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Abstract

Virtualized servers run a diverse set of virtual machines

(VMs), ranging from interactive desktops to test and de-

velopment environments and even batch workloads. Hy-

pervisors are responsible for multiplexing the underlying

hardware resources among VMs while providing them

the desired degree of isolation using resource manage-

ment controls. Existing methods provide many knobs

for allocating CPU and memory to VMs, but support for

control of IO resource allocation has been quite limited.

IO resource management in a hypervisor introduces sig-

nificant new challenges and needs more extensive con-

trols than in commodity operating systems.

This paper introduces a novel algorithm for IO re-

source allocation in a hypervisor. Our algorithm,

mClock, supports proportional-share fairness subject to

minimum reservations and maximum limits on the IO

allocations for VMs. We present the design of mClock

and a prototype implementation inside the VMware ESX

server hypervisor. Our results indicate that these rich

QoS controls are quite effective in isolating VM perfor-

mance and providing better application latency. We also

show an adaptation of mClock (called dmClock) for a

distributed storage environment, where storage is jointly

provided by multiple nodes.

1 Introduction

The increasing trend towards server virtualization has el-

evated hypervisors to first class entities in today’s data-

centers. Virtualized hosts run tens to hundreds of virtual

machines (VMs), and the hypervisor needs to provide

each virtual machine with the illusion of owning ded-

icated physical resources: CPU, memory, network and

storage IO. Strong isolation is needed for successful con-

solidation of VMs with diverse requirements on a shared

infrastructure. Existing products such as VMware ESX

server hypervisor provide guarantees for CPU and mem-

ory allocation using sophisticated controls such as reser-

vations, limits and shares [3, 44]. However, the cur-

rent state of the art in storage IO resource allocation

is much more rudimentary, limited to providing propor-

tional shares [20] to different VMs.

IO scheduling in a hypervisor introduces many new

challenges compared to managing other shared re-

Figure 1: Orders/sec for VM5 decreases as the load on

the shared storage device increases from VMs running

on other hosts.

sources. First, virtualized servers typically access a

shared storage device using either a clustered file system

such as VMFS [11] or NFS volumes. A storage device

in the guest OS or a VM is just a large file on the shared

storage device. Second, the IO scheduler in the hypervi-

sor runs one layer below the elevator-based scheduling

in the guest OS. Hence, it needs to handle issues such as

locality of accesses across VMs, high variability in IO

sizes, different request priorities based on the applica-

tions running in the VMs, and bursty workloads.

In addition, the amount of IO throughput available to

any particular host can fluctuate widely based on the be-

havior of other hosts accessing the shared device. Unlike

CPU and memory resources, the IO throughput avail-

able to a host is not under its own control. As shown

in the example below, this can cause large variations in

the IOPS available to a VM and impact application-level

performance.

Consider the simple scenario shown in Figure 1, with

three hosts and five VMs. Each VM is running a DVD-

Store [2] benchmark, which is an IO-intensive OLTP

workload. The system administrator has carefully pro-

visioned the resources (CPU and memory) needed by

VM 5, so that it can serve at least 400 orders per second.

Initially, VM 5 is running on host 3, and it achieves a

transaction rate of roughly 500 orders/second. Later, as

four other VMs (1 – 4), running on two separate hosts

sharing the same storage device, start to consume IO



bandwidth, the transaction rate of VM 5 drops to 275

orders per second, which is significantly lower than ex-

pected. Other events that can cause this sort of fluctua-

tion are: (1) changes in workloads (2) background tasks

scheduled at the storage array, and (3) changes in SAN

paths between the hosts and storage device.

PARDA [20] provided a distributed control algorithm

to allocate queue slots at the storage device to hosts in

proportion to the aggregate IO shares of the VMs run-

ning on them. The local IO scheduling at each host

was done using SFQ(D) [24] a traditional fair-scheduler,

which divides the aggregate host throughput among the

VMs in proportion to their shares. Unfortunately, as ag-

gregate throughput fluctuates downwards, or as the value

of a VM’s shares is diluted by the addition of other VMs

to the system, the absolute throughput for a VM falls.

This open-ended dilution is unacceptable in many appli-

cations that require minimum resource requirements to

function. Lack of QoS support for IO resources can have

widespread effects, rendering existing CPU and mem-

ory controls ineffective when applications block on IO

requests. Arguably, this limitation is one of the reasons

for the slow adoption of IO-intensive applications in vir-

tualized environments.

Resource controls such as shares (a.k.a. weights),

reservations, and limits are used for predictable service

allocation with strong isolation [8, 34, 43, 44]. Shares

are a relative allocation measure that specify the ratio in

which the different VMs receive service. Reservations

and limits are expressed in absolute units, e.g. CPU cy-

cles/sec or megabytes of memory. The general idea is to

allocate the resource to the VMs in proportion to their

shares, subject to the constraints that each VM receives

at least its reservation and no more than its limit. These

controls have primarily been employed for allocating re-

sources like CPU time and memory pages where the re-

source capacity is known and fixed.

For fixed-capacity resources, one can combine shares

and reservations into one single allocation for a VM.

This allocation can be calculated whenever a new VM

enters or leaves the system, since these are the only

events at which the allocation is affected. However, en-

forcing these controls is much more difficult when the

capacity fluctuates dynamically, as is the case for the IO

bandwidth of shared storage. In this case the allocations

need to be continuously monitored (rather than only at

VM entry and exit) to ensure that no VM falls below

its minimum. A brute-force solution is to emulate the

method used for fixed-capacity resources by recomput-

ing the allocations periodically. However this method

relies on accurately being able to predict future capacity

based on the current state.

Finally, limits provide an upper bound on the absolute

resource allocations. Such a limit on IO performance
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Figure 2: Virtualized host with VMs accessing a shared

storage array over a SAN

is desirable to prevent competing IO-intensive applica-

tions, such as virus scanners, virtual-disk migrations, or

backup operations, from consuming all the spare band-

width in the system, which can result in high latencies

for bursty and ON-OFF workloads. There are yet other

reasons cited by service providers for wanting to explic-

itly limit IO throughput; for example, to avoid giving

VMs more throughput than has been paid for, or to avoid

raising expectations on performance that cannot gener-

ally be sustained [1, 8].

In this paper, we presentmClock, an IO scheduler that

provides all three controls mentioned above at a per-VM

level (Figure 2). We believe that mClock is the first

scheduler to provide such controls in the presence of

capacity fluctuations at short time scales. We have im-

plemented mClock, along with certain storage-specific

optimizations, as a prototype scheduler in the VMware

ESX server hypervisor and showed its effectiveness for

various use cases.

We also demonstrate dmClock, a distributed version

of the algorithm that can be used in clustered storage

systems, where the storage is distributed across multiple

nodes (e.g., LeftHand [4], Seanodes [6], IceCube [46],

FAB [30]). dmClock ensures that the overall alloca-

tion to each VM is based on the specified shares, reser-

vations, and limits even when the VM load is non-

uniformly distributed across the storage nodes.

The remainder of the paper is organized as follows. In

Section 2 we discuss mClock’s scheduling goal and its

comparisonwith existing approaches. Section 3 presents

the mClock algorithm in detail, along with storage-

specific optimizations. Distributed implementation for

a clustered storage system is discussed in Section 3.2.

Detailed performance evaluation using a diverse set of

workloads is presented in Section 4. Finally we con-

clude with some directions for future work in Section 5.

2 Overview and Related Work

The work related to QoS-based IO resource allocation

can be divided into three broad areas. First is the class

of algorithms that provide proportional allocation of IO



Algorithm class Proportional

allocation

Latency

support

Reservation

Support

Limit

Support

Handle Capacity

fluctuation

Proportional Sharing (PS) Algorithms Yes No No No No

PS + Latency support Yes Yes No No No

PS + Reservations Yes Yes Yes No No

mClock Yes Yes Yes Yes Yes

Table 1: Comparison of mClock with existing scheduling techniques

Figure 3: Allocation of IOPS to various VMs as the

overall throughput changes

resources, such as Stonehenge [23] SFQ(D) [24], Ar-

gon [41], and Aqua [48]. Many of these algorithms are

variants of weighted fair queuing mechanisms (Virtual

Clock [50], WFQ [13], PGPS [29], WF2Q [10], SCFQ

[15], Leap Forward [38], SFQ [18] and Latency-rate

scheduling [33]) proposed in the networking literature,

adapted to handle various storage-specific concerns such

as concurrency, minimizing seek delays and improving

throughput.

The goal of these algorithms is to allocate through-

put or bandwidth in proportion to the specified weights

of the clients. Second is the class of algorithms that

provide support for latency-sensitive applications along

with proportional sharing. These algorithms include

SMART [28], BVT [14], pClock [22], Avatar [49] and

service curve based techniques [12, 27, 31, 36]. Third

is the class of algorithms that support reservation along

with proportional allocation, such as Rialto [25], ESX

memory management [44] and other reservation based

CPU scheduling methods [17, 34, 35]. Table 1 provides

a quick comparison of mClock with existing algorithms

in the three categories.

2.1 Scheduling Goals of mClock

We first discuss a simple example describing the

scheduling policy of mClock. As mentioned earlier,

three parameters are specified for each VM in the sys-

tem: a share or weight represented by wi, a reservation

ri, and a limit li. We assume these parameters are exter-

nally provided; determining the appropriate parameter

settings to meet application requirements is an important

but separate problem, outside the scope of this paper. We

also assume that the system includes an admission con-

trol component that ensures that the system capacity is

adequate to serve the aggregate minimum reservations

of all admitted clients. The behavior of the system if the

assumption does not hold is discussed later in the sec-

tion, along with alternative approaches.

Consider a simple setup with three VMs: one sup-

porting remote desktop (RD), one running an Online

Transaction Processing (OLTP) application and a Data

Migration (DM) VM. The RD VM has a low through-

put requirement but needs low IO latency for usability.

OLTP runs a transaction processing workload requiring

high throughput and low IO latency. The data migration

workload requires high throughput but is insensitive to

IO latency. Based on these requirements, the shares for

RD, OLTP, and DM can be assigned as 100, 200, and

300 respectively. To provide low latency and a minimum

degree of responsiveness, reservations of 250 IOPS each

are specified for RD and OLTP. An upper limit of 1000

IOPS is set for the DM workload so that it cannot con-

sume all the spare bandwidth in the system and cause

high delays for the other workloads. The values chosen

here are somewhat arbitrary, but were selected to high-

light the use of various controls in a diverse workload

scenario.

First consider how a conventional proportional sched-

uler would divide the total throughput T of the storage

device. Since throughput is allocated to VMs in pro-

portion to their weights, an active VM vi will receive

a throughput T × (wi/∑ jw j), where the summation is

over the weights of the active VMs (i.e. those with at

least one pending IO). If the storage device’s through-

put is 1200 IOPS in the above example, RD will re-

ceive 200 IOPS, which is below its required minimum

of 250 IOPS. This can lead to a poor experience for the

RD user, even though there is sufficient system capac-

ity for both RD and OLTP to receive their reservations

of 250 IOPS. In our model, VMs always receive service

between their minimum reservation and maximum limit

(as long as system throughput is at least the aggregate of

the reservations of active VMs).

In this case, mclock would provide RD with its min-

imum reservation of 250 IOPS and the remaining 950

IOPS would be divided between OLTP and DM in the

ratio 2 : 3, resulting in allocations of 380 and 570 IOPS



respectively. Figure 3 shows the IOPS allocation to the

three VMs in the example above, for different values of

the system throughput, T. For T between 1500 and 2000

IOPS, the throughput is shared between RD, OLTP, and

DM in proportion to their weights (1 : 2 : 3), since none

of them will exceed their limit or fall below the reser-

vation. If T ≥ 2000 IOPS, then DM will be capped at

1000 IOPS because its share of T/2 is higher than its up-
per limit, and the remainder is divided between RD and

OLTP in the ratio 1 : 2. If the total throughput T drops

below 1500 IOPS, the allocation of RD bottoms out at

250 IOPS, and similarly at T ≤ 875 IOPS, OLTP also

bottoms out at 250 IOPS. Finally, for T < 500 IOPS, the

reservations of RD and OLTP cannot be met; the avail-

able throughput will be divided equally between RD and

OLTP (since their reservations are the same) and DM

will receive no service. The last case should be rare if

the admission controller estimates the overall through-

put conservatively.

The allocation to a VM varies dynamically with

the current throughput T and the set of active VMs.

At any time, the VMs are partitioned into three sets:

reservation-clamped (R), limit-clamped (L ) or propor-

tional (P), based on whether their current allocation

is clamped at the lower or upper bound or is in be-

tween. If T is the current throughput, we define TP =
T −∑ j∈R r j−∑ j∈L l j. The allocation γi made to active

VM vi for TP ≥ 0, is given by:

γi =







ri vi ∈ R

li vi ∈ L

TP× (wi/∑ j∈P w j) vi ∈ P

(1)

and

∑
i

γi = T. (2)

When the system throughput T is known, the alloca-

tions γi can be computed explicitly. Such explicit com-

putation is sometimes used for calculating CPU time al-

locations to virtual machines with service requirement

specifications similar to these. When a VM exits or is

powered on at the host, new service allocations are com-

puted. In the case of a storage array, T is highly de-

pendent on the presence of other hosts and the work-

load presented to the storage device. Since the through-

put varies dynamically, the storage scheduler cannot rely

upon service allocations computed at VM entry and exit

times. The mClock scheduler ensures that the goals in

Eq. (1) and (2) are satisfied continuously, even as the

system’s throughput varies, using a novel, lightweight

tagging scheme.

Clearly, a feasible allocation is possible only if the ag-

gregate reservation ∑ j r j does not exceed the total sys-

tem throughput T . When TP < 0, the system through-

put is insufficient to meet the reservations; in this case

mClock simply gives each VM throughput proportional

to its reservation. This may not always be the desired be-

havior. VMs without a reservation may be starved in this

case, but this problem can be easily avoided by adding

a small default reservation for all VMs. In addition, one

can add priority control to meet reservations based on

priority levels. Exploring these options further is left to

future work.

2.2 Proportional Share Algorithms

A number of approaches such as Stonehenge [23],

SFQ(D) [24] and Argon [41] have been proposed for

proportional sharing of storage between applications.

Wang and Merchant [45] extended proportional sharing

to distributed storage. Argon [41] and Aqua [48] pro-

pose service-time-based disk allocation to provide fair-

ness as well as high efficiency. Brandt et al. [47] have

proposed Hierarchical Disk Sharing, which uses hier-

archical token buckets to provide isolation and band-

width reservation among clients accessing the same disk.

However, measuring per-request service times in our en-

vironment is difficult because multiple requests will typ-

ically be pending at the storage device.

Overall, none of these algorithms offers support for

the combination of shares, reservations, and limits.

Other methods for resource management in virtual clus-

ters [16, 39] have been proposed, but they mainly focus

on CPU and memory resources and do not address the

challenges raised by variable capacity that mClock does.

2.3 Latency-sensitive Application Support

Several existing algorithms provide support for con-

trolling the response time of latency-sensitive applica-

tions, but not strict latency guarantees or explicit la-

tency targets. In the case of CPU scheduling, BVT [14],

SMART [28], and lottery scheduling [37, 43] provide

proportional allocation, latency-reducing mechanisms,

and methods to handle priority inversion by exchanging

tickets. Borrowed Virtual Time [14] and SMART [28]

can give a short-term advantage to latency-sensitive ap-

plications by shifting their virtual tags relative to the

other applications. pClock [22] and service-curve based

methods [12, 27, 31, 36] decouple latency and through-

put requirements, but like the other methods also do not

support reservations and limits.

2.4 Reservation-Based Algorithms

For CPU scheduling and memory management, several

approaches have been proposed for integrating reserva-

tions with proportional-share allocations [17, 34, 35]. In

these models, clients either receive a guaranteed frac-

tion of the server capacity (reservation-based clients) or

a share (ratio) of the remaining capacity after satisfying



reservations (proportional-share-based clients). A stan-

dard proportional-share scheduler can be used in con-

junction with an allocator that adjusts the weights of the

active clients whenever there is a client arrival or depar-

ture. Guaranteeing minimum allocations for CPU time

is relatively straightforward since its capacity (in terms

of cycles/sec) is fixed and known, and allocating a given

proportion would guarantee a certain minimum amount.

The same idea does not apply to storage allocationwhere

system throughput can fluctuate.

In our model the clients are not statically par-

titioned into reservation-based or proportional-share-

based clients. Our model automatically modifies the en-

titlement of a client when service capacity changes due

to changes in the workload characteristics or due to the

arrival or departure of clients. The entitlement is at least

equal to the reservation and can be higher if there is suf-

ficient capacity. Since 2003, the VMware ESX Server

has provided reservations and proportional-share con-

trols for both CPU and memory resources in a commer-

cial product [8, 42, 44]. These mechanisms support the

same rich set of controls as in mClock, but do not handle

varying service capacity.

Finally, operating system based frameworks like Ri-

alto [25] provide fixed reservations for known-capacity

CPU service, while allowing additional service requests

to be honored on an availability basis. Rialto requires re-

computation of an allocation graph on each new arrival,

which is then used for CPU scheduling.

3 mClock Algorithm

Tag-based scheduling underlies many previously pro-

posed fair-schedulers [10,13,15,18]: all requests are as-

signed tags and scheduled in order of their tag values.

For example, an algorithm can assign tags spaced by in-

crements of 1/wi to successive requests of client i; if all

requests are scheduled in order of their tag values, the

clients will receive service in proportion to wi. In order

to synchronize idle clients with the currently active ones,

these algorithms also maintain a global tag value com-

monly known as global virtual time or just virtual time.

In mClock, we extend this notion to use multiple tags

based on three controls and dynamically decide which

tag to use for scheduling, while still synchronizing idle

clients.

The intuitive idea behind the mClock algorithm is to

logically interleave a constraint-based scheduler and a

weight-based scheduler in a fine-grained manner. The

constraint-based scheduler ensures that VMs receive at

least their minimum reserved service and no more than

the upper limit in a time interval, while the weight-based

scheduler allocates the remaining throughput to achieve

proportional sharing. The scheduler alternates between

phases during which one of these schedulers is active to

Symbol Meaning

Pr
i Share based tag of request r and VM vi
Rr
i Reservation tag of request r from vi

Lri Limit tag of request r from vi
wi Weight of VM vi
ri Reservation of VM vi
li Maximum service allowance (Limit) for vi

Table 2: Symbols used and their descriptions

maintain the desired allocation.

mClock uses two main ideas: multiple real-time

clocks and dynamic clock selection. Each VM IO re-

quest is assigned three tags, one for each clock: a reser-

vation tag R, a limit tag L, and a proportional share tag P

for weight-based allocation. Different clocks are used to

keep track of each of the three controls, and tags based

on one of the clocks are dynamically chosen to do the

constraint-based or weight-based scheduling.

The scheduler has three main components: (i) Tag As-

signment (ii) Tag Adjustment and (iii) Request Schedul-

ing. We will explain each of these in more detail below.

Tag Assignment: This routine assigns R, L and P tags

to a request r from VM vi arriving at time t. All the tags

are assigned using the same underlying principle, which

we illustrate here using the reservation tag. The R tag

assigned to this request is the higher of the arrival time

or the previous R tag + 1/ri. That is:

Rr
i =max{Rr−1

i + 1/ri, Current time} (3)

This gives us two key properties: first, the R tags of

a continuously backlogged VM are spaced 1/ri apart.
In an interval of length T , a backlogged VM will have

about T × ri requests with R tag values in that interval.

Second, if the current time is larger than this value due

to vi becoming active after a period of inactivity, the re-

quest is assigned an R tag equal to the current time. Thus

idle VMs do not gain any idle credit for future service.

Similarly, the L tag is set to the maximum of the cur-

rent time and (Lr−1
i + 1/li). The L tags of a backlogged

VM are spaced out by 1/li. Hence, if the L tag of the first

pending request of a VM is less than the current time, it

has received less than its upper limit at this time. A limit

tag higher than the current time would indicate that the

VM has received its limit and should not be scheduled.

The proportional share tag Pr
i is also the larger of the

arrival time of the request and (Pr−1
i + 1/wi) and subse-

quent backlogged requests are spaced by 1/wi.

Tag Adjustment: Tag adjustment is used to calibrate

the proportional share tags against real time. This is re-

quired whenever an idle VM becomes active again. In

virtual time based schedulers [10, 15] this synchroniza-

tion is done using global virtual time. The initial P tag

value of a freshly active VM is set to the current time,



but the spacing of P tags after that is determined by the

relative weights of the VMs. After the VM has been ac-

tive for some time, the P tag values become unrelated to

real time. This can lead to starvation when a new VM

becomes active, since the existing P tags are unrelated

to the P tag of the new VM. Hence existing P tags are

adjusted so that the smallest P tag matches the time of

arrival of the new VM, while maintaining their relative

spacing. In the implementation, when a VM is acti-

Algorithm 1: Components of mClock algorithm

Max QueueDepth = 32;

RequestArrival (request r, time t, vm vi)

begin

if vi was idle then
/* Tag Adjustment */

minPtag = minimum of all P tags;

foreach active VM v j do
Pr
j −= minPtag − t;

/* Tag Assignment */

Rr
i =max{Rr−1

i + 1/ri, t} /* Reservation tag */

Lri =max{Lr−1
i + 1/li, t} /* Limit tag */

Pr
i =max{Pr−1

i + 1/wi, t} /* Shares tag */

ScheduleRequest();

end

ScheduleRequest ()

begin

if Active IOs ≥ Max QueueDepth then
return;

Let E be the set of requests with R tag ≤ t

if E not empty then
/* constraint-based scheduling */

select IO request with minimum R tag from

E
else

/* weight-based scheduling */

Let E ′ be the set of requests with L tag ≤ t

if E ′ not empty OR Active IOs == 0 then
select IO request with minimum P tag

from E ′

/* Assuming request belong to VM vk */

Subtract 1/rk from R tags of VM vk

if IO request selected != NULL then
Active IOs++;

end

RequestCompletion (request r, vm vi)

Active IOs −− ;

ScheduleRequest();

vated, we assign it an offset equal to the difference be-

tween the effective value of the smallest existing P tag

and the current time. During scheduling, the offset is

added to the P tag to obtain the effective P tag value.

The relative ordering of existing P tags is not altered by

this transformation; however, it ensures that the newly

activated VMs compete fairly with existing VMs.

Request Scheduling: mClock needs to check three dif-

ferent tags to make its scheduling decision instead of

a single tag in previous algorithms. As noted earlier,

the scheduler alternates between constraint-based and

weight-based phases. First, the scheduler checks if there

are any eligible VMs with R tags no more than the cur-

rent time. If so, the request with smallest R tag is dis-

patched for service. This is defined as the constraint-

based phase. This phase ends (and the weight-based

phase begins) at a scheduling instant when all the R tags

exceed the current time.

During a weight-based phase, all VMs have received

their reservations guaranteed up to the current time. The

scheduler therefore allocates server capacity to achieve

proportional service. It chooses the request with small-

est P tag, but only from VMs which have not reached

their limit (whose L tag is smaller than the current

time). Whenever a request from VM vi is scheduled in

a weight-based phase, the R tags of the outstanding re-

quests of vi are decreased by 1/ri. This maintains the

condition that R tags are always spaced apart by 1/ri, so
that reserved service is not affected by the service pro-

vided in the weight-based phase. Algorithm 1 provides

pseudo code of various components of mClock.

3.1 Storage-specific Issues

There are several storage-specific issues that an IO

scheduler needs to handle: IO bursts, request types, IO

size, locality of requests and reservation settings.

Burst Handling. Storage workloads are known to be

bursty, and requests from the same VM often have a high

spatial locality. We help bursty workloads that were idle

to gain a limited preference in scheduling when the sys-

tem next has spare capacity. This is similar to some of

the ideas proposed in BVT [14] and SMART [28]. How-

ever, we do it in a manner so that reservations are not

impacted.

To accomplish this, we allow VMs to gain idle cred-

its. In particular, when an idle VM becomes active, we

compare the previous P tag with current time t and al-

low it to lag behind t by a bounded amount based on

a VM-specific burst parameter. Instead of setting the P

tag to the current time, we set it equal to t − σi ∗(1/wi).
Hence the actual assignment looks like:

Pr
i =max{Pr−1

i + 1/wi, t− σi/wi}

The parameter σi can be specified per VM and deter-

mines the maximum amount of credit that can be gained

by becoming idle. Note that adjusting only the P tag



has the nice property that it does not affect the reserva-

tions of other VMs; however if there is spare capacity in

the system, it will be preferentially given to the VM that

was idle. This is because the R and L tags have strict

priority over the P tags, so adjusting P tags cannot affect

the constraint-based phase of the scheduler.

Request Type. mClock treats reads and writes iden-

tically. In practice writes show lower latency due to

write buffering in the disk array. However doing any

re-ordering of reads before writes for a single VM can

lead to an inconsistent state of the virtual disk on a crash.

Hence mClock schedules all IOs within a VM in a FCFS

order without distinguishing between reads and writes.

IO size. Since larger IO sizes take longer to complete,

differently-sized IOs should not be treated equally by the

IO scheduler. We propose a technique to handle large-

sized IOs during tagging. The IO latency with n random

outstanding IOs with an IO size of S each can be written

as:

Lat = n(Tm+ S/Bpeak) (4)

Here Tm denotes the mechanical delay due to seek and

disk rotation and Bpeak denotes the peak transfer band-

width of a disk. Converting the latency observed for an

IO of size S1 to an IO of a reference size S2, keeping

other factors constant would give:

Lat2 = Lat1 ∗ (1+
S2

Tm×Bpeak

)/(1+
S1

Tm×Bpeak

) (5)

For a small reference IO size of 8KB and using typical

values for mechanical delay Tm = 5ms and peak trans-

fer rate, Bpeak = 60 MB/s, the numerator = Lat1*(1

+ 8/300) ≈ Lat1. So, for tagging purposes, a sin-

gle request of IO size S is treated as equivalent to:

(1+ S/(Tm×Bpeak)) IO requests.

Request Location. mClock can detect sequentiality

within a VM’s workload, but in most virtualized envi-

ronments the IO stream seen by the underlying storage

may not be sequential due to a high degree of multiplex-

ing. mClock improves the overall efficiency of the sys-

tem by scheduling IOs with high locality as a batch. A

VM is allowed to issue IO requests in a batch as long

as the requests are close in logical block number space

(e.g., within 4 MB). Also the size of batch is bounded by

a configurable parameter (set to 8).

This optimization impacts the time granularity over

which reservations are met. The batching of IOs is lim-

ited to a small number, typically 8. so for N VMs, the

delay in meeting reservations can be 8N IOs. A typical

number of VMs/host is 10-15, so this can delay reserva-

tion guarantees in the short term by the time taken to do

roughly 100 IOs. Note that the benefit of batching and

improved efficiency is distributed among all the VMs in-

stead of giving it just to the VM with high sequentiality.

It may be preferable to allocate the benefit of locality to

the concerned VM; this is deferred to future work.

Reservation Setting. Admission control is a well

known and difficult problem for storage devices due to

their stateful nature and dependence of the throughput

on the workload. We propose the simple approach of us-

ing the worst case IOPS from a storage device as an up-

per bound on sum of reservations for admission control.

For example, an enterprise FC disk can service 200 to

250 random IOPS and a SATA disk can do roughly 80-

100 IOPS. Based on the number and type of disk drives

backing a storage LUN, one can obtain a conservative

estimate of reservable throughput. This is what we have

used to set parameters in our experiments. Also in order

to set the reservations to meet an application’s latency

for a certain number of outstanding IOs, we use Little’s

law:

IOPS= Outstanding IOs/Latency (6)

Thus, for an application that typically keeps 8 IOs out-

standing and requires 25 ms average latency, the reser-

vation should be set to 8 / 0.025 = 320 IOPS.

3.2 Distributed mClock

Cluster-based storage systems are emerging as a cost-

effective, scalable alternative to expensive, centralized

disk arrays. By using commodity hardware (both hosts

and disks) and using software to glue together the stor-

age distributed across the cluster, these systems allow

for lower cost and more flexible provisioning than con-

ventional disk arrays. The software can be designed to

compensate for the reliability and consistency issues in-

troduced by the distributed components.

Several research prototypes (e.g., CMU’s Ursa Mi-

nor [9], HP Labs’ FAB [30], IBM’s Intelligent

Bricks [46]) have been built, and several companies

(such as LeftHand [4], Seanodes [6]) are offering iSCSI-

based storage devices using local disks at virtualized

hosts. In this section, we extend mClock to run on each

storage server, with minimal communication between

the servers, and yet provide per-VM globally (cluster-

wide) proportional service, reservations, and limits.

3.2.1 dmClock Algorithm

dmClock runs a modified version of mClock at each

server. There is only onemodification to the algorithm to

account for the distributed model in the Tag-Assignment

component. During tag assignment each server needs to

determine two things: the aggregate service received by

the VM from all the servers in the system and the amount

of service that was done as part of reservation. This in-

formation will be provided implicitly by the host run-

ning a VM by piggybacking two integers ρi and δi with
each request that it forwards to a storage server s j. Here

δi denotes number of IO requests from VM vi that have



completed service at all the servers between the previous

request (from vi) to the server s j and the current request.

Similarly, ρi denotes the number of IO requests from vi
that have been served as part of constraint-based phase

between the previous request to s j and the current re-

quest. This information can be easily maintained by the

host running the VM. The host forwards the values of

ρi and δi along with vi’s request to a server. (Note that

for the single server case, ρ and δ will always be 1.)

In the Tag-Assignment routine, these values are used to

compute the tags as follows:

Rr
i = max{Rr−1

i +ρi/ri, t}

Lri = max{Lr−1
i + δi/li, t}

Pr
i = max{Pr−1

i + δi/wi, t}

Hence, the new request may receive a tag further into

the future, to reflect the fact that vi has received addi-

tional service at other servers. The greater the value of

δ , the lower the priority the request has for service. Note
that this does not require any synchronization among the

storage servers. The remainder of the algorithm remains

unchanged. The values of ρ and δ may, in the worst

case, be inaccurate by up to 1 request at each of the other

servers. However, the dmClock algorithm does not re-

quire complex synchronization between the servers [32].

4 Performance Evaluation

In this section, we present results from a detailed evalu-

ation of mClock using a prototype implementation in the

VMware ESX server hypervisor [7, 40]. The changes

required were small: the overall implementation took

roughly 200 lines of C code in order to modify an ex-

isting scheduling framework. The resulting scheduler is

lightweight, which is important because it is on the crit-

ical path for IO issues and completions. We examine the

following key questions about mClock:

(1) Why is mClock needed? (2) Can mClock allo-

cate service in proportion to weights, while meeting the

reservation and limit constraints? (3) Can mClock han-

dle bursts effectively and reduce latency by giving idle

credit? (4) How effective is dmClock in providing isola-

tion among dynamic workloads in a distributed storage

environment?

4.1 Experimental Setup

We implemented mClock by modifying the SCSI

scheduling layer in the IO stack of VMware ESX server

hypervisor to construct our prototype. The ESX host

was a Dell Poweredge 2950 server with 2 Intel Xeon

3.0 GHz dual-core processors, 8GB of RAM and two

Qlogic HBAs connected to an EMC CLARiiON CX3-

40 storage array over FC SAN. We used two different

storage volumes: one hosted on a 10 disk RAID 0 disk

group and another on a 10 disk, RAID 5 disk group. The

host was configured to keep 32 IOs pending per LUN at

the array, which is the default setting.

We used a diverse set of workloads, using different

operating systems, workload generators, and configura-

tions, to verify that mClock is robust under a variety

of conditions. We used two kinds of VMs: (1) Linux

(RHEL) VMs, each with a 10GB virtual disk, one VCPU

and 512 MB memory, and (2) Windows server 2003

VMs, each with a 16GB virtual disk, one VCPU and 1

GB of memory. The disks hosting the operating systems

for VMs were on a different storage LUN.

Three parameters were configured for each VM: a

minimum reservation ri IOPS, a global weight wi, and

maximum limit li IOPS. The workloads were gener-

ated using Iometer [5] in the Windows server VMs

and our own micro-workload generator in the Linux

RHEL VMs. For both cases, the workloads were spec-

ified using IO sizes, the percentage of reads, the per-

centage of random IOs, and the number of concur-

rent IOs. We used 32 concurrent IOs per workload in

all experiments, unless otherwise stated. In addition

to these micro-benchmark workloads, we used macro-

benchmark workloads generated using Filebench [26].
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Figure 5: mClock limits the throughput of VM2 and

VM3 to 400 and 500 IOPS as desired.

4.1.1 Limit Enforcement

First we show the need for the limit control by demon-

strating that pure proportional sharing cannot guarantee

the specified number of IOPS and latency to a VM. We

experimented with three workloads similar to those in

the example of Section 2: RD, OLTP and DM.

RD is a bursty workload sending 32 random IOs (75%

reads) of 4KB size every 250 ms. OLTP sends 8KB ran-

dom IOs, 75% reads, and keeps 16 IOs pending at all

times. The data migration workload DM does 32KB se-

quential reads, and keeps 32 IOs pending at all times.

RD and OLTP are latency-sensitiveworkloads, requiring

a response time under 30ms, while DM is not sensitive

to latency. Accordingly, we set the weights in the ratio
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decreases as more VMs are added. mClock enforces reservations and SFQ only does proportional allocation.

2:2:1 for the RD, OLTP, and DM workloads. First, we

ran themwith zero reservations and no limits in mClock,

which is equivalent to running them with a standard fair

scheduler such as SFQ(D) [24]. The throughput and

latency achieved is shown in Figures 4(a) and (b), be-

tween times 60 and 140sec. Since RD was not fully

backlogged, and OLTP had only 16 concurrent IOs, the

work-conserving scheduler gave all the remaining queue

slots (16 of them) to the DM workload. As a result, RD

and OLTP got less than the specified proportion of IO

throughput, while DM received more. Since the device

queue was always heavily occupied by IO requests from

DM, the latency seen by RD and OLTP was higher than

desirable. We also experimented with other weight ra-

tios (which are not shown here for lack of space), but saw

no significant improvement, because the primary cause

of the poor performance seen by RD and OLTP was that

there were too many IOs from DM in the device queue.

To provide better throughput and lower latency to RD

and OLTP workloads, we changed the upper limit for

DM to 300 IOs (from unlimited) at t = 140sec. This

caused the OLTP workload to see a 100% increase in

throughput and the latency was reduced by half (36 ms

to 16 ms). The RD workload also saw lower latency,

while its throughput remained equal to its demand. This

result shows that using limits with proportional sharing

can be quite effective in reducing contention for criti-

cal workloads, and this effect cannot be produced using

proportional sharing alone.

Next, we did an experiment to show that mClock ef-

fectively enforces limits in a more dynamic setting with

workloads arriving at different times. Using Iometer on

Windows Server VMs, we ran three workloads (VM1,

VM2, and VM3), each generating 16KB random reads.

We set the weights in the ratio 1:1:2, with limits of 400

IOPS on VM2 and 500 IOPS on VM3. We began with

just VM1 and a new workload was started every 60 sec-

onds. The storage device had a capacity of about 1600

random reads per second. Without the limits and based

on the weights alone, we would expect the applications

to receive 800 IOPS each when VM1 and VM2 are run-

ning, and 400, 400, and 800 IOPS respectively when
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Figure 7: Average throughput for VMs using SFQ(D) and mClock. mClock is able to restrict the allocation of VM2

to 700 IOPS and always provide at least 250 IOPS to VM4.

VM1, VM2, and VM3 are running together.

Figure 5 shows the throughput obtained by each of the

workloads. When we added the VM2 (at time 60sec), it

received only 400 IOPS based on its limit, and not the

800 IOPS it would have received based on the weights

alone. When we started VM3 (at time 120sec), it re-

ceived only its maximum limit, 500 IOPS, again smaller

than its throughput share based on the weights alone.

This shows that mClock is able to limit the throughput

of VMs based on specified upper limits.

4.1.2 Reservations Enforcement

To test the ability of mClock to enforce reservations, we

used a combination of 5 workloads, VM1 – VM5, all

generated using Iometer onWindows Server VMs. Each

workload maintained 32 outstanding IOs, all 16 KB ran-

dom reads, at all times. We set their shares to the ratio

1:1:2:2:2. VM1 required a minimum of 300 IOPS, VM2

required 250 IOPS, and the rest had no minimum re-

quirement. To demonstrate again the working of mClock

in a dynamic environment, we began with just VM1, and

a new workload was started every 60 seconds.

Figures 6(a) shows the overall throughput observed

by the host using SFQ(D=32) and mClock. As the

number of workloads increased, the overall throughput

from the array decreased because the combined work-

load spanned larger numbers of tracks on the disks.

Figures 6(b) and (c) show the throughput obtained by

each workload using SFQ(D=32) and mClock respec-

tively. When we used SFQ(D), the throughput of each

VM decreased with increasing load, down to 160 IOPS

for VM1 and VM2, while the remaining VMs received

around 320 IOPS. In contrast, mClock provided 300

IOPS to VM1 and 250 IOPS to VM2, as desired. In-

creasing the throughput allocation also led to a smaller

latency (as expected) for VM1 and VM2, which would

not have been possible just using proportional shares.

VM size, read%, random% ri li wi

VM1 4K, 75%, 100% 0 MAX 2

VM2 8K, 90%, 80% 0 700 2

VM3 16K, 75%, 20% 0 MAX 1

VM4 8K, 50%,60% 250 MAX 1

Table 3: VM workloads characteristics and parameters

4.1.3 Diverse VM Workloads

In the experiments above, we used mostly homoge-

neous workloads for ease of exposition and understand-

ing. To demonstrate the effectiveness of mClock with

a non-homogeneous combination of workloads, we ex-

perimented with workloads having very different IO

characteristics. We used four workloads, generated us-

ing Iometer on Windows VMs, each keeping 32 IOs

pending at all times. The workload configurations and

the resource control settings (reservations, limits, and

weights) are shown in Table 3.

Figures 7(a) and (b) show the throughputs allocated

by SFQ(D) (weight-based allocation) and by mClock for

these workloads. mClock was able to restrict VM2 to

700 IOPS, as desired, when only two VMs were doing

IOs. Later, when VM4 became active, mClock was able

to meet the reservation of 250 IOPS for it, whereas SFQ

only provided around 190 IOPS. While meeting these

constraints, mClock was able to keep the allocation in

proportion to the weights of the VMs; for example, VM1

got twice as many IOPS as VM3 did.

We next used the same workloads to demonstrate how

an administrator may determine the reservation to use. If

the maximum latency desired and the maximum concur-

rency of the application is known, then the reservation

can be simply estimated using Little’s law as the ratio of

the concurrency to the desired latency. In our case, if it is

desired that the latency not exceed 65ms, the reservation

can be computed as 32/0.065= 492, since the number

of concurrent IOs from each application is 32. First, we
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VM wi ri=1, [IOPS, ms] ri=512, [IOPS,ms]

VM1 1 330, 96ms 490, 68ms

VM2 1 390, 82ms 496, 64ms

VM3 2 660, 48ms 514, 64ms

VM4 2 665, 48ms 530, 65ms

Table 4: mClock provided low latencies to VM1 and

VM2 and throughputs close to the reservation when the

reservations were changed from ri = 1 to 512 IOPS.

ran the four VMs together with a reservation ri = 1 each,

and weights in the ratio 1:1:2:2.

The throughput (IOPS) and latency received by each

in this simultaneous run are shown in Table 4. Note that

workloads received IOPS in proportion to their weights,

but the latencies of VM1 and VM2 were much higher

than desired. We then set the reservation (ri) for each

VM to be 512 IOPS; the results are shown in the last col-

umn of Table 4. Note that first two VMs received higher

IOPS of around 500 instead of 330 and 390, which is

close to their reservation targets. The latency is also

close to the expected value of 65ms. The other VMs saw

a corresponding decline in their throughput. The reser-

vation targets of VM1 and VM2 were not entirely met

because the overall throughput was slightly smaller than

the sum of reservations. This experiment demonstrates

that mClock is able to provide a strong control to stor-

age admins to meet their IOPS and latency targets for a

given VM.

4.1.4 Bursty VMWorkloads

Next, we experimented with the use of idle credits given

to a workload for handling bursts. Recall that idle credits

allow a workload to receive service in a burst only if the

workload has been idle in the past and the reservations

for all VMs have been met. This ensures that if an ap-

plication is idle for a while, it gets preference when next

there is spare capacity in the system. In this experiment,

we used two workloads generated with Iometer on Win-

VM σ=1, [IOPS, ms] σ=64, [IOPS,ms]

VM1 312, 49ms 316, 30.8ms

VM2 2420, 13.2ms 2460, 12.9ms

Table 5: The bursty workload (VM1) saw an improved

latencywhen given a higher idle credit of 64. The overall

throughput remained unaffected.

dows Server VMs. The first workload was bursty, gener-

ating 128 IOs every 400ms, all 4KB reads, 80% random.

The second was steady, producing 16 KB reads, 20% of

them random and the rest sequential, with 32 outstand-

ing IOs. Both VMs had equal shares, no reservation, and

no limit imposed on the throughput. We used idle-credit

(σ ) values of 1 and 64 for our experiment.

Table 5 shows the IOPS and average latency obtained

by the bursty VM for the two settings of the idle credit.

The number of IOPS were almost equal in either case

because idle credits do not impact the overall bandwidth

allocation over time, and VM1 had a bounded request

rate. VM2 also saw almost the same IOPS for the two

settings of idle credits. However, we notice that the la-

tency seen by the bursty VM1 decreased as we increased

the idle credits. VM2 also saw a similar or a slightly

smaller latency, perhaps due to the increase in efficiency

of doing several IOs at a time from a single VM, which

are likely to be spatially closer on the storage device.

In the extreme, however, a very high setting of idle

credits can lead to high latencies for non-bursty work-

loads by distorting the effect of the weights (although

not the reservations or limits), and so we limit the set-

ting to a maximum of 256 IOs in our implementation.

This result indicates that using idle credits is an effec-

tive mechanism to help lower the latency of bursts.

4.1.5 Filebench Workloads

To test mClock with more realistic workloads, we ex-

perimented with two Linux RHEL VMs running OLTP

workload using Filebench [26]. Each VMs was config-



ured with 1 VCPU, 512 MB of RAM, 10GB database

disk, and 1 GB log virtual disk. To introduce throughput

fluctuation another Windows 2003 VM running Iometer

was used. The Iometer workload produced 32 concur-

rent, 16KB random reads. We assigned the weights in

the ratio 2:1:1 to the two OLTP workloads and the Iome-

ter workload, respectively, and gave a reservation of

500 IOPS to each OLTP workload. We initially started

the two OLTP workloads together and then the Iometer

workload at t = 115s.

Figures 8(a) and (b) show the IOPS received by the

three workloads as measured inside the hypervisor, with

and without mClock. Without mClock, as soon as the

Iometer workload started, OLTP2 started missing its

reservation and received around 250 IOPS. When run

with mClock, both the OLTP workloads were able to

achieve their reservations of 500 IOPS. This shows that

mClock can protect critical workloads from a sudden

change in the available throughput. The application-

level metrics — the number of operations/sec and the

transaction latency reported by Filebench — are sum-

marized in Figure 8(c). Note that mClock was able to

provide higher operations/sec and lower latency per op-

eration in OLTP VMs, even with an increase in the over-

all IO contention.

4.2 dmClock Evaluation

In this section, we present results of a dmClock imple-

mentation in a distributed storage system. The system

consisted of multiple storage servers (nodes) — three in

our experiment. Each node was implemented using a

virtual machine running RHEL Linux with a 10GB OS

disk and a 10GB experimental disk, from which the data

was served. Each experimental disk was placed on a

different LUN backed by RAID-5 group with six disks.

Thus, each experimental disk could do roughly 1500

IOPS for a random workload. A single storage device

shared by all clients, was then constructed by striping

across all the storage nodes. This configuration repre-

sents a clustered-storage system where there are multi-

ple storage nodes, each with dedicated LUNs used for

servicing IOs.

We implemented dmClock as a user-space module in

each server node. The module receives IO requests

containing IO size, offset, type (read/write), the δ and

ρ parameters, and data in the case of write requests.

The module can keep up to 16 outstanding IOs (using

16 threads) to execute the requests, and the requests

are scheduled on these threads using the dmClock algo-

rithm. The clients were run on a separate physical ma-

chine. Each client generated an IO workload for one or

more storage nodes and also acted as a gateway, piggy-

backing the δ and ρ values onto each request sent to

the storage nodes. Each client workload consisted of
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Figure 10: IOPS obtained by the two clients. When c2
was started, c1 still met its reservation target.

8KB random reads with 64 concurrent IOs, uniformly

distributed over the nodes it used. We used our own

workload generator here because of the need to add ap-

propriate δ and ρ values to each request.

In first experiment, we used three clients, {c1,c2,c3},
each accessing all three storage nodes. The weights were

set in the ratio 1:4:6, with no upper limit on the IOPS.

We experimented with two different cases: (1) No reser-

vation per client, (2) Reservations of 800, 1000 and 100

for clients {c1,c2,c3} respectively. These values were

used to highlight a use case where the allocation based

on reservations may be higher than the allocation based

on weights or shares for some clients. The output for

these two cases is shown in Figure 9 (a) and (b). Case

(a) shows the overall IO throughput obtained by three

clients without reservations. As expected, each client

received total service in proportion to its weight. In case

(b), dmClock was able to meet the reservation goal of

800 IOPS for c1, which would have been missed with

a proportional share scheduler. The remaining through-

put was divided between clients c2 and c3 in the ratio

2:3 as they respectively received around 1750 and 2700



IOPS. Figure 9(b) also shows the IOs done during the

two phases of the algorithm.

Next, we experimented with non-uniform accesses

from clients. In this case we used two clients c1,c2 and

two storage servers. The reservations were set to 800

and 1000 IOPS and the weights were again in the ra-

tio 1:4. c1 sent IOs to the first storage node (S1) only

and we started c2 after approximately 40 seconds. Fig-

ure 10 shows the IOPS obtained by the two clients with

time. Initially, c1 got the full capacity from server S1 and

when c2 was started, c1 was still able to get an allocation

close to its reservation of 800 IOPS. The remaining ca-

pacity was allocated to c2, which received around 1400

IOPS. A distributed weight-proportional scheduler [45]

would have given approximately 440 IOPS to c1 and the

remainder to c2, which would have missed the minimum

requirement of c1. This shows that even when the ac-

cess pattern is non-uniform in a distributed environment,

dmClock is able to meet reservations and assign overall

IOPS in the ratio of weights to the extent possible.

5 Conclusions

In this paper, we presented a novel IO scheduling algo-

rithm, mClock, that provides per-VM quality of service

in presence of variable overall throughput. The QoS re-

quirements for a VM are expressed as a minimum reser-

vation, a maximum limit, and a proportional share. A

key aspect of mClock is its ability to enforce such con-

trols even with fluctuating overall capacity, as shown by

our implementation in the VMware ESX server hypervi-

sor. We also presented dmClock, a distributed version of

our algorithm that can be used in clustered storage sys-

tem architectures. We implemented dmClock in a dis-

tributed storage environment and showed that it works

as specified, maintaining global per-client reservations,

limits, and proportional shares, even though the sched-

ulers run locally on the storage nodes.

The controls provided by mClock should allow

stronger isolation between VMs. Although we have

shown the effectiveness for hypervisor IO scheduling,

we believe that the techniques are quite generic and can

be applied to array-level scheduling and to other re-

sources such as network bandwidth allocation as well.

In our future work, we plan to explore further how to set

these parameters to meet application-level SLAs.
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