture. �ese �ndings indicate oral administration of speci�c NLRP3 inhibitor MCC950 at 40 mg/kg 
decreased the severity of spontaneous chronic colitis in Winnie mice.

Ulcerative colitis is characterized by a disturbed balance between regulatory and e�ector cells which mainly 
implicates e�ector T cells (�1 and �2), regulatory T cells (Tregs) and �17 cells60. �e intestinal in�ammation 
is characterized by a �1 and �17-mediated responses with enhanced expression of TNF-α, IFN-γ, IL-1β, IL-12, 
IL-6, IL-10 and IL-1761. In this regard, Winnie 10 week colon explants showed prominently signi�cant increase 
in IL-1β, IL1-α, IL-18, TNF-α, IFN-γ, and MIP1a when compared to C57BL/6 (Fig. 6a–f). �is establishes our 
experimental model 10 week old Winnie, as a clinically relevant model of chronic ulcerative colitis. Importantly 
our results demonstrated that MCC950 treatment signi�cantly reduced IL-1β, IL-1α, IL17, IL6, IFN-γ, TNF-α 
and MIP1a in the colitis colon (Fig. 6a–f)). Similarly treatment with MCC950 has been reported to have reduced 
proin�ammatory cytokines and chemokines in other in�ammatory diseases such as In�uenza A virus infec-
tion33, in renal in�ammation30 and a dermal in�ammation model24. MIP1a (CCL3), is a chemokine that attracts 
proin�ammatory cytokine production and is particularly alleviated in Winnie distal colon. However a�er oral 
treatment with MCC950 the MIP1-a levels were signi�cantly lowered. Increased generation of Nitric Oxide leads 
to excessive production of reactive nitrogen species resulting in in�ltration of in�ammatory cells and intestinal 
damage62. MCC950 treatment signi�cantly reduced nitrite which is an index for Nitric Oxide production signi�-
cantly in Winnie proximal and distal colon.

From these results we can conclude that MCC950 inhibition of NLRP3 in�ammasome has indirectly sup-
pressed the activation of in�ltrating macrophages by inhibiting the release of pro-in�ammatory cytokines, 
chemokine immunomodulators and Nitric Oxide that contributed to the chronic in�ammatory process in the 
Winnie colon. MCC950 is absorbed into the blood stream and is cleared within a window of time. Initially it will 
be e�cacious in the reduction of IL-1β, however proin�ammatory cytokines measured in blood plasma taken 
a�er 24 hours of treatment did not show any e�ect on systemic cytokines. �is suggest that MCC950 did not have 
a prolonged adverse systemic e�ect but its potency on reducing proin�ammatory cytokines was signi�cant at the 
colonic tissue.

We investigated the possibility of MCC950 and glyburide target to be the NEK7-NLRP3 interaction. Shi et al. 
has shown that NEK7 phosphorylation enhances its binding to NLRP3 and promotes in�ammasome activation27. 
Our results showed no di�erence in the level of phosphorylated NEK7 between the untreated and MCC950 
or glyburide treated samples. However the IL-1β levels were suppressed by the inhibitors conceding that they 
successfully blocked the activation of NLRP3 activation. �is result suggest that the inhibitory target is not 
NEK7-NLRP3 but is downstream of this interaction.

�e role of NLRP3 in�ammasome in colitis is controversial. Genetic ablation of genes of NLRP3 components 
are predisposed to colitis and colorectal cancer48. However, hyper activation of NLRP3 in�ammasome leads to 
colitis63. �is stresses the need for careful investigation of temporal therapeutic strategies in di�erent disease 
phases in clinically relevant age appropriate experimental models. �e �ndings from Tate et al. on MCC950 treat-
ment for in�uenza A virus shows that blockade of NLRP3 is detrimental at early stage of disease while protective 
at late stage of disease33. Interestingly our results show that MCC950 is therapeutic in ulcerative colitis at chronic 
phase of the disease. Further studies are needed to look at emerging colitis to choose the optimal clinical treat-
ment point of MCC950 for ulcerative colitis.

Conclusion
In conclusion, our results collectively suggest that the small molecule MCC950 paves the way for a novel ther-
apeutic strategy in ulcerative colitis. Our results show, for the �rst time, the contribution of anti-in�ammatory 
e�ects resulting exclusively from inhibition of canonical and non-canonical NLRP3 in�ammasome activation 
in colitis. Moreover, the ability of MCC950 to suppress both translational and transcriptional IL-1β and IL-18 of 
canonical and noncanonical NLRP3 in�ammasome in the colon may be promising in in�ammatory intestinal 
diseases other than ulcerative colitis. Nevertheless, the detailed mechanism of the pharmacological target of how 
MCC950 inhibits the activation of NLRP3 in�ammasome needs to be explored in a future study.
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Methods
Animals. All animal experiments were approved by the Animal Ethics Committee of the University of 
Tasmania (Ethics approval number: A16166) and conducted in accordance with the Australian Code of Practice 
for Care and Use of Animals for Scienti�c Purposes (8th Edition 2013). Mice were housed in a temperature-con-
trolled environment with a 12-hour day/night light cycle. Individual body weights were assessed daily over an 
initial acclimation period of 7 days. All mice had access to radiation-sterilised rodent feed (Barastoc Rat and 
Mouse, Ridley AgProducts, Australia) and autoclaved tap water for drinking ad libitum during experiments. All 
e�orts were made to minimize animals’ su�ering and to reduce the number of animals used.

Explant Culture. Mice were euthanized by CO2 asphyxiation.�e colons were dissected and removed from 
C57BL/6 and Winnie mice (n = 5, 12 weeks). �e colon was opened and the faecal matter removed and cut in 
half lengthways, sectioned into distal and proximal tissue and weighed. Tissues are washed in PBS (P3813 Sigma) 
containing 1% penicillin/streptomycin (10000 U/ml) (1% P/S) (Gibco 15140122) three times. Equivalent amount 
of tissue were placed in a 24 well cell culture plate in growth media RPMI 1640 supplemented with 10% FCS, 1% 
P/S. �e tissues were stimulated with 10 ng/ml Lipopolysaccharide (LPS) from Escherichia coli serotype EH100 
(ra) TLRgrad for 2 hours. �e medium was removed and replaced with serum-free medium (SFM) containing 
MCC950 (0.001–10 µM) (Adipogen), glyburide (200 µM) (Sigma-Aldrich) and incubated for 24 hours at 37 °C in 
a moist atmosphere of 5% CO2. A�er which the supernatants were removed and centrifuged at 12,000 g at 4 °C for 
15 min and stored at −80 °C for cytokine analysis. Tissue was stored in RIPA bu�er with protease inhibitor to be 
analysed by western blot. Supernatants were assayed for cytokine levels by ELISA kits according to the manufac-
turer’s instructions IL-1β (DuoSet, R&D Systems) IL10 (BMS614-2 Invitrogen), TNF-α (KMC3011 Invitrogen) 
and concentrations were normalized to the weight of the explants.

Isolation of murine macrophages. Mice were euthanized by CO2 asphyxiation. Intraperitoneal (IP) mac-
rophages were isolated from the peritoneal cavity of C57BL/6 and Winnie mice (n = 4, 12 weeks) by injection of 
10 ml of PBS. A�er 30 seconds of abdominal massaging, peritoneal lavage was performed. Collected peritoneal 
lavage was washed twice in PBS and plated in 6 well plates suspended in RPMI-1640 (Gibco 11875093) medium 
containing 10% FCS (Gibco,10437-028) 1% P/S for two hours. Non adherent cells were removed by washing the 
plate twice with PBS. �e adherent macrophages were analysed in subsequent experiments.

Bone marrow derived macrophages (BMDM) cells were isolated from tibiae and femurs of C57/BL6 mice 
and Winnie mice (n = 4, 12 weeks) and cultured suspended in RPMI-1640 (Gibco 11875093) medium contain-
ing 10%FCS (Gibco, 10437-028) 1% P/S and 10 ng/ml human macrophage colony-stimulating factor (M-CSF) 
(Miltenyi Biotec). Culture medium was exchanged every 3 days. Under these conditions, an adherent macrophage 
monolayer was obtained at 7–8 days. Cells were harvested and seeded on 6-well plates. A�er culturing for 6 hours 
without M-CSF, the cells were used for the experiments as BMDM.

For the isolation of Mesenteric lymph node (MLN) macrophages the peritoneal cavity of Winnie (n = 4, 12 
weeks) was opened and the gut was taken out so that the MLN were visible. �e MLN were excised and placed in 
chilled PBS. To generate a single cell suspension, the MLN were placed on a sterile 70 µm nylon mesh cell strainer 
(Fisher brand 22-363-548) and was mechanically disrupted into the mesh using the base of a plunger from a 1 
cc syringe. Cells were washed in PBS containing 1% FBS. Cell suspension was decanted through a second 70 µm 
cell strainer to remove any remaining cellular aggregates or tissue debris. Cells were subjected to gentle centrifu-
gation at 500 g for 5 min. Supernatant was decanted and cells re-suspended and cultured in RPMI-1640 medium 
containing 10% FCS and 1% P/S till an adherent macrophage monolayer was obtained.

Single cell LPMC suspensions were prepared from 12 week old Winnie n = 12 mice. �e colons were dissected 
carefully and washed with ice-cold PBS and cut in to small pieces. Fragments were placed in HBSS containing 
5 mM EDTA(sigma) and 1 mM DTT (sigma) 37 °C for 40 mins with gentle shaking to remove the epithelial layer. 
�e colon segments were then digested in PBS containing 0.5 mg/mL collagenase (Sigma), 0.5 mg/mL DNaseI 
(Roche) and 3 mg/mL Dispase II (Roche) at 37 °C, at slow rotation, for 1.5 hours. Supernatants were collected 
by �ltering through a 70 µm cell strainer. Filtered cells were layered on a 40/80 Percoll gradient and centrifuged 
at 1000 × g for 20 min. �e separated LPMCs were washed twice, and re-suspended and cultured in RPMI-1640 
medium containing 10% FCS and 1% P/S.

Cell viability assay. Cell viability of BMDMs was measured using alamarBlue® reagent (�ermoFisher 
Scienti�c). Brie�y, 1 × 105 of BMDMs were seeded into each well of a 96-well plate. �e following day, the over-
night medium was replaced with serum-free media for 12 hours. Cells were then stimulated with di�erent con-
centrations of MCC950 (0.001, 0.01, 0.1, 1 µM) for 24 h. 10 µl of alamarBlue® reagent was added directly to cells 
in each well and incubated for 4 h at 37 °C. �en, absorbance at 570 nm was measured. Experiments were repeated 
three times.

Inflammasome activation assays. We seeded BMDMs, IPS and MLNs at 5 × 105/ml and LPMCs at 
1 × 105/ml in 96-well plates. �e following day, the overnight medium was replaced and cells were stimulated with 
10 ng/ml LPS from Escherichia coli serotype EH100 (ra) TLRgrade (Alexis Biochemicals) for 3 hours. �e medium 
was removed and replaced with SFM containing MCC950 (0.01 µM), glyburide (200 µM) (Sigma-Aldrich), Cells 
were then stimulated with the following in�ammasome activators: 5 mM adenosine 5′-triphosphate disodium 
salt hydrate (ATP) (sigma) (1 hour), and 10 µM Nigericin (Invivogen) (1 hour). Supernatants were removed and 
analysed using ELISA kits according to the manufacturer’s instructions IL-1β (DuoSet, R&D Systems), TNF-α 
(KMC3011 Invitrogen).
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Western blotting. Cell lysates were prepared by direct lysis in 50 µl of 2× Laemmli sample bu�er. �e pro-
tein content of supernatants was concentrated using StrataClean resin (Agilent Technologies) according to the 
manufacturer’s instructions. �e protein samples were resolved on 4–20% mini-protean precast SDS-PAGE gels 
(Biorad) and transferred onto polyvinylidene di�uoride membrane using a wet-transfer system. Membranes 
were blocked in 5% (wt/vol) dried milk in TBS-T (50 mM Tris/HCL, pH 7.6, 150 mM NaCl and 0.1% (vol/vol) 
Tween-20) for 1 hour at room temperature. Membranes were incubated with primary antibody diluted in 5% (wt/
vol) dried milk in TBS-T and then with the appropriate horseradish peroxidase (HRP)-conjugated secondary 
antibody diluted in 5% (wt/vol) dried milk in TBS-T for 1 hour. Membranes were developed using SuperSignal 
West Pico chemiluminescent substrate (�ermo Fisher Scienti�c). Membranes were stripped using Restore PLUS 
western blot stripping bu�er (�ermo Fisher Scienti�c) before being re-probed.

Primary antibodies used were ASC antibody (AL177) (1 in 1,000) (Enzo Life Sciences); β-actin; mouse 
caspase-1 p10 (sc-514) (1:1,000), mouse IL-1β (NB600–633) (1:1,000) and NLRP3 antibody (1:1,000) (NBP2-
12446SS). Secondary HRP-conjugated antibodies used were, anti-rabbit IgG and (1:5000) (sc-2030).

In vivo oral administration of MCC950. Seven week-old Winnie mice (homozygous Muc2 mutant; 
C57BL6/J background) n = 20 of both sexes average weight 18 g were obtained from the University of Tasmania ani-
mal breeding facility. Mice were randomly divided into two groups. MCC950 used in in vivo experiment was a gi� 
from Avril Robertson.MCC950 treatment group: (n = 10) and control group (n = 10). Treatment group mice were 
fed 1 g of freshly made chow mash (chow powder blended with water) mixed with 40 mg/kg MCC950 daily. Control 
mice received the formulation vehicle PBS in 1 g chow mash. �e mice were single-caged throughout the experiment 
to ascertain the de�ned daily intake of MCC950 from prepared chow mash. Mice were sacri�ced on day 21.

Clinical scoring and histological analysis. Bodyweight, stool consistency and the presence of gross blood 
in stool and at the anus were observed every day. Stool was collected from individual mice and tested for the 
presence of blood using Hemoccult II slides (Beckman Coulter Inc., California, USA). �e disease activity index 
(DAI) was calculated by assigning well-established and validated scores64. Brie�y, the following parameters were 
used for calculation: a) Stool consistency (0 points = normal, 1points = so� but formed, 2 points = loose stool, 3 
points = watery stool) b) blood in stool (0 points = no bleeding, 1 point = Hemoccult+, 2 points = visual blood, 
3 points = gross bleeding).

At day 21 following treatment, animals were sacri�ced by CO2 asphyxiation. �e colon from the caecum to 
the anus was removed. �e length of the colon from ileocaecal junction to the rectum was recorded. �e colon 
was subsequently opened along its longitudinal axis and the luminal contents were removed prior to weighing the 
organ. �e colon was bisected longitudinally and one half was prepared using the Swiss roll technique65, whereas 
the remaining colonic tissue was dissected and snap-frozen for molecular analyses. Swiss rolls underwent 24 h 
�xation in 10% (v/v) neutral-bu�ered formalin. Swiss rolls were subsequently transferred to 70% ethanol prior to 
progressive dehydration, clearing and in�ltration with HistoPrep para�n wax (Fisher Scienti�c, Philadelphia, PA, 
United States). �ey were then embedded in wax and 5 µm sections were cut using a rotary microtome. Sections 
were stained with haematoxylin and eosin Y (H&E; HD Scienti�c, Sydney, Australia). Slides stained with H&E 
were evaluated for in�ammatory features. Histological in�ammation was graded in a blinded fashion by RF and 
APP based on previously used criteria66. Brie�y, frequency of lamina propria neutrophils graded 0–2, frequency 
of crypt abscesses graded 0–2, crypt architectural distortion was graded 0–2, extent of surface damage graded 
0–2, goblet cell depletion graded 0–2. �e in�ammation score for each individual region (distal, middle and 
proximal colon) was derived from the sum of the score for each of the aforementioned criteria.

Cytokine measurements. Serum was collected from blood drawn by cardiac puncture at the end of the 
treatment. Explants from the proximal and distal colons of treatment and control groups (n = 3) were cultured 
overnight in RPMI 1640. Culture supernatants were measured for Nitrite by the Griess reaction method (Sigma 
G4410) as an index of Nitric Oxide generation.

Cytokine concentrations in neat culture supernatants and serum were determined using mouse Bio-Plex 
mouse cytokine 23-plex panel kit (Bio-Rad #M60009RDPD) and analysed using Luminex 200 (Bio-Rad) and 
Bio-Plex Manager so�ware (Bio-Rad). IL18 was determined by 5 times diluted supernatant measured by a mouse 
IL18 ELISA kit (7625, R&D Systems). �e most signi�cantly altered cytokines are presented as pg per g of tissue.

RNA extraction and RT-PCR. Colonic tissue was homogenised using rotorstator generator probes 
(Omni Scienti�c) and RNA extracted using the RNeasy Mini spin column kit (Qiagen, Melbourne, Australia) 
according to the manufacturer’s instructions. Integrity and concentration of extracted RNA was assessed using 
Eppendorf Biophotometer. Complementary DNA (cDNA) was synthesised from RNA samples using the iScript 
gDNA clear cDNA synthesis kit (Bio-Rad) using reaction conditions suggested by the manufacturer. 100 ng of 
cDNA from each sample was added to a PCR reaction including TaqMan Fast Master Mix (Applied Biosystems) 
and a single gene-speci�c TaqMan probe/primer set. IL-1β, Assay ID: Mm00434228_m1 and IL18 Assay ID: 
Mm00434226_m1.

�ermal cycling was performed using a StepOnePlus RT-qPCR instrument (Applied Biosystems). Gene 
expression was quanti�ed using the comparative (∆∆CT) method where the threshold cycle (CT) for each gene 
was normalised to reference gene Gapdh. Relative gene expression in the MCC950 treated animals was presented 
as 2−∆CT.

NEK7 phosphorylation state analysis by Phos-tag SDS-PAGE. We seeded J774A.1 at 1 × 105/ml 
in 6-well plates. �e following day, the overnight medium was replaced and cells were stimulated with 100 ng/
ml LPS for 3 hours. �e medium was removed and replaced with SFM containing MCC950 (1 µM) and glybu-
ride (200 µM) for 30 min or no treatment with SFM. Cells were then stimulated with 5 mM ATP for 30 min. 
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Supernatants were removed and analysed using ELISA kits according to the manufacturer’s instructions IL-1β 
(DuoSet, R&D Systems). Cell lysates from three wells were pooled in 200 ul of RIPA bu�er (R0278 Sigma) with 
phosphate inhibitor (Roche). Contaminants were removed in protein samples by TCA precipitation. Samples 
mixed in 2× Laemmli sample bu�er and run in Phos-tag SDS-PAGE (Wako Chemicals) for the separation of 
phosphorylated proteins according to their degree of phosphorylation. Membranes were developed using 
SuperSignal West Pico chemiluminescent substrate (�ermo Fisher Scienti�c). Membranes were stripped using 
Restore PLUS western blot stripping bu�er (�ermo Fisher Scienti�c) before being re-probed. Primary antibodies 
used were NEK7 antibody (Ab109433) (1 in 1,000) (Abcam). Secondary HRP-conjugated antibodies used were, 
anti-rabbit IgG and (1:5000) (sc-2030).

Statistical analysis. Data are presented as average values ± SEM from multiple individual experiments each 
carried out in triplicate measurements in a representative experiment. Change in body weight percentage over 
time was compared using repeated-measures analysis of variance (ANOVA). �e statistical signi�cance of the 
normalised mRNA expression was tested by one sample t-test. Di�erences in histological scores between ana-
tomical regions were tested post-ANOVA using Tukey’s multiple pairwise comparisons test. Statistical analyses 
were done using a nonparametric unpaired two-tailed t-test, for two groups study. �e data were evaluated with 
one-way analysis of variance (ANOVA) for 3 groups study and con�rmed using Tukey’s test for multiple com-
parisons using Prism so�ware (GraphPad). Data were considered signi�cant when P ≤ 0.05 (*), P ≤ 0.01 (**), 
P ≤ 0.001 (***) or P ≤ 0.0001 (****).

Data availability. �e datasets supporting the conclusions of this study are included within this published 
article and its supplementary �le.
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