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Abstract 

We apply large deviation theory to particle systems with a random mean-field in
teraction in the McKean-Vla.sov limit. In particular, we describe large deviations and 
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(random oscillators) and the Curie-Weiss model (random magnets). 
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0 Introduction 

In this paper, we consider interacting diffusions and interacting spin·flip systems with a 
mean-field Hamiltonian that depends on a random medium. In the thermodynamic limit, 

the dynamics of a typical particle is described by a collection of coupled McKean·Vlasov 

equations indexed by a medium parameter. For finite but large systems there are fluctuations 

around the McKean·Vlasov limit, which are controlled by the random dynamics and by the 

random medium. 

Our approach to the problem is to do a large deviation analysis for the double layer 

empirical measure 

Here, N is the size of the system, 

x[o,T] 

w' 

the path of the i-th particle in the time interval [0, T], 

the i-th component of the medium. 

Our main results are the following (see Sections 1-3): 

(0.1) 

(0.2) 



1. We derive a.la.rge deviation principle for LN as N - oo, with a.n explicit representation 

for the corresponding rate function I. 

2. The McKean-Vla.sov limit is the associated law of large numbers, i.e., the McKean

Vla.sov equation follows from 1. by identifying the unique zero of I. 

3. By a. standard contraction argument we derive a large deviation principle for the double 

layer empirical flow 

1 N 

iN= (N ~o(x:,w•))tE[O,T) (0.3) 

as N -+ oo and compute the corresponding rate function i. 

4. The second order fluctuations around the McKean-VIa.sov limit are identified in the 

form of a central limit theorem, deduced from 1. via a va1iational computation. 

The goal of our paper is two-fold: 

I. For homogeneous. systems, results as in 1.-4. have been obtained by Dawson (1982), 

Dawson and Gartner (1987), Ben Arous and Bruriaud (1990). (See also Comets and 

Eisele (1988) for models with a so-called "local" mean-field interaction.) We show 

how to generalize the analysis in these papers to systems ·with a random medium 

interaction. The random medium leads to some new ingredients in the analysis. ft. is 

also responsible for some new effects (see Section '1). 

II. We want to give an expository presentation of the large deviation approach to this 

problem area. 

The outline of the paper is as follows. In Section 1 we consider interacting diffusions 

and state our theorems for this class of models (Theorems 1-4). Section 2 and Appendic!'s 

A-B are devoted to the proof of the results. IH Section 3 we wusider spin-flip systems and 

show how the results have to be modified (Theorems 5-8). Finally, Section 4 describes two 

applications: 

(i) The Kuramoto model of random oscillators (i.e., diffusions on the unit circle). 

(ii) The Curie-Weiss model of random magnets (i.e., spin flips between+ and - ). 

Example (i) was studied by Bonilla, Neu and Spigler (1992), and the McKean-Vla.sov limit 

wa.s obtained through heuristic arguments. This model shows the phenomenon of "phase 

locking" above a critical value for ~he strength of the interaction (depending on the law 

of the random medium). Example (ii) was studied by Salinas ami Wrezinski ( 1985), and 

the equilibrium properties were described in detail. This model shows the phenomenon of 

"spontaneous magnetization" below a critical value for the temperat.ure (depending on the 

law of the random medium). ln both examples the type of randomness critically determines 

the phase diagram. 
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1 Diffusions 

1.1 The model 

Let HN : IRN X IRN-+ IR be theN-particle random Hamiltonian given by 

N N 

HN(~,!Io/.) = 2 ~ .~ f(xi- x';w•,wi) + Eg(x';w'), 
•,;=1 •=1 

(l.l) 

where~= {x')~ 1 is the state. variable and !lol. = (w')~ 1 is the medium variable. The w1 are 

assumed to be i.i.d. random variables with common law 11· For a fixed realization of>;,~, think 

of iii.-+ HN(i!i.i!lol.) as a Hamiltonian in the components x• with an inhomogeneous mean field 

interaction parametrized by the components w1
• The functions f and g play the role of a 

pair potential resp. external field, and are assumed to satisfy: 

• f,f',J",g,g',g" exist, are bounded and are jointly continuous in all variables(' denotes 

derivative w.r.t. the x-variable). 1 

For given>;,~, let i!lt (xi}~ 1 be the system of N interacting diffusions evolving according 

to the Ito stochastic differential equations 

(1.2) 

where (ei)~ 1 are i.i.d. standard Brownian motions on JR. For every>;,~, (1.2) has a reversible 

equilibrium measure proportional to exp[-HN(i!i.,!!!.)]. The initial condition~ is assumed to 

have product distribution ).®N, with >.having a finite second moment. The timeT> 0 is 

fixed but arbitrary. Because J',g' are globally Lipschitz, (1.2) has a unique (stron·g) solution 

with continuous trajectories (see Karatza.s and Shreeve (1988), Theorem 2.9). 

We shall write P'fl to denote the law of :t{o,T) = (:tt)te[o,T] given !!/., and w®N to denote 
the law of the solution of (1.2) when liN 0 (i.e., W is the Jaw of a standard Brownian 

motion starting with initial distribution >.). 

The system in (1.2) will be our object of study. We shall identify its large deviation and 

central limit behavior in the limit as N -+ oo. Our main results are formulated in Theorems 

l-4 in Sections 1.2·5 below. 

1.2 Empirical measure and large deviations 

Define the double layer empirical measure 

( 1.3) 

a.ssump'tions on J,g are stronger than what is actually needed for proving the results In this paper. 

However, they allow us to illustrate the use of large deviations without excessive tedmicaJities. A few more 

reslrictiollB will be imposed later, for the same reason. 

For the medium variables lR could be replaced by any Polli!h space without change in the proofs. For the 
state variables lR could be replaced by" IR" ( d :?: 1) with only minor modifications in the proof of Theorem 3 

in Section 2.3. 
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This is a random variable taking values in Mt(C(O, T] x IR), the set of probability measures 

on C[O, T] x lR (where C[O, T] is the path space, i.e., the continuous functions on [0, T]). In 

(1.3), the symbolliy denotes the point measure at y, so LN(A) = 1J r;r:.1 l{(xjo,T)•''i) E A} 

(A c C[O,T] x IR). 

Lemma 1 below gives a representation for in terms of LN. 

Lemma 1 F'or given 1o1 

d?'f. 
dW~N(±[o,Tj) = exp(N F(LN(;l;(o.T]•!o!))j (1:4) 

where for Q E M1(C(O, T] x IR) 

F(Q) fQ(dx(o,1'J•dw) {- HJ dt[(JQ(tly(o,T]•drr)j'(Yt- x,;w,rr)+ g'(x 1;w)f 

-t f Q(dY(o,J1,drr)[f(yr XT;w, rr)- !(Yo- xu;w, rr)] 

-[g(xr;w)- g(x0 ;w)J} 
(1.5) 

with j given by 
' 1 
f(x;w, rr) = 2(J(x;w, 1r)+ f( -x; rr,w)j. ( Ui) 

The proof of Lemma 1 will be given in Section 2.1. Note that Q _, /o'(Q) is nonliuear 

and contains repeated integrals over the measure Q. A simpler representation for F(Q) will 

he given in Lemma 2 below. 

The representation in (1.4) is the key to the following large deviation principle (LDl'), 

from which we shall deduce various features of the asymptotic behavior of LN as N - oo. 

Define 

( l. 7) 

whicl1 is the law of LN under the joint distribution of precess and medium. Note that 

PN E Mt(MJ(C[O,T] x Rt)). 

Theorem 1 (PN )N?;I Slllisfies the LDP with mte function 

I(Q) = H(QIW 0Jt)- F(Q) (Ul) 

whe>-e H denotes the relatitle entropy 

( 1.9) 

The proof of Theorem 1 will be given in Section 2.1. Roughly, the statement in Theorem 

I means that 

_Nl logPN(A)"'- inf I(Q) 
QEA 

4 
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for large N and for A sufficiently regular. For a precise formulation of the LDP we refer to 

Deuschel and Stroock (1989), pp. 35~36. 

One sees from (1.5) that F 0 when HN = 0 (i.e., J,g 0). Thus H(QIW ® p) is the 

rate function for the system without intera.:tion. 

1.3 McKean-Vlasov equation 

Before we analyze I(Q), we first give an alternative representation for F(Q) in (1.5) that 

will turn out to be more convenient. For given wE lR and q E M 1(1R X IR) define 

pw,q(x) = - j q(dy, d1r)j'(y- x;w, 1r)- g'(x;w) (t E [0, T], x E IR). ( 1.11) 

Let pw,Q be the law of the unique (strong) solution of the !-dimensional Ito equation 

( 1.12) 

where~~ is a standard Brownian motion on lR and x0 has law A. Here JI1Q is the projection 

of Q at time t, i.e., 

(II1Q)(E X F) Q( {(x[o.Tl•w): Xt E E,w E F}) (E, F C IR). ( 1.13) 

For fixed w the drift in (1.12) has a mean-field form, i.e., the interaction in (1.2) of a single

component diffusion with the other components and with the medium appears in ( 1. I 2) as 

an average w.r.t. the given measure II1Q. 

Lemma 2 For all Q 

(1.14) 

The proof of Lemma 2 will be given in Section 2.2. By combining (1.8), ( 1.9) and {1.14) 

we get the following simpler representation for the rate function: 

Corollary 1 For all Q 
I(Q) = H(Q!PQ), 

where pQ E Mt(C[O,T] X IR) is defined by 

PQ(dx[o,T]•dw) = p(dw)Pw,Q(dx[o,T]l· 

(1.15) 

(1.16) 

Since J(Q):?: 0 for all Q, one sees from (1.10) that as N _, oo the measure PN tends to 

concentrate around the zeroes of I, i.e., the solutions of 

(1.17) 

The next theorem states that (1.17) has a unique solution. Define vQ E Mt(IR) to be 

the projection of Q on the medium coordinate, i.e., 

( 1.18) 
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Let Qw E M 1 ( C[O, T]) be the regular conditional probability measure obtained from Q after 

conditioning on w, i.e., 

(1.19) 

The results that follow will be proved under the following assumption on the initial measure 

A for the single-component diffusions: 2 

(Al) A has a density 4> w.r.t. Lebesgue measure satisfying 4> E L1(dx) (l LP(dx) for some 

p > 1. 

Theorem 2 Assume (AJ). Then (1.17} has a unique solution Q. which has the followiug 

properties: 

2. Q': is the law of a Markov diffusion process for p-a.s. a// w. 

3. Let q';' = fl1Q':. Then q';' is the weak solution of the McKean- Vlasov equation 3 

( 1.20) 

where c.w is the nonlinear oper-ator 

( 1.21) 

and q1 is defined by q1(dx,dw) p(dw)q';'(dx). 

4. The diffusion process in 2. has genemtor L';' give11 by 

( 1.22) 

The proof of Theorem 2 will be given in Section 2.?.. Not(' that the equations in ( 1.20) 

for different values of w are coupled, because 

pw,q'(x) =- j p(drr) j qf(dy)j'(y x;w, rr)- g'(x;w) ( 1.23) 

depends on the whole family {qfheR (see (1.11)). 

As a corollary to Tbeorems 1 and 2 we obtain the following law of large numbers: 

Corollary 2 Assume (AJ). Then 

PN =:> 6q. weakly as N 00. (1.24) 

~Assumption (A l) could in principle be weakened by using the technique of I.ya.pnnov functions. a.s in 

Sznitman {1984). However, we stick to {AI) because it allows us to give a rather elementary proof of 

uniqueness of tbe solution of (1.17). 
3 Eqs.(J.2()..1.21) me.m that f. I q~(dx),P(x) =I qr{dx)pw·••(x),P'(x) +!I q~(dx).P"(x) for every .P E V, 

the space of infinitely differentiable functions with compact support. By standard arguments this implies 

that qr fort> 0 ha$ a density that is a cla$ska.l solution of (1.20). 
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1.4 Empirical flow and large deviations 

With each Q E M 1(C[O,T] X IR) is associated the flow of marginals IJ{o;1·1 = (fi1Q),E[0.11" 
Define the double layer empirical flow 

1 N 
lN = (-" 6( , ;)) . 

N ~ r,,w IE(O,T] 
(1.25) 

This is a random variable taking values in M 1(JR x JR)I0
•
11. (The topology on this power 

set is the one induced by the weak topology on Mt(C[O,T] x nl) via the map Q...., 'l(O,T]·l 

Note that both 1/{o,T] and iN take values in the subset of Mt(IR X ffi.){O,T] consisting of those 

flows whose projection on the medium coordinate is independent oft. We sha.U denote this 

subset by M. The empirical flow iN contains less information than the empirical measure 

LN (recall (1.3)). Therefore its large deviation behavior can be obtained from Theorem I 

via the contraction principle (Varadhan ( 1984 ), Theorem 2.4 ). 

To formulate the LDP for (iN )N?,t we introduce the following notation. For 'l[o,T] EM, 

let q~.T] be the conditional flow given w, i.e., 

q1(dx,dw)= vq(dw)q';'(dx) (t E [O,T]), ( 1.21i) 

where vq is the projection of q1 on the medium coordinate (which is independent oft). Let 

V be the space of infinitely differentiable functions with compact support, and let 7)* be 

its dual (the elements of which are distributions). Fort/;* E v• a.nd p E M 1(Ht) define the 

norm 

11 ¢*11 2 - ~ (t/1*,<1>)2 
P - 2 </>EV:~~~.~") >0 (p, 1>'2) ' 

(1.27) 

where (-) denotes the usual inner product. Let ~ C M be the set of all flows satisfying 

IJq <!(;. J! 

t -> q'( is weakly differentiable for vq -a.s. all w. 
(1.28) 

Finally, let 

(1.29) 

which is the law of iN under the joint distribution of process and medium. Note tlmt 

f?N E Mt(M). 

Theorem 3 (f?N )N?,! satisfie.9 the LDP with rote function 

"( ) - { J[ dt{ J llq(w)ilf,q'(- cwqt'll~w} + ll(vqll•) 
I q(o.T] - oo ' 

if q[O,Tl E ~ 

otherwise. 
( 1.30) 

The proof of Theorem 3 will be given in Section 2.3. Note that i(q[o,TJ) = 0 iff 11q = fL 

a.nd q'( is the solution of the McKean-Vla.sov equation for f.J.·a.s. all w (recall (1.20), (1.21) 

and (1.23)). 
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1.5 Central limit theorem 

It is possible to deduce from Theorem 1 a central limit theorem ( CLT) for the empirical 

measure LN in (1.3). The general technique is formulated in Bolthausen (1986). Essentially, 

what we must do is show that the rate function Q-+ l(Q) in (1.8) and (1.15) has a strictly 

positive and finite curvature at its unique zero Q •. However, in order to apply Bolthausen's 

theorem we need a technical assumption, namely: 4 

( A2) There are functions ai, !Ji : m. X m. -+ {: and numbers c; E JR.+ such that 

00 

f(y- x;w, 1r) ,E c;a;(x,w )!Ji('IJ, 1r) 
i:O 

with 

(1) L;Ci < 00 

(2) a;, /3; twice continuously differentiable w.r.t. the variable x resp. y 

(3) ai,a:,a:',{J;,{Ji,!Ji' hounded uniformly in i. 

Our central limit theorem reads: 

( 1.31) 

Theorem 4 Assume ( A2). Let Cb be the set of bounded continuous functions from C[O, T] x 

m. to m.. As N -+ oo the field 

(1.32) 

converges under PN to a Gaussian field with covariance 

( 1.33) 

where 
¢[Q.](x[o,T]•w) ¢(x[o,T]•w)- </>* 

fg· (I Q.(d'IJ[O,T]> d1r )(<f>(!l[o,T]• 1r)- <f>*]j'(yt - Xti W, 1f) )dwr 

(1.34) 

with .,. f <f;dQ. (similarly for tf; ), wr = Xt - J/, {3w,n,Q.ds (which is a Brownian motion 

underQ':) and j given by (1.6). 

The statement in Theorem 4 means the following: for ¢1, <f>2, ..• , <Pn E C0 the vector 

( 1.35) 

converges in law to an n-dimensional Gaussian random variable with mean zero and covari

ance matrix ( C( <!>;, <f>i ))f.
1
=1 • 

The proof of Theorem 4 will be given in Section 2.4. From the proof it will be seen that 

the covariance matrix is strictly positive definite. 

'By applying the techniques in Sznitman (1984), the CLT could in principle be proved witl1out ""sumption 

(A2). However: (i) Bolthausen's method nicely connects large deviations and CLT; (ii) The proof is easily 
modified to cover other models 1 e.g. spin~flip systems (see Section 3); (Hi) Assumption (A2) is satisfied in 

many interesting examples (e.g. the Kuramoto model (see Section 4); see a1so Ben Arous and Brunaud (1990) 

for more examples). 
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2 Proof of Lemmas 1-2 and Theorems 1-3 

2.1 Proof of Lemma 1 and Theorem 1 

Proof of Lemma 1. 

The proof is based on two basic tools in stochastic calculus, namely Girsanov's formula 

and Ito's rule (see e.g. Karatzas and Shreve (1987), Theorems 3.3.3 and 3.5.i). Girsanov's 

formula yields (recall ( 1.2)) 

dP!!!. [ 1 N {T (f)HN )2 N {T fJHN ·] 
dW~N(~o.T]) = exp '""2 ~ fo fJxi (~.!!!.) dt- ~ ]

0 
( fJxi ~~,!!!.))d~ · (2·1) 

Under the measure W®N, the process ;l:.[o,T] is N -dimensional Brownian motion (see Section 

1.1). Thus, by Ito's rule, 

N {T (f)HN ) i- 1 N {T (f)2HN ) 
~ fo fJxi (~.!!!.) d~- HN(;rr,!!!.)- HN(;!:.a,l!!.)- 2 ~ fo 8(xi)2(~.!!!.) dt. (2.2) 

Hence 

dP"'-
;ffiYb (l.(o,T]) [ t"N J.T{(~( •)

2 
&'H ( )} exp - 2 L...i=l 0 . &r• ;rt,l!!.) - &(r'~ ~.!!!. dt 

{2.3) 

The rest of the proof simply consists of inserting the definition of HN (see (1.1)) and rewriting 

the resulting expression in terms of the empirical measure LN (see {1.5)). This leads to the 

expression given in {1.4)-{1.6). I 

Proof of Theorem 1. 

Let RN be the law of LN under the measure W®N ®Jl.®N. Under RN, the pairs (xio.T)•w') are 

i.i.d. random variables. It therefore follows from Sanov's Theorem (Deuschel and Stroock 

{1989) Theorem 3.2.17) that (RN)N>t satisfies the LDP with rate function H(QIW ® JJ.) 
given in (1.9). Now, using Lemma 1,-we have (recall {1.4) and {1.7)) 

PN(·) = f Jl.®N(d!!!.)P~(LN(dl.[o,T]•I!!.) E ·) 

= f Jl.®N (d!!!.)J W®N (dl.(o,T])d::~N (l.(o,T])1{LN(dl.(o,T]•I!!.) E ·} 

= fd(W®N @Jl.®N) exp[NF(LN)]1{LN E ·} 

= f RN(dQ)exp[NF(Q)]1{Q E ·}. 

Identity {2.4) means that 
dPN 
dRN (Q) = exp[N F(Q)]. 

(2.4) 

(2.5) 

Our assumptions on f, g in Section 1.1 imply that F is a bounded continuous function 

w.r.t. the weak. topology in M 1(C[O,T] x IR.) (see {1.5)). Therefore, {2.5) allows us to 

apply Varadhan's Lemma (Varadhan {1984), Theorem 2.2) and conclude that the LDP for 

(RN )N>t with rate function H(QIW ® Jl.) implies the LDP for (PN )N>I with rate function 

H(QIW ® Jl.)- F(Q), as was claimed in {1.8) and {1.9). - I 
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2.2 Proof of Lemma 2 and Theorem 2 

Proof of Lemma 2. 

We begin by applying Girsanov's formula to the 1-dimensional ItO..equation in (1.12), namely 

dP"•Q l (T {T 
log dW (x[0,1'J)"" -2 lo ({f"•fi'Q(xt))2dt + lo pw,fi,Q(xt)dx,. (2.6) 

We want to show that the r.h.s. of (2.6), when integrated over Q(d~o.T]•dw), yields F(Q) 

given in (1.5). Recalling (1.11}, we see that the first term in the r.h.s. of (2.6) gives rise to 

the first term in the r.h.s. of ( 1.5 ). To check the remaining terms, let us look a bit closer at 

the stochastic integral in (2.6). 

By (l.Ii) we have 

f Q(dx[o,T]• dw) JJ pw,fi,Q(xt)dx 1 

=- f Q(dxro,r],dw) fJ [I Q(dY[o,T)•dll")j'(y,- x,;w, 11") + g'(x,; w)]dx,. 

(2. 7) 

(Note that if Q <{:;: W ® p. then X]o,1') is a Q-semimartingale, so the stochastic integral in 

(2.7) makes sense.) C0nsider the first term in the r.h.s. of (2.7). Since j' is an odd function 

of its first argument, this term equals 

- ~ j Q(dx(o,T)• tlw) j Q(dY(o,1')•d11') LT j'(y1 - x1;w, 11')[dx1 - dy1]. (2.8) 

We can apply Ito's rule to the 2-dimensional semimartingale (x, Y)[o,T] and write 

dj(y1 - x1;w, 11') = j"(Yt- x 1;w, 11' )dt- j'(y1 - x,;w, 11')dx1 + j'(y1 x1;w, 11')dy1• (2.9) 

By substituting (2.9) into (2.8) v.e get the expression 

-! f Q(dx[o,T]• dw) I Q(d'!f[o.1']• d11') 

x[JJ i"(Yt Xt;w,ll")dt i(YT-xr;w,11')+i(Yo xu;w,11')]. 

(2.10) 

Next consider the second term in the r.h.s. of (2.7). Ito's rule yields that this term equals 

- j Q(dx(o,TJ•dw)[- i loT g
11
(x 1;w)dt + g(xT;w)- g(x0 ;w)]. (2.11) 

From (2.10) and (2.11) the claim in Lemma 2 easily follows after observing that ( 1.6) gives, 

f Q(dx[o,T]•dw) f Q(d'!l[o,:l'j• d11')j(yt - XtiW, ll') 
(2.12) 

= I Q( clx(o,T]• dw )J Q(dY[o,7')• (/11' )f(Yt Xti w, 11') 

for every t and, in particular, fort= 0 and t = T. • 

Proof of Theoren. 2. 

Observe that vQ = vpQ = p. (recall (1.16-1.18)) and that pw.Q is the law of the solution of 

(1.12), i.e., the Markov diffusion with generator given in (1.21). It is therefore ea.sy to see 

that properties 1.-4. in Theorem 2 are satisfied by any solution of (1.17) (note that (1.20) 

is the Fokker-Pianck equation associated with the diffusion Q.). Now, the existence of a 

solution of (1.17) comes from the general fact that the rate function of an LDP must have 

at least one zero (Deuschel and Stroock (1989), Exercise 2.1.14(i)). The tmiquenes.5 of the 

solution will be proved in Appendix A. • 
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2.3 Proof of Theorem 3 

Let II denote .the map II ; Q ~ q[o,T] (remember that q1 = II1Q). The topology on M 

has been chosen in such a way that II is continuous. Since f.N = ITLN, it follows from the 

contraction principle (Varadhan (1984), Theorem 2.4) that (PN )N>l satisfies the LDP with 
rate function . - · 

j(q[o,T]) = inf I(Q). (2.13) 
nQ=qfo.TJ 

We want to show that j(q[o,Tj) = i(IJ[o,T]) for every q[o,TJ EM, where i is the rate function 

given in (1.30). In order to do so, we shall first show that equality holds when i(9[o,TJ) < oo 

(Steps 1-3 below). After that we shall show that if i(q[o,T]) < oo then j(q[o,Tj) < oo (Step 4 

below), which will complete the proof. The basic ideas are taken from Follmer (1986) (see 

also Brunaud (1993)). 

Step 1. By a standard argument involving lower semicontinuity and compactness of the 

level sets of the rate function/, we have that if j(q[O,TJ) < oo then thue exists a Q such that 

IIQ = 9(o,T] and I(Q) = i(9[o,Tj)· From (1.8) we have 

I(Q) = j vq(dw)Il(Q"'IW) + Il(vq!Jl)- F(Q). (2.14) 

Moreover, since F(Q) depends on Q only through 9[o,T] (see (1.5) and (1.14)) we have that 

Q"' minimizes H(Q"'IW) under the constraint IIQ"' = ti[O,T] for 1/q·a.s. all w. As shown 

in Follmer {1986), Theorem 1.31, the latter fact implies that Q"' is the law of a Markov 

diffusion 

(2.15) 

for a suitable drift b'f( x ), and that 

(2.16) 

Substituting (2.16) into (2.14), and using Lemma 2 in combination with (2.6) and (2.15), 

we obtain 

I(Q} = !J vq(dw) fQ"'(dx(o,T])fi{ dt[b't(:r,) pw.n,Q(xt))2 + Il(vql!tl 

!Ji{ dt{J vq( dw) [ f qj(dx l(b'f(x) - )1"'·11•Q(x l) 2]} + H(vqlp). 

(2.17) 

This equation reduces to the required expression in (1.30) if we can show that for every 

t E (0, T) and for v9-a.s. all w 

(2.18) 

Step 2. To prove (2.18) we proceed as follows. According to (2.15), q'{ is the weak 

solution of the Fokker- Planck equatior. 

8q'( - _!_[b"' "'] 1 
8t - 8x t q, + 

11 

(2.19) 



Together with (1.21) this implies 

[) 

8tq'(- C'q'( 

Hence, recalling the definition of II ·II in ( 1.27), we get 

(2.20} 

(2.21) 

where we have used the Cauchy-Schwarz inequality (recall that(·,·) denotes the usual inner 

product). Thus, to get (2.18) we must show that in (2.21) equality is attained. 

Step 3. It suffices to show that the set {4>': 4> E V} is dense in L2(<t;') for all t and vq·a.s. 

all w. We first note that q'( is absolutely continuous w.r.t. Lebesgue measure for all t and 

vq·a.s. all w (this follows from the fact that Q <t:: W ® jL, vq < tt and the marginals of W 

are absolutely continuous w.r.t. Lebesgue measure). So, it is enough to prove that if pis an 

absolutely continuous probability measure on lR, i.e., p(dx) p(x)dx, then {if>':¢ E V} is 

dense in L 2(p), 

The proof is by contradiction. Suppose{</>':</> E V} is not dense in L2(p). Then there 

exists h E L2(p) such that 

j </>'(x)h(x)p(x)dx 0 for every</> E V. (2.22) 

Since hp E L1(dx), it follows from Brezis (1983), Lemma 8.1, that there exists C E JR such 

that hp = C a.s. w.r.t. Lebesgue measure. If C 0 then dearly It = 0 p-a.s. On the other 

hand, if C 1 0 then hp fl. L1(dx). 

Step./. To complete the proof of Theorem 3 we need to show that if i(9[o,Tj) < oo then 

j(<J{o,Tj) < oo. We use Follmer (1986), Theorem 1.31, where it is observed that there exists a 

. countable number of bounded continuous functions (¢;);> 1 from JRxlR to lit and a countable 

(dense) subset (t;);:<:1 of [O,T] such that IIQ = q[o,Tj if ;nd only if 

j Ilt,Q(dx[o,TJ•dw)<f>;(x,w) 0 (i 0,1,2, ... ). (2.23) 

Now, by compactness and lower semicontinuity of H, for every· n?: 0 there exists a Q, such 

that ll(QniW ® tt) < oo and Q,. minimizes ll(QIW ®ttl under the constraint that (2.23) 

holds fori= 1,2, ... ,n. Since we have proved that i(q[o.TJ) = j(q[o.TJ) when j(q[o.T']) < oo, 
it follows from (2.13) that 

I(Q,.) inf{i(P[o,TJ): j pf,(dx,dw)¢;(x,w) = 0 for i l, ... ,n}. (2.24) 

In particular, J(Qn) :<::; i(<Jio,Tj)· By compactness of the level sets of I, the sequence (Q,.),.~J 

has a limit point Q which, by lower semicontinuity of I, satisfies I(Q) :<::; i(q[o,T[l· Moreover, 

(2.23) holds for Q. Hence, via (2.13) we get j(q[o,T[) :S I(Q) :<::; i(q[o,T]l· I 
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2.4 Proof of Theorem 4 

The proof essentially amounts to applying the method developed by Bolthausen (1986) to 

the random variables 

X;= 6<"'1o,TJ•"''J (i = 1, ... ,N). (2.25) 

Strictly speaking, this method only applies to random variables taking values in certain 

"nice" Banach spaces, namely Banach spaces of type 2 (such as LP-spaces with 2 ::; p < oo ). 

Unfortunately, M 1(C(O,T] X m.) is not in this clru;s. However, this problem can be cir

cumvented via a trick due to Ben Arons and Brunaud (1990), whlch consists of mapping 

M 1(C[O,T] x R) into a Banach space of type 2. In this section we formally compute the 

covariance operator according to Bolthausen's recipe (Steps 1-3 below) and check its strict 

positivity (1-11 below), which is the key to having a central limit theorem. The change of 

variable trick, which provides rigorous justification for what is done here and which requires 

the use of Assumption (A2), will be given in Appendix B. 

Step 1. We start by letting v. be the law of the M 1(C[O, T] X R)-valued random variable 

6(X[O,TJ•"')- Q. induced by Q •. For R E Mt(C[O, T] X m.) and¢ E cb we write 1/>(R) = J lj>dR 

and ¢• = 1/>(Q.). The free covariance operator (f(¢, t/l))¢,wec. is defined by 

f( ¢, t/1) = f ¢( R)t/1( R)v.( dR) 

= EQ•{[¢(xro,T]•w)- ¢*][tf!(xro,TJ.w)- t/1*]} 

= CovQ.(I/>,t/1). 

The meaning of this operator is that the field 

(2.26) 

(2.27) 

converges, under Q!fN as N -+ oo, to a Gaussian field with covariance f( ¢, t/1 ). This follows 

from the standard central limit theorem for i.i.d. m.-valued random variables. We remark 

that 

(2.28) 

as is easily proved from (1.9) via direct computation. Here the second derivative D 2 H is 

defined in the usual directional sense (Frt\chet derivative). 

Step 2. For a given ¢ E Cb, "let~ E Mo( C(O, T] x R) be the signed measure on C[O, T] x m. 

with zero total mass defined by 

~ = j R¢(R)v.(dR), 

i.e., for A C C(O, T] x m. measurable, 

~(A) J R(A)¢(A)v.(dR) 

JQ.(dxro,TJ•dw)[6(xro,TJ•"'J(A)- Q.(A)][¢(x[o,TJ•w)- ¢*] 

Cov Q.(lA,¢) 

(2.29) 

(2.30) 

where lA is the characteristic function of A. Then Bolthausen's theorem states that (modulo 

the change of variable trick and some regularity assumptions on the function Q-+ F(Q) in 
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(1.5), all to be discussed in Appendix B) the field in (2.27) converges, under PN as N--> oo, 

to a Gaussian field with covariance 

.:l( t/1, ¢) = f( </>, ¢)- D2 F( Q.)[¢, tP] (2.31) 

(recall Lemma 1), provided ll(</>,4>) > 0 for all</> such that J> if. 0. 

Step 3. By combining (2.31) and (2.28) with (1.8). we get 

(2.32) 

Thus the requirement .:l( ¢, </>) > 0 can be interpreted as saying that the rate function 

Q- I(Q) must have finite curvature at its unique minimum Q •. 

The rest of the proof consists of showing the following two facts. Let C( ¢, 1J;) be the 

covariance defined in (1.33). Then 

I. C(¢,'1/;)=.:l(¢,¢) 

II. C(</>,t/1) > 0 for all </> such that J> 'I= 0. 
(2.33) 

Proof of/. 

For simplicity we assume</>= ¢. The proof for the general ca.se follows the same argument. 

We first note that, by (2.30), J> < Q. and 

d(i, = 4> ¢". 
dQ. 

Using the expression (recall (1.14) and (2.6)) 

we get, by a lengthy but straightforward computation via (Lll), 

(2.31) 

(2.35) 

- 2f (i;(dx[o,T]•dw)fc:;3"'•n,q(x 1)/"'•fi'J,(x1)tll (2.36) 

+ 2f¢(dx(o,T],dw)J;J' "Y"''fi,J,(x1)dx1 

with 

(2.37) 

(The computation becomes elementary once we realize that, due to (2.34), the ItO-integrals 

make sense under ¢.) 
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Now let wr Zt- J~ (3"'·0 ·0·ds (which is a Brownian motion under Q':). Then by (2.26}, 
(2.31), (2.34) and (2.36) we have 

!!.(¢,¢) f(¢,¢)- D2F(Q.)[¢,¢J 

EQ•{[cf;(x[o,T),w)- ¢*]2} + £0·{f[h"'·n'~(x 1 )) 2 dt} 

+2Ef.l·{[¢(x[o,T)•w)- ¢*] J[r"'·n•~(xt)dwr} 

£0•{[¢(x[o,T],w)- ¢*)2
} + EO·{[f[ i"'• 0 •~(xt)dw!J2} 

+2E0•{[<fo(xro.T),w) cf;*lf[1"''n'~(xt)dwr} 

EO·{ [¢(:r[o,T],w)- ¢• + J[ i"''n'~(xt)dw;-f} 

C(</1,</1), 

(2.38) 

where in the second equality we have used the standard isometry property of integration 

w.r.t. Brownian motion. 5 
• 

Proof of II. 

Suppose 4> E Cb is such that C(¢,¢) = 0. It is not restrictive to assume 4>* = 0. We want to 

show that (/> 0, i.e., ¢> 0 Q.-a..s. Define the following u-field on C[O, T] x Dl 

F1 = u{x,: 0 ~ s ~ t} ®B (2.39) 

with B denoting the Borel u-field on Dl. Let 

•Mxro,t]•w) = EQ•{¢1Ft}· (2.40) 

According to (1.33-1.34), C(¢,¢>) = 0 implies 

¢(x[o,T),w) = LT [j Q.(dY[o,TJ•d7r)¢>(Y[o,TJ•7r)]'(Yt Xt:w,7r)jdwt" Q.- a.s. (2.41) 

Taking conditional expectation and using th~; fact that the integral in the r.h.s. of (2.41) is 

an F 1-martingale, we get 

4>t(X[o,1],w) = L' [j Q.(dY!o.T),d7r)r/>t(y[O,tJ•7r)]'(y, x,;w,7r)jdw:;' Q. a.s. (2.42) 

Thus, using again the isometry property of integration w.r.t. Brownian motion, we obtain 

ll¢tlil>(Q.) = II f~ [ f Q.(dY[o,TJ• d1r )¢>,(Y[o,t]• lf )]'(y, x,; •..;, lf l]dw:;'I!:,(Q.) 

EQ·{J~ [ f Q.(dY(o,'l']• dlr )<f>t(Y[o,t)• Jr )]'(y, x,; w, 1r )t dt} 

:'!: tlll'II~II<Ptllb(Q.) 

(2.13) 

which implies ¢1 = 0 Q.-a.s. fortE [0, 1/IIJ'II~). It is ea.~y to see that this argument can be 

repeated, and so we get </11 = 0 Q.-a.s. fortE [0, T]. Since ¢T = ¢the conclusion follows. I 

( wt)1e;o,Tj be a Brownian motion. Let ({d,et•.Tl be a stochastic process, adapted lo the filtration 

generated by (wc)oe;o.TJ• ouch that E{f
0
T adt) < oo. Then the following equality holds: E(f

0
T adt)= 

E([f
0
T e,dw,)2

). 
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3 Spin-flip systems 

All the results stated in Section 1, together with their proofs in Section 2, can be modified in 

an essentially straightforward manner to cover the case of spin-flip systems. In this section 

we formulate these modifications and indicate which parts of their proofs are not trivially 

obtained from the corresponding parts for diffusions. We follow the same order as in Section 

1. 

3.1 The model 

Let HN: {-l,+l}N x IRN-> R be theN-particle Hamiltonian given by 

N N 

HN(i>.,<,:J.) = 2 ~ L f(w',wi)x'xi + L;g(w')xi, 

it]=l t=l 

(3.1) 

where i!i. = (x')r;.,1 is the state variable and !,;,! (w')r;., 1 is the medium variable. As for 

diffusions, the w1 are i.i.d. random variables with common law Jl· Moreove1·, the functions 

J, g are assumed to be bounded and continuous. 

For given 1;1, let !!<.t = (xi)r;.,1 be the N -spin system defined to be the Markov chain with 

infinitesimal generator g, acting on functions</>: {-1, +1}N...., R as follows: 

N 

(gq,)(i!i.) L; c~(i,;;.)[r/>(;;. 1 )- tjJ(;;.)]. (3.2) 

Here, ,._; is the state obtained from if. by flipping the i-th spin xi, and 

(:3.3) 

exp [* Ef=l,#i ](w<,wi)x'xj + g(w1)x 1
] 

with ](w, 1r) = f(w, 1r) + f(1r,w). For every 1;1, (3.2) has a reversible equilibrium measure 

proportional to exp[-HN(i!i.,l!l)]. The initial condition i!i.o is assumed to have product distri

lJUtion ),®N, where), is any probability measure on {-1,+1}. The path space for a single 

spin is D[O, T], the space of right-continuous piecewise-constant functions from [0, T] to 

{-1,+1}. This space has a topology and a Borel a-field, provided by the Skorohod metric; 

see e.g. Ethier and Kurtz (1986), p. 117. 

We denote by W®N the law of theN-spin system whose generator has the form (3.2) 

with c!J;; = l. All other notations introduced in Section 1 (P'f;,LN,PN, ... etc.) are left 

unchanged. · 

3.2 Empirical measure and large deviations 

The analogues of Lemma 1 and Theorem 1 read as follows. 

Lemma 3 For given !,;,! 

dJ""'-
dW;N (J;jo,TI) = exp(N F(LN(;qo,T]•!,;!)) + 0(1)) (3.4) 
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where for Q E Mt(D[O,T] x R) 

F(Q) JQ(dx[o,T},dw){JJ' dt(l exp [JQ(dY[o,TJ•dr.)}(w,11')xtYt + g(w)x 1]) 

+! f Q(dY[D,TJ• dr.)[}(w, r.)(XTYT- XoYo) + g(w)(XT- Xo)j}. 

The proof of Lemma 3 relies on Girsanov's formula for spin-flip systems, which is easily de

rived from Girsanov's formula for point processes (see Comets (1987) or Lipster and Shirya<>v 

(1988), Theorem 19.3). • 

Theorem 5 (PN )N~I satisfies the LDP with rate function 

I(Q) = H(Q!W ® 11)- F(Q). (:l.!i) 

This follows from Lemma 3 as for diffusions. The technical difference is that the martingale 

term in the Girsanov formula is not driven by a Brownian motion but by a compensated 

Poisson process. 

3.3 McKean-Vlasov equation 

Given Q E M 1(D[O,TJ X IR) and w E IR, let pw.Q be the Jaw of the single-spin system 

whose initial distribution is >. and whose rate of flipping from x to -x at time I is giv<!n hy 

cw,n,Q(x), where for q E Mt({-1,1} x IR) 

c"'•q(x) = exp [x(j q(dy,d11")f(w,11")1J+ g(wl)]. 

In analogy with Lemma 2 and Corollary 1, the next facts are easily proved. 

Lemma 4 For all Q 

Corollary 3 For all Q 
!(Q) = H(Q!pQ), 

where pQ E M 1(D[O,T] X IR) is defined by 

PQ(dx[o.11•dw) = ~>(dw)P"'•Q(dx(o,11l· 

The next theorem is the analogue of Theorem 2. Deline vQ as in (1.18). 

{:!.7} 

(:!.8) 

(3.9) 

Theorem 6 Equation (3.9) has a unique solution Q. which hlts the following]JI'OpcrticR: 

1. vQ•=p,. 

2. Q':: is the law of a Markov chain on { -1, + 1} for p-a.s. all w. 
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3. Let q't = II,Q:;'. Then q't solves the differential equation 

{ 
·ftq't l."'q't (tE(O,T],wER) 

q'(f A 

whet-e. l."' is the nonlinear operator 

(.C"'qt)(x) == qt( -x)c"'•9'( -x) q~(x)cw,q'(x) (wE R) 

and qt is defined by q1(x,dw) == p(dw)q'{(x). 

(3.11} 

(3.12) 

,f. Under Q::' the rate of flipping from x to -x at timet for· the Markov chain in 2. ts 

cw,ql. 

The only essential difference with the proof of Theorem 2 is the part concerning the 

uniqueness of the solution of (3.11), which is much easier here. Indeed, via. the relation 

q't(-1)+q'{(+1)= 1 for all wand t, (3.11) can be rewritten as an equation for q'{(+l), 

thought of as an element of L00 (J.t). The coupled family of equations in (3.11), indexed by 

wE m., is an ordinary differential equation in the Banach space L00 (J.t) driven by a locally 

Lipschitz vector field. Uniqueness follows by classical arguments (Brezis (1983), Theorem 

VIL3). 

3.4 Empirical flow and large deviations 

The definitions of eN and PN are the same as in Section 1 (see (1.25) and (1.26)). For p a 

probability measure on {-1,+1} x m. and wE llt, define 1}1~: ntJ-l.+l}- m.+ by 

(3.13) 

where b( x) = 8( -x) - 6( x ). Defining ~ as in ( 1.28 ), we obtain the following analogue of 

Theorem 3. 

Theorem 7 (PN )N?.l satisfies the LDP with mte function 

C"'g't)} + H(vqlll) if q[o,T] E ~ 
otherwise. 

(:.!.14) 

(For the model without random field a different representation for i is given in Comets 

(1987).) 

The proof of Theorem 7 is not a trivial modification of the proof of Theorem 3. We 

therefore give a sketch here (Steps 1-3 below). 

Step 1. Fix a flow g(O,TJ E ~. Suppose that there exists a Q E M 1(D[O,T] X nt) such 

that I(Q) < oo and Q minimizes I under the constraint II 1Q q, fortE [0, T]. Then, as for 

diffusions, it can he shown that Q"' is Markovian for ll almost all w (e.g. by using the notion 

of h-process; see Follmer (1988), Theorem 1.31). Let us denote by kr(x1) the flip rate of 

this process at time t. Then from Girsanov's formula for spin processes we get 

(3.15) 
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Step 2. Write the identity 

Lx=:l:t qf'(x)(c"'·q•(x)- kf(x) + kf(x)log ;r.!{!,) 

supoeRI-1-+'l Lx=:l:t q;"'(:r) [c(x) ( kf(x)- c"'•q'(x)) - c"'•q'(x l(eS(x) - 6(x)- 1 ).] , 

(3.16) 
which is easily checked by noting that the supremum is attained at 6 = 6. given oy o.(x) = 
log(k;"(x)fc"'•9•(x)). We claim that the r.h.s. of (3.16) equals 

(3.17) 

. {which is the same as the r.h.s. of (3.16) but with 6 replaced by 6). This will be shown 

below. From (3.17), together with the identities · 

Ex=:l:l qf(x)oS(x)[kf(x)- c"'·9 '(x)] = Lx=:l:t o(x)(#(x)(kr(x)- c"'•q'(x)J. 
(3.18) 

Lx=±1 6(x)[;ftq;"(x) l"'qf'(x)], 

we get I(Q) = i(q[O,T]l· The second equality in (3.18) uses (3.11) and (3.12) with k'f replac

ing c"'·q•. The proof can now be completed as for Theorem 3. 

Step 3. We still have to show that (3.16) equals (3.17), which amounts to verifying that 

6. = i' for some 1 E JR{-t,+t}. This.is equivalent to saying that Lx=±1 6.(x) 0 or 

(3.19) 

There are various ways of checking (3.19). The most direct and elementary way consists of 

looking for the minimum of (3.15) (w.r.t. the rates k;"(x)) under the constraint 

llq~;x) = qn-x)k'f(-x)- qt(x)kf(x) (t E (O,T]). (3.20) 

The classical method of Lagrange multipliers shows that the k';' realizing the minimum 

must have the form (3.19) (we already know that the minimum exists). The details are 

straightforward. 

Theorem 7 shows that the large deviations fot the empirical flow are controlled by the 

positive convex functions 'II~. These are not norms squared, unlike for diffusions. To ap

preciate the analogy between Theorem 3 and Theorem 7, note that we could have used in 

Theorem 3 the following expression equivalent to (1.27) (Dawson and Gartner (1987)): 

(3.21) 

3.5 Central limit theorem 

The CLT for spin systems will be proved under the following assumption which, for technical 

reasons that will be explained in Appendix B, is much stronger than the corresponding 

Assumption (A2) for diffusions: 
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( A3) There exist a finite set X C IR and functions a;,{); : lR --+ X ( i = 1, ... , p) such that 

p 

/(w,:;r)= L:o.;(w){J;(n). (3.22) 

l=l 

We note that Assumption (A3) is satisfied in two relevant cases: (i) when f is constant, i.e., 

the medium does not affect the interaction (e.g. the Curie-Weiss model in Section 4); (ii) 

when the support of the medium law fl is finite. 

For X[o,T] E JJ[O, T], we let ./,(x[o,Tj) be the number of jumps of the path X[o,TIIlJl to and 

induding time t, 

Theorem 8 Let Ct, be the 8el of boundr:d continuous functious Jmm D[O, 1'] x HI. to DL !1-' 

N --+ oo the field 

(:1.2:1) 

cottvC1"!fl:S under· PN to a Gaussian field with covariance 

+ JJ (JQ.(dY!oJJ•'I:;r)[v~(!l[o:l']•:;r)- v~*Jy,j(w,:;rJ)dwj' 
(:1.25) 

with </>* J 4)(/Q. (similarly for 1/>) and w'f = .l1(X[o;r]) ./;; c"'· 11 ·Q•(:~:,)rl.s (u:hir·h zs a 

uwr·tingale uuder Q':). 

The pa.rt of the proof of the CLT for diffusions, contained in St•ction 2.·1, extends rt•;tdily 

to spin syst!'ms. The part concerning the dmnge of va.rilthlt• trkk will be sketched a.t. the 

end of Appendix Jl. 

4 Two applications 

In this SPction we describe two examples of systems whel"e i.ll(' random medium controls 

the phase diagram. The phases of the system correspond to the sl.alimwrrJ solutions of the 

MrKea.n·Vlasov equation that are slrtblt under sma.ll perturbations." We shall assunoe l.f,a.t 

the law Jt ,.,f the random medium compouents is symmctr·ic. More in !>articular, we shall 

consider the following two subcases: 

Case I. ft(.Zw) = </>(w)dw with q\(w) = </>(-w) aud w ,P(w) uon·incrpasing on fit+. 

Case !I. I'= ~(li, 1 + li_,1 ) with 11 > 0. 

f>Thc,rmodyna.micall.v this indude~ both the stable and the mcta..-.table phases. 

20 



4.1 Curie-Weiss model 

The Curie- Weiss model in random magnetic field is the spin-flip system driv<>n hy til!• Hamil

tonian (3.1) with 

f(w,7r) = -[1 

g(w) = -{Jw (w,'lfElll) 
( '1.1) 

where {1 E (0, oo) is the invet·se temperoture. With this choice, (3.1-3.3) dt>scrihe a sysfpm 

of mean-field ferromagnetically coupled spins, each with its own random magnetic fidd aml 

subject to Glauber dynamics. The two terms in the Hamiltonian have opposite •·lfects: J 
tends to align the spins, g tends to point each spin in the direction of its lora! fi<•ld. 

The order parameter of the system is the magnetization 

Lx±lxqn:c) 

fn m1(w )!'( dw ), 
( 1.2) 

where qj(x) is the probability that a typical spin is in st.ate x at time I in tiH• medium 

w (in the McKean-Vlasov limit). Written in tl•rrns of (cl.:!), the McKean- Vla-><JV e'luat ion 

(:1.11-3.12) reads 

(1- m 1(w))exp[/3(m1 + w)] (1 + m 1(w))exp[-/J(m1 + w)] 

2sinh[{'l(m1 + w)]- 2m,(w)<osh[/3(m1 + w)]. 
( L:l) 

The stationary solutions of (4.3) have heen investigated by Salinas anti Wn•zi~~:;ki ( I!J.~!i). 

1. Stationary solution(s). Any stationary solution of (•l.:J) is of the form 

m(w) = tanh[i,l(m + wl], (1.4) 

wher<! 1n must satisfy the consistouey relation (s~e (4.2)) 

l'p(m) 

fu tanh[/!(m+w)];;(dw). 
(-1.5) 

It follows from (4.5) that 

l'o(±oo) = ±1 
(Hi) 

Siuce I' is symmetric, we have fc;(O) 0 for all fJ, so that (4.5) always has the para.magn<'ti' 

solution m = 0. To investigate under what conditions ferromagnetic solutions m > 0 may 

occur, we distinguish between the two subcascs I and IL 

Ca."; L r 13 now has the following property: 

Fact 1 For every {3: sign r~( m) -sign m. 
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Proof. Compute, using the symmetry of</>, 

r~(m) {J fR /.:; Cosb2({1~m+w)J)¢(w)dw 

-{J fn cosh2[1}
1
(m+w)]d¢(w) 

-{3 fo""' Co•h2[/(m+w)J cosh2[/(m-w)J)d¢(w). 

(4.7) 

In the last integral, the difference between brackets has the oppsite sign as m for all w ~ 0, 

because x ~ 1/ cosh2(x) is symmetric and unimodal. By the unimodality of¢, we have 

d,P(w):::; 0 and the claim follows. I 

Thus, by Fact 1, if 

r(;(O) {3 k cosh![{Jw]~t(dw) > 1' 

then ( 4.5) has exactly one ferromagnetic solution m m*(/3) > 0. 

Next we investigate (4.8). 

Fact 2 {a) There exists 1 < f3c = f3c(t/>) $ oo such that (.1.8) holds iff {J > f3c· 

(b) {Jc(t/>) < oo iff ,P(O) > !· 

(4.8) 

Proof. (a) To prove the existence of a unique critical value fJc, it suffices to show that 

(3 ~ f/J(O) is non-decreasing. This is done as follows. Compute 

(4.9) 

where 

htJ(w) (4.10) 

Since htJ and ¢ are symmetric, we have 

8 {""' 
813

r(;(O) = 2 lo htJ(w)<f>(w)dw. (4.11) 

Next, let w• be the unique positive solution of the equation 2/lwtanh({jw) 1. Then hp(w) 

changes from positive to negative as w increases through w•. Hence, by the unimodality of 

</>, 

f0
00 htJ(w)t/>(w)dw ~ 1/>(w•) [ J;• hp(w)dw + J;.' hp(w)dw] 

(4.12) 

= <f>(w") f:' hp(w)dw. 

But hp(w) = (8/ow)[w/ cosh2({Jw)], which makes the last integral equal to zero. This proves 

the existence of f3c· The inequality /3c > 1 follows from 1'8(0) < {3. 

(b) Simply note that 

lim r(;(O) lim I -----4---( )<1>(-
13
x)dx = 24>(0). 

IJ-oo IJ-oo Jn cosh x 
(4.13) 
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I 

Facts 1 - 2 show that in the unimodal case the situation is qualitatively similar to the 

standard Curie-Weiss model in zero magnetic field (for which fp(O) = f3 and hence f3c = 1 ). 

The only difference is that possibly f3c = oo, which occurs when the peak of¢; is sufficiently 

low. This corresponds to large randomness, which destroys the spin ordering at arbitrarily 

low temperature. · 

Case II. In the bimodal case the situation is more complex. If 

(-1.1 ·1) 

then obviously there is at least one ferromagnetic solution. However, Fact I is no longer 

true in general and therefore there may be a ferromagnetic solution even when ( 4.14) fails. 

In fact, then there must be at least two ferromaguetic solutions (corresponding to the <:urve 

m-+ fp(m) crossing the diagonal first from below and then from above). 

The regime defined by (4.14) lies under the curve 

I 
f3-+ IJ(f3) = fjarccosh( /i1) ({3 E [l,oo)). (4.1.5) 

This curve is unimodal, with endpoints IJ( I) = IJ( oo) = 0, maximum at {31 = 1. 72 ... , and 

maximal value 1]1= IJ(f3J)= 1/2Jf31({31 - 1)= 0.45 .... 

An idea of when two ferromagnetic solutions occur may be obtained from the small-m 

expansion 

( 4.16) 

On the curve defined by ( 4.15) (i.e., c2 = {3), this expansion reduces to fp( m )= m + {3( ~{3-

l)m3 +0(m5
), from which we see that {32 = i is a critical value. Indeed, if f3 > (32 , then as 'I 

increa.Ses through IJ(f3) (i.e., f3 / c2 decreases through 1) at least two ferromagnetic solutions 

m2 > m1 > 0 occur, because m-+ fp(m) is convex for small m. 

The full phase diagram is drawn in Figure 1, which is obtained numerically. There are 

three phases, corresponding to 0, 1 resp. 2 ferromagnetic solutions. The lower separation 

line is the curve in ( 4.15). The upper separation line corresponds to the choice of parameters 

where there exists m > 0 such that r p( m) = m,r~(m) = 1. (The latter curve moves up 

to 1 because f p( m) tends to the step function at m = 'I as f3 -+ oo.) Note that the two 

curves coincide for f3 E [1, {32] and separate at the "tricritical point" (/32, 112) with 112 = 11(!32). 

The picture shows that a phase transition occurs at some f3c = f3c( IJ) < oo iff IJ E ( 0, I). 

The phase transition is second order when IJ E (0, 1]2] and first order when 'IE (IJ2 , I) (i.e., 

the ferromagnetic solution appears discontinuously). Interestingly, if I]E ( 112, 7JJ}, theu as f3 

increases we get phases 0, 2, 1 and again 2. 7 

2. Linear stability. A stationary solution corresponds to a phase of the system iff it 

is stable under small perturbations. To check stability we linearize the McKeau- Vlasov 

equation ( 4.3) about its stationary solutions, as follows. 

7 Inside phase 2 there is a phase coexistence line (not drawn), above which the paramagnetic solution is 

stable and the ferromagnetic solution is metastable, and below which the reverse is true. See Salinas and 

Wrezinski (1985) and recall footnote 6. 
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Rewrite ( 4.3) as 

( 4.17) 

Let m( ·) be given by ( 4.4) and ( 4.5). Then the Frechet derivative of 0.., at m( ·)is given by 

D0..,{ m(- ))[n(-)] 

= 2i3n( cosh[iJ(m + w)] m(·) sinh[iJ(m + w)J) 2n(-) cosh[iJ(m + w)J ( 4.18) 

= 2iJn cosh[)J[m+w)j 2n( ·) cosh[/3( m + w )] , 

where n = J n(w)p:(dw) and in the last equation we use (4.4). Linear stability means that 

the spectrum of the operator D0w(m(·)) is contained in {z E (:: Re z < 0}. We shall see 

that only the discrete part of the spectrum is relevant for the stability issue. 

Fact 3 (a) The discrete part of the spectrum consists of a single A E R gi11en by the relation 

f. 
l 

iJ I p:(dw)= l, 
R cosh(iJ(m + w)](cosh[iJ(m + w)J + 2A) 

(4.19) 

which satisfies A< 0 iffT{;(m) < 1 (recall (4-6)). 

(b) Iff~(m) < 1, then the continuous part of the spectrum is contained in {A E t:: ReA< 
0}. 

Proof. (a) Elementary. The relation in (4.19) corresponds to the case n f 0. The case 

n = 0 requires that n(w)(2 cosh[,B(m + w)] +A)= 0 p:·a.s. This can only occur when m = 0 

and Jl is of the type in Case II. But then A = -2 cosh(/11)) < 0. The imaginary part of the 

integrand in (4.19) ha.q the opposite sign as Im A. This implies that A E R. The value of A 

is unique because the integrand in ( 4.19) is stridly decreasing in A. 

(b) Elementary. Check that if Re .\ :;:: 0, then D0w(m( ·))- AI (I =identity) is invertible. I 

From Fact 3 we conclude: 

Ca.se I. The paramagnetic solution is linearly stable (.\ < 0) when it is unique and not 

critical, neutrally stable (A = 0) when it is critical, and unstable (A > 0) when it is not 

unique. The ferromagnetic solution is linearly stable iff f~(m*(,B)) < I, which clearly is true 

whenever it exists, because of ( 4.5) and ( 4.6). 

Case II. The paramagnetic solution is linearly stable in phaBes 0 and 2, unstable in phase 

1, and neutrally stable on the boundaries. In phase 2 a stable paramagnetic and a stable 

subcriticalferromagnetic solution coexist (together with an unstable ferromagnetic solution). 

4.2 Kuramoto model 

The Kuramoto model with random frequencies is tile system of diffusions on the unit circle 

driven by .the Hamiltonian in (1.1) with 

f(x;w, rr) 

y(x;w) 

-K cosx 

-xw (xE[0,2rr);w,rrER) 
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where K E (O,oo) is the coupling strength. 8 With this choice, (1.1-1.2) describe a sys

tem of mean-field nonlinearly coupled oscillators, each with its own frequency and external 

white noise. The two terms in the Hamiltonian have opposite effects: f tends to point the 

oscillators in the same direction, g tends to make each oscillator rotate at its local frequency. 

Let tft"( x) denote the probability density that a typical oscillator has angle x at time I 

in the medium w (in the McKean-Vlasov limit), normalized as 

for all t,w. (1.21) 

Then the appropriate order parameter of the system is the complex number 

(4.22) 

Here r1 2:: 0 measures the phase coherence and t/Jt E [0, 21r) measures the average phase of 

the oscillators. In terms of these quantities the McKean-Vlasov equation ( 1.20-1.21) reads 

8 w 
7fi.qt 

with fJ"'·9• the drift given by (1.23} 

/l"''q'(x) Kr1 sin(•f>t-x)+w. 

(4.23) 

(4.24) 

The stationary solutions of (4.23) and (4.24) and their stability properties have been in

vestigated by Strogatz and Mirollo (1990,1991) and Bonilla, Neu and Spigler (I!J!J2). We 

summarize the results here. 

1. Stationary solution(s). Abbreviate 

(4.25) 

Any stationary solution of ( 4.23} is of the form 

qw(x) (4.26) 

where Z"' is the normalizing constant (see (4.21)) and (r,t/JJ must satisfy the consistency 

relation (see (4.22)) 

•
1
, f. (d )J;" dx J:J• dy cos x e.xp[Bw·q(x) B"'·q(x + y)] 

r cos 'f' = 11- w 2, 2 , · 
R fo dx fo dy exp[B"'·q(x) B"'·q(x + y)] 

(4.27) 

Solutions with r = 0 are called incoherent, those with r > 0 (TJartially) synchronized. lt. 

follows from ( 4.25-4.26) that the only solution with r = 0 is the uniform solution 

(4.2~) 

state variahJe X
1 

which was originally nt-va.lued, is wrapped around the unit circle, Set' footnote J, 
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and that this solution exists for all choices of K and It· 

Case I. Define 

K == [ f ¢(w) dw]-1. 
c }R 1 +4w2 

( 4.29) 

Then the incoherent solution is the only solution when K < Kc, while a synchronized so

lution bifurcates off as K increases through Kc. Here the critical value Kc comes from the 

fact that for small r the r.h.s. of (4.27) behaves like"' Kr/ Kc (pick ..P = 0). 

Case II. The phase diagram is drawn in Figure 2. There are three phases, numbered 0, 1 

resp. 2, counting the number of synchronized solutions. The lower curve is 

( 4.30) 

and terminates at the point (K1 , 1]1)= (2, ~). (Here J(l = 2 tuns out to be a boundary value 

above which non-stationary periodic solutions occur, as will be seen below.) The upper curve 

is obtained numerically. The two curves coincide for K E (1, K 2] with K 2 == ~ and separate 

afterwards. The qualitative features of the phase diagram can be seen from the expansion 

for small r (and 1/! = 0) that is obtained by inserting (4.27) into (4.26): 

r Kr[t'-!CK2r 2 +0(r4
)], 

( 4.31) 

c 

We see that C changes sign as 1] increases through the value 1]2= 1J(K2)== 1/2 . ../2. 

2. Linear stability. We consider r = 0 and r > 0 separately. 

2.a. r = Q. Tl1e stability of the incoherent solution was studied hy Strogatz and Mirollo 

(1990,1991). They showed that if (4.23) is abbreviated as 

~q'( = 0w(q'i'), (4.32) 

{J. E (;: J. == -~ iw (wE supp(Jt))} (4.33) 

and discrete spectrum given by the relation 

F { p(dw) 
1 

}R 1 + 2). + 2iw I. 
(4.34) 

Thus, the continuous spectrum does not contribute to the stability issue, which therefore all 

depends on (4.34). 
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Equations (4.33-4.34) in fact require no assumptions on ll· For ;t symmetric, as was 

assumed, ( 4.34) reduces to 

. { 2.\ + 1 
1\ lR (2.\ + 1)2 + 4w2 !l(dw) = 1. (4.35) 

Again we distinguish between Case. I and Case II, as in Section 4.1. 

Case I. It can be shown that the unirnodality of ¢ implies that ( 4.35) has at most one 

solution .\ E JR., satisfying 

with Kc given by (4.29) and 

]( ~ K~: 

K; < K < Kc: 

K= Kc: 

K > Kc: 

no .\ exists 

-! <). < 0 

A=O 
A>O 

K"= _2_ 
c lr</>(0) 

(•J.:J7) 

(obtained by letting A 1 -~ in (4.35)). Hence the incoherent solution is linearly stable if 

il < ll"c, neutrally stable if K Kc, and unstable in K > J(c· 

Case II. Now (4.35) reduces to K(l + 2A)/[(J + 2A)2 + 41)2
] 1, which has two solutions 

Thus we find that 

K ~ 1: 

1<K<2: 

K > 2: 

Re A+ < 0 for all 17 

ReA+< o iff A.< Kc = 1 + 41P 

Re A+ > 0 for all!]. 

( 4.:18) 

(4.39) 

Thus the incoherent solution is linearly stable when K < K 1 1\ Kc, neutrally stable when 

}( = K1 1\ Kc, and unstable when K > Ill!\ He. 

2.b. ~. The stability of synchronized states is Jess well understood. 

Case I. A (unique) synchronized state bifurcates off as K increases through l(. ami this 

state is linearly stable. 

Case II. The phase diagram is more complex. Bonilla, Neu and Spigler ( 1992) heur·i .. ti· 

cally argue the following: 

(1) 11 E (0,172): The same bifurcation occurs as in Case I, namely, as/{ increases through 

the value Kc I+ 41)2 one stable synchronized state appears. 

(2) 11 E ( 112. 17!): There exists 1 < K; < Kc such that for /\' E (K;, Kc) there is a stable 

subcritical synchronized state that coexists with the stable incoherent state (there is also 

an unstable synchronized state). As J( increases through the value Kc the incoherent state 

becomes unstable and the synchronized state survives alone. 
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(3) T} E (TJ1, oo): As J( increases through the value Kt 2 the incoherent state becomes un

stable and a stable time periodic state bifurcates off. This is a state where rh '¢1 are periodic 

in Lime. 

Appendix A 

We prove here that equation (1.17) has a unique solution. We assume (AI): the initial mea

sure,\ has a density .P w.r.t. Lebesgue measure satisfying .P E L1(dx )nLP( dx) for some p > 1. 

Step 1: A priori estimate. 

We first prove that if Q. is a solution of (1.17) then there are constants A > 0 and 0 <;:;a< 
1/2 such that 

qnx) <;:; ~ for every x,w E IR and t > 0, (A.l) 

where q'f II1Q':. To see this, observe that Q. ::= pQ. gives 

dQ': Jpw,Qo 

dW = ""dW' (A.2) 

The process having Jaw pw.Q. is a. diffusion whose drift f3~·n,Q, is the bounded derivative of a 

bounded function (recall {1.11-1.12)). By the usual argument involving Girsanov's formula 

and Ito's rule, one sees that there is a constant B > 0 such that the Radon-Nikodyrn 

derivative in (A.2) is bounded by B uniformly in w. It follows that 

q:"(x) :S: B'¢1(x) (t > 0), (A.3) 

where '¢1 lltW, i.e., 

t/Jt(x)= (A.4) 

By Holder's inequality we have 

(A.5) 

with C > 0 some constant and 1/p + 1/q = 1. Now {A.l) follows from (A.3) and (A.5). 

Step 2: Uniqueness. 

Let Q and Q be two solutions of (17), with q'f, ij';' denoting the corresponding rnarginals. As 

mentioned in footnote 3, these are both classical solutions of the McKean- Vlasov equation 

( 1.20). Define, for t > 0, 

f't'(x) qnx) ij';'(x). 

The following relation is easily checked (see (1.11) and (1.20-1.21)): 

where 
Lf(x) 

I 

2 

f't'(x)f dy J.!(d7r)q[(y)(]'(y x; w, 1r) + g'(x;w)) 

+ ijt(x) f dy J.!(d7r)F{(x)(]'(y- x;w, 1r) + g'(x;w)). 
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Now let G(x,t) be the fundamental solution of the heat equation, i.e., 

G(x,t) (A.9} 

Then (A.7) yields 

.Fr(x) f~dsfdyG(x y,t-s)~L';'(y) 

(A.lO) 

f~ ds f dy L';'(y)'ff:(x- y, t- s), 

where the last integration by parts is justified since, for w E m. and t > 0, L'f( x) is a bounded 

function of x. Now define 

H'( j I.Fr(x)idx. (A.ll) 

By substituting (A.l) into (A.8), one obta.inij the following estimate: 

j ILnx)ldx ~ ~HI'+* j p.(d1r)H{' for aJI wand t (A.l2) 

with A and B suitabl<> constants independent of t. Moreover, by direct computation one 

sees that there is a constant K such that 

J( 
for all y. (A.13) 

Putting together (A.l0-A.l3) and defining H, = f p.(dw)Hj, we get 

H1 ~ C l--r==H (tE(O,T]), (A.l4) 

with C some constant independent oft. Below we sha.ll show that (A.14) implies H, = 0. 

We complete the proof by showing how the latter implies Q ::: Q. Indeed, if H1 = 0 then 

(A.6) and (A.ll) give qt'(x) q('(x) for all t and for almost every w,x. Q and Q being 

solutions of (1.17), this in turn implies that for almost every wE m. the diffusions with laws • 

Q"' and Q"' have the same bounded and continuous drift and the same initial distribution. 

By standard uniqueness results for stochastic differential equations, it follows that Qw = Q"' 
w-a.s., and so Q ::: Q. 

Step 3: H1 = 0. 
Let us define 

By (A.l4) 

Now, because a < ! we have 

sup H •. 
•E[O,t] 

for all s E [0, t]. 

o. 
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This, together with (A.16), implies that there exists t' > 0 such that H1 = 0 for t E [0, t']. 
Using (A.14) again we obtain 

It is trivial to see that 

H <- --C 1' ds 
8-t'o t'~· 

i
t ds 

lim --=0, 
t-t't'~ 

(A.18) 

(A.19) 

and so there must exbt t" > 0 such that Ht = 0 also for t E [t', t' + t"]. This argument can 

be repeated to show that H, = 0 for t E [t' + t", t' + 21"] and so on. Hence H, = 0. 

We remark that a< 1/2 in (A.1) is a consequence of our assumption (A1) on the initial 

condition >.. By removing that assumption we would get a = 1/2 and the proof would not 

work. 

Appendix B 

The proof of Theorem 4 will be completed here, i.e., we carry out the change of variable 

trick which provides the rigorous justification for the formal computation in Section 2.4. We 

first give an outline of the proof, which is based on Clajms 1-4 below. The proof of these 

claims comes later. At the end of this Appendix we show what modifications are needed for 

spin-flip systems. 

Let M(C[O, T] X ffi.) be the vector space of signed measures on C[O, T] X lR, provided 

with the weak topology. 

Claim 1. There exists a Banach space ( B, 11·11), a continuous linear map T: M(C[O, T] x 
ffi.) --> B, and a continuous map 'l1 : B --> ffi. that is bounded on T( M 1 ( C[O, T] x llt)) and 

infinitely Frechet differ-entiable, such that · 

d1:~N(~[o,TI) = exp[N'l!(T(LN))j. (B.1) 

Moreover, Range(T') C Cb, where T': B' ___, (M(C[O, T] x ffi.))' is the adjoint map ofT. 

Next, let 

(B.2) 

and denote by p~ and WN the laws of .r_ = (Y1 , ... , YN) induced by PN resp. W®N@ Jl®N. 

Then it follows from (B.1) that 

with MN = N-l 2::~ 1 Y;. 

dpN 
-d -(.t_) = exp[N'li(MN)] 

WN 
( 13.3) 

As we shall see later, the Banach space (B, II· II) in Claim 1 satisfies the requirements 

of Bolthausen's theorem (see (B.ll) below), which can therefore be applied to the random 

variables Y; with the help of (B.3). Moreover, by the Contraction Principle, the PN-law of 
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MN satisfies the LOP with rate function J(Y) infT(Q)=Y l(Q), which has a unique zero 

at Y. = T(Q.). 

To compute the covariance of the corresponding CLT, we begin by defining a probability 

measure p on B by putting 

dp (Y) 
dw 

1 z exp[DIIt{Y.)[Y]J (ll.4) 

where w is the Jaw of T(o(~fo,TI•"'l) induced by W 181 11-, Dis the Frechet derivative, and Z is 

the normalizing constant. 

Claim 2. The measure pis the law o[T(o(xfo,TJ·w)) induced by Q •. 

Next, let p. == p- Y •. For h, /;; E B• define 

j(h,k) 
h 

I p.(dY)h(Y)k(Y) 

fp.(dY)Yh(Y) E B. 

Claim 3. Let r be as in (2.28). The following identities hold: 

l(h,k) 

h 
D 2 \II(Y. )[h., kj 

I'(T•h,T*k) = D 2H(Q.)[Ph,N] 
T('Toh) 

D2 F( Q.)[N, N]. 

(H.5) 

(B.G) 

Thus, by what was shown in Section 2.4 (proof of II), we have 1(h, h)- D 2 W(}'. )[it, It] > 0 

unless h = 0. It follows from Bolthausen's theorem that, under the PN·law as N -+ oo, the 

field 

( N~h(MN-Y.)) (Ntj(T*h)d(LN QJ) 
heB• • heB· 

(l.l.7) 

converges weakly to a Gaussian field with covariance (recall (2.38)) 

To complete the proof of Theorem 4 it therefore suffices to sl10w the following fact. 

Claim 4. For given <PI, ... , <Pn E C,, n E IN, the Banach space { B, 11·11) (11!d the map T can 

be constructed in such a way that { ¢ll ... , tf>n} C Range( T•) . 

We next proceed with the proof of Claims 1-4. 

Pmof of Claims 1 and 4. 

By redefining the functions a;,f3i in Assumption (A2), it is clear that iustead of ( LH) we 

may also write 

- }(y- x;w,Jr) g(x;w) c;a;(x,w)fJ;(y, Jr) (B.9) 
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(where (a;,,B;,c;);>o have the properties described in Assumption (A2)). Substituting (B.9) 
into ( 1.5) we get -

F(Q) = -Hl dt[ Li,j c;Cj (f Q(dz(o,T]• dw)a:(x~.w)oj(x~,w)) 

( f Q( dY[O,TJ• d1r ),B;(Yt.'lf)) ( f Q( dY[o,T)• d1r ),Bj( Yt. 1r)) 

+ Li c;( f Q(dx(o,T)•dw)ai'(xt.w)) ( f Q(dY[o,T)•dJr),B;(y,, 1r))] 

+! E; c; (I Q(dxro.T]• dw)a;(xr,w)) ( f Q(dY[o,1]>d7r),B;(l/T, 11")) 
-! Li c;( f Q(dx[o,T]• dw)a;(xo,w)) ( f Q(dY(o,T),dli"),B;(yo, 11")). 

(B.lO) 

Next, denote by c the finite measure on IN given by c( { i}) = c;. We introduce the following 

Banach spaces: 

L3(JN2 x [O,T],c®2 ®dt) 

L2(1N x [O,T],c®dt) 

L2(1N U { -1, -2, ... , -n},c + .L1 + · · · + L,.) 
(Bt)3 x (Bz)2 x (B3)4

• 

(B.ll) 

The norm II · II on B will be chosen to be the supremum of the norms on the factors. An 
element Y E B will be written · 

(8.12) 

The map T: ..M(C[O, T] X IR)-> B is now defined as follows: For i,j E IN and t E [0, T] 

for i E IN 

T(Q)j(i,j,t) 

T(Q)i(i,j,t) 

T(Q}f(i,j,t) 

T(Q)~(i,t) 

T(Q)~(i,t) 

T(QH(i) 

T(QH(i) 

T(Q)~(i) 

T(Q)1(i) 

fori== 1,2, ... ,n and k = 1,2,3,4 

f Q( dx[o,T]• dw )ai(xt. w )aj(x1, w) 

f Q(dx(O,TJ> dw ),Bi( Xt, W) 

f Q(dx(O,TJ• dw),Bj(xt,W) 

f Q(dx(o.T],dw)af(x1,w) 

f Q(dx[O,TJ• dw),B;( x1,w ), 

f Q( dx[o,T)• dw )a;( xr, w) 

f Q(dx[o,T]• dw),B;(xr,w) 

f Q(dx[O,TJ• dw)a;(xo,w) 

f Q(dx[o,T]• dw),B;(x0 ,w), 

T(Q)~( -i) = f Q(dx(o,T)•dw)¢;(X[o.T)·"')· 

(B.l3) 

(8.14) 

(8.15) 

A straightforward computation (which we omit) allows us to get an explicit (but rather long) 

formula for the operator T*: B* = (Bi)3 x (B2)2 x (B3)4 
-• (..M(C[O, T] x IR))*, from which 

it easily follows that Range(T*) c Cb. Moreover, we see from (8.15) that 

</>, = T*(O,O,O,O,O,O,O,O,l{-i}l, (8.16) 

which proves Claim 4. 
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For Y E B define 

((I(Y) - fN,x(o,T](dc02 ® dt)YlY?Yl 

- fNx(o,T](dc®dt)YiYl 

+ JN dc(Y:fYl- Y:fYh 

(B.l7) 

Clearly, >11 is continuous and infinitely Frechet differentiable. Moreover, qr is bounded 

on T(M 1(C(O,T] x R)) because the components of T(Q) are bounded uniformly in Q E 
M 1(C(O,T] x R). Finally, (B.lO), (B.l3), (B.l4) and (B.l5) imply that F(Q) >l'(T(Q)) 

(note that F extends to a.ll M(C[O, T] x R)). This proves Claim 1. 9 · I 

Proof of Claim 2. The main step in the proof is the relation 

DF(Q.)(5( .. Jo.'l1•"')] = log d(~Q~ p) (x[o,T)• w) for W ® p -a.s. all (x[o,TJ• w ). (B.l8) 

This relation is easily obtained from (1.5) by direct computation using Girsanov formula. 

We omit the details. 

By (B.18) and the fact that T is linear and continuous, we have 

Thus, for any p: B-+ lR measurable and bounded, (B.4) gives 

f p(dY)p(Y) = H w(dY)p(Y)exp[D'li(Y.)[YJl 

~ f(W ® p.)(dx[o,TJ• dw)p(T(tlt~ 1 o.TJ•wJ))d(fi®,. 1 (x[o,TJ.w) 

~ f Q.(dX[o,T]• dw)p(T(6(x(o.T)•"'))). 

Letting p = 1, we get Z = 1. 

Proof of Claim 3. 

Using Claim 2 and the definition of adjoint operator, we have 

l(h,k) f p(dY)h(Y Y.)k(Y- 1'.) 

f Q.(dx(O,T]•dw)h(T(6(x(o,T)•"')- Q.))k(T(<l(x(o,T)•w) Q,)) 

(B.19) 

(B.20) 

• 

f Q.(dx(o,1')• dw) [T•h(x[o.T]•w)- Eq•(T*hl] [T*k(x[o,T)•w)- EQ•(T*kl] 

f(T*h,T*k). 
(B.21) 

we mentioned ea.rHer 
1 

Bolt.hausen 1S theorem can be used with no further assumption in Banach spaces 

of type 2 (see Ben Arous and Brunaud (1990) for the precise definition). Now, £•-spaces with 2 ::; p < oo 
are of type 2, and finite products of Banach spaces of type 2 are again of type 2. Thus our (B, II· JIJ defined 

in (B.ll) is a Banach space of type 2. 
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Similarly, 

h fp(dY)(Y-Y.}h(Y Y*) 

f Q.(dxro.TJ• dw)T(61, 1o,TJ•"'l- Q.)h(T(o1, 1o.TJ·w)- Q.)) 

T(I Q.(dxro.TJ• dw)(o1x1o.rJ·"'l- Q.)T*h(li(,1o.rJ.w)- Q.J) 

1'(NJ, 

(B.22) 

where we again use the notation (T*h)(Q) for f(T"h)dQ. The third identity in (B.6) follows 

from the second and the fact that T is linear and continuous. • 

We finally sketch the corresponding change of variable trick for spin-Hip systems. We 

only show the key part of the contruction, which consists of defining a linear continuous 

map T from lvi(D[O, T] x lit) to a Banach space ( B, 11·11) of type 2 and a smooth function 

\(1 : B - IR such that F \(1 o T. The rest of the proof is a. simple modification of what we 

have done above for diffusions. 

In order to avoid unnecessary complications, we shall explain the construction for the 

function F' defined by 

(B.23) 

The extension of our construction from F' to F (defined in (3.5)) is straightforward. 

In the above argument for diffusions, we were able to map lvi(C(O,T] x!R) to a. Banach 

space ( B, il·ll) that is a finite product of £P.spaces with I'?: 2 and therefore is a Banach 

space oftype 2. In doing so, we used the fact that the function F(Q) in ( 1.5) is npolynomial" 

in Q (i.e., F(.l.Q), A E lit, is a polynomial in A). Such a property holds neither for Fin (3.5) 

nor for F' in (B.2:l). Here is where Assumption (A3) plays a crucial role. Since the function 

{-1,+1} x lR- ffi. given by (x,w) ,_. xa;(w) assumes only finitely values, we can find a 

q E IN and smooth functions ¢;, ¢j, j "' 1, ... , q, such that for all z E Ill 

q 

e"1(w)rz = L 1/•j(xo;(w))</>~(z) (i 1, ... ,]l). (H.21) 

i=l 

Substituting (3.22) into (B.2:l) and using (13.24), we find 

•. ,j,=l J[ dt{ [ m=l I Q(dX[o,11•dw)¢}.(x,a;(w)J] 

[ Of=l ¢j,(J Q(dY[o,Tl• d7!')y,,B;(11'))]}. 

(B.25) 

Not<• that. th(' arguments of the functions ¢j in (B.25} are bounded uniformly in Q. Thus it 

is not rcstrktive to assu111e these functions and all their deriva.tives to be bounded. We now 

define 

(B.26) 
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The norm II · II on B is taken to be the supremum of the norms on the factors. An element 

f E B is written in the form 

(B.27) 

The maps T: M(D[O, T] X JR)--+ Band IIi : B--+ lR are defined by 

(i.E {1, ... ,q}{l .... p)) 

(i E {1, ... ,p}) (B.28) 

It is easily seen that Tis linear and continuous. Moreover, the smoothness of 1[1 follows from 

the fact that the functions 4>} and their derivatives are Lipschitz continuous. Finally, it is 

clear that F' = 1[1 o T and that B, being a finite product of LP-spa.ces, is of type 2. 
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Figure 1: Phase diagram for the Curie- Weiss model 
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Figure 2: Phase diagram for the Kuramoto model 

Kt :::: 2 1]1 = ~ 

l 

272 

38 


