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Abstrac t .  Evidence is presented to suggest that, in three dimensions, spherical 6-designs 
with N points exist for N = 24, 26, > 28; 7-designs for N = 24, 30, 32, 34, > 36; 8-designs 
for N = 36, 40, 42, _> 44; 9-designs for N = 48, 50, 52, > 54; 10-designs for N = 60, 62, 
>_ 64; 1 l-designs for N = 70, 72, >_ 74; and 12-designs for N = 84, >_ 86. The existence 
of some of these designs is established analytically, while others are given by very accurate 
numerical coordinates. The 24-point 7-design was first found by McLaren in 1963, a n d - -  
although not identified as such by McLaren---consists of the vertices of an "improved" 
snub cube, obtained from Archimedes' regular snub cube (which is only a 3-design) by 
slightly shrinking each square face and expanding each triangular face. 5-designs with 23 
and 25 points are presented which, taken together with earlier work of Reznick, show that 
5-designs exist for N = 12, 16, I8, 20, _> 22. It is conjectured, albeit with decreasing 
confidence for t >_ 9, that these lists of t-designs are complete and that no others exist. One 
of the constructions gives a sequence of putative spherical t-designs with N = 12m points 
(m > 2) where N = it2(1 + o(1)) as t ~ oo. 

1. I n t r o d u c t i o n  

A set of  N points ~, = {/'1 . . . . .  Pn}  on  the un i t  sphere 

~ d  = s d - 1  = {X : (X 1 . . . . .  Xd) E ]I{ d :X  "X : 1} 

forms a spherical t-design i f  the ident i ty  

f ( x )  dtz(x) = -~ f(Pi) (1) 

(where /z  is a un i fo rm measure  on  f2d norma l i zed  to have total measure  1) holds  for all 
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polynomials f of  degree < t [10], [13], [6], Section 3.2. In this paper we are concerned 
only with the case d = 3,1 

It is trivial that 1-designs exist if  and only if N > 2, and Mimura [23] showed that 
2-designs exist if and only if N = 4, > 6. Bajnok [2] found 3-designs for N = 6, 8, 
> 10 and conjectured that they do not exist for N = 7 and 9. 2 That 3-designs do not 
exist for N < 5 is a consequence o f  the lower bounds 

(t -t- 1)(t + 3) 
N > i f t  odd, (2a) 

- 4 
(t + 2) 2 

N > ~ if t even, (2b) 
- 4 

if t ~ 1, 2, 3, 5 the fight-hand sides of  (2a), (2b) can be increased by 1, (2c) 

which were established in [10], [3], and [4]. In [16] we showed that 4-designs exist 
for N = 12, 14, > 16, and conjectured that no others exist. Reznick [25] showed that 
5-designs exist for N = 12, 16, 18, 20, 22, 24, > 26. We have found 5-designs with 
N = 23 and 25 (see Table 1), and, our search having repeatedly failed in the remaining 
cases, conjecture that 5-designs do not exist for N = 13-15, 17, 19, and 21. Bajnok [1 ] 
gave a general construction for t-designs on f13, but his designs (described in Section 5) 
are much larger than ours. 

Following Reznick [25], we make use o f  the fact that a set of  points {P i}  forms a 
spherical t-design if and only if the polynomial  identities 

and 

1 N f}-x~ 2 j  + 1~ 
~ " ~ ( P i  " x )  2s = ( x  . x )  s 
= ~.1~ 2J + 3 ] 

(3a) 

1 N 
N (P i  " x) 2~+1 = 0 (3b) 

hold, where s and Y are defined by {2s, 2 ~ +  1} = {t - 1, t} (see [13] and p. 114 of  [24]). 

2.  S u m m a r y  o f  R e s u l t s  

Let ~ (N) denote the largest value of  t for which an N-point  three-dimensional spherical 
t-design exists. Since a t-design is also a t ' -design for all t '  < t, an N-point  spherical 
t-design exists if and only if r (N) > t. 

Our main results are summarized in Table 1, which gives what we believe are the 
values of  r (N) for N < 100. The assertions made in the first sentence of  the abstract can 
then be simply read off the table. The table also gives, in columns 4 and 5, the largest 

1 We are in the process of producing an analogous table of four-dimensional designs; these will be described 
elsewhere. 

2 In his talk Bajnok actually claimed to have a 9-point 3-design, but he now believes that this was a mistake. 
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symmetry group we have found for such a design (using the notation of [8]), and in some 
cases a list of the sizes of the orbits under this group and a description of the polyhedron 
formed by the points. In most cases the designs found were not unique. 

For every value of N in the table we have found very accurate numerical coordinates 
for a putative spherical t-design with t equal to the value given in column 2. Furthermore, 
after a considerable amount of searching, we have been unable to find a (t + 1)-design, 
and so we conjecture that the entries in column 2 do indeed give the exact values of 
r (N) .  

In a number of cases we have proved that there is a spherical t-design that is very close 
to our numerical approximation. To do this we reduce (3a), (3b) to a set of simultaneous 
algebraic equations, and then show either algebraically (with the help of Maple [5]) 
or by interval methods (using Intbis [20]) that these equations do have a solution in 
the neighborhood of the approximate solution. Examples will be found in the next two 
sections. 

A symbol V1 in the third column of Table 1 indicates that we have an algebraic proof 
of the existence of the design, V2 that we have a proof by interval methods, and V3 that 
we have a numerical solution with discrepancy A(~)  (defined below) at most 10 -26. 

References to the literature indicate who first proved the existence of some spherical 
t-design with this number of points (not necessarily the particular design described in 
the table). 

The numerical coordinates for these t-designs were found by a modified version of the 
Hooke and Jeeves [ 19] "pattern search" optimizer that we have already used to search for 
spherical codes [18] and experimental designs [ 15]-[17]. Let .Trd (0 < d < t) denote the 

s e t o f (  d + 2  ~ e, e2 
l \ 

2 monomials f = x 1 x 2 x 3 e3 0f degree d, and let A f (~) be the difference 
\ /  

between the fight and left sides of  (1) for this f for a set of points ~ = {P1 . . . . .  PN}. 
The criterion we used was to minimize 

(t - 1)! t! 
E ell e2}e3 ]Af(~)2 "l- ~ l e2!e31Af(go)2, 

f ~ . ~ t - I  " f r  e l .  �9 

since ~ is a spherical t-design if and only if this sum vanishes. (The multinomial coeffi- 
cients make the sums rotationally invariant.) As a check we also computed the discrep- 
ancy of the points, 

t 

d = l  f ~3 r, 

In practice we have found that, in the range of Table 1, if A(~)  < 10 -16, then there is a 
spherical t-design ~* very close to go. 

Incidentally, it would be nice to have a formal version of this: a theorem giving an 
explicit bound A0(t, N) such that i f a  set of N points in s satisfies A(~)  < A0(t, N), 
then a spherical t-design ~o* exists near/~. 

The search was conducted by choosing a symmetry group from the lists of decompos- 
able rotation groups of orders up to 21 and all indecomposable rotation groups, picking a 
random starting configuration invafiant under this group, and optimizing with respect to 
the above criterion in such a way as to preserve (or increase) the symmetry. The program 
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Table 1. Conjectured values of  r (N), the largest t for which an N-point configuration on the 
sphere in three dimensions forms a spherical t-design. 

N r (N)  Proof Group Order Orbits (description) 

1 0 V1 oo oo 1 (single point) 
2 1 V1 oo oo 2 (two antipodal points) 
3 1 V1 [2.3] 12 3 (equilateral triangle) 
4 2 V1 [3, 3] 24 4 (regular tetrahedron) 
5 1 V I [2, 3] 12 3 + 2 (triangular bipyramid) 
6 3 V 1 [3, 4] 48 6 (regular octahedron) 
7 2 [23] [3] 6 32 + 1 
8 3 V1 [3, 4] 48 8 (cube) 
9 2 [23] [2, 3] 12 6 + 3 (triangular biprism) 

10 3 [2] [2 +, 10] 20 10 (pentagonal prism) 
11 3 [2] [2, 3] + 6 6 + 3 + 2 
12 5 V1 [3, 5] 120 12 (regular icosahedron) 
13 3 [2] [4] 8 43 + 1 
14 4 [16] [2, 3] + 6 62 + 2 
15 3 [2] [2, 5] 20 10 + 5 
16 5 [16] [3, 3] + 12 12 + 4 (hexakis truncated tetrahedron) 
17 4 [16] [2, 3] + 6 62 + 3 + 2 
18 5 [25] [2 +, 6] 12 12 + 6 
19 4 [16] [3] 6 62 + 32 + 1 
20 5 VI [3, 5] 120 20 (regular dodecahedron) 
21 4 [16] [2,3] 12 1 2 + 6 + 3  
22 5 [25] [2 +. 10] 20 102 + 2 
23 5 V2 [2, 3] + 6 63 + 3 + 2 
24 7 [22] [3, 4] + 24 24 (improved snub cube) 
25 5 V1 [2, 5] + 10 102 + 5 
26 6 V3 [2, 3] + 6 64 + 2 
27 5 [25] [2, 3] 12 122 + 3 
28 6 V3 [2 +, 4] 8 83 + 4 
29 6 V3 [2] + 2 214 + 1 
30 7 V1 [3.4] + 24 24 + 6 (tetrakis snub cube) 
31 6 V3 [5] + 5 56 + 1 
32 7 VI [3, 4] + 24 24 + 8 (snub cube + cube) 
33 6 V3 [2, 3] + 6 
34 7 V3 [2, 4] + 8 
35 6 V3 [2, 5] + 10 103 + 5 
36 8 V3 [3.3] + 12 123 (three snub tetrabedra) 
37 7 V3 [3] + 3 
38 7 V3 [3, 4] + 24 24 + 8 + 6 
39 7 V3 [2.3] + 6 
40 8 V3 [3, 3] + 12 123 + 4 
41 7 V3 [2, 3] + 6 
42 8 V3 [2, 4] + 8 
43 7 V3 [6] + 6 
44 8 V3 [3, 3] + 12 123 + 42 
45 8 V3 [2] + 2 
46 8 V3 [2, 4] + 8 
47 8 V3 [2, 3] + 6 
48 9 V1 [3, 4] + 24 242 (two snub cubes) 
49 8 V3 [4] + 4 
50 9 V3 [2, 6] + 12 124 + 2 

(continued) 
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Table 1 (continued) 

N r (N)  Proof Group Order Orbits (description) 

51 8 V3 [2.31 + 6 
52 9 V3 [3, 3] + 12 124 + 4 
53 8 V3 [2.3] + 6 
54 9 V3 [3, 41 + 24 242 + 6 
55 9 V3 [2] + 2 
56 9 V3 [3 +, 4] 24 242 + 8 
57 9 V3 [2.3] + 6 
58 9 V3 [2, 4] + 8 
59 9 V3 [2, 3] + 6 
60 10 V3 [3, 3] + 12 125 (five snub tetrahedra) 
61 9 V3 [6] + 6 
62 10 V3 [2, 3] + 6 
63 9 V3 [2, 7] + 14 144 + 7 
64 10 V3 [3, 3] + 12 125 + 4 
65 10 V3 [2] + 2 
66 10 V3 [2. 4] + 8 
67 10 V3 [2] + 2 
68 10 V3 [2 +, 4] 8 
69 10 V3 [4] + 4 
70 11 V3 [2.5] + 10 107 
71 10 V3 [2, 3 +] 6 
72 11 V3 [3, 5] + 60 60 + 12 (pentakis truncated icosahedron) 
73 10 V3 [4] + 4 
74 11 V3 [2, 6] + 12 126 + 2 
75 11 V3 [2] + 2 
76 11 V3 [3.3] + 12 126 + 4 
77 11 V3 [4] + 4 
78 11 V3 [3, 4] + 24 243 + 6 
79 11 V3 [21 + 2 
80 11 V3 [3, 5] + 60 60 + 20 (hexakis a'uncated icosahedron) 
81 11 V3 [4] + 4 
82 11 V3 [2 +, 10 +] 10 108 + 2 
83 11 V3 [2, 3] + 6 
84 12 V3 [3, 3] + 12 127 (seven snub tetrahedra) 
85 11 V3 [2.5] + 10 
86 12 V3 [2, 2] + 4 
87 12 V3 [1] + 1 
88 12 V3 [3, 3] + 12 127 + 4 
89 12 V3 [2] + 2 
90 12 V3 [2, 4] + 8 
91 12 V3 [2] + 2 
92 12 V3 [3, 3] + 12 127 + 42 
93 12 V3 [4] + 4 
94 13 V3 [2 +, 2 +] 2 
95 12 V3 [2] + 2 
96 13 V3 [3, 3] + 12 128 (eight snub tetrahedra) 
97 12 V3 [4] + 4 
98 13 V3 [2.4] + 8 
99 12 V3 [2] 4 

100 13 V3 [3, 3] + 12 128 + 4 
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cycled through the values of  N from 10 to 100. For  each N,  equal effort was spent in 
trying to increase the value of  t, and in trying to find a larger group for the current t. The 
search was terminated when no further improvements  were found after several months 
of  computing.  

In Sections 3 and 4 we describe in more detail  several of  the designs ment ioned 
in Table 1. Numerical  coordinates for all these designs have been placed in the Net l ib  
archive, and can be accessed via electronic mail,  ftp, or through the World Wide  Web. 
The designs are in the directory at t/ma th / s 1 oane / sphdes igns. Instructions for 
obtaining them can be obt~ned by sending the message s end g e t t i ng. s t u f f f r om 

art/math to net lib@research, att.com. 

3.  T h e  I m p r o v e d  S n u b  C u b e  

The regular  snub cube [7], [9], the famil iar  Arch imedean  solid with equal edges,  has 
symmetry  group [3, 4] +. We take this group to consist  of  all even permutat ions o f  the three 
coordinates combined with any even number  of  sign changes, and all odd permutat ions 
combined with any odd number  o f  sign changes. Then the vertices of  the regular  snub 
cube consist  of  the point  (A, B, C) and its images  under  the group, where A = 0.8503 . . . .  
B = 0.4623 . . . .  C = 0 . 2 5 1 4 . . .  are the unique posit ive roots of  

7 Z  6 q- Z 4 - -  3 Z  2 - 1, 

7 Z  6 - 3 Z  4 q- 5 Z  2 - -  l ,  

7 Z  6 -- 19Z 4 q- 17Z 2 - 1, 

respectively, and A 2 + B 2 + C 2 = 1. It may  be verified from (2) that these 24 points  
form a spherical 3-design but not a 4-design. 

However, by moving the vertices slightly, we can obtain a 7-design. Again  we take the 
vertices to consist of  the 24 images of  (A, B, C) under the group, where A 2 + B 2 + C  2 = 1. 

Equation (3b) with ~ = 3 is trivially satisfied, and (3a) with s = 3 leads to the equations 
A 6 .q_ B 6 _[_ C 6 = 3, An(B2 -k C 2) -1- B4(C 2 -1- A 2) -q- C4(A 2 --b B 2) = 6 ,  A 2 B 2 C 2  _ 1__!_ 

- -  105" 
It is easy to show that these equations are satisfied by taking A ---- 0.86624682 . . . .  
B = 0.42251865 . . . .  C = 0 .26663540 . . .  to be the posit ive roots of  the single equation 

105Z 6 - 105Z 4 + 21Z  2 - 1. 

The convex hull of  these points is the " improved"  snub cube, differing from the regular  
one in that each square face has been sl ightly shrunk and each tr iangular face sl ightly 
expanded. It is almost  indist inguishable in appearance from the regular  snub cube. As 
far as we know this polyhedron is new. 3 

3 (Added later.) The polyhedron still seems to be new. However, Bruce Reznick has pointed out to us that 
this spherical 7-design was first found by McLaren in 1963 [22], [26, p. 298], [24, pp. 112-113]. This is a very 
nice design, and we give it up grudgingly. 
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(a) (b) 

Fig. 1. (a) The regular truncated icosahedron (or soccer ball), whose 60 vertices form a spherical 5-design. 
The Goethals-Seidel improved football [ 14], which forms a spherical 9-design, is almost indistinguishable 
from this. (b) Our 60-point spherical 10-design. 

In 1981 Goethals and Seidel [ 14] had shown that a similar improvement  can be made 
to the regular truncated icosahedron (or soccer ball), another of  the Archimedean solids. 
The 60 vertices of  the Archimedean solid form a spherical 5-design, but Goethals and 
Seidel showed that a slight perturbation of  the vertices (while preserving the group) 
changes them to a 9-design. Again the improved version is almost indistinguishable 
from the original, which is shown in Fig. 1 (a). However,  as can be seen from Table 1, 
it is possible to find a 9-design with only 48 points, and a 10-design with 60 points. 
The convex hull of  our 60-point 10-design is shown in Fig. l(b). Coordinates will be 
found in Section 6. This figure has symmetry  group [3, 3] +, and is the union of  five snub 
tetrahedra. It has 174 edges and 116 triangular faces, and we do not expect it to replace 
the standard soccer ball! 

4. Other Examples of New Spherical Designs 

We begin with two 5-designs that Reznick [25] was not able to find. As might be expected, 
these are somewhat complicated. 

A 25-point 5-design with group [2, 5] + of order 10. There are infinitely many 25-point 
5-designs, of  which the following is the nicest we have found. The points are 

( 0 cos kO sin kO), 
( h i  - g l  coskO - g l  sinkO), 

( - h i  - g l  coskO gl sinkO), 
( h2 g2 cos(kO + rr2) g2 sin(kO + zr2)), 

( -  h2 g2 cos(kO + zr2) - g 2  sin(kO + 7r2)), 

(4) 

where 0 < k < 4, 0 = 2zr/5, 

gl ,  g2 = q: ~ ' 1  = 0.5540 . . . .  0.9272 . . . .  
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! / 
h 1 = ~ / 1  - -  g l  2 = 0 . 8 3 2 5 ,  h 2 ~/1 - �9 ", = 2 = 0.3745 . . . .  Jr; = 2 . 0 5 7 . . .  radians, g2 

defined by the condition that cos(zr2) = - 0 . 4 6 7 0 . . .  is a root of  

16ZS - 20Z3 + 5 Z -  \ ~-~ ] + 2 19/-~)  

(It is straightforward to show that these values satisfy the equations obtained when (4) 
is substituted in (3a) and (3b) with s = g = 2.) Other solutions can be obtained by 
including a phase angle rrl in the second and third lines of  (4). 

A 23-point 5-design with a group of order 2. We must satisfy (3a), (3b) with s = g = 
2. After a considerable amount of  experimenting we found a numerical solution with a 
symmetry of  order 2, consisting of  the points 

(4-1, 0, 0), (0, 4-1, 0), (0, 0, - 1 ) ,  (-t-ai, -4-bi, ci), ( 5 )  

1 where 0 _< i < 8, the 4- signs in the last expression are linked, a0 = g, 

a ? + b ~ + c / 2 =  1, 0 < i < 8 ,  (6) 

and the approximate values of  the 26 unknowns al . . . . .  as, b0 . . . . .  b8, Co . . . . .  c8 are 

0.5654, 0.1949, 0.8837, 0.6521, 0.5610, 0.7414, 0.1927, 0.5854, -0 .2194 ,  

0.3485, -0 .7812 ,  -0 .4754 ,  0.7082, - 0 . 7 3 0 1 ,  0.4805, 0.7199, -0 .2092 ,  - 0 . 9 1 6 9 ,  

-0 .7476 ,  -0 .5931 ,  -0 .2807 ,  -0 .2705 ,  0.3903, 0.4685, 0.6668, 0.7833, (7) 

respectively (only four decimal places are shown, although we worked with 12 places). 
Substituting the symbolic forms (5) (with a0 = �89 into (3a), (3b) with s = g = 2 
produces 17 further equations, a typical one being 

8 
1 2 g c 0 -F E a2ic~- 23 

i=1 

We then used interval Newton methods, as implemented in the software package Intbis 
[20], to show that these 26 equations have a unique solution in a small box around the 
point (7). We later found numerical solution with a larger group, [2, 3] +, o f  order 6 (see 
Table 1), but we have included the above existence proof  as illustrative of  the interval 
method. 

30- and 32-point 7-designs with group [3, 4] +. These are similar to the improved snub 
cube described in Section 3. For 30 points we take the 24 + 6 images of  the points 
(A, B, C), (1,0,  0) under the group, where A = 0.7980 . . . .  B = 0.5488 . . . .  C = 
0 . 2 4 9 2 . . .  are the positive roots of  84Z 6 - 84Z 4 + 21Z 2 - 1. For 32 points we take 
the 24 + 8 images of  (A, B, C), (1/qr3, 1/Vr3, 1/~/3), where A = 0.8989 . . . .  B = 
0.4355 . . . .  C = 0 .0480 . . .  are the positive roots of  2835Z 6 -- 2835Z 4 + 441Z 2 - 1. In 
both cases it is easy to show using Maple [5] (in particular its Grfbner  basis package) 
that (3a) and (3b) are satisfied. 
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A 48-point 9-design with group [3, 4] +. Similar to the previous examples, but now we 
take the images of  (A, B, C), (D, E,  F) ,  where A = 0.9334 . . . .  B ----- 0.3535 . . . .  
C = - 0 . 0 6 2 0  . . . .  D = 0.7068 . . . .  E ----- 0.6397 . . . .  F = 0 . 3 0 1 8 . . .  are roots o f  the 
irreducible polynomial 

8141081016796875 Z 36 --  48846486100781250 Z34+131885512472109375  Z 32 
- 212133311066250000Z30+226833777359437500 Z 28 
-- 170368273215000000 Z 2 6 + 9 2 5 0 8 8 6 9 6 4 8 4 7 5 0 0 0 Z  24 
- 36735117403950000Z22+10602550092251250Z 2~ - 2145915231232500 Z 18 
+270106833039750Z  16 -- 9766335726000 Z 14 - 3473862884100 Z 12 
+770657554800  Z 1~ - 80424958320Z 8 + 4880358000 Z 6 
- 168429429 Z 4 + 2733318 Z 2 - 8269. 

The complexity of  this polynomial indicates why we have been satisfied to find purely 
numerical solutions for the larger designs in the table. 

5. Designs with Larger Numbers of Points 

Although Table 1 only extends to N = 100, larger designs for fixed t may be obtained 
using the fact that an Nl-point design and an NE-point design can be combined to form 
an (NI + N2)-poin t  design. For example N-point  6-designs can be found for all N > 28 
by combining the designs in the table. 

Alternative (and exact) designs can be found using a construction of  Bajnok [1]. An 
n-point interval t-design consists of  n distinct points P1 . . . . .  Pn w i t h -  1 < Pi _< 1 such 
that 

! f ( x )  dx = 1 
2 1 n .= 

holds for all polynomials f of  degree < t. Bajnok shows that by taking regular m-gons 
at latitudes P1 . . . . .  P ,  a three-dimensional mn-point spherical t-design is obtained, 
provided m > t + 1. 

It is known (see the survey by Gautschi [11]) that, for t = 1, 2, 3 . . . . .  11, n-point 
interval t-designs exist for all n > 1, 2, 2, 4, 4, 6, 6, 9, 9, 13, 13, respectively. When 
t = 6, for example, Bajnok's construction produces N-point  spherical 6-designs with 
N = 42, 48, 49, 54 . . . .  and all N > 108. 

6. A Conjecturally Infinite Family of t-Designs 

Inspection of  Table 1 shows that there is a sequence o f  N = 12m-point spherical t- 
designs with group G = [3, 3] + (or larger) which for m = 2 . . . . .  8 have t = 7 . . . . .  13. 
It might naively be expected that this sequence continue in a linear fashion, but the true 
situation is more complicated. 

A full orbit under G can be taken to consist of  12 points ( + A ,  •  •  ( •  •  
•  ( •  •  +B) ,  where the product of  the signs is positive and A 2 + B 2 + C 2 = 1. 
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(Their convex hull is a snub tetrahedron.) So a set ~ which is the union of m full orbits 
under G contains 2m degrees of  freedom. 

Consider the ring R of  polynomials  in X, Y, Z that are invariant under G, ignoring 
the trivial invariant X z + yZ + Z 2. I f  Rj is the subspace of  R consisting of  homogeneous  
invariants of  degree j ,  then the dimensions dj = dim Rj are given by the Molien series 
for G: 

1 + z 6 = d jzJ  (8) 
~(~') ---- (1 - -  ~ .3 ) (1  - -  X 4)  j = o  

(see Table 10 of  [8]). 
In order for ~ to form a t-design it is necessary and sufficient that the average of  f 

over ~a is equal to the average of  f over f23 for all f E RI kJ R2 tO . . -  tO Rt [12], [14]. 
This imposes 

et ----- dl + d 2 + . . .  + d r  (9) 

conditions on ~ .  So provided 2m > e~, we may reasonably expect that it will be possible 
to choose the orbits so that all the conditions are satisfied, and then a t-design with 
N = 12m points will exist. The values of  et can be obtained by expanding (8), and we 
discover that t-designs with N = 12m points should exist for the values of  t and N 
shown in Table 2. Table i shows that such designs do indeed exist for t < 13 (in fact for  
t = 7 only 24 points are needed). We have verified numerically that the predicted designs 
also exist for all t < 21, and Table 3 gives a set of  orbit representatives (A, B, C) for a 
selection of these designs. (The others can be obtained through Ne t l ib - - see  Section 2.) 

An explicit formula for e~ (for t > 6) can be found from (8) and (9): 

e I [1-~] ( t - 6 [ 1 ~ ] - 5 ) + [ ~ - 2  6 ]  ( t - 6 - 6 1 7 2  6 ] - 5 )  

I l l  I t - - 6 ]  + 9 -~  + 9 - - ~  + Atmod 12 q- A(t-6)mod 12 "-1- 1, 

where A0 . . . . .  A1~ are 0, 0, 0, 1, 2, 2, 3, 4, 5, 6, 7, 8. Therefore,  if  these designs 
continue to exist, we will have a sequence of  t-designs with N = 12m points satisfying 
N = (t2/2)(1 + o(1)) as t ~ oo. Incidentally, Korevaar  and Meyers  [21] show that t-  
designs with N = O (t 3) points exist and conjecture that N = O (t 2) should be possible. 
Equation (2) gives a lower bound of  (t2/4)(1 + o(1)).  

Table2 .  Beginning•fc•njectura••yin•nitesequence•fthree-dimensi•na•spherica•t-designswithN = 12m 
points and group [3, 3] +. These have been constructed numerically for t < 21 (see Table 3). 

t 3 4 5 6 7 8 9 10 11 12 13 
N 12 12 12 24 36 36 48 60 72 84 96 

t 14 15 16 17 18 19 20 21 22 23 24 
N 108 132 144 156 180 204 216 240 264 288 312 
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Table 3. N = 12m-point spherical t-designs 
formed from the union of m full orbits under group 
[3, 3] +. The entries give a list of m orbit represen- 

moves A, B, C. 

N =  36, t = 8 
0.74051521 0.24352778 0.62636367 
0.80542549 0.30620001 -0.50747545 
0.95712033 0.28624872 0.04452356 

N =  60, t = 10 
0.71315107 0.03408955 0.70018102 
0.75382867 0.54595191 -0.36562119 
0.78335594 -0.42686412 -0.45181910 
0.93321004 0.12033145 -0.33858436 
0.95799794 0.27623022 0.07705072 

N = 72, t = 11 
0.66932119 -0.65648669 -0.34789994 
0.75683290 0.38164750 -0.53061205 
0.82190371 0.54929373 -0.15083333 
0.85544705 0.04115447 0.51625251 
0.90728126 0.36233033 0.21344190 
0.97885492 0.12557302 -0.16147588 

N =  96, t = 13 
0.69989534 0.59974524 -0.38788163 
0.73338128 -0.54971991 -0.39994990 
0.78556905 0.09585688 --0.61130412 
0.82321276 0.56450535 0.06045217 
0.83255539 --0.25643858 --0.49100996 
0.88122889 0.33818291 --0.33025441 
0.96391874 -0.26382492 -0.03545521 
0.96783463 -0.01683358 --0.25102343 

N =  108, t = 14 
0.69160471 -0.40217576 0.59994798 
0.71050575 0.58202818 0.39550573 
0.75403890 0.65127837 --0.08521631 
0.80598041 0.26283378 0.53039041 
0.86226532 --0.39729017 0.31410038 
0.86442500 --0.05628604 0.49960114 
0.87315060 -0.46879380 -0.13356797 
0.96418944 0.16093133 0.21080756 
0.97567128 -0.17376307 0.13368600 

N =144 ,  t = 1 6  
0.65758346 0.61920220 0.42915339 
0.70203400 --0.68122298 0.20756570 
0.70428352 -0.55221381 0.44614418 
0.71018481 --0.16518988 --0.68436090 
0.84130836 --0.32306467 0.43339297 
0.84532735 --0.30622774 --0.43777418 
0.85087242 0.52354706 --0.04375603 
0.85473787 --0.02894596 0.51825216 
0.87135881 0.43350173 0.22980441 
0.94028712 -0.28839660 0.18079695 
0.96296114 0.02735042 0.26824950 
0.98473889 0.16325742 0.06030199 

(continued) 
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Table 3 (continued) 

N = 2 4 0 ,  t = 2 1  
0.66536339 0.58086027 0.46892741 
0.67683321 -0.48257247 0.55589623 
0.71800639 0.65744688 -0.22853979 
0.72687147 -0.02748828 -0.68622319 
0.73733200 -0.62085150 -0.26624225 
0.77263286 0.51705945 -0.36835851 
0.77909960 -0.23760971 --0.58012537 
0.78443181 0.28431902 -0.55120724 
0.78559925 -0.40515695 -0.46763412 
0.81763902 -0.57522572 0.02412057 
0.84781923 0.06632578 -0.52612113 
0.86317647 -0.46818182 -0.18902953 
0.89265354 -0.41253405 0.18161861 
0.89457952 -0.27876240 0.34931219 
0.90354264 0.09900269 0.41690427 
0.90950707 0.29209374 0.29576703 
0.94298382 0 . 3 3 2 6 9 4 1 1  0.00980574 
0.95866803 -0.10111361 0.26595424 
0.97946878 0 . 1 1 3 4 1 9 8 5  0.16666388 
0.99028895 0.12883316 -0.05224764 
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