
RESEARCH ARTICLE Open Access

MCL-1 inhibition provides a new way to
suppress breast cancer metastasis and
increase sensitivity to dasatinib
Adelaide I. J. Young1, Andrew M. K. Law1, Lesley Castillo1, Sabrina Chong1, Hayley D. Cullen1, Martin Koehler2,3,

Sebastian Herzog4, Tilman Brummer2,4, Erinna F. Lee5,6,7,8, Walter D. Fairlie5,6,7,8, Morghan C. Lucas1,

David Herrmann1, Amr Allam1, Paul Timpson1,9, D. Neil Watkins1,9, Ewan K. A. Millar10, Sandra A. O’Toole11,12,

David Gallego-Ortega1,9, Christopher J. Ormandy1,9† and Samantha R. Oakes1,9*†

Abstract

Background: Metastatic disease is largely resistant to therapy and accounts for almost all cancer deaths.

Myeloid cell leukemia-1 (MCL-1) is an important regulator of cell survival and chemo-resistance in a wide range of

malignancies, and thus its inhibition may prove to be therapeutically useful.

Methods: To examine whether targeting MCL-1 may provide an effective treatment for breast cancer, we

constructed inducible models of BIMs2A expression (a specific MCL-1 inhibitor) in MDA-MB-468 (MDA-MB-468-2A)

and MDA-MB-231 (MDA-MB-231-2A) cells.

Results: MCL-1 inhibition caused apoptosis of basal-like MDA-MB-468-2A cells grown as monolayers, and sensitized them

to the BCL-2/BCL-XL inhibitor ABT-263, demonstrating that MCL-1 regulated cell survival. In MDA-MB-231-2A cells, grown

in an organotypic model, induction of BIMs2A produced an almost complete suppression of invasion. Apoptosis was

induced in such a small proportion of these cells that it could not account for the large decrease in invasion, suggesting

that MCL-1 was operating via a previously undetected mechanism. MCL-1 antagonism also suppressed local invasion and

distant metastasis to the lung in mouse mammary intraductal xenografts. Kinomic profiling revealed that MCL-1

antagonism modulated Src family kinases and their targets, which suggested that MCL-1 might act as an upstream

modulator of invasion via this pathway. Inhibition of MCL-1 in combination with dasatinib suppressed invasion in 3D

models of invasion and inhibited the establishment of tumors in vivo.

Conclusion: These data provide the first evidence that MCL-1 drives breast cancer cell invasion and suggests that MCL-1

antagonists could be used alone or in combination with drugs targeting Src kinases such as dasatinib to suppress metastasis.
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Background
Metastatic disease remains largely incurable and accounts

for almost all cancer deaths. Metastasis is a multistep

process where primary tumor cells escape and colonize

distant organs and tissues. There are several steps that lead

to the acquisition of this lethal phenotype, which include

epithelial to mesenchymal transition, cytoskeletal remodel-

ing and cellular movement, intravasation, survival in the

vasculature, extravasation and the acquisition of cellular

properties of the distant niche. Importantly, cell survival

underlies every stage of this process [1]. Myeloid cell

leukemia-1 (MCL-1) is a potent survival factor for normal

and malignant tissues and is associated with chemo-

resistance in a wide range of tumor types [2]. For this

reason, there is great interest in the development of small

molecule pharmaceuticals that inhibit MCL-1, with some

compounds showing high specificity and potent anti-tumor
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effects in vitro [3, 4], but the poor pharmacokinetics of

these compounds limits their use in vivo.

MCL-1 is a member of the BCL-2 family of proteins that

regulate the intrinsic (mitochondrial) apoptotic cascade [5].

MCL-1 interacts with the pro-apoptotic BCL-2 family

members and protects normal and malignant cells from

undergoing programmed cell death. The pro-apoptotic fam-

ily members include two subgroups: the BH3-only sensor

proteins (e.g., BIM, NOXA and PUMA), which trigger the

intrinsic apoptotic cascade in response to cytotoxic insults

or cellular stresses; and BAX and BAK, the apoptotic effec-

tors [5]. Following a death stimulus, BAX and BAK change

conformation and oligomerize, leading to outer mitochon-

drial membrane permeabilization and the release of apopto-

genic factors, leading eventually to cell death. MCL-1 is

more than just a BCL-2-like survival factor [2]. MCL-1 is

anti-apoptotic at the outer mitochondrial membrane, but

can localize to the inner mitochondrial membrane, where it

regulates oxidative phosphorylation and the maintenance of

mitochondrial structure [6]. MCL-1 can also interact with

CDK1, PCNA and CHK1 in the nucleus, where it regulates

cell cycle progression and DNA damage [7]. Hence MCL-1

is a protein with multiple functions in mitochondrial-

dependent cell death machinery, metabolic oxidative phos-

phorylation and DNA damage responses.

The MCL-1 gene is one of the most frequent focal am-

plifications in breast cancer, occurring in approximately

30% of cases [8]. High MCL-1 expression has been found

to correlate with poor prognosis in mixed breast cancers

[9] and de-novo copy number amplification correlates

with therapeutic resistance [8–12]. MCL-1 is a key player

in resistance to a wide range of therapies [9, 11, 13].

MCL-1 protein is observed in most breast cancer subtypes

[14]. MCL-1 also has been shown to confer the survival of

breast cancer cells in vitro [4]. These data suggest that

MCL-1 could provide a therapeutic target for a wide range

of breast cancer patients.

Here, we have modeled MCL-1 antagonism in breast can-

cer cell lines by inducible expression of a modified form

(L62A/F69A double mutant) of the short isoform of BIM

(BIMs2A/2A), which mimics the actions of a highly specific

small molecule antagonist [15]. This genetic approach was

chosen because it was effective in models of acute myeloid

leukemia and can be precisely controlled using inducible

vector systems [16, 17]. BIMs2A acts similarly to NOXA be-

cause it binds preferentially and with high affinity to the

hydrophobic pocket of MCL-1, thereby releasing bound

BH3-only proteins and blocking engagement with activated

BAX/BAK. Unlike NOXA and knockdown strategies,

BIMs2A binds and disrupts the interactions of MCL-1,

while maintaining its stability. The effects of this antagonist

on cell death, invasion and metastasis were examined in

vitro, using traditional culture techniques and a novel model

of cell invasion, and in vivo using cell lines grown as

intraductal xenografts, a technique that recapitulates the re-

quirement for cancer cells to breach the basement mem-

brane of the mammary duct to metastasize.

Methods

Additional materials and methods are provided in

Additional file 1.

Mice

Immune-compromised NODScidIL2gamma–/– mice were

housed in SPF conditions in a 12-hour:12-hour light:dark

cycle and given food and water ad libitum. Doxycycline

(DOX)-containing food (700 mg/kg) was purchased from

Gordon’s Specialty Stock Feeds and replaced weekly. Intra-

ductal injections were modified from a previously described

protocol without a Y incision in the abdomen [18]. For lon-

gitudinal studies, mice were randomized into DOX-treated

or control-treated groups and monitored twice weekly for

tumor growth, and measurements were taken until an eth-

ical end point of 10% tumor burden or prior if the animal

succumbed to tumor/metastasis-induced morbidity. For

cross-sectional studies, mice were again randomized into

DOX-treated or control-treated groups and sacrificed at

9 weeks (MDA-MB-231-2A xenografts) or 12 weeks

(MDA-MB-468-2A xenografts) post tumor cell inoculation.

For tail vein injections, mice were injected (with 1,500,000

MDA-MB-231-2A cells or with 2,000,000 MDA-MB-468-

2A and MDA-MB-157 cells) using a 100 μl injection into

the dorsal tail vein before harvest at 9 weeks post injection.

At the end of the experiment, as indicated in the figures,

mice were euthanized with CO2 asphyxiation and the

mammary glands, tumor and lungs were harvested and

fixed for 4 hours in 10% buffered formalin at room

temperature. Where possible, mammary glands were whole

mounted and tissues were processed for histology as de-

scribed previously [19]. After fixation, the mammary glands,

tumors or lungs were sectioned and either stained with

hematoxylin and eosin for routine histochemistry or stained

with BIM (CST 2933), high molecular weight cytokeratin

(Leica 34BE12), Vimentin (Leica NCL-L-VIM-V9), MCL-1

(ThermoScience MA5-13932), Cleaved Caspase-3 (CST

ASP175 9664), multi-cytokeratin (Leica C-11) and Ki67

(ThermoScientific SP6) using DAKO immunohistochemis-

try as per the manufacturer’s instructions. All sections from

tumors and lungs in each model were cut, sectioned, re-

trieved and stained at the same time permitted with each

antigen.

2D and 3D in-vitro experiments

Pools of BIMs2A or empty vector (EV) cells were made by

routine cloning into an all-in-one tetracycline inducible

vector (SH570MK as detailed in Additional file 1) and se-

lected using Puromycin. BIMs2A expression was induced

with 2 μg/ml DOX or vehicle control daily in the media
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and cells were harvested at the time points indicated in

the figures. Annexin V PI staining was performed using

the Annexin V-FITC Apoptosis Kit (Biovision, CA, USA)

as per the manufacturer’s instructions. ABT-263 (5 μg/ml)

was added to the media at the indicated times. For siRNA

experiments, 5 nM siRNAs targeting MCL-1 (DHA-L-

004384-00-0005) or non-targeting control siRNA (D-

001206-14-05) was premixed with RNAiMAX (Thermo-

Fisher) and cells were transfected the day after plating at a

density of 1 × 105 cells per well with ON-TARGETplus

SmartPools of MCL-1 or nontargeting controls siRNAs as

per the manufacturer’s instructions. A1210477 and UMI-

77 (Selleckchem, MA, USA) was added to the media at 5

or 10 μM respectively as indicated in the figures. Dasatinib

(Bristol-Myers Squibb, Princeton, NJ, USA) was added to

the media in 2D and 3D at a concentration of 1 μM and

200 nM respectively. 3D collagen I/fibroblast models were

performed as described previously [20].

Human invasive carcinoma breast tissue microarrays

Immunohistochemistry was used to assay MCL-1 protein

expression using a mouse monoclonal antibody to MCL-1

(ThermoFischer (Pierce) MA5-13932) on TMAs con-

structed from tumors from a cohort of 292 patients diag-

nosed with invasive ductal breast carcinoma described in

[21]. MCL-1 protein could only be detected in a subset of

246 of these cases due to missing or folded cores. The co-

hort consists of cases of invasive ductal carcinoma of no

special type, median age 54 (range 24–87), with a median

follow-up of 64 months (range 0–152.1). Of these, 68.6%

were ER+, 57.1% were PR+, 18.7% were HER-2 amplified

(by FISH) and 43.3% were lymph node-positive. Endocrine

therapy (TAM) was given to 49.3% of patients and chemo-

therapy (AC or CMF) to 38%.

Polyacrylamide gel electrophoresis, immunoprecipitation

and western blotting

Immunoprecipitates were made using antibodies to MCL-

1 (ThermoScience MA5-13932), BCL-2 (Millipore 05-

729) and BCL-XL (CST 2764) using the TrueBlot kit

according to the manufacturer’s instructions (Rockland

Immunochemicals). Then 20 μg reduced protein was

loaded in each well of 12% NuPAGE SDS polyacrylamide

gels (Life Technologies) and separated using electrophor-

esis. Proteins were transferred to Immun-Blot PVDF

(Biorad) and analyzed by western blot for mouse MCL-1

(CST 5453), BCL-2 (Millipore 05-729), BIM (CST 2933),

PUMA (CST 4976), NOXA (ENZO ALX-804-C10), p53

(Epitomics 1026-1), Cofilin (total) (CST 5175), S3-Cofilin

(CST 3313) and beta-ACTIN (Santa Cruz AC-74, A5316).

3D organotypic collagen I/fibroblast invasion assay

The production of contracted matrices is described else-

where [20] and detailed methods are provided in Additional

file 1. Contracted matrices were seeded with 1 × 105 MDA-

MB-231-2A cells and allowed to grow for 4 days, mounted

on a metal grid and raised to an air–liquid interface to initi-

ate invasion, which resulted in the matrix being fed from

below with the media supplemented with either vehicle,

DOX, dasatinib or a combination of DOX and dasatinib

commencing at seeding (day 1) or 5 days after seeding (day

5). All treatments were performed on three independent

matrices. Cells were allowed to invade for a total of 10 days

towards the chemo-attractive gradient created by the air–li-

quid interface and then harvested for immunohistochemis-

try for multi-cytokeratin (Leica-Novocastra C-11)

(invasion), Ki67 (ThermoScientific SP6) (proliferation) or

Cleaved Caspase 3 (Cell Signaling Asp175 5A) (apoptosis)

and scored as detailed in Additional file 1.

Image analysis and statistical analysis

Quantification of the number and size of metastases

(using sections stained with an antibody against human-

Vimentin) and BIM intensity (using an antibody

raised against human BIM) was performed using macros

designed using FIJI image analysis software (http://fiji.sc/

Fiji) that are available from the corresponding author and

are described in Additional file 1. Chi-squared analysis,

Kaplan–Meier survival analysis and univariate analysis

(UVA) using the Cox proportional hazards model were

performed to determine correlations between MCL-1,

clinicopathological features and outcome performed in

Statview SE. All other data and statistics were analyzed in

Prism6 for MacOSX. Data were graphed and parametric

or nonparametric tests, as indicated in the figure legends,

were used for normally distributed and skewed data re-

spectively, and statistically significant groups were deter-

mined using bars as shown in the figures.

Results

MCL-1 is widely expressed in breast cancer cell lines

We investigated the levels of MCL-1 and the other BCL-2

family members BCL-2, MCL-1, BIM, PUMA and NOXA in

32 human breast cancer and immortalized breast epithelial

cell lines (Fig. 1a). Variable levels of MCL-1 and BCL-XL

were detected in all cell lines. BCL-2 levels were more vari-

able, with only a small proportion (5/32, 15%) displaying

high expression. MCL-1 was present in 17 cell lines with low

or zero levels of BCL-2 (Fig. 1a). The MCL-1-interacting

BH3-only proteins BIM, PUMA and NOXA were expressed

at varying levels in all cell lines tested (Fig. 1a).

MCL-1 protein was widely expressed by invasive breast

carcinomas independently of subtype and was predictive

of overall survival

We investigated the importance of MCL-1 copy number

variations and expression in breast tumors using publically

available datasets. Gains and amplifications in MCL-1
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copy number were observed in 14% of all cases in the

TCGA dataset (CBioPortal [22, 23]). Increased MCL-1

copy number was also more frequently observed in inva-

sive ductal carcinoma compared with normal tissues

(TCGA, Oncomine [24]; Additional file 2: Figure S1A).

MCL-1 mRNA expression correlated with advancing dis-

ease stage in the METABRIC dataset (Additional file 2:

Figure S1B). Using publically available data sets obtained

from NCBI GEO (KM Plotter [25]), we then investigated

whether MCL-1 expression correlates with overall out-

come. Three independent MCL-1 mRNA probes corre-

sponding to Variant 1 (200798_x_at) and full-length MCL-

1 (214057_at and 214056_at) were investigated, and the

breast cancer cohort was split into untreated and treated

cases (Additional file 2: Figure S1C, D). High MCL-1

mRNA expression predicted poor outcome in the un-

treated cases and the effects were reversed in the treated

patients (Additional file 2: Figure S1C, D), but the hazard

ratios in all cases were modest. Basal and HER2 amplified

cases showed poor outcome when MCL-1 expression was

low, with much stronger hazard ratios of 0.3 (n = 94 cases)

and 0.08 (n = 30 cases) respectively. A similar nonsignifi-

cant trend was observed in the luminal A breast cancers

(n = 68) but not in the luminal B subtypes (n = 115).

Fig. 1 Levels of MCL-1, BCL-XL, BCL-2, BIM, PUMA, NOXA and p53 in breast cancer cell lines, immortalized breast epithelial cell lines and breast carcinoma. (a)

Western blot using breast cell lines. Lysates from MCF10A cell lines were loaded in the first lane of each gel as a control for exposure and β-actin was used as

a loading control. Data are representative of three independent western blots. (b) Immunohistochemistry using an antibody to MCL-1 in breast carcinoma

tissue microarrays showing absent to strong (0–3) cytoplasmic levels. Nuclear staining was also detected in some cases (3). Box and whisker plots depicting

the mean Histoscore of (c) cytoplasmic and (d) nuclear MCL-1 staining in basal-like (BL), HER2-positive (HER2), luminal A (LA) and luminal B (LB) breast

carcinoma tissue microarrays. (e) Kaplan–Meier survival curve for breast cancer specific survival of luminal A patients with higher cytoplasmic MCL-1

(Histoscore > 100) or lower cytoplasmic MCL-1 (Histoscore > 100). Log-rank p value. HR hazard ratio, MCL-1 myeloid cell leukemia 1 (Color figure online)
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We then explored the prognostic significance of MCL-

1 using tissue microarrays from a cohort of 246 patients

diagnosed with invasive breast carcinoma [21]. MCL-1

immunohistochemistry displayed a variable expression

pattern across tumors, ranging from absent to strong ex-

pression (0–3+) (Fig. 1b). MCL-1 expression was de-

tected in the cytoplasm and in the nucleus of invasive

carcinoma cells, with some heterogeneity observed

within tumors (Fig. 1c, d). Cytoplasmic MCL-1 levels

were lower in HER2-positive tumors compared with lu-

minal A tumors but no other significant differences were

observed (Fig. 1c, d). High cytoplasmic MCL-1 levels

(Histoscore > 100) were modestly associated with im-

proved breast cancer specific survival (log-rank Mantle

Cox p = 0.04, hazard ratio = 0.54, 95% confidence inter-

val 0.295–0.975; Fig. 1e). Nuclear MCL-1 expression was

not predictive of outcome and no other significant ef-

fects on survival were observed when the cases were

split into subtypes. High cytoplasmic MCL-1 expression

was also positively correlated with the expression of the

pro-apoptotic protein PUMA (chi-squared p < 0.0001,

relative risk 1.75, 95% confidence interval 1.302–2.338).

Models of MCL-1 antagonism using BIMs2A, a MCL-1 specific

sequence

To investigate whether MCL-1 antagonism was sufficient

to induce cell death, genetic models were generated using

the MCL-1 positive breast cancer cell lines MDA-MB-468

and MDA-MB-231. These lines are representative of the

triple-negative subtype, which is often the most difficult to

treat due to rapid disease progression [26]. The MDA-

MB-468 cell line is characteristic of Basal A tumors (Fig. 1a

indicated in red) while the MDA-MB-231 cell line is typ-

ical of claudin-low tumors (Fig. 1a indicated in blue).

MCL-1 protein is found in both cell lines with lower levels

observed in the MDA-MB-231 cell line.

To antagonize MCL-1, we expressed the BIMs2A se-

quence, a BIMs mutant (L62A/F69A) that selectively binds

MCL-1 over BCL-2, BCL-XL, BCL-W and BFL-1 [15],

using a DOX-inducible expression system. BIMs2A mimics

small molecule BH3 mimetics by binding to the hydropho-

bic pocket and stabilizing MCL-1 levels. DOX treatment

strongly induced BIMs2A by 24 hours in both MDA-MB-

468 (MDA-MB-468-2A) and MDA-MB-231 (MDA-MB-

231-2A) cell lines (Fig. 2a, b). Increased MCL-1 was

observed in both cell lines with no alteration in the levels of

BCL-2 or BCL-XL (Fig. 2a, b), consistent with the effects

observed in mouse embryonic fibroblasts [15]. MCL-1,

BCL-XL and BCL-2 immune precipitates showed that

endogenous MCL-1:BIM, BCL-2:BIM and BCL-XL:BIM

complexes were present in both cell lines in control condi-

tions (Fig. 2c, d). Induction of BIMs2A resulted in BIMs2A

binding preferentially to MCL-1 as expected (Fig. 2c, d).

MCL-1 antagonism induced cell death of MDA-MB-468-2A

cells and suppressed invasion of MDA-MB-231-2A cells in

a 3D organotypic collagen I/fibroblast invasion assay

MCL-1 antagonism induced apoptosis of MDA-MB-468-

2A cells grown as monolayers on plastic, seen as increased

caspase 3 cleavage (Fig. 2a) and Annexin V/PI positivity

(Fig. 2e), 48 hours after induction of BIMs2A. There was

no effect observed in EV control cells treated with DOX

(Fig. 2e). No significant death was observed in MDA-MB-

231-2A cells grown on plastic (Fig. 2f). MDA-MB-468-2A

cells were slightly more sensitive to the BCL-2/BCL-XL

inhibitor ABT-263 after 24 hours of DOX exposure

(Fig. 2g), suggesting that BCL-2/BCL-XL conferred partial

resistance to MCL-1 inhibition and/or that MCL-1 antag-

onism sensitized the cells to ABT-263. MDA-MB-231-2A

cells were highly sensitive to ABT-263 as described previ-

ously [14], but no additional effects were observed when

combined with MCL-1 inhibition (Fig. 2h).

MCL-1 knockdown was compared with induction of

BIMs2A in all cell lines (Additional file 3: Figure S2A).

Cultures of MDA-MB-468-2A and MDA-MB-468-EV

cells were mostly destroyed by MCL-1 knockdown via siR-

NAs targeting MCL-1, with significant effects of MOCK

or nontargeting transfection alone (Additional file 3:

Figure S2A, upper panels). This observation illustrates an

artifact produced by knocking down an apoptosis suppres-

sor using reagents that induce apoptosis. MDA-MB-231-

2A or MDA-MB-231-EV cells, which have low levels of

MCL-1, were insensitive to knockdown of MCL-1, as they

were to BIMs2A. These data support our findings using

the BIMs2A antagonist, and show the benefit of the mi-

metic approach over knockdown.

We then examined the effects of small molecule inhibi-

tors of MCL-1, A1210477 [4] and UMI-77 [27], on apop-

tosis in these 2D models (Additional file 3: Figure S2B).

Treatment with 5 μM A1210477 or UMI-77 was as effect-

ive as BIMs2A in MDA-MB-468-2A cells, with greater ef-

fects observed at 10 μM. Once again MDA-MB-231-2A

cells were largely insensitive. A1210477 and UMI-77 also

produced a significant increase in death in MDA-MB-157

cells, which also have relatively high levels of MCL-1, but

no significant effects of these agents were observed in the

MCL-1 low HCC1937 cells. Hence, the current pharma-

ceutical inhibitors of MCL-1 mimic induction of BIMs2A.

The effects of MCL-1 antagonism were also examined in

a 3D organotypic in vitro model of invasion that more

accurately recapitulates key aspects of the in vivo micro-

environment [20]. MDA-MB-231-2A cells were seeded

onto contracted collagen I matrices embedded with fibro-

blasts (Fig. 3a), transferred to an air–liquid interface and

allowed to invade within the chemo-attractive gradient over

a period of 10 days (Fig. 3b). BIMs2A was induced with

supplementation of DOX in the media on day 1 of invasion

(Fig. 3c–h, day 1). DOX treatment resulted in a significant

Young et al. Breast Cancer Research  (2016) 18:125 Page 5 of 15



reduction in the ability of MDA-MB-231-2A cells to invade

(Fig. 3c, d), independent of potential effects on proliferation

(Fig. 3e, f). In a post-invasion scenario, where we allowed

the cells to invade for 5 days before DOX treatment

(Fig. 3c–h, day 5), invasion was also significantly reduced

(Fig. 3c, d) and proliferation was unaffected (Fig. 3e, f). As

Fig. 2 MCL-1 antagonism induced cell death in MDA-MB-468-2A cells but not MDA-MB-231-2A cells grown as monolayers on plastic. Representative

western blots of BIM, MCL-1, BCL-2, BCL-XL and Cleaved Caspase 3 (CC3) in (a) MDA-MB-468-2A and (b) MDA-MB-231-2A cells at 0, 12, 24, 36 and

48 hours after treatment with DOX or vehicle. Representative western blots showing the levels of BIM, MCL-1, BCL-2, and BCL-XL following immuno-

precipitation with antibodies to MCL-1, BCL-2 and BCL-XL in (c) MDA-MB-468-2A and (d) MDA-MB-231-2A cells 24 hours after treatment with DOX or

vehicle. Bar graphs depicting the average fraction of apoptotic cells (Annexin V-positive) in (e) MDA-MB-468-2A or empty vector (EV) and (f) MDA-MB-

231-2A or EV cells treated with DOX or vehicle at 24 and 48 hours. (g) Bar graphs depicting the average fraction of apoptotic cells in MDA-MB-468-2A

or MDA-MB-468-EV and (h) MDA-MB-231-2A or MDA-MB-231-EV cells treated with DOX or vehicle and treated with ABT-263 or vehicle at 24 hours. All

graphs and western blots are the average of three independent experiments. Bars indicate significantly significant groups, p value paired t tests. DOX

doxycycline, MCL-1 myeloid cell leukemia 1 (Color figure online)
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expected, induction of BIMs2A resulted in a modest in-

crease in apoptosis in both conditions; however, apoptotic

cells accounted for only a small proportion of the total

population of cells and therefore could not account for the

observed large reduction in invasion (Fig. 3g, h). MCL-1

antagonism prior to or after the initiation of invasion thus

has anti-invasive effects in vitro.

MCL-1 antagonism impaired tumor growth and reduced

lung metastasis

The effects of MCL-1 antagonism on invasion were exam-

ined in vivo using a mammary intraductal injection tech-

nique [18], which requires cells to breach the basement

membrane of the mammary duct to become locally invasive

or metastatic (Fig. 4a). Mammary intraductal injection

places breast cancer cells in a mammary tissue niche during

tumor establishment and this maintains the phenotypic

characteristics of the xenograft [28]. We observed that

intraductal injection promotes metastatic progression in

MDA-MB-468-2A cells. In mice bearing xenografts of

MDA-MB-468-2A cells, induction of BIMs2A significantly

reduced the rate of tumor growth, doubling the survival

times of control mice (median survival: DOX 165 days vs

Control 74 days; Fig. 4b, c and Additional file 3: Figure

S2A, B). Induction of BIMs2A reduced the rate of onset of

MDA-MB-231-2A xenografts (Fig. 4d), but there was no

significant effect of BIMs2A on subsequent time to ethical

end point (median survival: DOX 38 days vs Control

Fig. 3 MCL-1 antagonism suppressed invasion and induced apoptosis of MDA-MB-231-2A cells in a 3D organotypic invasion assay. (a) Schematic

of collagen I/fibroblast matrix contraction and (b) invasion assay with MDA-MB-231-2A cells invading through a contacted matrix towards a

chemo-attractive gradient created by an air–liquid interface. Representative immunohistochemistry images of antibodies to multi-cytokeratin (c),

Ki67 (e) and Cleaved Caspase 3 (g) on contracted matrices seeded with MDA-MB-231-2A cells treated with DOX or vehicle (Control) at day 1 and

day 5 of invasion. Bar graphs depicting the average invasive index (d; total number of cells within the matrix expressed as a proportion of the

number of cells on top with the opportunity to invade), the average proliferative index (f; ratio of Ki67-positive cells to total number of cells) and

the average apoptotic index (h; ratio of Cleaved Caspase 3-positive cells to total number of cells). Average of three independent experiments. Bars

indicate significantly significant groups, p value unpaired t tests. DOX doxycycline (Color figure online)

Young et al. Breast Cancer Research  (2016) 18:125 Page 7 of 15



Fig. 4 MCL-1 antagonism delayed tumor growth and suppressed metastasis in triple-negative breast cancer xenografts. (a) Schematic of the intraductal

xenograft models and photograph of an intraductal xenograft immediately after injection of 80,000 breast cancer cells in 4 μl 0.1% Trypan blue/2% FCS in

PBS. Kaplan–Meier survival curves of (b, d) time to detection and (c, e) time from detection to ethical end point (EEP) of mice bearing MDA-MB-468-2A

(b, c) or MDA-MB-231-2A (d, e) xenografts fed DOX or control food. (# d) Median days. Log-rank p values. Immunohistochemistry using an antibody raised

against human BIM showing the expression of BIMs2A in the tumors of mice bearing (f) MDA-MB-468-2A or (g) MDA-MB-231-2A xenografts fed DOX or

control food (scale bars 50 μm). Immunohistochemistry using (h) an antibody to human high molecular weigh cytokeratin (HMWCK) in the lungs of mice

bearing MDA-MB-468-2A xenografts and (i) human Vimentin in the lungs of mice bearing MDA-MB-231-2A xenografts fed DOX or control food (scale bars

100 μm). Quantitation of the average number (#) and % area of lung metastasis corrected for the levels of BIMs2A detected in the tumors of mice bearing

(j) MDA-MB-468-2A xenografts and (k) MDA-MB-231-2A xenografts after mice were fed DOX or control food. All graphs are representative of three

independent experiments. Bars indicate significantly significant groups, p value unpaired t tests. DOX doxycycline, HR hazard ratio (Color figure online)
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40 days; Fig. 4e). Immunohistochemistry confirmed strong

and heterogeneous expression of BIMs2A in MDA-MB-

468-2A primary tumors (Fig. 4f, DOX) and MDA-MB-231-

2A primary tumors (Fig. 4g, DOX), confirming that BIMs2A

was induced in the tumors.

We next investigated the effects of MCL-1 antagonism

on the ability of triple-negative breast cancer cells to dis-

seminate to the lung, using cohorts of mice bearing MDA-

MB-468-2A and MDA-MB-231-2A mammary intraductal

xenografts. Tumors and lungs were collected from these

mice at 9 (MDA-MB-231-2A) and 12 weeks (MDA-MB-

468-2A) (Fig. 4a), and lung metastases including single cell

foci were visualized using anti-human pan-Cytokeratin or

Vimentin immunohistochemistry (Fig. 4h and i, respect-

ively). BIMs2A levels in tumors and lungs was analyzed

using anti-human BIM immunohistochemistry (Additional

file 4: Figure S4A and B respectively). A range of BIMs2A

expression was observed among the individual cells of the

primary tumors produced from MDA-MB-468-2A and

MDA-MB-213-2A cell lines in mice fed DOX food (Add-

itional file 4: Figure S4A). This observation was expected

because the xenografted material was derived from pools of

SH570MK-BIMs2A-infected cells. There were fewer and

smaller metastases in the lungs from DOX-fed mice (Add-

itional file 4: Figure S4C, D), however, these metastases

lacked BIMs2A expression despite a predominance of cells

expressing BIMs2A in the primary tumors (Additional file

4: Figure S4B), showing that only cells which did not ex-

press the BIMs2A antagonist could metastasize. To statisti-

cally analyze this effect we corrected these data using levels

of BIMs2A expression observed in primary tumors

(Additional file 4: Figure S4A, quantified in Additional file

4: Figure S4E, F), and showed a significant reduction in

both the size and number of metastases in mice bearing

both MDA-MB-468-2A and MDA-MB-231-2A xenografts

(Fig. 4j, k and Additional file 4: Figure S4G, H). These data

show, through a cellular competition assay, that MCL-1

antagonism by BIMs2A potently suppresses the ability of a

tumor cell to metastasize.

We investigated whether MCL-1 antagonism could

suppress cell seeding to the lung via tail vein injection

(Additional file 4: Figure S4I–L). In this model, MCL-1

antagonism produced a trend towards reduced number

and area of lung metastases produced from tail vein injec-

tions of MDA-MB-468-2A (Additional file 4: Figure S4I),

but significantly suppressed the ability of MDA-MB-231-

2A cells to survive and colonize the lung (Additional file

4: Figure S4J), where we observed an almost complete re-

duction in the size and number of lung metastases. Immu-

nohistochemistry once again revealed that all cells that

had colonized the lungs did not express the BIMs2A an-

tagonist (Additional file 4: Figure S4K, L), indicating (as

observed in the earlier intraductal models of metastasis)

that only those cells which did not express the BIMs2A

antagonist were able to survive and colonize the lung.

Hence, expression of the BIMs2A ligand inhibited lung

colonization. In addition we treated a cohort of mice

injected with MDA-MB-157 cells with A1210477 or ve-

hicle and observed a trend toward reduced metastases size

that did not reach statistical significance (Additional file 4:

Figure S4K). Importantly these mice showed no overt

signs of systemic toxicity, suggesting that a therapeutic

window for systemic MCL-1 suppression can be achieved.

Together our data show that MCL-1 antagonism sup-

presses metastatic progression.

MCL-1 antagonism increased the sensitivity of MDA-MB-

231-2A cells to dasatinib

We then explored how MCL-1 might be regulating meta-

static progression by profiling the kinome of MDA-MB-

468-2A cells 24 hours after BIMs2A induction, prior to

the onset of apoptosis, using Kinexus Antibody Microar-

rays. MCL-1 antagonism altered the levels of a large num-

ber of proteins important for invasion (Additional file 5:

Figure S5A) [29, 30]. We observed changes in many SRC

family kinases and their targets important in invasion,

including a small increase in total CSK (cSRC tyrosine

kinase), a negative regulator of SRC family kinases [31]

(gain +53%). We also observed decreased total levels of

the SRC family kinase, FYN, and the SFK target, ABL,

which was increased by MCL-1 antagonism (63% and –

20%, respectively). Loss of phosphorylation was also de-

tected for Paxillin (–63%) and Vimentin (–71%), targets of

SRC family kinase activity [32, 33]. MCL-1 antagonism

also decreased the auto-phosphorylation site Y1148 in

EGFR (–67%), proposed to be involved in the regulation

of invasion by Src [34]. These data suggest that MCL-1

antagonism modulated the output of the SRC family

kinases.

We also detected an increase in S3 phosphorylation of

Cofilins 1 and 2 (+31% and +138%, respectively), an

additional protein important for invasion. Cofilin is

localized to invadopodia in MDA-MB-231-2A cells where

phosphorylation of serine 3 suppresses actin-severing and

polymerization function [29, 30]. Western blot analysis

revealed that the ratio of S3 Cofilin to total Cofilin was

significantly greater in MDA-MB-231-2A intraductal xe-

nografts treated with DOX compared with control, with a

similar trend observed in MDA-MB-468-2A xenografts

(Additional file 5: Figure S5C). Immunofluorescence using

antibodies against total Cofilin and phosphorylated Cofilin

in MDA-MB-231-2A cells grown as monolayers also

showed the same effect, with DOX treatment resulting in

lower total Cofilin levels and increased serine 3 phosphor-

ylation (Additional file 5: Figure S5D). Finally, proximity

ligation assays using specific antibodies to MCL-1 and

Cofilin in MDA-MB-231-2A cells revealed a novel inter-

action of MCL-1 with Cofilin that occurs throughout the
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content of MDA-MB-231-2A cells (Additional file 5: Fig-

ure S5E). Hence our data suggest that MCL-1 may regu-

late two modes of invasion: firstly those regulated by the

SRC family kinases, and secondly those that involve the

cytoskeletal remodeling protein Cofilin.

Because there are pharmaceutical compounds that target

SRC family kinases, such as dasatinib, which have been

shown to be anti-invasive in multiple cancer types [35–37],

we assessed the efficacy of combining MCL-1 antagonism

with dasatinib treatment. When grown as monolayers on

plastic, MDA-MB-468-2A cells were sensitive to dasatinib

as a single agent alone, but DOX induction of BIMs2A

amplified these effects (Additional file 6: Figure S6, top left

panel). MDA-MB-468-EV control cells were equally sensi-

tive to dasatinib and DOX treatment had no further effect

(Additional file 6: Figure S6, lower left panel). MDA-MB-

231-2A and MDA-MB-231-EV cells were largely insensitive

to dasatinib as a single agent when grown as monolayers in

2D (Additional file 6: Figure S6, right panels). In contrast,

when seeded onto contracted collagen I matrices, dasatinib

significantly reduced their invasive capacity (Fig. 5a, b), and

induction of BIMs2A significantly enhanced this effect, par-

ticularly when treatment was administered at day 1 of

matrix seeding (Fig. 5a, b). BIMs2A, dasatinib or their com-

bination had no effect on cell proliferation over the 10-day

course of the experiment, whether treated at seeding or

5 days of invasion (Fig. 5a, c). Dasatinib also had no effects

on apoptosis in MDA-MB-231-2A cells as a single agent

(Fig. 5a, d). BIMs2A produced a small but significant

increase in apoptosis in these cells when treatment was

initiated at seeding or after 5 days of invasion, and dual

therapy increased these effects (Fig. 5a, d).

In MDA-MB-231-2A intraductal xenografts in vivo,

single-agent dasatinib had limited effects. Induction of

MCL-1 inhibition with DOX alone had a slightly greater

effect than dasatinib alone. Treatment with DOX and

dasatinib significantly delayed the onset of mammary

tumorigenesis (Fig. 5f, g), and metastasis to the lung was

inhibited in all conditions compared with control (Fig. 5h).

Discussion

MCL-1 amplification occurs in approximately 30% of breast

cancers and increased expression is associated with the ac-

quisition of chemo-resistance and relapse [8], making MCL-

1 an attractive therapeutic target. In our study, cytoplasmic

MCL-1 protein was detected in all clinico-pathological sub-

types of invasive breast cancer and breast cancer cell lines.

High cytoplasmic MCL-1 protein levels correlated with high

expression of PUMA. MCL-1 has previously been shown to

be coexpressed with BIM across all subtypes of invasive

breast carcinoma [14] and this expression pattern was

recapitulated in our panel of human breast cancer cell lines.

Endogenous MCL-1:BIM complexes are also present in the

responsive triple-negative breast cancer cell lines in this

study. Potentially these complexes might reveal tumors that

are ready to respond to therapy [38]. This hypothesis is sup-

ported by the data presented from published data sets and

tissue microarrays showing that the highest levels of MCL-1

mRNA and protein were protective for overall survival in

treated cases. MCL-1 levels in triple-negative and HER2

breast cancers may provide a biomarker of response to rou-

tine chemotherapy (basal cancers) and anti-HER2 therapy

(HER2 amplified cases). Importantly, the data presented re-

veal that for tumors with the poorest outcome, which have

the lowest levels of MCL-1 (i.e., represented by the MDA-

MB-231 cell line), MCL-1 antagonism via a BH3-mimetic

strategy can inhibit invasion and metastatic progression and

is effective in combination with SRC family kinase inhibition

by dasatinib.

Inducible expression of the specific MCL-1 inhibitory se-

quence BIMs2A produced disparate responses in MDA-

MB-468-2A and MDA-MB-231-2A cell lines. BIMs2A

expression resulted in apoptosis of MCL-1 high MDA-MB-

468-2A cells in 2D cultures and more than doubled the

median survival times of mice bearing MDA-MB-468-2A

xenografts. In contrast, MCL-1 antagonism had limited

effects on MCL-1 low MDA-MB-231-2A cells when grown

as monolayers in vitro but delayed tumor onset in mice

bearing MDA-MB-231-2A xenografts. One reason for this

discrepancy may be the differential expression of MCL-1 in

both cell lines. In support of this hypothesis, we showed

that MDA-MB-157 cells, which also have high levels of

MCL-1, were sensitive to pharmacological inhibition of

MCL-1, but that this was not apparent in the MCL-1 low

HCC-1937 cells. Also, MDA-MB-231-2A cells are

dependent on BCL-2/XL for their survival, as indicated by

their sensitivity to ABT-263. Further, the levels of the

MCL-1 interacting partners (e.g., pro-apoptotic BH3-only

proteins) may play a role in sensitivity to MCL-1 antagon-

ism as has been reported before [39]. For example, MDA-

MB-231 cell lines have lower BIM levels than the other

three cell lines examined in this study. Another possibility

is context specificity. MCL-1 antagonism produced a small

but significant effect on apoptosis in MDA-MB-231-2A

cells in the 3D organotypic model system, increased the la-

tency to the onset of tumorigenesis and suppressed metas-

tasis in vivo. Hence signaling from the extracellular matrix

may play an important role in sensitivity to MCL-1 antag-

onism. Interestingly, both cell lines are sensitive to anoikis

when assayed in PolyHEMA assays, although BIMs2A in-

creased this effect only in MDA-MB-468-2A cell lines

(Additional file 7: Figure S7). Finally, xenografted MDA-

MB-468-2A tumors grew more slowly than MDA-MB-231-

2A tumors (Additional file 8: Figure S3), perhaps account-

ing for the difference in tumor end point specific survival.

Metastasis requires directed cellular invasion into the

host stroma and is stimulated by chemo-attractants, and

requires remodeling of the cytoskeleton, dynamic

Young et al. Breast Cancer Research  (2016) 18:125 Page 10 of 15



Fig. 5 MCL-1 antagonism increased the sensitivity of MDA-MB-231-2A cells to dasatinib. (a) Representative immunohistochemistry images using

antibodies against multi-Cytokeratin on contracted matrices seeded with MDA-MB-231-2A cells treated with vehicle, DOX, dasatinib or their com-

bination at day 1 invasion and collected 10 days post invasion. Bar graphs depicting the average invasive index (b; total number of cells within

the matrix expressed as a proportion of the number of cells on top with the opportunity to invade), the average proliferative index (c; ratio of

Ki67-positive cells to total number of cells) and the average apoptotic index (d; ratio of CC3-positive cells to total number of cells). Average of

three independent experiments. Bars indicate significantly significant groups, p value unpaired t tests. (e) Schematic representation of BIMs2A and

dasatinib combination experiment using MDA-MB-231-2A in vivo mammary intraductal xenografts. (f) Representative Carmine-stained mammary

whole mounts of MDA-MB-231-2A mammary intraductal xenografts 9 weeks after inoculation from mice treated with vehicle (n = 13), DOX (n =

10), dasatinib (n = 10) and a combination of both (n = 10). (g) Bar graphs depicting the total number of tumors (resectable and present in the

mammary whole mount) or palpable from mice with MDA-MB-231-2A mammary intraductal xenografts 9 weeks after inoculation. Chi-squared p

value and numbers of mice indicated within the bars. (h) Number of metastases from mice treated with vehicle, DOX, dasatinib and a combin-

ation of both. Bars indicate statistically significant groups, Mann–Whitney p value. DOX doxycycline

Young et al. Breast Cancer Research  (2016) 18:125 Page 11 of 15



membrane changes, cellular invasion and localized de-

struction of the host stroma [40]. Using 3D organotypic

cultures in vitro and mammary intraductal xenografts in

vivo, which more faithfully recapitulate this important

tissue context, we revealed a previously undiscovered

function of MCL-1. MCL-1 antagonism profoundly sup-

pressed invasion and metastasis in our 3D organotypic

model and in xenografts in mice. The weakly metastatic

MDA-MB-468 and MDA-MB-157 cells could not be

used in the 3D organotypic model in vitro, but showed

similar effects on metastatic progression in response to

MCL-1 antagonism in vivo. Kinomic profiling suggested

that two key pathways involved in invasion were altered

in response to MCL-1 antagonism. The first pathway via

modulation of the activity of SRC family kinases, import-

ant proteins involved in invasion, and the second via a

potential interaction with Cofilin [30, 41]. Although cur-

rently beyond the scope of this manuscript, future work

understanding the invasion networks regulated by MCL-

1 will yield insights into novel targeted approaches that

inhibit metastasis. Importantly, the data presented show

that in addition to its roles in survival, mitochondrial

function and cell cycle, MCL-1 also regulates invasion.

We also showed that dual targeting of MCL-1 by

BIMs2A and SRC family kinases by dasatinib potently

suppressed invasion and the onset to tumorigenesis.

Phase II clinical trials of single-agent dasatinib have

shown durable and objective clinical responses in a small

proportion (5%) of patients with locally advanced and

metastatic triple-negative breast cancer [42]. Combin-

ation trials show better results; for example, phase I clin-

ical trials of dasatinib with capecitabine show clinical

response rates of 56% in unselected patients. Other trials

combining dasatinib with paclitaxel and bosutinib with

exemestane are currently underway in patients with

advanced metastatic breast cancer and are reporting

improved responses compared with single agents alone.

Hence although some promising results have been

observed for SRC family kinase inhibitors, like dasatinib,

in clinical trials for breast cancer, the efficacy of this and

other SRC family kinase inhibitors will likely be

improved by combining these drugs with others that

increase potency. The data presented here suggest that

MCL-1 antagonism via small molecule BH3 mimetics

may provide a potential way to enhance the effects of

SRC family kinase inhibitors.

Conclusions

The data presented provide first evidence for the efficacy

of MCL-1 inhibition for the suppression of metastasis in

triple-negative breast cancer. We revealed a previously

undiscovered role for MCL-1 as a regulator of invasion,

and thus MCL-1 does not merely act as a regulator of

survival. This study provides the first in-vivo evidence to

support the efficacy of MCL-1 BH3 mimetics [4, 43] in

triple-negative breast cancer as single agents, and in

combination with SRC family kinase inhibitors such as

dasatinib.

Additional files

Additional file 1: showing supplementary materials and methods.

(DOCX 31 kb)

Additional file 2: Figure S1. showing MCL-1 expression in human breast

cancer. (A) Box–whisker plot depicting the average copy number units (log2)

of MCL-1 in invasive ductal breast carcinoma (IDC) in the TCGA2012 cohort:

normal n= 111, IDC n= 638. Median, and first and third quartiles indicated by

the box, data minimum and maximum points by the bars. (B) Box–whisker

plot, format as for (A), depicting the mean centered intensity of MCL-1 mRNA

expression in invasive breast carcinoma across stages in the METABRIC dataset.

Stage 0 n= 425, Stage I n = 257, Stage I n= 446, Stage II n= 69 and Stage IV

n= 8. (C) Kaplan–Meier survival curves and log-rank p values of time to overall

survival of patients with triple-negative breast cancer and with MCL-1 CNV

alteration. Kaplan–Meier survival curves of overall survival using cases from KM

Plotter time using three independent MCL-1 mRNA probes corresponding to

Variant 1 (200798_x_at) and full-length MCL-1 (214057_at and 214056_at).

Separate Kaplan–Meier survival curves are provided for untreated and

treated cases. Treated cases were then split into individual curves split by

histopathological subtype. Significant log-rank p values are proved in red and

nonsignificant values in black (D) Table depicting the number of cases and

the range and optimal cutoff probe values used for each of the Kaplan–Meier

curves from (C). (JPG 2111 kb)

Additional file 3: Figure S2. showing the apoptotic effect of MCL-1

siRNA and MCL-1 inhibitors on MDA-MB-468-2A and MDA-MB-231-2A,

MDA-MB-157 and HCC-1937 cells. (A) MCL-1 siRNA. Bar graphs depicting the

average fraction of apoptotic cells, measured as total Annexin V-positive by

flow cytometry, for cells and treatments as indicated at 48 hours. Error bars

show standard error of the mean. (B) MCL-1 inhibitors. Bar graphs of apop-

tosis as measured in (A) for cells and treatments as indicated. For A1210477

and UMI-77: + treated with 5 μM, ++ treated with 10 μM. All graphs are the

average of three independent experiments. Bars indicate statistically

significant groups, p value unpaired t tests. (JPG 1192 kb)

Additional file 4: Figure S4. showing BIMs2A expression is induced

by DOX in MDA-MB-468-2A and MDA-MB-231-2A xenograft tumors but

not induced in the cells from these xenografts that formed the lung

metastases. Representative immunohistochemistry images using an

antibody to human BIM in the tumors (A) and the lungs (B) of mice

bearing MDA-MB-468-2A and MDA-MB-231-2A intraductal xenografts fed

DOX or control food. Dotted lines, areas of metastases. Quantitation of

the average raw numbers (#) and % area of metastasis in the lungs of

mice bearing (C) MDA-MB-468-2A (n = 7) and (D) MDA-MB-231-2A (n = 6)

intraductal xenografts after mice were fed DOX or control (C) food.

Comparison of the average intensity of human BIM (BIMs2A) in the

tumors and the corresponding lung metastases of mice bearing (E) MDA-

MB-468-2A (n = 7) and (F) MDA-MB-231-2A (n = 6) intraductal xenografts

after mice were fed DOX or control (C) food. Expression of lung

metastatic burden relative to the levels of BIMs2A expression in tumors

of (G) MDA-MB-468-2A (n = 7) and (H) MDA-MB-231-2A (n = 6) intraductal

xenografts. Quantitation of the average number (#) of metastasis and %

area of metastasis in the lungs of mice given tail vein injections of (I)

MDA-MB-468-2A (n = 10) and (J) MDA-MB-231-2A (n = 10) and given DOX

or control (C) food. Quantitation of the average intensity of human BIM

(BIMs2A) in the lungs of mice given tail vein injections of (K) MDA-MB-

468-2A (n = 10) and (L) MDA-MB-231-2A 2A (n = 10) and given DOX or

control (C) food. Quantitation of the average number (#) of metastasis

and % area of metastasis in the lungs of mice given tail vein injections

of (M) MDA-MB-157 cells and treatment with A1210477 (n = 5) or vehicle

control (n = 5). Bars indicate statistically significant groups, Mann–Whitney

p value. (JPG 2091 kb)
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Additional file 5: Figure S5. showing that MCL-1 antagonism resulted

in changes in proteins involved in SRC family kinase signaling and

phosphorylation at serine3 of Cofilin. (A) Normalized z-ratio (a measure of

statistical significance) of phosphorylated and total proteins (as indicated) in

MDA-MB-468-2A cells at 24 hours after treatment with DOX compared with

control cells. (B) Western blots of serine 3 phosphorylated Cofilin, total Cofilin

and Actin in xenografts of MDA-MB-468-2A and MDA-MB-231-2A fed DOX food

as indicated. (C) Bar graphs depicting the ratio of serine 3 phosphorylated

Cofilin to total Cofilin from (B). Bars indicate statistically significant groups,

Mann–Whitney p value. (D) Immunofluorescence of Cofilin and p-Cofilin MDA-

MB-231-2A cells grown on fibronectin 24 hours after DOX or vehicle treatment.

(E) Proximity ligation assays using antibodies to MCL-1 and Cofilin (green),

Phalloidin (red) and Dapi (blue) in MDA-MB-231-2A cells. (JPG 1419 kb)

Additional file 6: Figure S6. showing that MCL-1 antagonism and

Dasatinib treatment induced apoptosis in MDA-MB-468-2A cells but

not MDA-MB-231-2A cells when grown in 2D monolayer cultures. Bar

graphs depicting the average fraction of apoptotic cells (total

Annexin V-positive by flow cytometry) as indicated after 24 hours

after treatment with vehicle, DOX, 5 μM A1210477 and 5 μM UMI-77

alone and in combination with 1 μM dasatinib after 24 hours. All

graphs and western blots are the average of three independent

experiments. Bars indicate statistically significant groups, p value

paired t tests. (JPG 1029 kb)

Additional file 7: Figure S7. showing that MCL-1 antagonism increased

sensitivity to anoikis in MDA-MB-468-2A but not MDA-MB-231-2A cells.

Bar graphs depicting the average fraction of apoptotic cells (total Annexin

V-positive by flow cytometry) in MDA-MB-468-2A (A) and MDA-MB-231-2A

(B) plated as monolayers in culture (normal) or onto PolyHEMA treated

plates and harvested at 24 hours after plating. ANOVA p value, dashes

indicate statistically significant groups. Bars indicate statistically significant

groups, p value paired t tests. (JPG 409 kb)

Additional file 8: Figure S3. showing that MCL-1 antagonism by BIMs2A

slows tumor growth in mice bearing MDA-MB-468-2A xenografts but not

MDA-MB-231-2A xenografts. (A–F) Line graphs depicting the tumor growth

curves of MDA-MB-468-2A xenografts (A, B) and MDA-MB-231-2A xenografts

(C, D) from mice fed with DOX or control food. Linear regression of these

curves shown in B and D respectively. A comparison of the growth rate of

tumors in mice bearing MDA-MB-468-2A (black) and MDA-MB-231-2A (red)

xenografts fed with control food (E, F). (JPG 1348 kb)
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