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Abstract

We apply large deviation theory to particle systems with a random mean-field in-
teraction in the McKean-Viasov limit. In particular, we describe large deviations and
normal fluctuations around the McKean-Viasov equation. The randomness in the in-
teraction gives rise to new phenomena, which are illustrated for the Kuramoto model
(random oscillators) and the Curie-Weiss model (random magnets).
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0 Introduction

In this paper, we consider interacting diffusions and interacting spin-flip systems with a
mean-field Hamiltonian that depends on a random medium. In the thermodynamic limit,
the dynamics of a typical particle is described by a collection of coupled McKean-Viasov
equations indexed by a medium parameter. For finite but large systems there are fluctuations
around the McKean-Vlasov limit, which are controlled by the random dynamics and by the
random medium. :

Our approach to the problem is to do a large deviation analysis for the double leyer
empirical measure

1 N
Ly = v g 5@{‘0‘”‘0};3. (0.13
Here, N is the size of the system,
z‘ém.] = the path of the i-th particle in the time interval [0, 7], (0.2)

)

il

the i-th component of the medium.

Our main results are the following {see Sections 1-3):
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1. We derive a large deviation principle for Ly as N - o0, with an explicit representation
for the corresponding rate function 1. ’

2. The McKean-Viasov limit is the associated law of large numbers, i.e., the McKean-
Vlasov equation follows from 1. by identifying the unique zero of 1.

3. By a standard contraction argument we derive a large deviation principle for the double
layer empirical flow

1 N
iy = (ﬁ Z‘;é(xi»w‘))telovﬂ "

as N — oo and compute the corresponding rate function 1,

4. The second order fluctuations around the McKean-Vlasov limit are identified in the
form of a central limit theorem, deduced from 1. via a vaiiational computation.

The goal of our paper is two-fold:

1. For homogeneous.systems, results as in 1.-4. have been obtained by Dawson (1982),
Dawson and Girtner (1987), Ben Arcus and Brunaud (1990). (See also Comets and
Eisele (1988) for models with a so-called "local” mean-ficld interaction.) We show
how to generalize the analysis in these papers to systems with a random medium
interaction. The random medium leads to some new ingredients in the analysis. It is
also responsible for some rew effects {see Section <1}

II. We want to give an expository presentation of the large deviation approach to this
problem area.

The outline of the paper is as follows. In Section 1 we consider interacting diffusions
and state our theorems for this class of models (Theorems 1-4). Section 2 and Appendices
A-B are devoted to the proof of the results. In Section 3 we cousider spin-flip systems and
show how the results have to be modified (Theorems 5-8). Finally, Section 4 describes two
applications:

(i) The Kuramoto model of random oscillators (i.e., diffusions on the unit circle).

(ii} The Curie-Weiss model of random magnets (i.e., spin flips between + and —).

Example (i) was studied by Bonilla, Neu and Spigler {1992}, and the McKean-Viasov limit
was obtained through heuristic arguments. This model shows the phenomenon of ”phase
locking” above a critical value for the strength of the interaction (depending on the law
of the random medium). Example (ii) was studied by Salinas and Wrezinski (1985), and
the equilibrium properties were described in detail. This model shows the phenomenon of
“spontaneous magnetization” below a critical value for the temperature (depending on the
law of the random medium). In both examples the type of randomness critically determines
the phase diagram.



1 Diffusions

1.1 The model

Let Hy : RV x RV — R be the N -particle random Hamiltonian given by

Anzw) = Zf(x’—z ) 4 3 g, (L1

ij=1 i=1

where g = (z‘)‘_1 is the state variable and w = (w*)¥, is the medium variable. The ' are
assumed to be i.i.d. random variables with common law . For a fixed realization of w, think
of g ~ Hn(z;w) as a Hamiltonian in the components =* with an inhomogeneous mean field
interaction parametrized by the components w*. The functions f and ¢ play the role of a
pair potential resp. external field, and are assumed to satisfy: :

o f.fJ" 9.9',g" exist, are bounded and are jointly continuous in all variables {* denotes
derivative w.r.t. the z-variable). !

For given w, let z, = (z1)}¥, be the system of N interacting diffusions evolving according
to the Ito stochastic differential equations

dz} = —-ég-:iﬁ(gg,g)dt +d& (G=1,...,N;telo,T]), (1.2)

where (£)X, are i.i.d. standard Brownian motions on R. For every w, (1.2) has a reversible
equilibrium measure proportional to exp{-Hn(g,w)]. The initial condition g is assumed to
have product distribution A8V, with A having a finite second moment. The time T > 0 is
fixed but arbitrary. Because f', ¢’ are globally Lipschitz, (1.2) has a unique (strong) solution
with continuous trajectories (see Karatzas and Shreeve (1988), Theorem 2.9).

We shall write P§f to denote the law of 2o 77 = (Z:)rejo,7] given w, and WOV to denote
the law of the solution of (1.2) when Hy = 0 (i.e.,, W is the law of a standard Brownian
motion starting with initial distribution A).

The system in (1.2) will be our object of study. We shall identify its large deviation and
central limit behavior in the limit as N — oo. Our main results are formulated in Theorems
1-4 in Sections 1.2-5 below.

1.2 Empirical measure and large deviations

Define the double layer empirical measure

N .
1
Lnlgrpe) = F;é(“f’o,ﬁvw‘}' (1.3)

1The assumptions on f, g are stronger than what is actually needed for proving the results in this paper.
However, they allow us to fllustrate the use of large deviations without excessive technicalities. A few more
restrictions will be imposed later, for the same reason.

For the medium variables IR could be replaced by any Polish space without change in the proofs. For the
state variables IR could be replaced by IR? (d > 1) with only minor modifications in the proof of Theotem 3
in Section 2.3.



This is a random variable taking values in M{C[0,7] x IR), the set of probability measures
on C[0, 7] x R {where C[08,T] is the path space, i.e., the contmuous functlons on {0,T]). In
{1.3), the symbol §, denotes the point measure at y, so Ln(4) = TN, 1{(3:[0 e ) € A}
(ACCl0,T]x R).

Lemma 1 below gives a representation for P;”j in terms of Ly.

Lemma 1 For given w
w

diVF;N(“?OTﬂ = exp{N F(Ln(zp e}l (1:4)
where for Q € My(C[0,T]x R)
PQ) = [QUepnd) {3 1T at](F Qo dm) Py - ziw, ) + o (ziw)’
— [ Qdyory, dm) 'y — s, 7) + 9”(&:0:)}
-1 f Qldyprydm)flyr — 273w, %)~ flgo — zoiw, 7))

~loleriw) - g(zniw)] }
. (1.5)
with f given by

Jiw,m) = S (w4 f-simall. (1.6)

The proof of Lemma 1 will be given in Section 2.1. Note that @ — (@) is nonlinear
and contains repeated integrals over the measure Q. A simpler representation for #£(Q) will
be given in Lemma 2 below.

The representation in (1.4) is the key to the following large deviation principle (LDP},
from which we shalt deduce various features of the asymptotic behavior of Ly as N — oo,
Define

Pu() = [ oM d)Pit L € ), (L7)

which is the law of Ly under the joint distribution of precess and medium. Note that
Py € M{M{C[0,T]x R)).

Theorem 1 (FPn)ny1 satisfies the LOP with rate function
Q)= H(QIW @ p) ~ F(Q) {1.8)

where H denotes the relative entropy

HQW © ) = [ dQlog 1t — uff;#) (19)

The proof of Theorem 1 will be given in Section 2.1. Roughly, the statement in Theorem
| means that )
& 08 Py(A) & — inf 1(Q) (1.10)



for large N and for A sufficiently regular. For a precise formulation of the LDP we refer to
Deuschel and Stroock (1989}, pp. 35-36.
One sees from (1.5) that F = 0 when Hy =0 (i.e., f,5 = 0). Thus H(Q|W ® g) is the

rate function for the system without interaction.
1.3 McKean-Vlasov equation

Before we analyze I{Q), we fitst give an alternative representation for F(Q) in (1.5) that
will turn out to be more convenient. For given w € R and ¢ € M;(IR x R) define '

B z) = ~ fQ(dy, dn)f{y - ziw, 1) - ¢'{ziw) (L€ [0,T),z € R). (1.11)
Let P“@ be the law of the unique (strong) solution of the I-dimensional 1té equation

day = foM 9z )dt + dE,, (1.12)

where £, is a standard Brownian motion on R and z has law A. Here I1,Q is the projection
of (7 at time £, i.e.,

(MONE X F}= Q({(x[a,n,w) iz € B,we F}) (E,FCR). (1.13)

For fixed w the drift in (1.12) has a mean-field form, i.e., the interaction in (1.2) of a single-
component diffusion with the other components and with the medium appears in {1.12) as
an average w.r.t. the given measure II,Q.

Lemma 2 For all Q)

d

w,Q
(@) = [ Qe do)log (a0 (L14)

The proof of Lemma 2 will be given in Section 2.2. By combining (1.8), (1.9) and (1.14)
we get the following simpler representation for the rate function:

Corollary 1 For all

1(Q) = H(Q|P?), (1.15)
where PR € My(C[0,T] x R) is defined by
PRdzgg 1y, dw) = p{dw) P dzyg 19). (1.16)

Since I{Q) 2 0 for all Q, one sees from (1.10) that as N — oo the measure Py tends to
concentrate around the zeroes of 1, i.e., the solutions of

Q=P (1.17)

The next theorem states that {1.17) has a unique solution. Define 9 € M,(R) to be
the projection of @ on the medium coordinate, i.e.,

WVRF) = Q({(x[o,n,w} iwe F}) (FeR). (1.18)
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Let Q¥ € M (C[0,T]) be the regular conditional probability measure obtained from @ after

conditioning on w, i.e.,
Q(dzpo,1y, dw) = v9(dw)Q“(dzio,7))- (1.19)

The results that follow will be proved under the following assumption on the initial measure
A for the single-component diffusions: ?

(A1) ) has a density ¢ w.r.t. Lebesgue measure satisfying ¢ € L(dz) " LP(dz) for some
p> 1

Theorem 2 Assume (Al). Then (1.17) has a unique solution Q. which has the following
properties:

1R = p
2. Q¥ ts the law of a Markov diffusion process for p-a.s. all w.

8. Let ¢¢ = W[, QY. Then ¢¥ is the weak solution of the McKean- Vlasov equation 3

A w _ pww lr
{%q,:;z: @ (te(0,T,weR) (1.20)

where LY is the nonlinear operator

Wow 3 NI L 82 w
L7 = ~ =B + 53¢ (WER) {1.21)

and g, is defined by q(dz, dw) = p(dw)gy(dz).
4. The diffusion process in & has generator LY given by

d 18
:’=ﬂw'q’5;+§;9? {we R). (1.22)

The proof of Theorem 2 will be given in Section 2.2. Note that the equations in {1.20)
for different values of w are coupled, because

Bz} = —fu(dfr)/qf(dy)f’(y -z, 1) - g'(z;w) (1.23)

depends on the whole family {47 }ren (see (1.11)).
As a corollary to Theorems 1 and 2 we obtain the following law of large numbers:

Corollary 2 Assume (Al). Then

Py = bg, weakly as N — oo, (1.24)

2 Assumption (A1) conld in principle be weakened by using the technique of Lyapunov functions, as in
Sznitman {1984). However, we stick to (A1) because it allows us to give a rather clementary proof of
uniqueness of the solution of {1.17).

*Eqs.(1.20-1.21) mean that & [ ¢¢(dz)(z) = [ ¢ (dz)8“ " (2)¢'(z) + } [ ¢¥' (dx}¢"(z) for every ¢ € D,
the space of infinitely differentiable functions with compact support. By standard arguments this implies
that g for t > 0 has a densily that is a classical solution of {1.20).



1.4 Empirical flow and large deviations

With each @ € M (Cl0,T] x R) is associated the flow of marginals g7y = (1Q ey
Define the double layer empirical flow
N
In = (N; 6(,;",‘,-'))@[0'”- {1.25)
This is a random variable taking values in M;(R x R)®TL, (The topology on this power
set is the one induced by the weak topology on M;(C[0,T] x R) via the map Q — g ).)
Note that both gjg ) and £x take values in the subset of M;{R x IR){O*T] consisting of those
flows whose projection on the medium coordinate is independent of . We shall denote this
subset by M. The empirical flow £y contains less information than the empirical measure
Ly (recall (1.3)). Therefore its large deviation behavior can be obtained from Theorem 1
via the contraction principle (Varadhan (1984), Theorem 2.4).
To formulate the LDP for {(£5)np1 we introduce the following notation, For g0 4 € M,
let qi‘é'ﬂ be the conditional flow given w, i.e.,

qi{dz, dw) = 9 (dw)gy(dz) (¢ € [0,T]}, {1.26)

where »7 is the projection of ¢, on the medium coordinate {(which iz independent of t). Let
D be the space of infinitely differentiable functions with compact support, and let D bhe
its dual (the elements of which are distributions). For #* € D* and p € M {R) define the

norm 2
sup ("Ib‘a ¢>
SED{p,d2)>0 (ps d’/2>

1
7l = 5 , (1.27)

where {-} denotes the usual inner product. Let A C M be the set of all flows satislying

e (1.28

t— g is weakly differentiable for »? -a.s. all w. 28)

Finally, let ‘
pn() = /uw(dg)i’%";(fw €, (1.29)

which is the law of £y under the joint distribution of process and medium. Note that

gn € My(M).

Theorem 3 {pn)np1 satisfies the LDP with rate function

T 8w W H
a0, ﬂ,z{ s af [N Gt - Lol + HO) i qemed

otherwise.

The proof of Theorem 3 will be given in Section 2.3. Note that (g ry) = 0 iff v% = p
and gy is the solution of the McKean-Vlasov equation for p-a.s. all w (recall (1.20), (1.21)
and (1.23)).



1.5 Ceniral limit theorem

It is possible to deduce from Theorem 1 a central limit theorem {CLT) for the empirical
measure Ly in {1.3). The general technique is formulated in Bolthausen (1986). Essentially,
what we must do is show that the rate function ¢ — I{Q) in (1.8) and (1.15) has a strictly
positive and finite curvature at its unique zero Q.. However, in order to apply Bolthausen’s
theorem we need a techmical assumption, namely: ¢

(A2) There are functions a;,f; : R x R — € and pumbers ¢; € R* such that

fy—zjw,m)= E cioi{z,w)Bi(y, ) (1.31)
=0
with

(1) Tiei <00
{2) ay, B; twice continuously differentiable w.r.t. the variable  resp. y
(3) a;, 0, a?, 3, B, B bounded uniformly in ¢.

Our central limit theorem reads:

Theorem 4 Assume (A8). Let Cy be the set of bounded continuous functions from C[0, T} x
R to R. As N — oo the field

(N%[/MLN -]m@.])ﬁa (1.32)

converges under Py to a Gaussian field with covariance
€& )= [ Qudzipm, d)éQ-I(z10 (@ apo 17, ) (1.33)

where )
Q@ Hzprw) = Haprpw) ~ &
(1.34)

~ I (J Quleyomy, aM)d(ypp.1y, ™) = 871 (3 = mi0, 7))y
with ¢* = [ ¢dQ. (similarly for ¢}, w¢ = z, ~ fé Bo@eds (which is @ Brownian metion
under Q%) and f given by {1.6).

The statement in Theorem 4 means the following: for ¢;,¢,..., ¢, € C; the vector

(N%[]d;,vdLN ~/¢ng,]):‘21 (1.35)

converges in law to an n-dimensional Gaussian random variable with mean zero and covari-
ance matrix (C(¢i, )1z

The proof of Theorem 4 will be given in Section 2.4. From the proof it will be seen that
the covariance matrix is strictly positive definite.

*By applying the techniques in Sznitman (1984}, the CLT could in principle be proved without assumption
(A2). However: (i} Bolthausen’s method nicely connects large deviations and CLT; (ii) The proof is easily
modified to cover other models, e.g. spin-flip syslems {see Section 3); (iti) Assumption (A2} is satisfied in
many interesting examples (e.g. the Kuramoto model (sce Section 4); see also Ben Arous and Brunaud (1990)
for more examples}.



2 Proof of Lemmas 1-2 and Theorems 1-3

2.1 Proof of Lemima 1 and Theorem'1 -

Proof of Lemma 1. )

The proof is based on two basic tools in stochastic calculus, namely Girsanov’s formula
and Itd’s rule (see e.g. Karatzas and Shreve (1987), Theorems 3.3.3 and 3.5.1). Girsanov’s
formula yields (recall (1.2))

d N aﬂ aH
—deN(z{o.n)=exp[~§§/0 S (zow) dt ~ E/ N. )‘“]' (2.1)

Under the measure W8 | the process Zpmis N -dimensional Brownian motion (see Section
1.1). Thus, by 1t6’s rule,
N
BHN i 8%Hy
;/0 o S (zow))dal = Hy(zr,w) - Z/ a(r')2 g (zew))dt. (2.2)

l—l
Hence _
arbr(zom) = ew |- TN T {(Erow) - Zb(zow) it
(2.3)
- (HN(ET,Q) - HN(zo,g))]-

The rest of the proof simply consists of inserting the definition of Hy (see (1.1)) and rewriting
the resulting expression in terms of the empirical measure Ly (see (1.5)). This leads to the
expression given in (1.4)-(1.6). [}
Proof of Theorem 1.

Let R be the law of Ly under the measure W®N @ u®V . Under Ry, the pairs (zfo_T],wi) are
i.i.d. random variables. It therefore follows from Sanov’s Theorem (Deuschel and Stroock
(1989) Theorem 3.2.17) that (Rn)n>1 satisfies the LDP with rate function H(Q|W ® u)
given in (1.9). Now, using Lemma 1, we have (recall (1.4) and (1.7))

Pn() = [ u®N (dw) PR(Ln(dzp,11,w) € )

= [ u® (dw) [ WO (dago 1) 7ot (zp0. 1) U LN (dzpo 17, @) € -}

(2.4)
= [ d(W®N ® u®N) exp[N F(Ln)|1{Ln € }
= [ Rn(dQ)exp[NF(Q)I1{Q € -}.
Identity (2.4) means that »
Q) = eV F(Q)) @

Our assumptions on f,g in Sectlon 1.1 imply that F is a bounded continuous function
w.r.t. the weak.topology in M{(C[0,T] x R) (see (1.5)). Therefore, (2.5) allows us to
apply Varadhan’s Lemma (Varadhan (1984), Theorem 2.2) and conclude that the LDP for
(Rn)ny1 with rate function H(Q|W @ u) implies the LDP for (Py )y with rate function
H(Q|W & p) — F(Q), as was claimed in (1.8) and (1.9). |



2.2 Proof of Lemma 2 and Theorem 2

Proof of Lemma 2.
We begin by applying Girsanov’s formula to the 1-dimensional Ité-equation in (1.12), namely

Pl 1 /7 T
W (zo1) = —§L (ﬁwﬂ'g(%))zdt"'/o [ AT (2.6)

We want to show that the r.hus. of (2.6), when integrated over Qldzyo 1) dw), yields F(Q)
given in {1.5). Recalling (1.11), we see that the first term in the r.h.s. of (2.6) gives rise to
the first term in the r.h.s. of (1.5). To check the remaining terms, let us look a bit closer at
the stochastic integral in (2.6).

By (1.11) we have

§ Qdzgo gy, o) fo B9 y)dae

log d

_ (27)
=~ [ Qdzpgpy, dw) fy [fQ(dy[o,T],dﬂ)f’{zf: —THw, A+ .«7’(x:;w)] dz,.
(Note that if @ < W @ p then 2y is a Q-semimartingale, so the stochastic integral in

{2.7) makes sense.) Consider the first term in the r.h.s. of (2.7). Since f is an odd function
of its first argument, this term equals

- 1 [ oy o) [Qapaydn) [ Fo - i, mlds - vl (28
We can apply 1t6’s rule to the 2-dimensional semimartingale (z, Yo, and write
df(y ~ 2w, 1) = [y - 2w, mdt = Py = o, 0)dae + fly - sgworddy. (29)
By substituting (2.9) into (2.8) we get the expression
-3 [ Qdzp 1), &) | Qldyo 1y, dr)

, R o {2.10)
X[ g f"ty = v, m)dt = fyr - ariw,m) + flyo - wiw,m)]-

Next consider the second term in the r.hu.s. of (2.7). 1t6's rule yields that this term eguals

1 7
- [@apmy )]~ 5 [ g"@iwlde+ gleriw) - glaiw)] (2.11)
From (2.10) and (2.11) the claim in Lemma 2 easily follows after observing that {1.6) gives,
[ Qdz 1y, dw) [ Qldyg oy dr) fly — 2030, 7)

= [ Q{dzp 7y, dw) [ QUdyp 1y dm )} (g ~ 2w, )
for every ¢ and, in particular, fort = Q0 and t = 7. [ ]

Proof of Theorens 2.

Observe that v9 = 1% = g (recall (1.16-1.18)) and that P“9 is the law of the solution of
(1.12), i.e., the Markov diffusion with generator given in (1.21}. It is therefore easy to see
that properties 1.-4. in Theorem 2 are satisfied by any solution of (1.17) (note that {1.20)
is the Fokker-Planck equation associated with the diffusion (J.). Now, the ezistence of a
solution of {1.17) comes from the general fact that the rate function of an LDP must have
at least one zero (Deuschel and Stroock (1989), Exercise 2.1.14(i)). The uniqueness of the
solution will be proved in Appendix A. ]

{2.12)
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2.3 Proof of Theorem 3

Let II denote the map Il : Q@ — qpp, ul (remember that ¢ = I1,Q). The topology on M
has been chosen in such a way that II is continuous. Since £y = Ly, it follows from the
contraction principle (Varadhan {1984), Theorem 2.4) that (v )np1 satisfies the LDP with
rate function

j@[m) = nogqum_n Q). (2.13)

We want to show that j(gp1)) = #(ge,77) for every go7) € M, where i is the rate function
given in (1.30). In order to do so, we shall first show that equality holds when j(go 1) < o0
{Steps 1-3 below). After that we shall show that if #{go77) < 00 then (g7} < o (Step 4
below), which will complete the proof. The basic ideas are taken from Fallmer (1986) (see
also Brunaud (1993)).

Step 1. By a standard argument involving lower semicontinuity and compactness of the
level sets of the rate function f, we have that if j(gjp79) < o0 then there exists a @ such that

NQ = gi0,7y and 1(Q) = j(qp,77) From (1.8} we have
1Q) = [ v () H@IW) + B ) - F(Q). (2.4)

Moreover, since F((J) depends on ) only through gig7y (see (1.5) and (1.14)) we have that
¥ minimizes H(Q“|W) under the constraint IQ¥ = o1y for v%-as. all w. As shown
in Follmer (1986), Theorem 1.31, the latter fact implies that Q“ is the law of 2 Markov
diffusion

dzy = B (z)dt + dwy (2.15)

for a suitable drift bf(z), and that

2@ W) = [ Qe [ dtlbitenl (2.16)

Substituting (2.16) into (2.14}, and using Lemma 2 in combination with (2.6) and (2.15),
we obtain

Q) =} fo(dw) [ Q“(dzpomy) fy dt (b5 (m) — B2 + H(v%)p)
(217
= LT de o) [ ] g (b =) - 49(2)) ]} + B0,

This equation reduces to the required expression in (1.30) if we can show that for every
t € (0,7 and for »9-as. all @

1 W w, IT¢ ¢ g w W, w
5 [ (@ - gm0 =l - ol 219)
Step 2. To prove (2.18) we proceed as follows. According to (2.15), ¢ is the weak

solution of the Fokker-Planck equatior

9 30w 10%
%7 ~gL e+ 55

ot az (219)
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Together with (1.21) this implies

6 Ao W 8 24! il B ol
T e (Gl Al s (2.20)

Hence, recalling the definition of |} - || in (1.27), we get

d w b~ g T Q) §7)?
g — Lg% = 4 supgep e, amppo L Frild
< g, (0 — gy,

where we have used the Cauchy-Schwarz inequality {recall that (-, } denotes the usual inner
product). Thus, to get (2.18] we must show that in (2.21) equality is attained.

(2.21)

Step 3. It suffices to show that the set {¢': ¢ € D} is dense in L3(¢%) for all ¢ and v¥%-a.s.
all w. We first note that ¢ is absolutely continuous w.r.t. Lebesgue measure for all ¢ and
v9-a.s. all w (this follows from the fact that @ K W @ g, ¥7 < p and the marginals of W
are absolutely continuous w.r.t. Lebesgue measure). So, it is encugh to prove that if p is an
absolutely continuous probability measure on R, i.e., p(dz) = p(z)dz, then {¢': ¢ € D} is
dense in L3(p).

The proof is by contradiction. Suppose {¢' 1 ¢ € D} is not dense in L%(p). Then there
exists h € L2(p) such that

/qi'(:c)k(x)p(x)d:c =0 forevery ¢ € D. (2.22)

Since hp € LY(dz), it follows from Brezis (1983}, Lemma 8.1, that there exists C € R such
that Ap = C a.s. w.r.t. Lebesgue measure. If C = 0 then clearly i = 0 p-a.s. On the other
hand, if C # 0 then hp ¢ L'(dz).

Siep 4. To complete the proof of Theorem 3 we need to show that if #(gp 7)) < oo then

J{ge;7) < 00. We use Follmer (1986), Theorem 1.31, where it is observed that there exists a

. countable number of bounded continuous functions ()i from RXR to R and a countable
(dense) subset (Z;)i»; of [0,T] such that T1Q = g1y if and only if

[ M@z, iz =0 (=0,1.2,..) (2.23)

Now, by compactness and lower semicontinuity of H, for every' n > 0 there exists a Q,, such
that H{Q.|W ® ) < oo and @, minimizes H(Q}W ® p) under the constraint that {2.23)
holds for ¢ = 1,2,...,n. Since we have proved that i{qj0,11) = j(gp0,77) When j(go,1}) < o0,
it follows from (2.13) that

1(@x) = inf {i(por)) /p:(dx,du)¢>,~(z,u) =0 for i=1,..,n).  (220)
In particular, F{Q,) < (gjo,77)- By compactness of the level sets of 1, the sequence (@n)nz

has a limit point @ which, by lower semicontinuity of 1, satisfies 7{Q} < i{qjo17). Moreover,
(2.23) holds for Q. Hence, via (2.13) we get j{go ) < H(Q) < ilgp1)- |
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2.4 Proof of Théorem 4

The proof essentially amounts to applying the method developed by Bolthausen (1986) to
the random variables

Xi= b (i=1,...,N). (2.25)

fo.r)
Stnctly speaking, this method only applies to random variables ‘taking values in certain

"nice” Banach spaces, namely Banach spaces of type 2 (such as'LP-spaces with 2 < p < oo).
Unfortunately, M;(C[0,7] x R) is not in this class. However, this problem can be cir-
cumvented via a trick due to Ben Arous and Brunaud (1990), which consists of mapping
M;y(C[0,T] x R) into a Banach space of type 2. In this section we formally compute the
covariance operator according to Bolthausen’s recipe (Steps 1-3 below) and check its strict
positivity (I-II below), which is the key to having a central limit theorem. The change of
variable trick, which provides rigorous justification for what is done here and which requires
the use of Assumption (A2), will be given in Appendix B.

Step 1. We start by letting v, be the law of the M;(C[0, T] x ]R)-va.l.ued random variable
b(zpo,muw) — @ induced by Q.. For R € M;3(C[0,T]x R) and ¢ € C we write ¢(R) = [¢dR
and ¢* = ¢(Q.). The free covariance operator (I'(¢, %))s,pec, is defined by °

[(¢,¢) =[S(R)P(R)v.(dR)

= E%{[¢(zporp,w) — ¢*I[$(z 0,11, ) — ¥°1} (2.26)

= Cov q.(¢,9).

The meaning of this operator is that the field
(w177 / ¢dLy - ¢7)) sec, (2.27)

converges, under Q®" as N — oo, to a Gaussian field with covariance T'\(¢, ¢ ') This follows
from the standard central limit theorem for i.i.d. R-valued random varla.bles We remark
that

(¢, %) = D*H(Q.IW ® p), ¥, (2.28) |
as is easily proved from (1.9) via direct computation. Here the second derivative D?H is
defined in the usual directional sense (Fréchet derivative).

Step 2. For a given ¢ € Cy,let ¢ € Mo(C[0, T]x R) be the sxgned measure on C[O T x ]R
with zero total mass defined by

P / Ré(R)v.(dR), . (2.29)
i.e., for 4 C C[0,T] x R measurable,
#(A) = [ R(A)$(A)v.(dR)
= [ Qu(dzio 17, )B(e e (A) ~ Qu(AN$(a10.17,) — 6] (2.30)

Cov Q.(1A9¢)

where 14 is the characteristic function of A. Then Bolthausen’s theorem states that (modulo
the change of variable trick and some regularity assumptions on the function Q@ — F(Q) in
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{1.5), all to be discussed in Appendix B) the field in (2.27) converges, under Py as N — oo,
to a Gaussian field with covariance

A(¢,$) = (¢, $) = D?F(Q.)[4, 9] (2:31)
(recall Lemma 1), provided (b, $) > 0 for all ¢ such that & # 0.

Step 8. By combining (2.31) and (2.28) with (1.8). we get
Alg,¥) = D*(Q.)]$, B]. (232)

Thus the requirement A(¢,¢) > 0 can be interpreted as saying that the rate function
¢} — I(Q}) must have finite curvature at its unique minimum @,.

The rest of the proof consists of showing the following two facts. Let C(¢, ) be the
covariance defined in (1.33). Then

I C(69) = A, %) ” (233
II. C(¢,4) >0 forall ¢ suchthat ¢ # 0. :

Proof of 1.
For simplicity we assume ¢ = %. The proof for the general case follows the same argnment.
We first note that, by (2.30), ¢ € Q. and

@ _ .
g =t (2.34)
Using the expression (recall (1.14) and (2.6})
1 /T fq T
FQ) = -1 f (B“M4@(z,))2dt + / 5414 z,)dz, ) (2.35)
0 0
we get, by a lengthy but straightforward computation via (1.11),
DFQ)$ 9 = - E9 [Jly= iz, )t
= 2f Hdzo ) deo) Ji 574 2y (2.36)

+2f &(dx[oﬂ: dw} foT 7“”“'&($t)d$c

with
75(z) = [ By d) Pl - mwm). (2:37)

{The computation becomes elementary once we realize that, due to (2.34), the Itd-integrals
make sense under ¢.)
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Now let wi = 2~ [§ #“™+@+ds (which is a Brownian motion under Q¥). Then by {2.26),
(2.31), (2.34) and (2.36) we have

A4, ¢) = T(¢,4)~ DF(Q.). ¢

= E%{¢(zprw) - 7} + EQ‘{JB [y Td(z,)|2dz}
+2E9{[¢(z10,13,w) ~ #*] JT v (2,)dwe’}

= E¥{[¢(zppw) - ¢ }+E° {UTF v (2, dw ]2} (2.38)
+2E9 {[¢(zpp 1, w) ~ ¢ fo 7" é(z,)dwy)

= {[¢(x[m,w> 8+ I vz )dur] '}

= C (é, 4},
where in the second equality we have used the standard isometry property of integration
w.r.t. Brownian motion. * ]

Proof of 11
Suppose ¢ € Cy is such that C(¢4, qS) 0. It is not restrictive to assume ¢* = 0. We want to
show that ¢ = 0, i.e., ¢ = 0 Q,-a.5. Define the following o-field on C[0, 7] x R

Fi=o{z,: 05851} 08B (2.39)
with B denoting the Borel o-field on IR. Let
du(zioqw) = E9{|F}. {2.40)

According to (1.33-1.34), C{¢, ¢) = 0 implies

T N
Haprye) = [ ] [ Quldiory dmibluomy mF (v - s mfduy Qu-as.  (241)

Taking conditional expectation and using the fact that the integral in the r.h.s. of (2.41} is
an Fi-martingale, we get

$il(zo,,w) = /0! [/Q-(dsf{o,ﬂ,dw)éz(y{n,q,W)f"(ya - z,;w,ﬂ)]dw:’ Qu—~as  {242)

Thus, using again the isometry property of integration w.r.t. Brownian motion, we obtain

6elliaq,y = ” I [fQ (dyo, 11, 47 )8 Yo, ™) (80 = 43 "'}1‘1“""

E9-{ [3 [ Quldyory, dm)dulypo g, 7}y, - m,;w,w)]’éz} (2:43)

il

IA

L2, ||¢z”is{q )

which implies ¢ = 0 Q.-a.s. for t € [0,1/)) /' J|2,)- It is easy to see that this argument can be
repeated, and so we get ¢; = 0 Q.,-a.s. for ¢ € {0, T]. Since ¢r = ¢ the conclusion follows. W

*Let (we)egpo,r1 be a Brownian motion. Let (&)gio, be a stochastic process, adapted to the filtration
generated by {wi)igp 7y, such that E{fo £8dt) < oco. Then the following equality holds: E(fo &2dt)=

E(Yfy tdw]P).
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3 Spin-flip systems

All the results stated in Section 1, together with their proofs in Section 2, can be modified in
an essentially straightforward manner to cover the case of spin-flip systems. In this section
we formulate these modifications and indicate which parts of their proofs are not trivially
obtained {rom the corresponding parts for diffusions. We follow the same order as in Section
1.

3.1 The model
Let Hy: {=1,+1}¥ x RY — R be the N-particle Hamiltonian gi;/en by
1 X 4 o
Hpy(z,w) = 5w ); fwhw! )zt + gg(w‘)m*, (3.1)

where z = (z) 1 is the state variable and w = (W', is the medium variable. As for
diffusions, the w' are i.i.d. random variables with common law 1. Moreover, the functions
[, g are assumed to be bounded and continuous.

For given w, let g, = (z})}Y, be the N-spin system defined to be the Markov chain with
infinitesimal generator G, acting on functions ¢ : {1, +1}" — R as follows:

N
(Go)z) =3 cH(i, np(z’) ~ ¢la)]. - (3.2)
i=1

Here, z' is the state obtained from z by flipping the i-th spin z*, and

exp [{{ Hn(z.w) ~ Hn(z'w)}]

i

enli,z)
(3.3)

exp [ Tl g i) oo + gl

il

with f(w,x) = f(w,x)+ f(r,w). For every w, (3.2) has a reversible equilibrium measure
proportional to exp[~Hy{z,w)]. The initial condition g, is assumed to have product distri-
bution A®N, where A is any probability measure on {-1,+1}. The path space for a single
spin is D[0,7T], the space of right-continuous piecewise-constant functions from [0,77] to
{—1,+1}. This space has a topology and a Borel o-field, provided by the Skorohod metric;
see e.g. Ethier and Kurtz (1986), p. 117,

We denote by W8N the law of the N-spin system whose generator has the form (3.2)
with ¢ = [. All other notations introduced in Section 1 {P¥, Ly, Py,... etc.) are left
unchanged.

3.2 Empirical measure and large deviations
The analogues of Lemma 1 and Theorem 1 read as follows.
Lemma 3 For given w

d;;@_N (zjo.7)) = exp[N F(Ln(zp,7)s @)} + 0(1)] (3.4)
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where for ¢ € M(D[0,T]x R)

FQ) = [Qdspm,dw){ 7 de(1 - exp [ £ Q(dyom, dm) fw, M)zeye + 9(w)ai])
(3.5
+4 1 Qdyory dm) [f(w, ™) (aTYr = 2030) + 9(W)2T - 20)] }.

The proof of Lemma 3 relies on Girsanov’s formula for spin-flip systems, which is easily de-
rived from Girsanov’s formula for point processes (see Comets (1987) or Lipster and Shiryaev
{1988), Theorem 19.3).

Theorem 5 (Pn)ny1 satisfies the LDP with rate function
Q) = HQIW @ u) - F(Q). (3.6)

This follows from Lemma 3 as for diffusions. The technical difference is that the martingale
term in the Girsanov formula is not driven by a Brownian motion but by a compensated
Poisson process.

3.3 McKean-Vlasov equation
Given Q € My{(Dj0,T] x R) and w € R, let P“? be the law of the single-spin system
whose initial distribution is X and whose rate of flipping from z to —z at time { Is given by
M), where for g € M({~1,1} x R)

49(z) = exp [z(/q(dy,dw)f(w,n)y-}- g(w))]. (3.7}

In analogy with Lemma 2 and Corollary 1, the next facts are easily proved.

Lemma 4 For all Q

(PR
F(Q) = j Qldzo 1y, de) log -~ (s(0,17)- (38)
Corollary 3 For all ) .
1Q) = H(Q|P?), (3.9)
where P2 € M(D[0,T] % R) is defined by
PRUdz gy, dw) = pldw) P dzg ). (3.10)

The next theorem is the analogue of Theorem 2. Define @ as in (1.18).

Theorem 8 FEgquation (3.9) has a unique solution @}, which has the following properiies;
1, ¥9 = g,
2. Q¥ is the law of a Markov chain on {-1, +1} for p-a.s. all w.
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8 Letgf =11,Q¥. Then g solves the differential equation

B W e P
{ §§§i;£ g (te(0,ThweR) (3.11)

where L is the nonlinear operator
(£9¢")z) = ¢ (—2)e" ¥ (~2) - ;' (z)c" () (weR) (3.12)
and g, is defined by qu(z, dw) = p{dw)gi(z).

4. Under Q¥ the rate of flipping from z to —z al lime 1 for the Markov chain in 2. is
€,

The only essential difference with the proof of Theorem 2 is the part concerning the
uniqueness of the solution of {3.11), which is much easier here. Indeed, via the relation
¢ (~1+¢(+1)= 1 for all w and ¢, (3.11) can be rewritten as an equation for ¢{*(+1),
thought of as an element of L®(u). The coupled family of equations in (3.11), indexed by
w € IR, is an ordinary differential equation in the Banach space L%(u) driven by a locally
Lipschitz vector field. Uniqueness follows by classical arguments (Brezis (1983), Theorem
VIL3).

3.4 Empirical flow and large deviations

The definitions of £y and py are the same as in Section 1 (see $1.25) and (1.26)). Forp a
probability measure on {~1,4+1} x R and w € IR, define ¥y : R L RYE by

B (T P rmemE o)) e

where §(z) = §(—z) — 6(z). Defining A as in (1.28), we obtain the following analogue of
Theorem 3.

Theorem 7 (pyn )Ny satisfies the LDP with rale function

T q w ¢ 3¢ . W q H
itz :{ J§ i f o)V (B~ Lo+ HON) Haomed g,
oo otherwise.
{For the model without random field a different representation for i is given in Comets
(1987).)
The proof of Theorem 7 is not a trivial modification of the proof of Theorem 3. We
therefore give a sketch here (Steps 1-3 below).

Step 1. Fix a flow g 1) € A. Suppose that there exists a @ € My(D[0,T] x ) such
that J(Q) < oo and @ minimizes [ under the constraint I, = ¢, for t € [0,T}. Then, as for
diffusions, it can be shown that @* is Markovian for p almost all w (e.g. by using the notion
of h-process; see Follmer (1988}, Theorem 1.31). Let us denote by k(x) the flip rate of
this process at time ¢. Then from Girsanov’s formula for spin processes we get

Q) = f;ds{/yv(dw)[ 3 g(n) (e (2) - ke (a) + kY (s) log ""w(’”)—)]}. (3.15)
- =41

C“”‘"(I)
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Step 2. Write the identity
Tmi 6(2) (e9(2) - K(2) + k¥ (2)log —%)

= supgeqi-t.a1 omta 7(2) [i(2) (K2 (2) = ¢ (2)) = e22(2) () ~ 8(2) - 1)],
(3.16)
which is easily checked by noting that the supremum is attained at § = 4, given by 6,(z) =
log(ky(z)/c*(z)). We claim that the r.h.s. of (3.16) equals

X @i )(k¢(2) — e*n(2)) - w(z) O i) - 1)) @an

SGR{ 1 1}

_{which is the same as the r.h.s. of (3.16) but with & replaced by §). This will be shown
below. From (3.17), together with the identities '

Tomt1 @(@(@)k(2) - o (2)] = Toop (@)@ (e)(ke () - evte(z)]”

= Er::{:l 6(3)1%4‘:}('@) - ,C""q;"(.'t)],

we get I{Q) = i{qpo,77)- The second equality in (3.18) uses (3.11) and (3. 12} with k¥ replac-
xng ¢“%, The proof can now be completed as for Theorem 3.

(3.18)

Step 8. We still have to show that (3.16) equals (3.17), which amounts to verifying that
6. = 4 for some ¥ € RI"1+1}, This is equivalent to saying that Yees1 bu{x) =0o0r

E(z) = ¢ (z)e™®  forsome X € R. (3.19)

There are various ways of checking (3.19). The most direct and elementary way consists of
looking for the minimum of (3.15) (w.r.t. the rates k¥'(z)) under the constraint

dgi(z
%D _ g aphy(~2) - ar(@hke(=) (e 0.1, (3.20)
The classical method of Lagrange ﬁmltipliers shows that the & realizing the minimum
must have the form (3.19) (we already know that the minimum exists). The details are
straightforward.

Theorem 7 shows that the large deviations fot the empirical flow are controlled by the
positive convex functions ¥y, These are not norms squared, unlike for diffusions. To ap-
preciate the analogy between Theorem 3 and Theorem 7, note that we could have used in
Theorem 3 the following expression equivalent to (1.27) (Dawson and Girtner (1987)):

. . i
71 = sup {¢0". ) = 5tp 4™} (3.21)

3.5 Central limit theorem

The CLT for spin systems will be proved under the following assumption which, for technical
reasons that will be explained in Appendix B, is much stronger than the corresponding
Assumption {A2) for diffusions:
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{A3) There exist a finite set X C R and functions a;,5; : R — X (i = 1,...,p) such that
»
Hw,7) = 3~ ai(w)Bi(x). (3.22)
=1

We note that Assumption (A3) is satisfied in two relevant cases: (i) when f is constant, i.e.,
the medium does not affect the interaction (e.g. the Curie-Weiss model in Section 4); (ii)
when the support of the medium law # is finite.

Yor wig4) € D0, T], we let Ji{xg 1) be the number of jumps of the path i ¢y up to and
including time ¢,

Theorem 8 Let Gy be the set of bounded continuous functions from D0, T x il to R. As

N — o0 the field
(N‘”[/qﬁdbrv ‘/“MQ*DML (3.23)

converges under Py to a Gaussian field with covariance
Clgyib) = /Q*(‘l-’ﬂ[o,'r],'lw)(ﬁ[Q»](z[u,'r],w)d’[Q-](-’"[u,'r],W)= (3.24)

where
N eprw) = dleprpw) - ¢
) (3.25)
+§F ( J Quldyge 1y dm)ldlygo, a9 7) — ¢ Jwe S (w, ﬂ))'!'w?’

with ¢* = [ ¢dQ. (similarly for ¢) and w@ = Jdlzgp) - [EenttQegy Vs (which is u
martingale under Q7).

The part of the proof of the CLT for diffusions, contained in Scetion 2.1, extends readily
to spin systems. The part concerning the change of variable trick will he sketched at the
end of Appendix B,

4 Two applications

In thig section we describe two examples of systemns where the randomm medium controls
the phase diagram. The phases of the system correspond to the statinnary solutions of the
MeKean-Viasov equation that are stable nnder small perturbations. ¢ We shall assume that
the law g of the random medium components is symmetric. More in particular, we shall
consider the following two subcases:

Case L pldw) = ¢(w)dw with $(w) = ¢{—w) and w — $(w) non-increasing on M*.
Case IL o= 3(&, + 6_,) with n > 0. .

*Thermodynamically this includes both the stable and the metastable phases.
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4.1 Curie-Weiss model .

The Curie-Weiss model in random magnetic field is the spin-flip system driven by the Hamil-
tonian (3.1) with

.y

~fw {w,m€R)

flw,n}
gl{w)

where § € (0,00} is the inverse temperature. With this choice, (3.1-3.3) describe a system
of mean-field ferromagnetically coupled spins, each with its own random magnetic field and
subject to Glauber dynamics. The two terms in the Hamiltonian have opposite effects: f
tends to align the spins, g tends to point each spin in the direction of its local field.

[l

(4.1)

The order parameter of the system is the magnetization

mw) = Tuaq vg¥lx) . .
My Sgomdwipldw), .

i

where ¢*(x) is the probability that a typical spin is in state z ab time ¢ in the medinon
w (in the McKean-Viasov limit). Written in terms of (1.2}, the McKean-Viasov cquation
(3.11-3.12) reads

I

é%m‘(m) (1 — my(w)yexp[Blmy + w)] — (1 + nedw)yexp[—p#{ny + w)] (13)

= 2sinh{f{m, + w)] ~ 2my{w) cosh{B(me + w)].
The stationary solutions of (4.3) have been investigated by Salinas and Wrezinski { 1985).
1. Stationary solution(s). Any stalionary solution of (1.3} is of the form
miw) = tanh[H{m + w)], (-+.4)

where 21 must satisfy the consistency relation {see (4.2))

™ = Ty(m) (15)
Tp(m) = [y tanh{B(m + «)]p{dw). -
It follows from (4.5) that
Pp(do0) = 1
' (4.6)

) = B [y P I,;(Mw)] aldw) > 0.
Since p is symmetric, we have Iz(0) = 0 for all 3, so that {4.5) always has the paramagnetic

solution m = 0. To investigate under what couditions ferromagnetic solutious m > 0 may
occur, we distinguish between the two subcases I and [L

Case J. Ty now has the following property:

Fact 1 For every 3: sign I'g(imn) = —sign m.
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Proof. Compute, using the symmetry of ¢,

1i

[‘;;(m) 8 .}R 5% (casb!{ﬁl(m+w)))¢(w)@

]

-8 fr G ) (@7

1
-8 IOOO (coah"’[ﬂ(erw)] - cosh"'(ﬁl(m-w)))dé(w)'

In the last integral, the difference between brackets has the oppsite sign as m for all w > 0,
because z — 1/cosh®(z) is symmetric and unimodal. By the unimodality of ¢, we have
d¢{w) £ 0 and the claim follows. [}

Thus, by Fact 1, if .
T =8 [ S > 1 (4.8)

then (4.5) has ezactly one ferromagnetic solution m = m*(8) > 0.
Next we investigate (4.8).

Fact 2 (a) There ezists 1 < f, = f.(¢) < oo such that ({.8} holds iff 8 > f..
(5) B(#) < o0 i 4(0) > }. \

Proof. (a) To prove the existence of a unique critical value f,, it suffices to show thai
B — T4(0) is non-decreasing. This is done as follows. Compute

a
53160 = [ hp(w)é(w)do (4.9)

where

1
halw) = ) [1 - 26w tanh(fw)] (4.10)

Since hg and ¢ are symmetric, we have
a .., e
53TH0) =2 fa h(w)(w)dw. (4.11)

Next, let w* be the unique positive solution of the equation 2fw tanh{fw) = 1. Then hg(w)
changes from positive to negative as w increases through w*. Hence, by the unimodality of
&,
2 hp(@)plw)d > ()| 5 hp(w)de + (32 holw)do]
(4.12)
= $w) f57 hp(w)dw.

But Ag{w) = {8/8w)|w/ cosh?*(Bw}], which makes the last integral equal to zero. This proves
the existence of 8. The inequality 5, > 1 follows from I'4(0) < 4.
{b) Simply note that

1
—oa JR coshz(z}

Jim T5(0) = lim ( ) dz = 24(0). (4.13)
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Facts 1 - 2 show that in the unimodal case the situation is qualitatively similar to the
standard Curie-Weiss model in zero magnetic field (for which I's(0) = 8 and hence g, = 1).
The only difference is that possibly 8. = oo, which occurs when the peak of ¢ is sufficiently
low. This corresponds to large randomness, which destroys the spin ordering at arbitrarily
low temperature.

Case II. In the bimodal case the situation is more complex. If

B
r30) = —5—— >
5(0) cosh?(B1)
then obviously there is at least one ferromagnetic solution. However, Fact 1 is no longer
true in general and therefore there may be a ferromagnetic solution even when (4.14) fails.
In fact, then there must be at least two ferromaguetic solutions (corresponding to the curve
m — I'g(m) crossing the diagonal first from below and then from above).

The regime defined by (4.14) lies under the curve

1, (4.14)

B —n(p)= —arccosh (VB) (B € [1,00)). ‘ (4.15)

This curve is unimodal, with endpoints n(1) = n(oo) = 0, maximum at $y= 1.72..., and
maximal value ;= n(8:)=1/2v/8:1(51 — 1)=0.45.

An idea of when two ferromagnetic solutions occur may be obtained from the small-m
expansion

Is(m) = —ﬂm + ﬂ3m3 + O(m®) with ¢ = cosh{fy). (4.16)

On the curve defined by (4.15) (i.e., ¢? = ,B), this expansion reduces to I'g(m)= m + §( 2[} -
1)m3+0(m?®), from which we see that B2 = 3 is a critical value. Indeed, if 8 > f;, then as 5
increases through 7(8) (i.e., 3/c* decreases through 1) at least two ferromagnetic solutions
my > my > 0 occur, because m — I'g(m) is convex for small m.

The full phase diagram is drawn in Figure 1, which is obtained numerically. There are
three phases, corresponding to 0, 1 resp. 2 ferromagnetic solutions. The lower separation
line is the curve in (4.15). The upper separation line corresponds to the choice of parameters
where there exists m > 0 such that Tg(m) = m,[3(m) = 1. (The latter curve moves up
to 1 because I'g(m) tends to the step function at m = 5 as § — o.) Note that the two

“ curves coincide for 8 € [1, B;] and separate at the "tricritical point” (82,12) with 52 = 5(8;).
The picture shows that a phase transition occurs at some 8, = f.() < o0 iff 5 € (0 1).
The phase transitjon is second order when 7 € (0,75] and first order when 5 € (72,1) (i.e.,
the ferromagnetic solution appears discontinuously). Interestmgly, if n€ (m2,m), then as g8
increases we get phases 0, 2, 1 and again 2. 7

2. Linear stability. A stationary solution correspondé to a phase of the system iff it
is stable under small perturbations. To check stability we linearize the McKean-Vlasov
equation (4.3) about its stationary solutions, as follows.

"Inside phase 2 there is a phase coexistence line (not drawn), above which the paramagnetic solution is
stable and the ferromagnetic solution is metastable, and below which the reverse is true. See Salinas and
Wrezinski (1985) and recall footnote 6.
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Rewrite (4.3) as

'g}mt(w) = 0, (mi(w)). (4.17)

Let m{-) be given by (4.4) and {4.5). Then the Fréchet derivative of @, at m{-} is given by

Da(m(-}in(-)]

¢

= 25n(cosh[/8(m +w)] - m(-) sinh{B(m + w)]) - 2n{-ycosh[f(m + w)] (4.18)

= Qﬂnm ~ 2n{-) cosh[B(m + w)],

where n = [ n{w)p(dw) and in the last equation we use (4.4). Linear stability means that
the spectrum of the operator DO, (m(-}} is contained in {z € € : Re z < 0}. We shall see
that only the discrete part of the spectrum is relevant for the stability issue.

Fact 3 (a) The discrete part of the spectrum consists of a single X € R given by the relation

8 :
R cosh[B(m + w)}{cosh{B(m + w)] + 1A)

pld) = 1, (4.19)

which satisfies A < 0 iff Tp(m) < 1 (recail (4.6)).
(b) If Th(m) < 1, then the continuous part of the spectrum is conlained in (A € €' : Re A <
0}.

Proof. (a) Elementary. The relation in {4.19) corresponds to the case n % 0. The case
n = 0 requires that n{w}{2 cosh[f(m + w)] + A} = 0 g-a.s. This can only occur when m = 0
and g is of the type in Case II. But then A = ~2cosh{/in) < 0. The imaginary part of the
integrand in (4.18) has the opposite sign as hn A. This implies that X € R, The value of A
is unique because the integrand in (4.19) is strictly decreasing in A,

(b} Elementary. Check that if Re A > 0, then DO, (m(-)) - A (I =identity) is invertible. W

From Fact 3 we conclude:

Case I. The paramagnetic solution is linearly stable (A < 0} when it is unique and not
critical, neutrally stable (A = G} when it is critical, and unstable (A > 0) when it is not
unigque. The ferromagnetic solution is linearly stable ifl T‘;;(vn‘({i)) < 1, which clearly is true
whenever it exists, because of {4.5) and (4.6).

Case II. The paramagnetic solution is linearly stable in phases 0 and 2, unstable in phase
1, and neutrally stable on the boundaries. In phase 2 a stable paramagnetic and a stable
subcritical ferromagnetic solution coexist (together with an unstable ferromagnetic solution).

4.2 Kuramoto model

The Kuramoto model with random frequencies is the system of diffusions on the unit circle
driven by the Hamiltonian in (1.1} with

f(ziw,m)
g(z;w)

I n

- K cosz
i (z €[0,2n);w,7 € R) (4.20)
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where K € (0,00} is the coupling strength. ® With this choice, (1.1-1.2) describe a sys-
tem of mean-field nonlinearly coupled oscillators, each with its own frequency and external
white noise. The two terms in the Hamiltonian have opposite effects: f tends to point the
oscillators in the same direction, g tends to make each oscillator rotate at its local frequency.

"Let ¢(z) denote the probability density that a typical oscillator has angle z at time ¢
in the medium w (in the McKean-Vlasov limit}, normalized as

2n . .
/ ¢ (z)dz =1 forall t,w. {1.21)
0
Then the appropriate order parameter of the system is the complex number
N 27 )
e = /R p(dw) ] dz ¢ (). (4.22)
o

Here r; > 0 measures the phase coherence and ¢y € [0, 27) measures the average phase of
the oscillators. In terms of these quantities the McKean-Vlasov equation (1.20-1.21) reads

a 1 9? D e w ,

pri v e Lt 73 {4.23)
with g% the drift given by (1.23})

AUz} = Krsin(ty — z) + w. (4.24)

The stationary solutions of (4.23) and (4.24) and their stability properties have been in-
vestigated by Strogatz and Mirollo (1990,1991) and Bonilla, Neu and Spigler (1992). We
sumimarize the results here.

1. Stationary solution(s). Abbreviate
B (z) = 2/:@ A y)dy = 2K rcos(¢p — z) + 2wa. (4.25)
Any stationary solution of (4.23) is of the form
¢ (z) = -l—esw'q(x’ [2" dy e~ Bzt (4.26)
PA o

where Z¥ is the normalizing constant (see (4.21)) and (r,¥) must satisfy the cousistency
relation (see {4.22))

dz [Z" dy cosz exp[B4(z) ~ B4z + y)]

T (4.27
o dz 3" dy exp[Ba(z) - B¥(z +y)] )

) 2
rcoszb:/ﬁy(dw)fﬁ

Solutions with r = 0 are called incoherent, those with r > 0 (partially) synchronized. It
follows from (4.25-4.26) that the only solution with r = 0 is the uniform solution

Wiy = b .
¢(z) = n (4.28)

$The state variable z, which was originally R-valued, is wrapped around the unit circle. See footnote 1.
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and that this solution exists for all choices of K and u.

Case 1. Define

14 4w?
Then the incoherent solution is the only solution when K < K, while a synchronized so-

lution bifurcates off as K increases through K.. Here the critical value K, comes from the
fact that for small r the r.hus. of (4.27) behaves like ~ K'r/K, (pick ¢ = 0).

Ke=| fB 9(w) dw] (4.29)

Case II. The phase diagram is drawn in Figure 2. There are three phases, numbered 0, 1
resp. 2, counting the number of synchronized solutions. The lower curve is

K = (k)= %\/Tc‘-‘ T (KeLK)) (4.30)

and terminates at the point (K1, m)= (2, %j {Here Ky = 2 turns out o be a boundary value
above which non-stationary periodic solutions occur, as will be scen below.) The upper curve
is obtained numerically. The two curves coincide for K € [1, K] with K = % and scparate
afterwards. The qualitative features of the phase diagram can be seen from the expansion
for small r (and ¢ = 0) that is obtained by inserting {(4.27) into (4.26):

.,
!

Kr[f - 1K 4+ 0(r%)],

=
k23
}

1+ 452, {4.31)
" 1-87%
¢ = -+ (1+4n%)
We see that C changes sign as 7 increases through the value m= (K 7)= 1/2V3.

2. Linear stability, We consider r = 0 and r > 0 separately.
?

2.a. r.=0 The stability of the incoherent solution was studied by Strogatz and Mirollo
(1990,1991). They showed that if (4.23) is abbreviated as
9 e = oo™ 4.32
88?{ =eiq ) ( M }

then DO,{(g¥): L1 (p) - LY{(p) has continuous spectrum

| S
{A eC: A= -5 W {we supp(/z))} (4.33)
and discrete spectrum given by the relation
. p{dw)
j! ——t e = ], 4.34
‘]n1+2,\+2m (4:34)

Thus, the continuous spectrum does not contribute to the stability issue, which therefore all
depends on (4.34). i
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Equations {4.33-4.34) in fact require no assumptions on p. For g symmetric, as was
assumed, (4.34) reduces to

. 2241
K e =1, . I
<, @ r D am M) =1 (4.35)
Again we distinguish between Case.[ and Case II, as in Section 4.1.

Case 1. It can be shown that the unimodality of ¢ implies that (4.35) has at most one
solution A € R, satisfying

K <K;: no XA exists
Kr<K<E.: ~L<ico ..
K=K, A=0 (1-36)
K >K: A>0
with K. given by (4.29) and
K = ~—2 4.47
c“ﬁ.d’(o) {(4.97)

(obtained by letting A | —} in (4.35)). Hence the incoherent solution is linearly stable if
K < K., neutrally stable if K = K, and unstable in & > K.

Case I1. Now (4.35) reduces to K (1 + 2X)/[{{1 + 20)? + 47%] = 1, which has two solutions

1K1
=2t -4l £ VK2~ 1672 (4.38)

Thus we find that

K<1: Re At <0 forall 5
1< A <2 Re AP <0iff K < K, = 1+4y9? {4.39)
K>2: Re A% > 0 for all .

Thus the incoherent solution is linearly stable when & < Ky A A, neutrally stable when
K = Ky A K, and unstable when & > A’y A K.

2.b. > 0. The stability of synchronized states is less well understood.

Case 1. A (unique) synchronized state bifurcates off as A increases through A, and this
state is linearly stable.

Case II. The phase diagram is more complex. Bonilla, Neu and Spigler {1992) heuristi-
cally argue the following:

(1) 7 € (0,%2): The same bifurcation occurs as in Case I, namely, as K increases through
the value K, = 1+ 47? one stable synchronized state appears.

(2) n € (g2, m): There exists 1 < K? < K. such that for & € (K}, ) there is a stable
subcritical synchronized state that coexists with the stable incoherent state (there is also
an unstable synchronized state}. As A increases through the value A the incoherent state
becomes unstable and the synchronized state survives alone.
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(3) 7 € {m,00): As K increases through the value Ky = 2 the incoherent state becomes un-
stable and a stable fime periodic state bifurcates off. This is a state where ry, ¥; are periodic
in lime. :

Appendix A

We prove here that equation (1.17) has a unique solution. We assume (A1): the initial mea-
sure X has a density ¢ w.r.t. Lebesgue measure satisfying ¢ € L}(dz)NL?(dz) for some p > 1.

Step 1: A priori estimate.
We first prove that if Q. is a solution of (1.17) then there are constants A > 0 and 0 La<

1/2 such that
g(z) < {-:— forevery z,w€ R and ¢ >0, (A1)

where ¢ = I1,Q¥. To see this, observe that Q. = P2 gives

dQe  dpws-
w S Taw (A-2)
The process having law P“9~ is a diffusion whose drift g M@+ s the bounded derivative of a
bounded function (recall (1.11-1.12)). By the usual argument involving Girsanov’s formula
and Ité’s rule, one sees that there is a constant B > 0 such that the Radon-Nikodym

derivative in (A.2) is bounded by B uniformly in w. It follows that

¢’(z) £ Blz) (t>0), (A.3)
where ¢, = I,W, ie, ‘
iz = o= [ HE oy, (A.4)
By Hélder's inequality we have
1 — H ¢
o) $ | [ HE ) ol = ol (A.5)

with € > 0 some constant and 1/p+ 1/g = 1. Now (A.1) follows from (A.3) and (A.5).

Step 2: Uniqueness.
Let @ and @ be two solutions of (17}, with ¢, § denoting the corresponding marginals. As
mentioned in footnote 3, these are both classical solutions of the McKean-Vlasov equation
(1.20). Define, for t > 0,

Fe(z) = g?(z) - 47 (o). (A.6)

The following relation is easily checked (see (1.11) and (1.20-1.21}):

AFy  18%F¥ Ly
_5? T 2022 Bz (A7)

where .
() = Fe(2) [dyp(m)a()(f(y - 5i0,7) + /(i) A8)
+ §¢'(2) [ dy pldm)FT () (g ~ 23w, 1) + ¢'(m3w)).
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Now let G(z,1) be the fundamental solution of the heat equation, i.e.,

Gla,t) = ——e 5. (A.9)

Then (A.7) yields

I

FPz) = [jdsfdyG(z—y,t—s)EL2(y)

(A.10)

il

- fyds [y Le(9)§E(z - y,1 - 8),

where the last integration by parts is justified since, forw € R and t > 0, L¥(z) is a bounded
function of z. Now define

HY = /|F{“(:p)|dz. (A.11)
By substituting (A.1) into (A.8), one obtains the following estimate:
w A w B # .
/ |L(e)dz < SHE + / u(dn)HY for all w and ¢ (A.12)

with 4 and B suitable constants independent of t. Moreover, by direct computation one
sees that there is a constant K such that

/]%%(x A s)lda: < % for all y. {A.13)

Putting together {A.10-A.13) and defining H, = [ u{dw)H{, we get
t 1
< L te0,T)), )
e cfo Fr=s et (t€0.T)) (A.14)

with C some constant independent of {. Below we shall show that (A.14) implies H; = 0.
We complete the proof by showing how the latter implies ¢ = §. Indeed, if H; = 0 then
{A.6) and (A.11) give ¢f(z) = §¢(z) for all ¢ and for almost every w,z. Q and § being
solutions of (1.17), this in turn implies that for almost every w € R the diffusions with laws
Qv and * have the same bounded and continuous drift and the same initial distribution.
By standard uniqueness results for stochastic differential equations, it follows that Q¥ = Q¥
w-a.s., and 8o Q = 4.

Step 3: Hy = 0.
Let us define
|Hle = sup H,. (A.15)
s€f0,]
By (A.14) .
ds
< ealu— all L. Al
Bl [ e forall s€ (0. (A.16)

Now, because a < % we have

t ds
i g | X A7
21—1—%/0 &%/t - § 0 ( )
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This, together with (A.16), implies that there exists t > 0 such that H; = 0 for t € [0,¢].
Using (A.14) again we obtain

C [t ds
< — —_— .
H’ = o - /t — _8 (A 18)
It is trivial to see that
. t ds
lim =0, ‘ (A.19)

1=t Jp ft— 8

and so there must exist t” > 0 such that H, = 0 also for ¢ € [t', + ¢"]. This argument can
be repeated to show that H, = 0 for t € [t' + t",t' + 2t"] and so on. Hence H, = 0.

We remark that a < 1/2in (A.1) is a consequence of our assumption (A1) on the initial
condition A. By removing that assumption we would get @ = 1/2 and the proof would not
work.

Appendix B

The proof of Theorem 4 will be completed here, i.e., we carry out the change of variable
trick which provides the rigorous justification for the formal computation in Section 2.4. We
first give an outline of the proof, which is based on Claims 1-4 below. The proof of these
claims comes later. At the end of this Appendix we show what modifications are needed for
spin-flip systems.

Let M(C[0,T] x IR) be the vector space of signed measures on C[0,T] x IR, provided
with the weak topology.

Claim 1. There ezists a Banach space (B, || - ||), a continuous linear map T : M(C[0,T] x
R) — B, and a continuous map ¥ : B — R that is bounded on T(M;(C[0,T] x R)) and
infinitely Fréchet differentiable, such that

dPy

s (@o.my) = explN (T (L)) (B.1)

Moreover, Range(T*) C Cy, where T* : B* — (M(C[0,T] x R))* is the adjoint map of T.

Next, let

Yi=T(6m wy) (i=1,...,N) (B.2)

,
Flo,T)"

and denote by p;i; and wy the laws of Y = (¥},..., Yy) induced by Py resp. W&V @ OV,
Then it follows from (B.1) that

d;
T (Y) = exp[N ¥(M)] (B.3)
wN
with My = N'vN y,.
As we shall see later, the Banach space (B, || - ||) in Claim 1 satisfies the requirements

of Bolthausen’s theorem (see (B.11) below), which can therefore be applied to the random
variables Y; with the help of (B.3). Moreover, by the Contraction Principle, the py-law of
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Mp satisfies the LDP with rate function J(Y) = infy(g)=y [{Q), which has a unique zero
atyY, = T(Q,).

To compute the covariance of the corresponding CLT, we begin by defining a probability
measure p on B by putting

(Y) = exp[D‘P(Y ik gl (13.4)

where w is the law of T(é(,qo.ﬂ,w)) induced by W @ u, D is the Frechet derivative, and Z is
the normalizing constant.

Claim 2. The measure p is the low of T(6($|o,n-w)) induced by Q,.

Next, let p. = p—Y.. For b,k € B* define

I pldY)A(YIR(Y)
SpldY)Yh(Y) €B.

i

(B, k)

. ;
i (B.5)

4

Claim 3. Let T’ be as in (2.28). The following identities hold:

]

(k. k) = D(T°h,Tk) = D*H(Q.T"h,T+h]
k T(T*h) (B.6)
DU(Y)RE = DUR(QITh. TR

Thus, by what was shown in Section 2.4 (proof of I}, we have y{A, h) - DAYk, >0
unless A = 0. It follows from Bolthausen’s theorem that, under the py-law as N — oo, the
field

i L e -
(VinMy - ), . = (v} /(1 WLy - Q.), . (B.7)

converges weakly to a Gaussian field with covariance (recall (2.38]))
v(h, k) ~ D*U(Y. )[R K] = DU(Q) Tk, T*h} = C(T*h, Tk). (B.3)

To complete the proof of Theorem 4 it therefore suffices to show the following fact.

Claim 4. For given ¢1,..., ¢, € G5, n € N, the Banach space (B, ]} - ||} and the map T can
be constructed in such a way that {¢1,...,¢n} C Range(T™).

We next proceed with the proof of Claims 1-4.

Proof of Claims 1 and 4.
By redefining the functions «;, §; in Assumption (A2), it is clear that instead of (1.31} we
may also write

- fly - tyw,m) - glziw) = 3 cion(z,w)Bly, ) {B.9)

fea)
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(where (@, Bi, ¢i)iyo have the properties described in Assumption (A2)). Substituting (B.9)
into (1.5) we get

F(Q) = =} 7 dt| i ciei(f Qs dwlal(zew)al(ze,w)
(1 Qdyp1,dm)Bwes ™)) ( § Qdyo 71, d)By(wi, 7))
+ 5s i [ Qdzio 1y, dwdaf(z, ) ( f dyo . dm¥Bi(wom))]  (B.10)
+3 Tiei J Qo ry, dw)ei(zr,w)) (1 Qdypy, dm)Bilur, 7))
-3 il S Qo dw)eri(z0,)) { ] QUdyoy, d7)Bi{v0, 7))

Next, denote by ¢ the finite measure on IN given by ¢({i}) = ¢;. We introduce the following
Banach spaces:

B = I¥N*x[0,7),c8%®dt)
By = LYW x[0,T],c®dt) (B.11)
By = LHNU{~1,-2,...,~n}lc+ 614 +6..) )
B = (.81}3 X (32)2 X (83)4.
The norm || - |} on B will be chosen to be the supremum of the norms on the factors. An
element Y € B will be written
Y = (Y,‘,Y,z,YE,Y;,Yf,Ya‘,Ya’,)/g,Y;). (8'12)

The map T : M(C[0,T] x R) ~+ B is now defined as follows: For {,5 € N and ¢ € [0, 7]

T(Q)i(zs]s t) = fQ(dI[G,Tjid“’)ai'(xhw)a;'(mhw)
T(Q)?{‘v}v t) = .{Q(dz[ﬂ,ﬂv d"‘))ﬁi(zhw)
T(QX(.5.1) = [Qdoy gy, dw)By(zs,w) : {B.13)
T@NGEY = [Qdzpy,dwlaf{z,w)
T(QREY = [Qdzg . dw)bilzi,w),
forie N
T@A() = [ Qs dw)ai(er,w) - |
QR = [QUro, do)filar,w) (B.14)
T(Q3() = [Qdepry dw)a(zo,w) )
T = [Q(dzp 1y dw)Bi(zo,w),
fori=1,2,....nand k£ =1,2,3,4
(-1} = [Qldzpry, dw)di(zo ) w). (B.15)

A straightforward computation (which we omit) allows us to get an explicit (but rather long)
formula for the operator T* : B* = (B P x (83)% x (B3)* — (M(C[0, T] x R))*, from which
it easily follows that Range(T*) C (. Moreover, we see from (B.15) that

¢ = 7°(0,0,0,0,0,0,0,0,1_5), (B.16)

which proves Claim 4.
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For Y € B define

vy) = "% fl\i—’x[o,ﬂ(dcm ® dY/YPY?
~3 Inxponfde ® dt)Y V7 (B.17)
+% Srade(YYE - YY),

Clearly, ¥ is continuous and infinitely Fréchet differentiable. Moreover, ¥ is bounded
on T(My(C[0,T] x R}) because the components of T(Q) are bounded uniformly in @ €
M(C[0,T] x R). Finally, (B.10), (B.13), (B.14) and (B.15) imply that F{@) = ¥(T(Q))
(note that F extends to all M{C[0,7]x R)). This proves Claim 1. ® u

Proof of Claim 2. The main step in the proof is the relation
dQ.
DF(Q’)[‘&(zwﬂ.w)] = 10g W(?}[{)‘ﬂ,w) for "V @y -a.8. an (x{u‘j‘],w). (B.IS)

This relation is easily obtained from (1.5) by direct computation using Girsanov formula.
We omit the details.

By (B.18) and the fact that 7 is linear and continuous, we have
DU(Y )T (bzpy gy}l = DF(Q) bz 13,00} (B.19)

Thus, for any p: B — R measurable and bounded, (B.4) gives

JRAY)R(Y) = § [w(d¥)p(Y)exp[ D¥(Y.)Y]]
=} [(W ® p)dap1), d)p(T(B(ag 1)) s (Tl0Tp @) (B.20)
= [ Qu(dzy, dw)p(T (i 1y)))-
Letting p=1, weget Z = 1.. ]

Proof of Claim 3.
Using Claim 2 and the definition of adjoint operator, we have

(b k) = [pdYI(Y = Y)k(Y - ¥.)
= J Quldzoy, V(T bz ) = QT (Erg 1y — Q)
= [ Quldzp1y, d)[T"h(zpp 77, w) — E9(TH)| [T"k(zpo 77, ) — E9+(17k)]

= I(T*h,T*k). (
: B.21)

®As we mentioned earlier, Bolthausen’s theorem can be used with no further assumption in Banach spaces
of type 2 (see Ben Arous and Brunaud (1990) for the precise definition). Now, [P-spaces with 2 € p <
are of type 2, and finite products of Banach spaces of type 2 are again of type 2. Thus our {8,]] - ||} defined
in {B.11) is a Banach space of type 2.
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Similarly,

ho= [pdY)(Y - YOh(Y = ¥*)

= fQ‘(dZIO,T]a dw)T(éfx(n,n,w) - Q‘)h(i‘(é(:c[g_n‘w) - Q*))
{B.22)
= T(SQu(dopo.1y, dw)(B(ng i) = Q)T A(E(zy 1) = Q-))

= 7(Fh),

where we again use the notation (T*R)Q) for [(T"h)dQ. The third identity in (B.6) follows
{rom the second and the fact that 7 is linear and continuous. [ ]

We finally sketch the corresponding change of variable trick for spin-flip systems. We
only show the key part of the contruction, which consists of defining a linear cortinuous
map T from M(D[0,T] x R} to a Banach space (B, || - ||} of type 2 and a smooth function
¥ : B — R such that F = ¥ o T. The rest of the proof is a simple modification of what we
have done above for diffusions.

In order to avoid unnecessary complications, we shall explain the construction for the
function F’ defined by

.
F(Q) = [ Qs do) [ diexel [ Qo dm) (o, M. (B.23)

The extension of our construction from F' to F {defined in (3.5)) is straightforward.

In the above argument for diffusions, we were able to map M(C’[O,T] xIR) to a Banach
space (B, - ||} that is a finite product of LP-spaces with p > 2 and therefore is 2 Banach
space of type 2. In doing so, we used the fact that the function F(Q)in (1.5} is "polynomial”
in Q (i.e., F(A@), A € R, is a polynomial in A). Such a property holds neither for ¥ in (3.5)
nor for F' in (B.23). lere is where Assumption (A3) plays a crucial rofe. Since the function
{~1,+1} x R — R given by (z,w) + za;(w) assumes only finitely values, we can find a
g € IN and smooth functions ¢;,¢;, j=1,...,q,such that forall z¢ R

9 . .
el = N i radw))ei(z) (i=1,...,p) (B.24)

i=1

Substituting (3.22] into (B.23) and using {B.24), we find

"

Q) Jo dt § Qtdzpo 7y, d) Ty ey ¥zl S QUdypo 77, dm )y Bilm)

It

T8 iyt do @] [Ty £ QUtzpo 7y, deo)¥ (ecri(w))]
. Y
[T, 44,/ QUdgioy, dm)usitn))] }-
] (B.25)
Note that the arguments of the functions ¢} in (B.25) are bounded uniformly in ¢, Thus it
is not restrictive to assume these functions and all their derivatives to be bounded. We now

define Y
B=(r)" o (LP“)”. (B.26)
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The norm || - || on B is taken to be the supremum of the norms on the factors. An element
f € B is written in the form

U (G RC ) . (B.27)
The maps T : M{D[0,T]x R) — B and ¥ : B — R are defined by
T@P1) = [QUrpmd) [Ty ¥i(zaiw))  (F€ {10 g} 7))
QYW = [QUyomdub(m) (e {Lop)) (B.28)
U = 50 a0, 6.020).

1t is easily seen that T is linear and continuous. Moreover, the smoothness of ¥ follows from
the fact that the functions ¢} and their derivatives are Lipschitz continuous. Finally, it is
clear that F' = ¥ o T and that B, being a finite product of LP-spaces, is of type 2.
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Figure 1: Phase diagram for the Curie- Weiss model

By o= 1.72... g = 1/2yB1(5 — 1)
B =} Ny = ﬂl) arccosh (V3)
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Figure 2: Phase diagram for the Kuramoto model
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