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Abstract
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phisticated a�ne jump-di�usion models in capturing the joint dynamics of stock and option prices.

We develop e�cient MCMC methods for estimating parameters and latent volatility/jump variables

of the L�evy jump models using stock and option prices. We show that models with in�nite-activity

L�evy jumps in returns signi�cantly outperform a�ne jump-di�usion models with compound Poisson

jumps in returns and volatility in capturing both the physical and risk-neutral dynamics of the S&P

500 index. We also �nd that the variance gamma model of Madan, Carr, and Chang (1998) with

stochastic volatility has the best performance among all the models we consider.
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1. Introduction

Modeling the dynamics of stock returns is one of the most important issues in modern �nance.

A realistic model of return dynamics is essential for option pricing, portfolio analysis, and risk

management. While continuous-time models for return dynamics since Black and Scholes (1973) and

Merton (1976) have mainly relied on Brownian motion and compound Poisson process as basic model

building blocks, L�evy processes have become increasingly popular for modeling asset price dynamics

in recent years.1

L�evy processes are continuous-time stochastic processes with stationary and independent incre-

ments. Though Brownian motion and compound Poisson process are two of the most well-known

special cases of L�evy processes, there are many other members of the L�evy family that o�er greater

exibility for modeling purposes. For example, L�evy processes allow non-normal increments as com-

pared to normal increments of Brownian motion. The jump component of a general L�evy process also

is much more exible than a compound Poisson process. In particular, the so-called in�nite-activity

L�evy jumps have in�nite jump arrival rates and can generate, in addition to large jumps, an in�nite

number of small jumps within any �nite time interval.

There are concerns, however, that in�nite-activity L�evy jumps, despite their theoretical appeals,

may not have signi�cant empirical advantages over some of the most exible models of stock returns

based on a�ne jump-di�usions (hereafter AJD) of Du�e, Pan, and Singleton (2000) (hereafter DPS).

In AJD models, stock returns are driven by a�ne di�usions and compound Poisson processes. One of

the most sophisticated AJD models for stock returns is the double-jump models of Eraker, Johannes,

and Polson (2003) (hereafter EJP), which include not only stochastic volatility and leverage e�ect,

but also compound Poisson jumps in both returns and volatility. The double-jump models capture

important stylized behaviors of both returns and volatility of major U.S. stock indices. Therefore,

it is not clear that in�nite-activity L�evy jump models can signi�cantly outperform the double-jump

models in empirical applications. Unfortunately, there are no direct comparisons between L�evy

jump models and the double-jump models of EJP (2003) in capturing the joint dynamics of stock

1Prominent examples of L�evy models in the literature include the inverse Gaussian model of Barndor�-Nielsen

(1998); the generalized hyperbolic class of Eberlein, Keller, and Prause (1998); the variance gamma model of Madan,

Carr, and Chang (1998); the generalization of the variance gamma model in Carr, Geman, Madan, and Yor (2002);

and the �nite moment log-stable model of Carr and Wu (2003) among others. See also Wu (2006) for an excellent

review of the current literature on L�evy processes.
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and option prices in the current literature.2

Our paper addresses a basic and yet fundamental empirical issue in the current continuous-time

�nance literature: Can commonly used L�evy jump models outperform the most sophisticated AJD

models in capturing the joint dynamics of spot and option prices? In particular, we consider models

with stochastic volatility and jumps in returns that follow the variance gamma (VG) model of Madan,

Carr, and Chang (1998) or the log stable (LS) model of Carr and Wu (2003), two of the most widely

used L�evy processes in the current literature.3 We also consider AJD models with stochastic volatility

and compound Poisson jumps in returns or correlated compound Poisson jumps in both returns and

volatility. The latter is the preferred model of EJP (2003).4

Statistical analysis of L�evy processes, however, can be di�cult due to various reasons. First, the

probability densities of most L�evy processes are not known in closed form and for certain processes,

such as stable processes, not all moments exist. As a result, it is di�cult to use either likelihood-

or moment-based methods for estimation. Second, it is computationally demanding to deal with the

high-dimensional latent volatility variables typically included in some of the most sophisticated L�evy

models.5 Finally, attempts to include option prices in model estimation signi�cantly increase the

computational complexity because calculations of option prices involve numerical integrations.

We �rst develop e�cient computational Bayesian Markov chain Monte Carlo (hereafter MCMC)

methods for estimating the above L�evy and AJD models using both stock and option prices. Our

focus on the joint dynamics makes it possible to estimate simultaneously the risk-neutral and physical

dynamics of asset returns, as well as the market prices of risks that govern the change of measure

process. Our MCMC methods allow estimation of both model parameters and latent volatility/jump

variables, which are important for understanding di�erent aspects of model performance. Although

Li, Wells, and Yu (2006) (hereafter LWY) have examined MCMC estimation of L�evy jump models

using stock prices, the estimation problem becomes computationally much more challenging due to

the inclusion of option prices. As a result, we rely on more sophisticated updating procedures to

2Existing studies of L�evy processes using option prices, such as Huang and Wu (2003), do not compare the perfor-

mances of L�evy jump models with that of the double-jump model.

3Earlier studies on variance gamma processes include Madan and Seneta (1990) and Madan and Milne (1991).
4We emphasize that the continuous part of the volatility process in both the AJD and L�evy jump models follows

a�ne di�usion. Therefore, the main focus of our comparsion is on the jump structures of the two classes of models.

We refer to the two classes of models as the AJD and L�evy jump models mainly for ease of distinction.
5Stochastic volatility is essential for capturing empirical behaviors of stock returns, and existing studies, such as

Carr, Geman, Madan, and Yor (2003) and Carr and Wu (2004), have used stochastic time change to generate stochastic

volatility in L�evy processes.
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estimate many model parameters and latent variables.

Based on the new MCMC methods, we estimate the AJD and L�evy jump models using daily

returns of the S&P 500 index and daily prices of a short-term ATM SPX option. We show that the

L�evy jump models signi�cantly outperform the preferred AJD model of EJP (2003) in capturing the

joint dynamics of the spot and option prices of the S&P 500 index. For the physical dynamics, the

in�nite-activity L�evy jumps capture many small movements in index returns that cannot be captured

by the AJD models. For the risk-neutral dynamics, the L�evy jump models have signi�cantly smaller

in-sample and out-of-sample option pricing errors than the preferred AJD model. We also �nd that

the VG model of Madan, Carr, and Chang (1998) with stochastic volatility has the best performance

among all the models we consider.

There are only a few other studies that estimate L�evy processes using spot and option prices

jointly. Wu (2004) introduces the so-called dampened power law to capture the tail behaviors of

index returns under the physical and the risk-neutral measures. Bakshi and Wu (2005) estimate

L�evy jump models using the spot and option prices of the Nasdaq 100 index during the Internet

\bubble" period. While Wu (2004) and Bakshi and Wu (2005) use numerical likelihood method to

estimate model parameters, the MCMC methods we adopt are particularly suitable to deal with the

large number of latent volatility and jump variables. The Bayesian approach also makes it possible

to study the impacts of priors and parameter uncertainties in applications such as hedging, portfolio

selection, and VaR calculation involving L�evy processes. Consistent with the empirical focus of our

study, we also adopt a di�erent approach to the change of measure for L�evy processes from that of

Wu (2004) and Bakshi and Wu (2005). We require that jumps follow the same L�evy processes under

the physical and the risk-neutral measures in order to have a fair comparison with AJD models in

which jumps under both measures follow compound Poisson processes. Given this restriction, we

obtain the Radon-Nikodym derivatives for VG and LS processes based on Sato's (1999) theorem.

In contrast, Wu (2004) and Bakshi and Wu (2005) �x the form of the Radon-Nikodym derivative,

which is de�ned by the so-called Esscher transform. Under this transform, jumps generally follow

di�erent L�evy processes under the two measures.6

The rest of the paper is organized as follows. In Section 2, we introduce the AJD and L�evy jump

models and discuss the change of measure and option pricing under these models. In Section 3, we

develop MCMC methods for estimating model parameters and latent variables of the L�evy jump

6Other studies that estimate L�evy processes using underlying or option prices include Barndor�-Nielsen and Shep-

hard (2004), Belomestny and Reiss (2006), Cont and Tankov (2004a), Gri�n and Steel (2006), among others. A��t-

Sahalia (2004) and A��t-Sahalia and Jacod (2004) provide theoretical analyses on statistical inferences of L�evy processes.
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models using spot and option prices. Section 4 contains empirical results using daily S&P 500 index

returns and prices of SPX options. Section 5 concludes the paper. The appendix provides additional

information on the four jump models we consider and detailed discussions of the MCMC methods.

2. AJD and L�evy Jump Models for Return Dynamics

In this section, we introduce the AJD and L�evy jump models considered in our study. We also

discuss the change of measure (between the physical and the risk-neutral measures) and option

pricing under these models.

2.1 AJD and L�evy Jump Models for Return Dynamics

Suppose the uncertainty of the economy is described by a probability space (
;F ;P) and a �l-

tration fFtg. We refer to P as the physical probability measure which represents the probability

measure of the real world in which we reside. Let St be the price of a stock and Yt be the contin-

uously compounded return on the stock, i.e., Yt = logSt: We assume that the dynamics of Yt are

characterized by the following model:

dYt = �dt+
p
vtdW

(1)
t (P) + dJyt (P) ; (1)

dvt = � (� � vt) dt+ �v
p
vt

�
�dW

(1)
t (P) +

p
1� �2dW (2)

t (P)
�
+ dJvt (P) ; (2)

where � measures the expected rate of return, vt measures the instantaneous volatility of return,

W
(1)
t (P) and W (2)

t (P) are independent standard Brownian motions under P; and Jyt (P) and Jvt (P)

represent jumps in returns and volatility under P, respectively.

The above model nests all the models considered in this paper. In particular, the continuous

part of the instantaneous volatility of returns in all models follows the square-root process of Heston

(1993): � represents the long-run mean of vt; � is the speed of mean reversion, �v is the so-called

volatility of volatility, and � measures the correlation between volatility and returns. Many studies

have documented a strong negative correlation between volatility and returns, the so-called \leverage"

e�ect, and the correlation coe�cient � helps to capture this phenomenon. The main di�erence

between AJD and L�evy jump models is the jump process. In AJD models, jumps follow compound

Poisson processes, which are �nite-activity jumps. In L�evy models, jumps are in�nite-activity.

In the �rst AJD model we consider, Jvt (P) = 0; and J
y
t (P) follows a compound Poisson process

with a constant jump intensity and jump sizes that follow a normal distribution:

Jyt (P) =
NtX
n=1

�yn; (3)
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where Nt � Poisson (�t) and �yn � N
�
�y; �

2
y

�
: We refer to this model as the stochastic volatility

Merton jump (hereafter SVMJ) model because the jump process was �rst introduced in Merton

(1976).

The second AJD model we consider allows correlated jumps in both returns and volatility. The

stochastic volatility correlated Merton jump (hereafter SVCMJ) model is the preferred model in EJP

(2003) and Eraker (2004): 0@ Jyt (P)

Jvt (P)

1A =

NtX
n=1

0@ �yn

�vn

1A ; (4)

where Nt � Poisson (�t) ; �vn � exp (�v) ; and �ynj�vn � N
�
�y + �J�

v
n; �

2
y

�
: The above model is

sometimes referred to as the double-jump model because of the jumps in both returns and volatility.

As shown in EJP (2003), the negative jumps in returns, Jyt (P) ; help to capture the major crashes

observed in the U.S. market; and the jumps in volatility, Jvt (P) ; help to model rapid increase in

volatility that cannot be easily captured by the square-root process.

The two basic building blocks for AJD models, Brownian motion and compound Poisson process,

are special cases of L�evy processes, which are continuous-time stochastic processes with stationary

and independent increments. Formally, if Xt is a scalar L�evy process with respect to the �ltration

fFtg, then Xt is adapted to Ft; the sample paths of Xt are right-continuous with left limits, and

Xt � Xs is independent of Ft and distributed as Xt�s for 0 � s < t: L�evy processes are much

more exible than Brownian motion and compound Poisson process because they allow discontinuous

sample paths, non-normal increments, and more exible jump structures that have (possibly) in�nite

arrival rates.7

Unlike �nite-activity jump processes, an in�nite-activity jump process allows an (possibly) in�nite

number of jumps within any �nite time interval. Within the in�nite-activity category, the sample

path of the jump process can exhibit either �nite or in�nite variation, meaning that the aggregate

absolute distance traveled by the process is �nite or in�nite, respectively, over any �nite time interval.

In our empirical analysis, we choose the relatively parsimonious VG model of Madan, Carr, and

Chang (1998) as a representative of the in�nite-activity but �nite-variation jump model. The VG

process is obtained by subordinating an arithmetic Brownian motion with drift  and variance � by

an independent gamma process with unit mean rate and variance rate �; G�t : That is,

XV G (tj�; ; �) = G�t + �W (G�t ) ; (5)

7For more detailed discussions on L�evy processes, see Cont and Tankov (2004b).
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where W (t) is a standard Brownian motion and is independent of G�t : The model in (1)-(2) reduces

to the SVVG model, if Jyt (P) = XV G (tj�; ; �) and Jvt (P) = 0:

We choose the �nite moment LS process of Carr and Wu (2003) as a representative of the in�nite-

activity and in�nite-variation jump model in our analysis. The increments of the LS process follow

an �-stable distribution: That is, for t > s;

XLS (tj�; �)�XLS (sj�; �) � S�
�
�1; �

1
� (t� s)

1
� ; 0

�
; (6)

where a generic �-stable distribution is denoted as S� (�; �; ) ; with a tail index � 2 (0; 2]; a skew

parameter � 2 [�1; 1] ; a scale parameter � � 0; and a location parameter  2 R: The parameter �

determines the shape of the distribution, while � determines the skewness of the distribution. Stable

densities are supported on either R or R+. The latter situation occurs only when � < 1 and � = �1:

Following Carr and Wu (2003), we set � = �1 to achieve �nite moments for index levels under the

risk-neutral measure (and thus �nite option prices), and negative skewness in the return density, a

feature that cannot be captured by either a Brownian motion or a symmetric L�evy �-stable process.

We also restrict � 2 (1; 2) so that the process has the support of the whole real line. The model in

(1)-(2) reduces to the SVLS model, if Jyt (P) = XLS (tj�; �) and Jvt (P) = 0:

The two models, SVVG and SVLS, allow us to compare the performances of in�nite-activity

jumps in returns with that of compound Poisson jumps in both returns and volatility.

2.2 Change of Measure and Option Pricing for the AJD and L�evy Jump Models

While equations (1)-(2) describe the AJD and L�evy jump models under the physical measure P;

for the purpose of option pricing, we also need return dynamics under the risk-neutral measure Q.

Thus we need to consider the change of measure between P and Q for these models.

The change of measure for Brownian motion is well understood in the literature. Following the

standard practice of Pan (2002), we assume that the market prices of risks of Brownian shocks to

returns and volatility are


(1)
t = �s

p
vt; 

(2)
t = � 1p

1� �2

�
��s +

�v

�v

�
p
vt; (7)

respectively. Thus, the change of measure for the two Brownian motions is

dW
(1)
t (Q) = dW

(1)
t (P) + (1)t dt; dW

(2)
t (Q) = dW

(2)
t (P) + (2)t dt; (8)

where W
(1)
t (Q) and W (2)

t (Q) are independent standard Brownian motions under Q:

While the change of measure for Brownian motion only involves changing the drift term, the

change of measure for L�evy processes is much more complicated. The important result of Sato
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(1999) (given in the appendix) provides the theoretical foundation for the change of measure of L�evy

processes considered in this paper. To apply Sato's (1999) general theorem to our setting, some

restrictions on model structures have to be imposed.

Under AJD models, jumps under both P and Q follow the same compound Poisson processes

with di�erent parameters. To have a fair comparison with AJD models, we restrict L�evy jumps

under P and Q to follow the same L�evy process. That is, if the L�evy jump under P is VG (LS),

then the L�evy jump under Q has to be VG (LS) as well, although with possible di�erent parameters.

Under this restriction, the Radon-Nikodym derivative between P and Q generally will be di�erent

from that of Wu (2004) and Bakshi and Wu (2005). Based on the general result of Sato (1999) and

our speci�c model restriction, we obtain the following results on the change of measure for the four

jump processes considered in our paper.

Proposition 1. The parameters of the following four jump processes under measures P and Q must

satisfy the following restrictions:

� All parameters of MJ, (�; �y; �y) ; can change freely between P and Q;

� All parameters of CMJ, (�; �y; �y; �J ; �v) ; can change freely between P and Q;

� Among the parameters of VG, (�; ; �) ;  and � can change freely between P and Q, while �

has to be the same under P and Q;

� None of the parameters of a L�evy �-stable process, (�; �; �; ) ; can change between P and Q:8

The above results impose restrictions on the physical and the risk-neutral parameters of the four

jump processes. For MJ and CMJ, all parameters can take di�erent values under the physical and the

risk-neutral measures. Previous studies, such as Pan (2002) and Eraker (2004), show that allowing all

the parameters to change between measures makes econometric identi�cation di�cult. As a result,

they only allow the mean jump size �y to be di�erent between P and Q: To compare our results

with existing studies, we follow the same approach. As a result, the parameters of MJ and CMJ

under both measures are
�
�; �y; �y; �

Q
y

�
and

�
�; �y; �v; �J ; �y; �

Q
y

�
; respectively. The parameters of

VG and LS under both measures are
�
�; ; �; Q; �Q

�
and (�; �) ; respectively.

If the L�evy measures of the four jump processes under P and Q satisfy the restrictions in Propo-

sition 1, then the Radon-Nikodym derivatives of these processes are given as eUt ; where Ut is de�ned

8The proof of the Proposition involves straightforward veri�cation of the conditions of Sato's theorem for each of

the jump processes and is available from the authors upon request.
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as in the second part of Sato's (1999) theorem.9 Combining this with the change of measure for

the two Brownian motions, we obtain the Radon-Nikodym derivatives for the AJD and L�evy jump

models:

dQ
dP
jt = exp

�
�
Z t

0
(1)s dW (1)

s (P)�
Z t

0
(2)s dW (2)

s (P)� 1
2

�Z t

0
(1)2s ds+

Z t

0
(2)2s ds

��
expUt: (9)

This naturally leads to the risk-neutral return dynamics of all four models we consider

dYt =

�
rt �

1

2
vt +  

Q
J (�i)

�
dt+

p
vtdW

(1)
t (Q) + dJyt (Q) ; (10)

dvt = [� (� � vt) + �vvt] dt+ �v
p
vt

�
�dW

(1)
t (Q) +

p
1� �2dW (2)

t (Q)
�
+ dJvt (Q) ; (11)

where Jvt (Q) = 0 for SVMJ, SVVG, and SVLS. The drift term of the return process under Q has

three components: the risk-free interest rate rt; the Ito adjustment for log price �12vt; and the jump

compensator in returns  QJ (�i) under Q: Consequently the drift term of the return process under P

equals � = rt � 1
2vt +  

Q
J (�i) + �svt:10

Option prices are determined by the risk-neutral dynamics of stock returns. Carr and Wu (2004)

show that L�evy processes are as tractable as AJD models for the purpose of option pricing: The

risk-neutral dynamics in (10)-(11) lead to closed-form solution to the characteristic function of the

log stock price under Q: That is, when interest rate is constant,

�t (u) = EQ0
�
eiuYt

�
= EQ0

�
e
iuY0+iu(r+ QJ (�i))t+iu

�R t
0

p
vtdW

(1)
s (Q)� 1

2

R t
0 vsds

�
+iuJyt

�
= eiuY0+iu(r+ 

Q
J (�i))tEQ0

h
eiuJ

y
t

i
EQ0

�
e
iu
�R t

0

p
vtdW

(1)
s (Q)� 1

2

R t
0 vsds

��
= eiuY0+iu(r+ 

Q
J (�i))te�t 

Q
J (u)e�b(t)v0�c(t);

where b (t) =
(iu+u2)(1�e��t)

(�+�M )+(���M )e��t ; c (t) =
��
�2v

�
2 ln

2��(���M)(1�e��t)
2� +

�
� � �M

�
t

�
; �M = � � �v �

iu�v�; � =

q
(�M )2 + (iu+ u2)�2v ; and Y0 = log (S0) :

The closed-form expression of the characteristic function of the log stock price naturally leads

to closed-form expression of the Fourier transform of option prices. Consequently, option price can

be solved using the Fourier inversion formula. The time-0 price of a European call option with

time-to-maturity of � and strike price of K equals

F (Y0; v0; �;K) = EQ0
�
e�r� (S� �K)+

�
=
e�r�

�
� Re

�Z 1

0
e�ix log(K)

�� (x� i)
�x2 + ix dx

�
:

9Due to the restriction that jumps under P and Q have to follow the same process (with di�erent parameters), the

four jump models have di�erent Uts as well. Therefore, the L�evy jump models di�er from the AJD models not only in

jump structures but also in the Radon-Nikodym derivatives of the jump processes.

10The explicit expressions of  QJ (�) of the four jump processes are given in the appendix.
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In addition to the contractual terms of the option, the option price also depends on the current levels

of the stock price (Y0) and the instantaneous stochastic volatility (v0).

3. MCMC Estimation of L�evy Jump Models Using Spot and Option Prices

In this section, we discuss Bayesian MCMC estimation of L�evy jump models using spot and

option prices. We �rst summarize the speci�cations of all models considered in our analysis. Then

we discuss the statistical methods used for model estimation and comparison.

3.1 Summary of Model Speci�cations

In our joint estimation of L�evy jump models, we use daily returns on the S&P 500 index and

daily prices of a short-term ATM SPX option. Let C (t; �;K) be the market price at t of the option

with time-to-maturity � and strike price K; and F (t; �;K; Yt; vt;�) be the theoretical price of the

same option in a given model where the log stock price equals Yt; the instantaneous volatility equals

vt; and the vector of model parameters is denoted as �: We assume that the market price of the

option equals its theoretical price plus some random noises:

C (t; �;K) = F (t; �;K; Yt; vt;�) +$
c
t ;

where $c
t � N

�
�c$

c
t�1; �

2
c

�
: The �rst-order autocorrelation in option pricing errors also has been

considered in Eraker (2004) and captures the phenomenon that if option pricing error is high on one

day, it is likely to be high on the next day.

We consider �rst-order Euler discretization of the continuous-time models at daily frequency.

Simulation studies in EJP (2003) and LWY (2006) show that the bias introduced by daily discretiza-

tion is very small. Therefore, the joint dynamics of the daily spot and the option prices under the

four models we consider are summarized by the following system of equations:8>>><>>>:
Ct+1 � Ft+1 = �c (Ct � Ft) + �c�ct
Yt+1 = Yt + ��+

p
vt��

y
t+1 + J

y
t+1;

vt+1 = vt + �(� � vt)� + �v
p
vt��

v
t+1 + J

v
t+1;

(12)

where � = 1
252 ; � = rt � 1

2vt +  
Q
J (�i) + �svt; �ct ; �

y
t+1; and �

v
t+1 � N(0; 1), corr(�

y
t+1; �

v
t+1) = �; and

�ct is independent of �
y
t+1 and �

v
t+1:

Specializing (12) to each of the four models, we have the following exact speci�cations of each

model.

� SVMJ. In this model, Jyt+1 = �yt+1N
y
t+1; P (N

y
t+1 = 1) = ��, �yt+1 � N(�y; �2y); and Jvt+1 = 0 for

all t. We have observations (Yt; Ct)
T
t=0; latent volatility variables (vt)

T
t=0, jump times (N

y
t )
T
t=1,
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and jump sizes (�yt )
T
t=1; and parameters � = f(�; �; �v; �; �y; �y; �) ;

�
�Qy
�
; (�s; �v) ; (�c; �c)g;

where the �rst group of parameters is either common to both measures or unique to the physical

measure, the second one is unique to the risk-neutral measure, the third one represents the

market prices of return and volatility risks, and the last one represents option pricing errors.

� SVCMJ. In this model, Jyt+1 = �yt+1Nt+1; J
v
t+1 = �vt+1Nt+1; P (Nt+1 = 1) = ��, �vt+1 �

exp (�v) ; and �
y
t+1j�vt+1 � N

�
�y + �J�

v
t+1; �

2
y

�
. We have observations (Yt; Ct)

T
t=0; latent volatil-

ity variables (vt)
T
t=0, jump times (Nt)

T
t=1, and jump sizes (�

v
t )
T
t=1 and (�

y
t )
T
t=1; and parameters

� = f(�; �; �v; �; �y; �y; �; �J ; �v) ;
�
�Qy
�
; (�s; �v) ; (�c; �c)g; where the �rst group of parameters

is either common to both measures or unique to the physical measure, the second one is unique

to the risk-neutral measure, the third one represents the market prices of return and volatility

risks, and the last one represents option pricing errors.

� SVVG. In this model, Jvt+1 = 0 for all t; and Jyt+1 follows a VG process whose discretized

version is

Jyt+1 = Gt+1 + �
p
Gt+1�

J
t+1;

where �Jt+1 � N(0; 1) and Gt+1 � �(�� ; �). �
J
t+1 and Gt+1 are independent of each other and are

independent of �yt+1 and �
v
t+1: The parametrization of the Gamma distribution, � (�; �) ; used in

this paper has density form 1
���(�)x

��1e�
x
� : We have observations (Yt; Ct)

T
t=0; latent volatility

variables (vt)
T
t=0, jump times/sizes (J

y
t )
T
t=1, and time-change variables (Gt)

T
t=1; and parameters

� = f(�; �; �v; �; �; ; �) ;
�
Q; �Q

�
; (�s; �v) ; (�c; �c)g; where the �rst group of parameters is

either common to both measures or unique to the physical measure, the second one is unique

to the risk-neutral measure, the third one represents the market prices of return and volatility

risks, and the last one represents option pricing errors.

� SVLS. In this model, Jvt+1 = 0 for all t: The jump size Jyt+1, independent of �
y
t+1 and

�vt+1; follows a stable distribution with shape parameter �; skewness parameter �1; zero

drift, and scale parameter ��
1
� : That is, Jyt+1 � S�(�1; ��

1
� ; 0): We have observations

(Yt; Ct)
T
t=1; latent volatility variables (vt)

T
t=0, and jump times/sizes (J

y
t )
T
t=1; and parameters

� = f(�; �; �v; �; �; �) ; (�s; �v) ; (�c; �c)g; where the �rst group of parameters is either common

to both measures or unique to the physical measure, the second one represents the market

prices of return and volatility risks, and the last one represents option pricing errors.

3.2 MCMC Methods
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Estimation of L�evy processes is generally very di�cult for several reasons. First, the probabil-

ity densities for most L�evy processes are not known in closed form, and for certain L�evy processes

higher moments of asset returns do not even exist. Second, the high dimensionality of latent variables,

such as stochastic volatility, jump sizes, and jump times, signi�cantly complicates the estimation.

Computationally it is very demanding to integrate out the large number of latent variables when

implementing either likelihood or moment-based approaches. The inclusion of option prices signif-

icantly increases the computational complexity because certain parameters enter into the option

pricing formulae nonlinearly, and the computation of option prices involves numerical integrations.

LWY (2006) have developed e�cient Bayesian MCMC methods for estimating L�evy processes

using only the spot price.11 We extend their methods to estimate the physical and risk-neutral

dynamics of L�evy processes jointly using spot and option prices. The main di�erence here is that

we need to rely on more sophisticated updating procedures for many model parameters and latent

variables due to the nonlinear option pricing formula involved.

Since MCMC analysis of SVMJ and SVCMJ has been considered in previous studies, such as

EJP (2003) and Eraker (2004), we focus our discussions of MCMC methods on SVVG and SVLS. We

mainly discuss how to derive the joint posterior distributions of model parameters and latent variables

for the two models and briey explain how to obtain posterior samples for individual parameters

and latent variables by simulating from the complicated joint posterior distributions. More detailed

discussions of our MCMC methods are provided in the appendix.

We �rst consider SVVG. To simplify notation, we denote the index returns as Y = fYtgTt=0 ;

the option prices as C = fCtgTt=0 ; the volatility variables as V = fvtgTt=0 ; the jump times/sizes

as J = fJyt g
T
t=1 ; and the time-change variables as G = fGtgTt=1 : The joint posterior distribution of

parameters and latent variables, p (�;V;J;GjY;C) ; can be decomposed into products of individual

conditionals

p (�;V;J;GjY;C) / p(Y;C;V;J;G;�)

= p (CjY;V;�) p(Y;VjJ;�)p(JjG;�)p(Gj�)p(�):

Given the assumed option price dynamics, we have

p (CjY;V;�) =
T�1Y
t=0

1p
2��c

exp

(
� [(Ct+1 � Ft+1)� �c (Ct � Ft)]

2

2�2c

)
:

11Earlier studies, such as Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998), Chib, Nardari, and

Shephard (2002), and Maheu and McCurdy (2004) among others, apply MCMC methods to estimate discrete-time

stochastic volatility models.
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Conditioning on vt and J
y
t+1, Yt+1 � Yt and vt+1 � vt follow a bivariate normal distribution0@ Yt+1 � Yt

vt+1 � vt

1A jvt; Jyt+1 � N

0@0@ ��+ Jyt+1

�(� � vt)�

1A ; vt�

0@ 1 ��v

��v �2v

1A1A ;

Jyt+1jGt+1;� � N(Gt+1; �
2Gt+1) and Gt+1j� � �(

�

�
; �):

Therefore, the joint posterior distribution of parameters and latent variables is given as

p (�;V;J;GjY;C) /
T�1Y
t=0

1p
2��c

exp

(
� [(Ct+1 � Ft+1)� �c (Ct � Ft)]

2

2�2c

)

�
T�1Y
t=0

1

�vvt�
p
1� �2

exp

�
� 1

2(1� �2)

��
�yt+1

�2 � 2��yt+1�vt+1 + ��vt+1�2��

�
T�1Y
t=0

1

�
p
Gt+1

exp

�
�(Jt+1 � Gt+1)

2

2�2Gt+1

�
�
T�1Y
t=0

1

�
�
� �(�� )

G
�
�
�1

t+1 expf�Gt+1
�
g � p(�);

where �yt+1 =
�
Yt+1 � Yt � ��� Jyt+1

�
=
p
vt� and �vt+1 = (vt+1 � vt � �(� � vt)�) =

�
�v
p
vt�

�
:

In SVLS, conditioning on vt and St+1, Yt+1�Yt and vt+1�vt follow a bivariate normal distribution0@ Yt+1 � Yt
vt+1 � vt

1A jvt; St+1 � N

0@0@ ��+ St+1

�(� � vt)�

1A ; vt�

0@ 1 ��v

��v �2v

1A1A ;

St+1 � S�(�1; ��
1
� ; 0):

In SVLS, we model jumps using stable process which can exhibit skewness and heavier tails than

normal distributions. Unfortunately, the probability density of St+1; p (St+1j�) ; is unknown. This

makes it di�cult to explicitly write down the joint likelihood function of (Yt+1; vt+1; St+1) ; because

p (Yt+1; vt+1; St+1j�) = p (Yt+1; vt+1jSt+1;�) p (St+1j�) : Consequently, it is di�cult to obtain the

joint posterior distribution for SVLS.

Buckle (1995) provides a representation of a stable variable which makes it possible to estimate

parameters of stable distributions using MCMC. The basic observation of Buckle (1995) is that

although the density of a stable variable is generally unknown, the joint density of the stable variable

and a well-chosen auxiliary variable is explicitly known. This joint density in turn leads to known

joint posterior density of the stable variable and the auxiliary variable, which can be used in our

MCMC algorithm.

For the LS process we consider, we set � 2 (1; 2], � = �1,  = 0 and � = ��
1
� . We denote

the index returns as Y = fYtgTt=0 ; the option prices as C = fCtgTt=0 ; the volatility variables as

12



V = fvtgTt=0 ; the jump times/sizes as S = fStg
T
t=1 ; and the auxiliary variables asU = fUtgTt=1 : Based

on Buckle's (1995) result, we obtain the joint posterior distribution of V, S, U; and � as

p (�;V;S;UjY;C) / p(Y;C;V;S;U;�) = p (CjY;V;�) p(Y;VjS)p(S;Uj�)p(�)

/
T�1Y
t=0

1p
2��c

exp

(
� [(Ct+1 � Ft+1)� �c (Ct � Ft)]

2

2�2c

)

�
T�1Y
t=0

1

�vvt�
p
1� �2

exp

�
� 1

2(1� �2)

��
�yt+1

�2 � 2��yt+1�vt+1 + ��vt+1�2��

�( �

j�� 1j� 1
��
)T � exp

(
�
T�1X
t=0

j St+1

��
1
� t�(Ut+1)

j
�

��1

)
�
T�1Y
t=0

8<:j St+1

��
1
� t�(Ut+1)

j
�

��1
1

j St+1
��

1
�
j

9=;
�
T�1Y
t=0

h
1St+12(�1;0)\Ut+12(� 1

2
;l�)

+ 1St+12(0;1)\Ut+12(l�; 12 )

i
� p(�)

where �yt+1 = (Yt+1 � Yt � ��� St+1) =
p
vt�; �

v
t+1 = (vt+1 � vt � �(� � vt)�) =

�
�v
p
vt�

�
; l� =

��2
2� ; and t�(Ut+1) = (

sin[��Ut+1+
(2��)�

2
]

cos[�Ut+1]
)( cos[�Ut+1]

cos[�(��1)Ut+1+ (2��)�
2

]
)(��1)=�: We obtain joint posterior

samples of �;V; S; and U by simulating from the above joint posterior density. We then marginal-

ize U out to obtain the samples for �;V; and S. That is, we simply throw away the observations of

U and retain the observations of �;V; and S:

In general, it is di�cult to simulate directly from the above high-dimensional posterior distri-

butions. Instead, we derive the complete conditional distributions for each individual parameter

and latent variable and obtain posterior samples by simulating from these individual complete con-

ditionals iteratively following standard MCMC procedure. For example, for SVVG, we obtain the

posterior distribution p
�
�ij��i;J;G;V;Y;C

�
for i = 1; :::; k; where �i is the i-th element of �

and ��i = (�1; :::; �i�1; �i+1; :::; �k) ; the posterior distribution for jump times p (J
y
t j�;G;V;Y;C) ;

jump sizes p (Gtj�;J;V;Y;C) ; and latent volatility variables p (vtjvt+1; vt�1;�;J;G;Y;C) ; for all

t: In estimation, we draw posterior samples from the above complete conditional distributions and

use the means of the posterior samples as parameter estimates and the standard deviations of the

posterior samples as standard errors of the parameter estimates. The appendix provides the priors,

the posterior distributions, and the updating procedures for model parameters and latent variables

for all four models.

In an interesting paper, Gri�n and Steel (2006) have developed MCMC methods for estimating

an Ornstein-Uhlenbeck (OU) volatility process driven by a positive L�evy process without Gaussian

component. They rely on a series representation of L�evy processes for drawing latent volatility
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variables. Their approach requires the inverse tail mass function of L�evy process to be known

analytically.

3.3 Model Diagnostics and Comparisons

The posterior estimates of model parameters and latent state variables allow us to examine the

performances of all four models in capturing the joint dynamics of spot and option prices.

One way to gauge the performances of each model in capturing the spot price is to test whether

the standardized model residuals of both returns and volatility follow an N (0; 1) distribution as in

EJP (2003) and LWY (2006). For example, for SVLS, if the model is correctly speci�ed, then

Yt+1 � Yt � ��� St+1p
vt�

= �yt+1 � N (0; 1) and
vt+1 � vt � � (� � vt)�

�v
p
vt�

= �vt+1 � N (0; 1) :

Deviations of �yt+1 and �
v
t+1 from N (0; 1) can reveal rich information on potential sources of model

misspeci�cations.

To compare the performances of di�erent models in capturing the risk-neutral dynamics, we test

whether one model has signi�cantly smaller option pricing errors than another. For this purpose,

we adopt an approach developed by Diebold and Mariano (1995) (hereafter DM) in time series fore-

casting literature. Consider two models whose associated true daily option pricing errors (calculated

at true model parameters) are fe1 (t)gTt=1 and fe2 (t)g
T
t=1 ; respectively. The null hypothesis that the

two models have the same squared pricing errors is E
�
e21 (t)

�
= E

�
e22 (t)

�
; or E [d (t)] = 0; where

d (t) = e21 (t)� e22 (t) : DM (1995) show that if fd (t)gTt=1 is covariance stationary and short memory,

then
p
T
�
d� �d

�
� N (0; 2�fd (0)) ;

where d = 1
T

PT
t=1

�
"21 (t)� "22 (t)

�
, fd (0) =

1
2�

P1
q=�1 d (q) and d (q) = E [(dt � �d) (dt�q � �d)] :

In large samples, d is approximately normally distributed with mean �d and variance 2�fd (0) =T:

Thus, under the null hypothesis of equal squared pricing errors, the following DM statistic

DM =
dq

2� bfd (0) =T
is distributed asymptotically as N (0; 1) ; where bfd (0) is a consistent estimator of fd (0) :12

In empirical analysis, however, we do not observe the true pricing errors fe1 (t)gTt=1 and fe2 (t)g
T
t=1.

Instead we only observe the estimated pricing errors (calculated at estimated model parameters)

fê1 (t)gTt=1 and fê2 (t)g
T
t=1 : Due to parameter estimation uncertainty, E

�
ê2i (t)

�
6= E

�
e2i (t)

�
; for

12We estimate the variance of the test statistic using the Bartlett estimate of Newey and West (1987) with a lag

order of 50.
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i = 1; 2: To address this issue, we use modi�ed pricing errors
q

T
T�ki êi (t) in our implementation of

the DM test, where ki represents the number of parameters for model i. This approach is based

on the fact that in both linear and nonlinear regressions, 1
T�ki

TX
t=1

ê2i (t) is an unbiased estimator of

E
�
e2i (t)

�
as T !1; for i = 1; 2:13 Our approach not only takes into account of parameter estimation

uncertainty but also penalizes more complex models with a larger number of parameters.

To compare the overall performances of the two models, we use the DM statistic to measure

whether one model has signi�cantly smaller squared option pricing errors than another. We also use

the DM statistic to measure whether one model has smaller squared pricing errors than another for

options in a speci�c moneyness and maturity group.

4. Empirical Results

In this section, we provide empirical analysis of the four models (SVMJ, SVCMJ, SVVG, and

SVLS) using the spot and option prices of the S&P 500 index. We �rst introduce the data used in

our analysis. We then examine the performances of the four models based on their (i) estimates of

model parameters and latent volatility/jump variables; (ii) empirical �ts of the spot price; and (iii)

in-sample and out-of-sample option pricing errors.

4.1 The Data

We use the same data as that in A��t-Sahalia and Lo (1998), which include daily spot and option

prices of the S&P 500 index between January 4, 1993 and December 31, 1993. A��t-Sahalia and Lo

(1998) take the midpoint of the bid and ask prices of each option as observed market price and

eliminate observations with time-to-maturity less than one day, implied volatility greater than 70

percent, and price less than 1
8 : To deal with potential nonsynchronous trading and unobservable

dividend yield, they back out the futures price of the underlying index at the time the option prices

are observed. They obtain prices of calls and puts that have the same time-to-maturity and strike

price and are closest to the money. Using put-call parity, they solve for the futures price at that

certain maturity, which then can be used to back out the implied dividend yield via the cost-of-carry

relation.14

Our estimation uses daily returns of the S&P 500 index and daily prices of a short-term ATM

SPX option that we choose for each day.15 We require that the option has a time-to-maturity between

13We thank Wayne Fuller for suggesting this approach. For references, see Casella and Berger (2001) and Gallant

(1987).

14See A��t-Sahalia and Lo (1998) for more detailed descriptions of the dataset.

15Short-term ATM options are among the most liquid options and should have the most e�cient prices in the market.
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20 and 50 days and is closest to the money, i.e., its strike to spot price ratio is closest to one.16 On a

few days without such options, we use an option whose time-to-maturity is closest to 20 days. Table

1 provides summary statistics on the data used directly in our estimation. During 1993, the mean

and standard deviation of annualized continuously compounded daily returns of the index are 7.36%

and 8.94%, respectively. Index returns exhibit slight negative skewness and high kurtosis. The mean

and median time-to-maturities of the short-term options are 34 and 35 days, respectively, while the

shortest and longest time-to-maturities are 16 and 50 days, respectively. The price of the options

has a mean of $7.14 and a range between $3.44 and $10.72. The implied volatility has a mean of

9.2% and a range between 6.7% and 12.23%. The ratio between the strike and the spot price of the

short-term option is very close to 1. A��t-Sahalia and Lo (1998) note that the short-term interest

rates exhibit little variation during 1993, ranging from 2.85 percent to 3.21 percent. As a result, we

assume constant interest rate in our estimation and use the prevailing interest rate each day in our

pricing formula.

Figure 1 provides time series plots of the level and log change of the S&P 500 index, and the

implied volatility of the short-term SPX options. The level of the index has increased steadily during

1993, with occasional relatively large negative returns, although none is as large as that of several

major stock market crashes in other periods. The implied volatility uctuates between 5% and 15%

during 1993 with strong mean reversion.

4.2 Estimates of Model Parameters and Latent Volatility/Jump Variables

Table 2 reports posterior estimates of (i) model parameters under both the physical and the

risk-neutral measures; (ii) market prices of risks for the two Brownian shocks (�v and �s); and (iii)

parameters describing option pricing errors (�c and �c). Figures 2 and 3 provide time series plots of

the �ltered volatility and jump variables for the four models, respectively. The estimates of model

parameters and latent variables reveal both similarities and di�erences among the four models.

Consistent with existing studies, all four models exhibit strong negative correlations between

volatility and returns: The estimates of � for the four models range from -0.56 to -0.82. The four

models share similar estimates of the long-run mean (�) of the volatility processes.17 The estimates

of the market prices of return and volatility risks are very similar across the four models and are

similar to those in previous studies. For example, the estimates of �s (�v) in the four models are

16Since the time-to-maturity of an option changes daily, we have to use di�erent options on di�erent days in our

estimation.
17Due to jumps in volatility in SVCMJ, the long-run mean of volatility in this model should include the impact of

jumps.
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between 3.5 and 4.4 (2.9 and 4.8), while the estimate of �s (�v) in Pan (2002) equals 3.6 (3.1). The

four models also share similar estimates of parameters describing option pricing errors (�c and �c).

In particular, the estimates of �c in the four models are about 0.90, con�rming that there is indeed

strong autocorrelation in option pricing errors.

The four models also di�er from each other in important ways. For example, the volatility process

of SVVG has the strongest mean-reversion (�) and the highest volatility of volatility (�v) among the

four models.18 The �ltered volatility variables of the four models in Figure 2 con�rm this fact and

show that the other three models have much smoother volatility factors. Interestingly, the �ltered

volatility variables of SVVG mimic the behavior of the implied volatilities of the short-term SPX

options (shown in Figure 1) much more closely than that of the other three models.19

The AJD and L�evy jump models exhibit dramatically di�erent jump behaviors. The estimated

jump intensities (�) for SVMJ and SVCMJ suggest that on average there are about one to two jumps

per year. While the mean jump sizes under P
�
�Py
�
in the two models are close to zero, the mean

jump sizes under Q
�
�Qy
�
are much more negative. The �ltered jump sizes and times of the two

models in Figure 3 also show that there are a few large jumps in returns (and volatility) in SVMJ

(SVCMJ). On the other hand, Figure 3 shows that in addition to several large jumps, SVVG and

SVLS also exhibit many frequent small jumps in returns. Hence, VG and LS have the advantage

over MJ and CMJ in capturing both the infrequent large jumps as well as the frequent small jumps

in returns. The risk-neutral jump distribution of VG is less positively skewed than its physical

jump distribution, suggesting that jumps are less positive under Q than under P: This fact suggests

that LS is likely to underperform VG in modeling the joint dynamics of index returns because its

parameters are restricted to be the same under both measures. The estimated jump risk premium

in index returns is given by  QJ (�i) �  PJ (�i) for each model. The jump risk premiums for SVMJ

and SVCMJ are 0.29% and 0.12%, respectively. The jump risk premium for SVVG is much higher

at 2.28%, and by de�nition the jump risk premium for SVLS is zero.

4.3 Performances in Modeling the Spot Price

18The estimates of � in this paper di�er from that in LWY (2006) in magnitude mainly because we use a di�erent

scale on observables in our estimation. While LWY (2006) consider index returns in percentages, we express index

returns in decimal points.
19The simulation evidence in LWY (2006) shows that the MCMC methods can estimate the AJD and L�evy jump

models very accurately using return data alone. The inclusion of option prices should make it even easier to identify

model parameters. Therefore, the di�erences in parameter estimates across di�erent models are an indication of model

misspeci�cation. Parameters of a misspeci�ed model may have to take unreasonable values to capture certain features

of the data that the model inherently cannot capture. This in turn could lead to large option pricing errors.
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In this section, we examine the performances of the four models in capturing the physical dy-

namics of the S&P 500 index. Based on estimated model parameters and latent volatility/jump

variables, we calculate the standardized residuals for both returns and volatility, �yt+1 and �
v
t+1. If a

given model is correctly speci�ed, then the distributions of both residuals should be close to N (0; 1).

Figure 4 (5) plots kernel density estimators of �yt+1 (�
v
t+1) of each of the four models and the

density function of N (0; 1) : For both SVMJ and SVCMJ, �yt+1 and �
v
t+1 exhibit clear deviations from

standard normal: There is a high peak at the center of the distributions of both residuals, suggesting

that the two models fail to capture the many small movements in both returns and volatility. On

the other hand, the distributions of �yt+1 and �
v
t+1 of the two L�evy jump models are much closer to

standard normal. The residuals of SVVG are closer to standard normal than that of SVLS. The fact

that none of the parameters of LS can change between P and Q limits its ability in capturing the

joint dynamics of index returns.

In addition to graphical illustrations, we also formally test whether �yt+1 and �
v
t+1 follow N (0; 1)

using the Kolmogorov-Smirnov (KS hereafter) test. For each set of the residuals, the KS test com-

pares the empirical cumulative distribution function (CDF) with the CDF of N (0; 1) and rejects

the null hypothesis if the maximum distance between the two CDFs is too big. The KS tests in

Table 3 reject the null hypothesis that �yt+1 and �
v
t+1 of SVMJ and SVCMJ follow a standard normal

distribution. The p-values are between 3-4% for most cases, except that the p-value equals 5.37%

for �vt+1 of SVCMJ. This suggests that including MJ jumps in volatility improves the modeling of

the volatility process. Consistent with Figures 4 and 5, the KS test fails to reject the null hypothesis

that �yt+1 and �
v
t+1 of the two L�evy models follow a standard normal distribution (p-values range from

25% to 38% for the two residuals under both models).

The above �ndings are consistent with the simulation and empirical evidence of LWY (2006).

In particular, LWY (2006) �t SVMJ and SVCMJ to return data simulated from SVVG and SVLS

using similar MCMC methods developed for return data only. They also estimate the four models

using daily returns of the S&P 500 index between January 1980 and December 2000. The deviations

from N (0; 1) of return residuals
�
�yt+1

�
from simulated and actual data for both SVMJ and SVCMJ

documented in LWY (2006) are very similar to that observed in Figure 4. These results show that

the parametric speci�cations of existing AJD models are not exible enough to capture the many

small movements in index returns. In contrast, since VG and LS can generate both large and small

jumps, they can capture those movements that are too big for the di�usion part and too small for
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MJ/CMJ in the AJD models.20

4.4 Performances in Modeling Option Prices

There is no guarantee that a model that captures the physical dynamics better also can �t option

prices better. For example, Eraker (2004) shows that while the double-jump model of EJP (2003)

captures index returns better than SVMJ, it does not have signi�cantly smaller option pricing errors.

In this section, we address the basic question whether the L�evy jump models we consider can capture

the joint dynamics of the S&P 500 index returns better than the AJD models.

Panel A of Table 4 reports the time series mean of daily absolute and percentage pricing errors

of the short-term ATM SPX options used in model estimation for the four models.21 We �nd similar

pricing errors for SVMJ and SVCMJ: The mean absolute pricing errors of the two models are about

44 cents (the mean option price is $7.14); and the mean percentage pricing errors of the two models

are about 6.3%, which is bigger than the percentage bid-ask spread of the option. On the other

hand, the mean absolute pricing errors of SVVG and SVLS are about 16 and 24 cents, respectively,

and the mean percentage pricing errors are about 2.4 and 3.6%, respectively. Consistent with the

results of Eraker (2004), the DM statistics in Panel B of Table 4 show that the squared pricing

errors of SVMJ and SVCMJ are not signi�cantly di�erent from each other. In contrast, SVVG and

SVLS have signi�cantly smaller squared pricing errors than SVMJ and SVCMJ, and SVVG has

signi�cantly smaller squared pricing errors than SVLS. The time series plots of the daily absolute

pricing errors of the four models in Figure 6 show that SVVG and SVLS have smaller absolute

pricing errors than SVMJ and SVCMJ during most of the sample period. In particular, SVVG has

almost uniformly smaller in-sample option pricing errors than the AJD models. SVLS has somewhat

worse performances than SVVG.22 Panel C of Table 4 shows that the KS test fails to reject the null

hypothesis at the 5% level that the option pricing errors �ct follow N (0; 1) for all models, con�rming

our econometric speci�cation of option pricing errors.

In addition to the short-term ATM SPX options used in estimation, we also examine the perfor-

20We emphasize that although compound Poisson processes can approximate an in�nite activity L�evy processes with

arbitrary precision, such approximation would require a much richer speci�cation of compound Poisson processes than

those in the current AJD literature. The basic point of our paper is that the parametric speci�cations of compound

Poisson processes in the current AJD literature are not as exible as the L�evy jump models in capturing return

dynamics.
21Absolute pricing error of an option is the absolute value of the di�erence between model and market prices of the

option, and percentage pricing error of an option is the absolute pricing error divided by the market price of the option.
22We obtain very similar results using both absolute and percentage pricing errors. For the rest of the paper, we

only report results based on absolute pricing errors.
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mances of the four models in pricing 12,725 other options in the dataset.23 Because these options

have not been used in model estimation, they provide evidence on the out-of-sample performances

of the four models in option pricing. We divide all options into six moneyness groups, from deep

in-the-money (ITM) to deep out-of-the-money (OTM) options, and �ve maturity groups, with time-

to-maturities from less than one month to longer than six months. The majority of these options

are ITM options with time-to-maturities between one and six months, and we do not observe many

short-term deep OTM options. Based on the estimated model parameters and latent volatility vari-

ables, we calculate the theoretical price of each of these options under each model. Then based on

options that are available on each day, we obtain daily arithmetic weighted average of absolute and

percentage pricing errors for (i) all options; (ii) options within each of the moneyness groups (op-

tions across all maturities that belong to a certain moneyness group) or each of the maturity groups

(options across all moneyness that belong to a certain maturity group); and (iii) options within each

individual moneyness/maturity group.

We �rst examine the overall performances of the four models by focusing on the average pricing

errors of the 12,725 out-of-sample options. The time series mean of daily weighted average of the

absolute pricing errors of all options are reported in the last four rows of the last column in Panel A of

Table 5. We see clearly that SVCMJ has smaller absolute pricing errors than SVMJ, and SVVG and

SVLS have smaller absolute pricing errors than SVMJ and SVCMJ. The DM statistics for pair-wise

comparisons of the four models based on the squared pricing errors of all options are reported in

the last six rows of the last column in Panel B of Table 5. SVCMJ has signi�cantly smaller squared

pricing errors than SVMJ. SVVG has signi�cantly smaller squared pricing errors than both SVMJ

and SVCMJ. SVLS has somewhat worse performances than SVVG. Figure 7 provides time series

plots of daily weighted average of the absolute pricing errors of all options for the four models during

our sample period. Consistent with the DM statistics, we �nd that SVVG and SVLS have smaller

absolute pricing errors than SVMJ and SVCMJ during most of the sample period.

Next we examine the performances of the four models in pricing options grouped by time-to-

maturity. The time series mean of daily weighted average of the absolute pricing errors of options

in each of the �ve maturity groups are reported in the last column in Panel A of Table 5. The

DM statistics for pair-wise comparisons of the four models based on the squared pricing errors of

options in the �ve maturity groups are reported in the last column in Panel B of Table 5. We �nd

similar patterns in model performances for options in each maturity group as that for all options.

23We eliminate options with prices that are less than one dollar.
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For example, we �nd that SVVG has signi�cantly smaller squared pricing errors than SVMJ and

SVCMJ for most maturity groups.

Finally, we examine the performances of the four models in pricing options grouped by moneyness.

The time series mean of daily weighted average of the absolute pricing errors of options in each of

the six moneyness groups are reported in the last four rows in Panel A of Table 5. The DM statistics

for pair-wise comparisons of the four models based on the squared pricing errors of options in the

six moneyness groups are reported in the last six rows in Panel B of Table 5. We �nd that SVVG

and SVLS have signi�cantly smaller squared pricing errors than SVMJ and SVCMJ for most ITM

and slightly OTM (1:0 < K=S < 1:03) options. While SVVG has smaller squared pricing errors

than SVMJ and SVCMJ for all deep OTM options (K=S > 1:03) ; the di�erences are statistically

signi�cant only for absolute pricing errors. SVVG tends to have larger (smaller) pricing errors than

SVLS for ITM (OTM) options. We obtain similar �ndings for moneyness groups with di�erent time-

to-maturities, although the advantages of the L�evy jump models over the AJD models become less

signi�cant for options with longer time-to-maturities.

The analysis in this section clearly demonstrates the advantages of the L�evy jump models over the

AJD models in modeling the joint dynamics of the spot and option prices of the S&P 500 index. The

VG and LS models capture the many small movements in index returns that cannot be captured by

the AJD models. The L�evy jump models also have signi�cantly smaller in-sample and out-of-sample

option pricing errors than the AJD models. Among all the models we consider, we �nd that the

VG model of Madan, Carr, and Chang (1998) with stochastic volatility has the best performance in

modeling the risk-neutral and physical dynamics of the S&P 500 index returns. We emphasize that

the superior performances of the L�evy jump models are obtained under the restriction that jumps

under the physical and the risk-neutral measures must follow the same L�evy process. If we allow

jumps to follow di�erent L�evy processes under the two measures, L�evy jump models are likely to have

even better performances in capturing the joint dynamics of index returns. Therefore, our analysis

points out the great potentials of L�evy processes for continuous-time �nance modeling and strongly

suggests that we can enrich existing AJD models by incorporating in�nite-activity L�evy jumps.

5. Conclusion

In this paper, we address a basic and yet fundamental empirical issue in the current continuous-

time �nance literature: Whether newly developed L�evy jump models can outperform some of the most

sophisticated AJD models in capturing the joint dynamics of stock and option prices. We develop

e�cient MCMC methods for estimating parameters and latent volatility/jump variables of the L�evy
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jump models using stock and option prices. We show that models with in�nite-activity L�evy jumps

in returns signi�cantly outperform the AJD models with compound Poisson jumps in returns and

volatility in capturing the joint dynamics of the spot and option prices of the S&P 500 index. We also

�nd that the variance gamma model of Madan, Carr, and Chang (1998) with stochastic volatility

has the best performance among all the models we consider. Our analysis strongly suggests that

incorporating in�nite-activity L�evy jumps into existing AJD models can substantially increase the

exibility of AJD models without sacri�cing their tractability.
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APPENDIX

In this appendix, we �rst provide more detailed information on the �nite- and in�nite-activity

jump processes considered in the paper. Then we provide the details of the MCMC methods for

estimating SVMJ, SVCMJ, SVVG, and SVLS models.

A.1 Characteristic component, L�evy measure and drift for MJ, CMJ, VG, and LS

In this section, we provide analytical expressions of the characteristic component, L�evy measure

and drift for MJ, CMJ, VG, and LS, which have been used in the paper. To emphasize the generality

of these results, we omit dependence of model parameters on probability measures.

MJ:

 J(u) = �(1� eiu�y�
1
2
�2yu

2
); �(x) =

�p
2��y

e
� (x��y)2

2�2y ; �� =

Z
jxj�1

x�(dx):

CMJ:

 J(u) = �(1� eiu1�y�
1
2
�2yu

2
1

1� iu1�v�J � iu2�v
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�v
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e
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VG:

 J(u) =
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�
exp(�Mx)

x x > 0

1
�
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jxj x < 0
; �� =

Z
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�q
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4
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2�
2� � 1

2�
��1

: If  = 0; then the

jump structure is symmetric around zero, and M = G.

L�evy �-stable Process: Suppose X1 � S�(�; �; ), which reduces to Log-Stable process if

� = �1 and  = 0, then

 J(u) = ��juj�(1� i�sign(u) tan(��
2
) + iu; �(x) =

8<: c1
1

x1+�
x > 0

c2
1

jxj1+� x < 0
; �� =  �

Z
1jxj>1

x�(dx);

where c1 =
��(1+�)

2 and c2 =
��(1��)

2 : In the LS model, c1 becomes zero so that only negative jumps

are allowed in the L�evy measure. However, it is important to point out that in addition to the pure

jump part characterized by the L�evy measure �LS (dx) ; the LS process also has a deterministic drift

part that compensates the negative jumps so that the whole process is a martingale. For in�nite-

variation jumps, the compensation is so much that the admissible domain of LS actually covers the

whole real line, although there are only negative jumps. As a result, the LS process has an �-stable

distribution with in�nite p-th moment for p > �.

A.2 Change of Measure for L�evy Processes
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Theorem (Sato (1999)). Let
�
XP
t ;P

�
and

�
XQ
t ;Q

�
be two L�evy processes on R with corresponding

characteristic triplets
�
��P; ��

2
P; �P (dx)

�
and

�
��Q; ��

2
Q; �Q (dx)

�
; and � (x) = log

�
�Q(x)
�P(x)

�
: Sato (1999)

shows that P and Q are equivalent for all t if and only if the following conditions are satis�ed:

(i) ��P = ��Q; (ii) The L�evy measures are equivalent with
R1
�1

�
e�(x)=2 � 1

�2
�P (dx) <1; and (iii) If

��P = 0; then we must in addition have ��Q���P =
R 1
�1 x (�Q (x)� �P (x)) dx: And the Radon-Nikodym

derivative equals eUt ; where Ut is a L�evy process with characteristic triplet
�
��u; ��

2
u; �u (dx)

�
: (i)

��2u = 0; (ii) ��u = �
R1
�1

�
ey � 1� yjyj�1

� �
�P�

�1� dy; and (iii) �u = �P�
�1:

This theorem provides the necessary and su�cient conditions for two probability measures of

L�evy processes to be equivalent. The �rst condition requires that the change of measure does

not a�ect the volatility of the Brownian part of a L�evy process, which is similar to the change of

measure for Brownian motions. The second condition requires the Hellinger distance between the

two L�evy measures to be �nite. That is, for the two probability measures to be equivalent, the jump

structures of the two L�evy processes cannot be too di�erent from each other. The third condition

imposes restriction between the drift terms and the L�evy measures of the two L�evy processes.

A.3 Priors for Model Parameters

In this section, we discuss the priors for parameters of all four models. To simplify our numerical

simulations, we choose standard conjugate priors whenever possible to simplify numerical simulations.

� Priors for parameters common to four models. We consider the following prior distrib-

utions: � � N(0; 1) (truncated at zero), � � N(0; 1) (truncated at zero), � � Uniform(0; 1),

�v � 1
�v
, �s � N(0; 1), �v � N(0; 1), �c � N(0; 1); and �c � 1

�c
.

� Priors for parameters common to SVMJ and SVCMJ. For �Py and �Qy , we choose

standard conjugate priors: �Py � N(0; 1) and �Qy � N(0; 1): We choose at priors for �y and �:

�y � 1
�y
and � � Uniform(0; 1).

� Priors for parameters unique to SVCMJ. For �v and �J ; we choose the following priors:

�v � 1
�v
and �J � N(0; 1).

� Priors for parameters unique to SVVG. We choose the following priors for the �ve para-

meters that are unique to SVVG: P � N(0; 1); Q � N(0; 1); � � 1
� ; �

P � 1
�P
; and �Q � 1

�Q
.

� Priors for parameters unique to SVLS. For � and �; we choose the following joint priors:

� � Uniform(1; 2) and � � 1
� .
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Although we choose at priors for the variance parameters, the priors of most other parameters

are proper priors, pretty uninformative, and have been used in previous studies. In general, as the

sample size becomes large, the information contained in the likelihood function dominates that in

the priors. As a result, we �nd the results computed later seem to be relatively invariant to the

choice of priors.

A.4 MCMC Methods for SVMJ

In this section, we discuss the updating algorithms and the posterior distributions of model pa-

rameters and latent variables for SVMJ. Compared to that of LWY (2006), which only uses stock

prices, the posterior likelihood here always has an additional component, which is the likelihood of

option pricing errors. Since the computation of option price involves numerical integration, the para-

meters that appear in the option pricing formula usually do not have known posterior distributions.

To overcome this di�culty, we adopt the method of Damine, Wake�eld, and Walker (1999) (hereafter

DWW) to update these parameters. Parameters that are not involved in the option pricing formula

usually have standard known posterior distributions, from which we draw posterior samples. In this

and the following sections, we discuss the updating methods, �rst for parameters that appear in the

option pricing formula, then for the rest.

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

�N( SW ;

r
1

W ) 1�>0

where W = �
(1��2)�2v

PT�1
t=0

(��vt)2
vt

+ 1; S = 1
�v(1��2)

PT�1
t=0

(��vt)(
Bt+1
�v

��At+1)
vt

; At+1 = Yt+1 �

Yt � (rt � 1
2vt +  J(�i) + �svt)��Ny

t+1�
y
t+1; and Bt+1 = vt+1 � vt. We denote the �rst term

as l(�), omitting dependence on other parameters to simplify notation. Its calculation involves

numerical integration because of the option pricing formula involved. The second term in the

posterior is a truncated normal distribution. This combination motivates us to use the DWW

method. Speci�cally, for a given previous draw, �(g), the algorithm for (g + 1)-th iteration is:

1. Draw �(g+1) from N( SW ;
q

1
W ) 1�>0;

2. Draw an auxiliary variable u from Uniform(0; l(�(g)));

3. Accept �(g+1) if l(�(g+1)) > u; otherwise, keep �(g).
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� Posterior for �. Similarly, the posterior of � is proportional to

/
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method and the updating algorithm is the same as that for �.
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. It is well

known that the sampling distribution of Pearson's correlation is negatively skewed and the

so-called \Fisher's Z transformation" converts Pearson's correlation to a normally distributed

variable. Motivated by Fisher's idea, we develop the following algorithm:

1. Draw 1
2 log

1+�(g+1)

1��(g+1) from N(12 log
1+�r
1��r ;

1
T�3); where �r = Corr(A;B), A = fAt+1gT�1t=0 ;

B = fBt+1gT�1t=0 ; and g(�r) =
1
2 log

1+�r
1��r is the formula of Fisher's Z transformation.
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2. Accept �(g+1) with probability

min

0B@�(�(g+1)
�(�(g)

�
exp(� (g(�

(g)�g(�r))2
2

T�3
)

exp(� (g(�
(g+1)�g(�r))2

2
T�3

)
; 1

1CA :

By removing the skewness of the distribution for the candidate draw, our algorithm converges

more quickly than the one without the transformation.

� Posteriors for �v and �Qy . Since the updating methods and the posteriors of �v and �Qy are

the same, we focus our discussion on �v: The posterior of �v is proportional to

/ �(�v) :=
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
� exp(�(�

v)2

2
):

We update the parameter using the Metropolis-Hasting algorithm. A normal distribution

centered at the previous draw with constant variance 1 is used as the proposal distribution for

the candidate draw, which is accepted with the probability min
�
�(�v(g+1))

�(�v(g))
; 1
�
.

� Posterior for �y. The posterior of �y is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�y)

�( 1
�2y
)
T
2
+ 1
2 exp(�1

2

t�1X
t=0

(�yt+1 � �Py)2
1

�2y
):

We use the DWW method to update the parameter:

1. Draw 1

(�
(g+1)
y )2

from �(T2 +
3
2 ;

1
1
2

PT�1
t=0 (�

y
t+1��Py)2

);

2. Draw an auxiliary variable u from Uniform(0; l(�
(g)
y ));

3. Accept �
(g+1)
y if l(�

(g+1)
y ) > u; otherwise, keep �

(g)
y .

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

��
PT�1
t=0 Nt+1(1� �)T�

PT�1
t=0 Nt+1 :

The DWWmethod is used and the proposal distribution for the candidate draw isBeta(
PT�1

t=0 Nt+1+

1; T �
PT�1

t=0 Nt+1 + 1). The algorithm is skipped.

For parameters that do not appear in the option pricing formula, i.e., (�s; �Py ; �c; �c); we obtain

known posterior distributions.
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� Posterior for �s. The posterior of �s follows a normal distribution �s � N( SW ;
1
W ); where

W = �
(1��2)

PT�1
t=0 vt + 1, S = 1

(1��2)
PT�1

t=0 (At+1 �
�
�v
Bt+1), At+1 = Yt+1 � Yt � (rt � 1

2vt +

 J(�i) + �svt)��Ny
t+1�

y
t+1; and Bt+1 = vt+1 � vt � �(� � vt)�.

� Posterior for �Py . The posterior of �Py follows a normal distribution �Py � N( SW ;
1
W ); where

W = T
�2y
+ 1; and S = �T�1t=0 �t+1

�2y
:

� Posterior for �c. The posterior of �c follows a normal distribution �c � N( SW ;
1
W ); where

W =
PT�1
t=0 A2t
�2c

+ 1;S =
PT�1
t=0 AtAt+1

�2c
, and At+1 = Ct+1 � Ft+1.

� Posterior for �c. The posterior of �c follows a gamma distribution 1
�2c
� �(T2+

3
2 ;

1
1
2

PT�1
t=0 (At+1��cAt)2

);

where At+1 = Ct+1 � Ft+1.

Next we consider the posteriors of latent jump and volatility variables.

� Posterior for �yt+1. The posterior of �yt+1 is �
y
t+1 � N( SW ;

1
W ); where W =

N2
t+1

(1��2)vt� +

1
�2y
;S = Nt+1

(1��2)vt�(At+1� �Bt+1=�v) +
�y
�2y
; At+1 = Yt+1� Yt� (rt� 1

2vt+ J(�i) + �
svt)�; and

Bt+1 = vt+1 � vt � �(� � vt)�:

� Posterior for Nt+1. The posterior ofNt+1 isNt+1 � Bernoulli( �1
�1+�2

); where �1 = e
� 1
2(1��2) [A

2
1�2�A1B]�;

�2 = e
� 1
2(1��2) [A

2
2�2�A2B](1��); A1 =

�
Yt+1 � Yt � (rt � 1

2vt +  J(�i) + �
svt)�� �yt+1

�
=
p
vt�;

A2 =
�
Yt+1 � Yt � (rt � 1

2vt +  J(�i) + �
svt)�

�
=
p
vt�; andB = (vt+1 � vt � �(� � vt)�) =(�v

p
vt�):

� Posterior for vt+1. For 0 < t+ 1 < T , the posterior of vt+1 is proportional to

/ exp(� 1

2�2c
[(Ct+1 � Ft+1)2 � 2�c(Ct+1 � Ft+1)(Ct � Ft)])�

exp(� 1

2�2c
[�2c(Ct+1 � Ft+1)2 � 2�c(Ct+2 � Ft+2)(Ct+1 � Ft+1)])�

exp

8<:�
h
�2��yt+1�vt+1 +

�
�vt+1

�2i
2(1� �2)

9=;� 1

vt+1
� exp

(
�
�
(�yt+2)

2 � 2��yt+2�vt+2 + (�vt+2)2
�

2(1� �2)

)
;

where �yt+1 =
�
Yt+1 � Yt � (rt � 1

2vt +  J(�i) + �
svt)��Ny

t+1�
y
t+1

�
=
p
vt�; and

�vt+1 = (vt+1 � vt � �(� � vt)�) =(�v
p
vt�): And the posterior for vt when t = 0 and t = T can

be derived in the similar way. We use the traditional Metropolis-Hasting method to update vt;

and use the Student-t distribution with a degree of freedom of 6 as the proposal distribution.

A.5 MCMC Methods for SVCMJ
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The common parameters and latent variables between SVMJ and SVCMJ have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVCMJ.

� Posterior for �v. The posterior of �v is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�v)

�( 1
�v
)T+1 exp(� 1

�v

T�1X
t=0

�vt+1):

The DWW method is used and the proposal distribution for the candidate draw is IG(T +

2; 1PT�1
t=0 �vt+1)

).

� Posterior for �J . The posterior of �J is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�J )

�N( SW ;

r
1

W );

where W =
PT�1
t=0 (�

v
t+1)

2

�2y
+ 1; S =

PT�1
t=0 �vt+1At+1

�2y
; and At+1 = �yt+1 � �Py . The DWW method is

used and the proposal distribution for the candidate draw is N( SW ;
q

1
W ).

� Posterior for �vt+1. The posterior of �vt+1 follows a normal distribution �vt+1 � N( SW ;
1
W ) 1�vt+1>0;

where W =
N2
t+1

(1��2)vt� +
�2J
�2y
;S = Nt+1

(1��2)vt�(��At+1+
Bt+1�v
+

�yt+1��Py)�J
�2y

� 1
�v
; At+1 = Yt+1� Yt�

(rt � 1
2vt +  J(�i) + �

svt)�; and Bt+1 = vt+1 � vt � �(� � vt)��Nt+1�
v
t+1:

A.6 MCMC Methods for SVVG

The common parameters and latent variables between SVMJ and SVVG have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVVG.

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

� 
1

�
�
� �(�� )

!T  T�1Y
t=0

Gt

!�
�
�1

| {z }
:=l(�)

� exp
(
�1
�
(
T�1X
t=0

Gt)

)
1

�
:

The DWWmethod is used and the proposal distribution for the candidate draw is IG(2; 1PT�1
t=0 Gt+1)

).

� Posteriors for Q and �Q. The algorithms for updating Q and �Q are the same as that for

�v in SVMJ, except that the candidate draw for �Q needs to be truncated at zero since it has

to be a positive number.
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� Posterior for P. The posterior of P is P � N( SW ;
1
W ); where W = 1

(�P)2

PT�1
t=0 Gt+1 + 1;

and S = 1
(�P)2

PT�1
t=0 Jt+1:

� Posterior for �P. The posterior of �P is (�P)2 � IG(T2 +
3
2 ;

1
1
2

PT�1
t=0

(Jt+1�PGt+1)2
Gt+1

):

� Posterior for Jt+1. The posterior of Jt+1 follows a normal distribution Jt+1 � N( SW ;
1
W );

where W = 1
(1��2)vt� +

1
(�P)2Gt+1

; S = 1
(1��2)vt�(At+1�

�Bt+1
�v

)+ P

(�P)2
; At+1 = Yt+1�Yt� (rt�

1
2vt +  J(�i) + �

svt)�; and Bt+1 = vt+1 � vt � �(� � vt)�:

� Posterior for Gt+1. The posterior of Gt+1 is proportional to

/ G
�
�
� 3
2

t+1 exp

�
� J2t
2�2

1

Gt+1

�
exp

�
�
�
(P)2

2(�P)2
+
1

�

�
Gt+1

�
:

The posterior distribution of Gt+1 is non-standard and di�cult to simulate from. After consid-

ering a variety of updating methods, we choose the Adaptive Rejection Metropolitan Sampling

(ARMS) method of Gilks, Best, and Tan (1995) to update volatility variables one at a time in

our estimation of all four models. ARMS is a generalization of the Adaptive Rejection Sampling

(ARS) method of Gilks (1992), which is very e�cient for sampling from posterior densities that

are log-concave. ARS works by constructing an envelope function of the log of the target den-

sity, which is then used in rejection sampling (see, for example, Ripley, 1987). Whenever a

point is rejected by ARS, the envelope is updated to correspond more closely to the true log

density, thereby reducing the chance of rejecting subsequent points. To accommodate densities

that are not log concave, ARMS performs a Metropolis step on each point accepted at an ARS

rejection step. In the Metropolis step, the new point is weighed against the previous point

sampled. If the new point is rejected, the previous point is retained as the new point. The

procedure returns samples from the exact target density, regardless of the degree of complexity

of the log density (See Robert and Casella (2004) for more detailed discussions of the method).

Our simulation studies have shown that ARMS has excellent performance in updating Gt.

A.7 MCMC Methods for SVLS

The common parameters and latent variables between SVMJ and SVLS have similar posterior

distributions. So in this section we focus on the posterior distributions of the parameters and latent

variables that are unique to SVLS.
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� Posterior for �: The posterior of � is proportional to

�(�) /
QT�1
t=0 exp(�

[(Ct+1�Ft+1)��c(Ct�Ft)]2
2�2c

)� ( �
��1)

T exp

�
�
PT�1

t=0 j
St+1

��
1
� t�(Ut+1)

j
�

��1

�
�
QT�1
t=0 j

St+1

��
1
� t�(Ut+1)

j
�

��1 �
h
( 1� )

�
��1
im+1

expf�( 1� )
�

��1 1
M g � 1(�)�2[1:01;2];

where m andM are the hyperparameters of the prior of � and equal to 2:5 and 10; respectively.

As pointed out by Buckle (1995), we tend to have computer overow problems when � is very

close to 1 because of the term ( �
��1)

T in all the conditional posterior densities. As a result,

we choose a uniform prior of � over [1:01; 2] in our implementation of the MCMC methods.

It is notoriously di�cult to estimate the shape parameter of a stable distribution since the

complete conditional distribution for � does not have a standard form. Motivated by the idea

in Qiou and Ravishanker (2004), we use the Metropolis-Hastings Algorithm with a linearly

transformed Beta distribution as the proposal density. This is mainly because � is bounded

from both above and below and its density appears to be unimodal. We choose the parameters

of the proposal beta density, a and b, such that the previous draw �(g) is the mode of this

density and a+ b = 5log(T ), a constant suggested by Buckle (1995). De�ne

g(�ja; b) = �(a+ b)

�(a)�(b)
(
�� 1:01
0:99

)��1(
2� �
0:99

)b�1:

Then, the algorithm works in the following way:

1. Calculate 8<: a1 = (
�(g)�1:01
0:99 )(5log(T )� 2) + 1

b1 = 5log(T )� a1

and then draw � from Beta(a1; b1) and set �
(g+1) = 0:99� + 1:01;

2. Calculate 8<: a2 = (
�(g+1)�1:01

0:99 )(5log(T )� 2) + 1

b2 = 5log(T )� a2
;

3. Draw u from Uniform(0; 1);

4. Accept �(g+1) if u > min(p(�
(g+1))

p(�(g))
� g(�(g)ja2;b2)

g(�(g+1)ja1;b1)
; 1), otherwise keep the previous

draw.

� Posterior for �. The posterior of � is proportional to

/
T�1Y
t=0

exp

�
� [(Ct+1 � Ft+1)� �c(Ct � Ft)]

2

2�2c

�
| {z }

:=l(�)

�
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"�
1

�

� �
��1

T + 1

#
exp

(
�
�
1

�

� �
��1

 
T�1X
t=0

j St+1

�
1
� t�(Ut+1)

j
�

��1

!)

The DWW method is used with the following proposal distribution ( 1� )
�

��1 � �(T + ��1
� +

1; 1PT�1
t=0 j

St+1

�
1
� t�(Ut+1)

j
�

��1+ 1
M

):

� Posterior for St+1. The posterior of St+1 is

p(St+1j�) / exp
�
� St+1
2(1� �2)vt�

[St+1 � 2(Ct+1 �
�

�v
Dt+1)]

�
�exp

(
�j St+1

��
1
� t�(Ut+1)

j
�

��1

)
jSt+1j

1
��1 ;

where Ct+1 = Yt+1 � Yt � �� and Dt+1 = vt+1 � vt � �(� � vt)�. Simple algebra shows this

posterior is log-concave. So it is very e�cient to use the ARS algorithm of Gilks (1992) to

sample from this posterior distribution.

� Posterior for Ut+1. The posterior of Ut+1 is

p(Ut+1j�) / exp
(
�j St+1

��
1
� t�(Ut+1)

j
�

��1 + 1

)
j St+1

��
1
� t�(Ut+1)

j
�

��1| {z }
g(Ut+1)

�[1St+12(�1;0)\Ut+12(� 1
2
;l�)

+ 1St+12(0;1)\Ut+12(l�; 12 )
]:

Due to the monotonicity of t�(Ut+1); we know that p(Ut+1j�) has a global maximum which

equals 1 at t�(Ut+1) =
St+1

��
1
�
: The knowledge of this maximum makes the Rejection algorithm

of Devroye (1986) or Ripley (1987) a suitable method to sample from p(Ut+1j�). This algorithm

works in the following way:

1. Draw

U
(g+1)
t+1  �

8<: Uniform(�12 ; l�) if St+1 < 0

Uniform(l�;
1
2) if St+1 > 0

;

2. Draw u from Uniform(0; 1);

3. Accept Ut+1 if u < g(U
(g+1)
t+1 ), otherwise return to 1.
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Table 1. Summary Statistics of Spot and Option Prices of the S&P 500 Index 
 
This table provides summary statistics of spot and option prices of the S&P 500 index 
between January 4, 1993 and December 31, 1993. Panel A reports summary statistics of 
continuously compounded daily returns of the S&P 500 index during the sample period. 
Panel B reports summary statistics on time-to-maturity, price, implied volatility, strike 
price, spot price, and moneyness (strike/spot) of the short-term ATM SPX option used in 
model estimation. We restrict the time-to-maturity of the option to be between 20 and 50 
days. On a few days without such options, we use an option whose time-to-maturity is 
closest to 20 days. Because the time-to-maturity of an option changes daily, in general we 
have to use different options on different dates.  
 
Panel A. Summary statistics of continuously compounded daily returns of the S&P 500 
index between January 4, 1993 and December 31, 1993. 
   

 Mean Variance Skewness Kurtosis Min Max 
S&P 500 0.000292 0.0000316 -0.0332 5.5602 -0.0256 0.0223 

 
Panel B. Summary statistics for the short-term ATM SPX option used in model 
estimation between January 4, 1993 and December 31, 1993. 
  

 Mean Median Std. Dev. Min Max 
Time-to-maturity 34 35 9.24 16 50 

Option price 7.14 7.25 1.61 3.44 10.72 
Implied volatility 0.092 0.0914 0.0095 0.0679 0.1223 

Strike price 449.8207 450 10.3086 425 450 
Spot price 450.0755 448.394 10.1711 427.0155 470.0928 

Moneyness (Strike/Spot) 0.9994 0.9994 0.003 0.9946 1.0055 
 



Table 2. Parameter Estimates of AJD and Lévy Jump Models 
 

This table reports posterior estimates of model parameters of AJD and Lévy jump models using 
daily returns on the S&P 500 index and daily prices of a short-term ATM SPX option between 
January 4, 1993 and December 31, 1993. We discard the first 10,000 runs as "burn-in" period 
and use the last 90,000 iterations in MCMC simulations to estimate model parameters. 
Specifically, we take the mean of the posterior distribution as parameter estimate and the standard 
deviation of the posterior as standard error. 
 

 SVMJ SVCMJ SVVG SVLS 
κ 2.6387 

(0.544) 
3.3627 

(0.6452) 
15.778 

(1.3706) 
6.2792 
(0.467) 

θ 0.0049 
(0.0030) 

0.0076 
(0.0022) 

0.0060 
(0.0011) 

0.0055 
(0.0017) 

σv 0.1198 
(0.0116) 

0.1676 
(0.0179) 

0.3043 
(0.0315) 

0.1852 
(0.0268) 

ρ -0.7014 
(0.0163) 

-0.7786 
(0.0324) 

-0.8167 
(0.0511) 

-0.5619 
(0.0746) 

ηv 3.0526 
(0.8005) 

1.1074 
(0.5933) 

4.7128 
(2.2753) 

2.9419 
(1.336) 

ηs 3.7020 
(2.7850) 

4.3586 
(2.499) 

4.328 
(3.046) 

3.5962 
(1.784) 

ρc 0.8952 
(0.0557) 

0.8665 
(0.0495) 

0.895 
(0.0584) 

0.9023 
(0.0660) 

σc 0.2039 
(0.0275) 

0.2257 
(0.0216) 

0.1869 
(0.0189) 

0.2666 
(0.0256) 

λ 0.0103 
(0.0216) 

0.0048 
(0.0040) 

-- -- 

μy
P 0.0150 

(0.0108) 
-0.03376 
(0.0108) 

-- -- 

μy
Q -0.3091 

(0.1294) 
-0.3414 
(0.0892) 

-- -- 

σy 0.0107 
(0.0064) 

0.0103 
(0.0063) 

-- -- 

μv -- 0.00849 
(0.0075) 

-- -- 

ρJ -- -0.0038 
(0.00492) 

-- -- 

ν -- -- 0.0142 
(0.0017) 

-- 

γP -- -- 0.0256 
(0.0315) 

-- 

σP -- -- 0.0462 
(0.0070) 

-- 

γQ -- -- 0.0030 
(0.0056) 

-- 

σQ -- -- 0.0412 
(0.0150) 

-- 

α -- -- -- 1.846 
(0.0012) 

σ -- -- -- 0.0352 
(0.0014) 



Table 3. Kolmogorov-Smirnov Goodness-of-Fit Test of Model Residuals 
 
This table provides Kolmogorov-Smirnov (KS) tests of the hypotheses that the standardized 
model residuals of returns and volatility of each of the four models follow N(0,1). We report the 
KS statistics and their corresponding p-values for both residuals of all four models.  

 
 Return Residuals Volatility Residuals 

 SVMJ SVCMJ SVVG SVLS SVMJ SVCMJ SVVG SVLS 

KS Statistics 0.096 0.0934 0.0619 0.0695 0.0950 0.0893 0.0642 0.0592 

p-values 0.0317 0.041 0.3246 0.2531 0.0305 0.0537 0.2902 0.3797 

 
Table 4. In-Sample Performances in Option Pricing 

 
This table provides summary information on the in-sample performances of the four models in 
pricing the short-term ATM options used in model estimation. Absolute pricing error is defined 
as the absolute value of the difference between model and market prices of an option. Percentage 
pricing error is defined as the absolute pricing error of an option divided by the market price of 
the option.    
 
Panel A. Time series mean and standard deviation (in parentheses) of the absolute and percentage 
pricing errors of the short-term ATM options used in model estimation. 
 

 SVMJ SVCMJ SVVG SVLS 
Absolute 

(in dollars) 
0.44 

(0.2913) 
0.44 

(0.3268) 
0.16 

(0.1189) 
0.24 

(0.1890) 
Percentage 0.0629 

(0.0419) 
0.0634 

(0.0467) 
0.024 

(0.0186) 
0.0361 

(0.0329) 
 

Panel B. Diebold-Mariano (DM) statistics for in-sample option pricing errors. The DM statistics 
measure whether the first model has significantly smaller squared pricing errors than the second 
model in each of the six pairs of models in the first row. Bold entries mean that the difference is 
significant at the 5% level for one-sided test. To save space, we omit “SV” in the names of all 
four models. 

 
 VG-MJ LS-MJ VG-LS VG-CMJ LS-CMJ MJ-CMJ 

DM Stats -2.2194 -1.9954 -2.1095 -2.1767 -1.9255 -0.5283 
 
Panel C. Kolmogorov-Smirnov test of the hypotheses that the standardized option pricing errors 
of each of the four models follow N(0,1). We report the KS statistics and their corresponding p-
values for each model. 
 

 SVMJ SVCMJ SVVG SVLS 
KS Statistics 0.0846 0.0794 0.0800 0.0765 

P-values 0.0525 0.0812 0.0771 0.1022 
 



Table 5. Out-of-Sample Performances in Option Pricing 
 
This table reports the out-of-sample performances of the four models in option pricing. Based on 
the estimates of model parameters and latent volatility variables using the spot and option prices 
of the S&P 500 index, we obtain the theoretical price of each option that is not used in model 
estimation (12,725 in total) under each of the four models. We divide these options into six 
moneyness (defined as the ratio between strike and spot prices) and five maturity groups. The 
numbers of options belonging to each moneyness/maturity group during the entire sample also 
are reported. Based on options that are available on each day, we obtain daily arithmetic weighted 
average of the absolute pricing errors of options within each moneyness/maturity group. Then we 
obtain the time series means of the daily pricing errors over the sample period for each option 
group. Absolute pricing error is defined as the absolute value of the difference between model 
and market prices of an option. 
    
Panel A. Time series mean of daily weighted average of absolute pricing errors (in dollar) of out-
of-sample options in each moneyness/maturity group. 
 

  <0.93 0.93-0.97 0.97-1.0 1.0-1.03 1.03-1.07 >1.07 All 
<1m # 410 731 650 387 9 0 2187 

SVMJ 0.2265 0.3663 0.4277 0.3347 0.6449 N/A 0.3410 
SVCMJ 0.2148 0.3518 0.3867 0.3025 0.3220 N/A 0.3172 
SVVG 0.2319 0.3061 0.2399 0.2234 0.2404 N/A 0.2553 
SVLS 0.1779 0.2817 0.2760 0.2580 0.2277 N/A 0.2524 

1-2m # 694 896 679 676 306 0 3251 
SVMJ 0.5133 0.8113 0.7902 0.5226 0.3700 N/A 0.6371 

SVCMJ 0.4575 0.6893 0.6252 0.4697 0.3393 N/A 0.5400 
SVVG 0.4667 0.5653 0.3045 0.2467 0.2835 N/A 0.3915 
SVLS 0.3996 0.5682 0.3721 0.3444 0.4344 N/A 0.4297 

2-3m # 605 693 611 612 613 16 3150 
SVMJ 0.7937 1.3026 1.2660 0.8602 0.4593 0.4491 0.9452 

SVCMJ 0.6335 0.9732 0.9043 0.7091 0.4726 0.3407 0.7250 
SVVG 0.6639 0.8261 0.4889 0.3119 0.4252 0.1543 0.5286 
SVLS 0.5467 0.7267 0.4215 0.4468 0.6531 0.5792 0.5527 

3-6m # 941 415 334 328 370 170 2558 
SVMJ 1.1953 1.8914 1.9260 1.5650 0.8238 0.4239 1.3352 

SVCMJ 0.8150 1.2498 1.3257 1.2193 0.8240 0.5618 0.9805 
SVVG 0.9454 1.1721 0.8257 0.4151 0.4524 0.5474 0.7876 
SVLS 0.6982 0.8231 0.4669 0.3818 0.8369 0.9546 0.6700 

>6m # 696 170 128 120 154 311 1579 
SVMJ 1.8625 3.2767 3.0434 3.2549 2.4035 1.0897 2.1051 

SVCMJ 0.9751 1.7010 1.7761 1.8833 1.6684 1.0344 1.2712 
SVVG 1.4383 2.1033 1.4651 1.4414 0.6432 0.4837 1.2285 
SVLS 0.8029 0.9653 0.4122 0.4376 0.8658 1.3964 0.8610 

All # 3346 2905 2402 2123 1452 497 12725 
SVMJ 0.8482 1.0786 1.0641 0.8752 0.6895 0.7868 0.9296 

SVCMJ 0.5997 0.7877 0.7595 0.6776 0.6109 0.7943 0.6832 
SVVG 0.6953 0.7172 0.4541 0.3392 0.3832 0.4422 0.5444 
SVLS 0.5095 0.5792 0.3702 0.3768 0.6378 1.1006 0.5093 

  



Panel B. Diebold-Mariano statistics for out-of-sample squared absolute option pricing errors. The 
DM statistics provide pair-wise comparison of the four models by testing whether one model has 
significantly smaller average squared pricing errors for all options in a moneyness/maturity group 
than another model. Bold entries mean that the difference is significant at the 5% level for one-
sided test. To save space, we omit “SV” in the names of all four models. 

 
  <0.93 0.93-0.97 0.97-1.0 1.0-1.03 1.03-1.07 >1.07 All 

<1m CMJ-MJ -1.8760 -1.2468 -1.3720 -1.3913 -1.1857 N/A -1.4356 
VG-MJ -0.9924 -2.0587 -2.2073 -2.1726 -1.1646 N/A -2.2196 
LS-MJ -1.9788 -2.1380 -2.1593 -2.0294 -1.1382 N/A -2.2431 

VG-CMJ 1.8267 -1.8767 -2.0081 -2.0682 -0.8847 N/A -2.1357 
LS-CMJ -1.9612 -1.8109 -1.7500 -1.2245 -0.6546 N/A -1.8931 
VG-LS 2.0098 0.3429 -1.6095 -1.5835 -0.0798 N/A -1.0260 

1-2m CMJ-MJ -1.8547 -1.7263 -1.4837 -0.9065 -0.4881 N/A -1.4702 
VG-MJ -2.0359 -2.3167 -2.3194 -2.1112 -1.0077 N/A -2.2518 
LS-MJ -2.2008 -2.3157 -2.2948 -1.9670 1.1143 N/A -2.2530 

VG-CMJ 0.3630 -1.9169 -2.1336 -2.2551 -0.9283 N/A -2.1883 
LS-CMJ -2.2439 -1.7375 -1.9642 -1.3159 1.3400 N/A -1.7832 
VG-LS 2.2363 -0.3727 -1.6809 -1.6245 -1.9018 N/A -1.8366 

2-3m CMJ-MJ -1.8094 -1.9877 -1.7572 -1.0595 -0.0972 -1.0426 -1.7109 
VG-MJ -1.9395 -2.3205 -2.3510 -2.2343 -0.6682 -1.1401 -2.2865 
LS-MJ -1.9849 -2.3021 -2.3219 -2.1415 1.2392 1.1848 -2.2552 

VG-CMJ 0.9804 -1.6520 -2.1103 -2.2833 -1.0680 -1.2298 -2.1052 
LS-CMJ -2.0228 -2.0675 -2.2546 -2.0913 1.6694 1.2528 -2.1740 
VG-LS 2.0255 1.8253 1.3916 -1.7197 -2.1155 -1.2681 -0.5989 

3-6m CMJ-MJ -1.7672 -1.6398 -1.6616 -1.4190 -0.4070 1.4619 -1.6688 
VG-MJ -1.8426 -1.7313 -1.8234 -1.8212 -1.7285 0.9065 -1.8327 
LS-MJ -1.8208 -1.7195 -1.8171 -1.8127 -1.0470 1.3944 -1.8220 

VG-CMJ 1.4865 -0.9991 -1.7170 -1.7974 -1.6710 0.1463 -1.6100 
LS-CMJ -1.8087 -1.7686 -1.8105 -1.8049 -0.5355 1.2670 -1.7987 
VG-LS 1.7821 1.6601 1.7202 0.5454 -1.6131 -1.5439 1.6706 

>6m CMJ-MJ -1.7002 -1.6398 -1.4476 -1.4017 -1.3692 -0.6747 -1.6748 
VG-MJ -1.7200 -1.6758 -1.4735 -1.4841 -1.5470 -1.6319 -1.7421 
LS-MJ -1.7155 -1.6698 -1.4795 -1.4664 -1.5237 0.9748 -1.7456 

VG-CMJ 1.6634 1.4437 -1.3809 -1.4402 -1.5931 -1.6835 -0.1868 
LS-CMJ -1.7297 -1.7288 -1.4843 -1.5707 -1.4867 1.0068 -1.7471 
VG-LS 1.7090 1.6575 1.4961 1.3922 -0.9588 -1.5663 1.7428 

All CMJ-MJ -1.9279 -2.0100 -2.1283 -1.7568 -1.3439 -0.3758 -2.0548 
VG-MJ -2.0673 -2.1634 -2.3182 -2.1807 -1.9363 -1.7026 -2.2968 
LS-MJ -2.0069 -2.0929 -2.2794 -2.0398 -1.4463 1.3682 -2.2150 

VG-CMJ 1.6460 -1.0717 -2.0806 -2.2271 -2.0860 -1.7240 -1.9971 
LS-CMJ -2.1797 -2.0070 -2.0740 -1.9737 -0.6785 1.2596 -2.0679 
VG-LS 1.9318 1.8282 1.7840 0.0511 -2.1586 -1.6360 1.4424 

  
 
 
 
 
 



 
Figure 1. Level and log change of the S&P 500 index, and implied volatility of the short-term ATM SPX options used in model 
estimation between January 4, 1993 and December 31, 1993. 
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Figure 2. Estimated volatility variables of SVMJ, SVCMJ, SVVG, and SVLS using daily returns of the S&P 500 index and 
daily prices of the short-term ATM SPX options between January 4, 1993 and December 31, 1993. 
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Figure 3. Estimated jumps in returns of SVMJ, SVCMJ, SVVG, and SVLS using daily returns of the S&P 500 index and daily 
prices of the short-term ATM SPX options between January 4, 1993 and December 31, 1993. 
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Figure 4. Kernel densities of standardized model residuals of returns of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993. 
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Figure 5. Kernel densities of standardized model residuals of volatility of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993. 
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Figure 6. In-sample absolute option pricing errors of SVMJ, SVCMJ, SVVG, and SVLS, which are estimated using daily 
returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 1993 and December 31, 
1993. 
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Figure 7. Average absolute pricing errors for all out-of-sample options of SVMJ, SVCMJ, SVVG, and SVLS, which are 
estimated using daily returns of the S&P 500 index and daily prices of the short-term ATM SPX options between January 4, 
1993 and December 31, 1993.  
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