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MCMC for Normalized Random Measure
Mixture Models
Stefano Favaro1 and Yee Whye Teh

Abstract. This paper concerns the use of Markov chain Monte Carlo
methods for posterior sampling in Bayesian nonparametric mixture mod-
els with normalized random measure priors. Making use of some recent
posterior characterizations for the class of normalized random measures,
we propose novel Markov chain Monte Carlo methods of both marginal
type and conditional type. The proposed marginal samplers are general-
izations of Neal’s well-regarded Algorithm 8 for Dirichlet process mixture
models, whereas the conditional sampler is a variation of those recently
introduced in the literature. For both the marginal and conditional meth-
ods, we consider as a running example a mixture model with an underly-
ing normalized generalized Gamma process prior, and describe compara-
tive simulation results demonstrating the efficacies of the proposed meth-
ods.
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1. INTRODUCTION

Mixture models provide a statistical framework for
modeling data where each observation is assumed to
have arisen from one of k groups, with k possibly un-
known, and each group being suitably modeled by a
distribution function from some parametric family. The
distribution function of each group is referred to as a
component of the mixture model and is weighted by
the relative frequency of the group in the population.
Specifically, assuming k being fixed, a collection of
observations (Y1, . . . , Yn) is modeled as independent
draws from a mixture distribution function with k com-

Stefano Favaro is Assistant Professor of Statistics,
Department of Economics and Statistics, University of
Torino, C.so Unione Sovietica 218/bis, 10134 Torino, Italy
(e-mail: stefano.favaro@unito.it). Yee Whye Teh is
Professor of Statistical Machine Learning, Department of
Statistics, University of Oxford, 1 South Parks Road, Oxford
OX13TG, United Kingdom (e-mail: y.w.teh@stats.ox.ac.uk).

1Also affiliated with Collegio Carlo Alberto, Moncalieri, Italy.

ponents, that is,

Yi
ind∼

k
∑

j=1

J̃jf (·|X̃j ),(1.1)

where f (·|X̃) is a given parametric family of dis-
tribution functions indexed by a parameter X̃ and
(J̃1, . . . , J̃k) are the mixture proportions constrained to
be nonnegative and sum to unity. A convenient for-
mulation of the mixture model (1.1) can be stated in
terms of latent allocation random variables, namely,
each observation Yi is assumed to arise from a specific
but unknown component Zi of the mixture model. Ac-
cordingly, an augmented version of (1.1) can be writ-
ten in terms of a collection of latent random variables
(Z1, . . . ,Zn), independent and identically distributed
with probability mass function P[Zi = j ] = J̃j , such
that the observations are modeled as

Yi |Zi
ind∼ f (·|X̃Zi

).(1.2)

Integrating out the random variables (Z1, . . . ,Zn) then
yields (1.1). In a Bayesian setting the formulation of
the mixture model (1.2) is completed by specifying
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suitable prior distributions for the unknown quanti-
ties that are objects of the inferential analysis: the pa-
rameter (X̃1, . . . , X̃k) and the vector of proportions
(J̃1, . . . , J̃k). We refer to the monographs by Tittering-
ton et al. [83] and McLachlan and Basford [55] for ac-
counts on mixture models with a fixed number of com-
ponents. Markov chain Monte Carlo (MCMC) methods
for Bayesian analysis of mixture models with a fixed
number of components was presented in Dielbot and
Robert [10].

As regards the general case where the number
of components is unknown, a direct approach has
been considered in Richardson and Green [79], who
modeled the unknown k by mixing over the fixed
k case, and made a fully Bayesian inference us-
ing the reversible jump MCMC methods proposed in
Green [24]. See also Stephens [82] and references
therein for some developments on such an approach,
whereas different proposals can be found in the pa-
pers by Mengersen and Roberts [57], Raftery [74] and
Roeder and Wasserman [81]. An early and fruitful ap-
proach, still in the context of mixture models with an
unknown number k of components, was proposed in
Escobar [11] who treated the problem in a Bayesian
nonparametric setting by means of a prior distribution
based on the Dirichlet process (DP) of Ferguson [16].
This approach arises as a major development of some
earlier results in Lo [51] and it is nowadays the subject
of a rich and active literature.

In this paper we deal with mixture models with an
unknown number of components. In particular, we fo-
cus on a Bayesian nonparametric approach with the
specification of a class of prior distributions general-
izing the DP prior. In the Bayesian nonparametric set-
ting the central role is played by a discrete random
probability measure μ̃ defined on a suitable measur-
able space X, an example being the DP, whose distri-
bution acts as a nonparametric prior. The basic idea is
that since μ̃ is discrete, it can be written as

μ̃ =
∑

j≥1

J̃j δX̃j
,

where (J̃j )j≥1 is a sequence of nonnegative random

weights that add up to one and (X̃j )j≥1 is a sequence

of X-valued random locations independent of (J̃j )j≥1.
Given μ̃ and a collection of continuous observations
(Y1, . . . , Yn), a Bayesian nonparametric mixture model
admits a hierarchical specification in terms of a collec-
tion of independent and identically distributed latent

random variables (X1, . . . ,Xn). Formally,

Yi |Xi
ind∼ F(·|Xi),

Xi |μ̃
i.i.d.∼ μ̃,(1.3)

μ̃ ∼ P,

where P denotes the nonparametric prior distribution
and F(·|Xi) is a probability distribution parameterized
by the random variable Xi and admitting a distribu-
tion function f (·|Xi). Note that, due to the discrete-
ness of μ̃, each random variable Xi will take on value
X̃j with probability J̃j for each j ≥ 1, and the hierar-
chical model (1.3) is equivalent to saying that observa-
tions (Y1, . . . , Yn) are independent and identically dis-
tributed according to a probability distribution F with
random distribution function

f (·) =
∫

X
f (·|x)μ̃(dx) =

∑

j≥1

J̃jf (·|X̃j ).(1.4)

This is a mixture of distribution functions with a count-
ably infinite number of components. The probabil-
ity distribution F(·|Xi) is termed the mixture kernel,
whereas the underlying distribution P is termed the
mixing distribution or, alternatively, the mixing mea-
sure. Note that, since μ̃ is discrete, each pair of the
latent random variables (X1, . . . ,Xn) will take on the
same value with positive probability, with this value
corresponding to a component of the mixture model.
In this way, the latent random variables allocate the
observations (Y1, . . . , Yn) to a random number of com-
ponents, thus naturally providing a model for the un-
known number of components. Under the assumption
of μ̃ being a Dirichlet process, the model (1.4) was in-
troduced by Lo [51] and it is known in Bayesian non-
parametrics as the DP mixture model.

The reason of the success of the Bayesian nonpara-
metric approach in the analysis of mixture models, as
pointed out in the paper by Green and Richardson [25],
is that it exploits the discreteness of μ̃, thus providing
a flexible model for clustering items of various kinds
in a hierarchical setting without explicitly specifying
the number of components. Bayesian nonparametrics
is now the subject of a rich and active literature span-
ning applied probability, computational statistics and
machine learning. Beyond mixture analysis, Bayesian
nonparametrics has been applied to survival analysis
by Hjort [29], to feature allocation models by Grif-
fiths and Ghahramani [28] and Broderick et al. [6] and
to regression (see the monograph by Rasmussen and
Williams [77]), among others. The reader is referred
to the comprehensive monograph edited by Hjort et
al. [30] for a collection of reviews on recent develop-
ments in Bayesian nonparametrics.
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Several MCMC methods have been proposed for
posterior sampling from the DP mixture model. Early
works exploited the tractable marginalization of μ̃ with
respect to the DP mixing distribution, thus removing
the infinite-dimensional aspect of the inferential prob-
lem. The main references in this research area are rep-
resented by the sampling methods originally devised
in Escobar [11, 12], MacEachern [52] and Escobar and
West [13], and by the subsequent variants proposed in
MacEachern [53] and MacEachern and Müller [54].
In Bayesian nonparametrics these MCMC methods are
typically referred to as marginal samplers and, as noted
by Ishwaran and James [31], apply to any mixture
model for which the system of predictive distributions
induced by μ̃ is known explicitly. The reader is referred
to Neal [61] for a detailed overview of marginal sam-
plers for DP mixture models and for some noteworthy
developments in this direction, such as the well-known
Algorithm 8 which is now a gold standard against
which other methods are compared.

An alternative family of MCMC methods for pos-
terior sampling from the DP mixture model is typi-
cally referred to as conditional samplers and relies on
the simulation from the joint posterior distribution, in-
cluding sampling of the mixing distribution μ̃. These
methods do not remove the infinite-dimensional aspect
of the problem and instead focus on finding appro-
priate ways for sampling a finite but sufficient num-
ber of the atoms of μ̃. Ishwaran and James [31] pro-
posed the use of a deterministic truncation level by
fixing the number of atoms and then bounding the re-
sulting truncation error introduced; the same authors
also showed how to extend the proposed method to
any mixing distribution μ̃ in the class of the so-called
stick-breaking random probability measures. Alterna-
tively, Muliere and Tardella [58] proposed the use of
a random truncation level that allows one to set in ad-
vance the truncation error. The idea of a random trunca-
tion has been recently developed by Papaspiliopoulos
and Roberts [68] who proposed a Metropolis–Hastings
sampling scheme, while Walker [85] proposed the use
of a slice sampling scheme. See also Papaspiliopou-
los [67] and Kalli et al. [39] for further noteworthy im-
provements and developments of conditional samplers
with random truncation levels.

It is apparent that one can replace the DP mixing
distribution with the distribution of any other discrete
random probability measure. Normalized random mea-
sures (NRMs) form a large class of such random proba-
bility measures. This includes the DP as a special case,
and was first proposed as a class of prior models in
Bayesian nonparametrics by Regazzini et al. [78]. See

also James [33]. Nieto-Barajas et al. [64] later pro-
posed using NRMs as the mixing distribution in (1.4),
while Lijoi et al. [46–48] investigated explicit exam-
ples of NRMs such as the generalized DP, the normal-
ized σ -stable process, the normalized inverse Gaus-
sian process (NIGP) and the normalized generalized
Gamma process (NGGP). Various structural properties
of the class of NRMs have been extensively investi-
gated by James [34], Nieto-Barajas et al. [64], James
et al. [35–37] and Trippa and Favaro [84]. Recently
James et al. [36] described a slightly more general defi-
nition of NRMs in terms of the normalization of the so-
called completely random measures (CRMs), a class of
discrete random measures first introduced by Kingman
[40]. We refer to Lijoi and Prünster [49] for a com-
prehensive and stimulating overview of nonparametric
prior models defined within the unifying framework of
CRMs.

In this paper we study MCMC methods of both
marginal and conditional types for posterior sampling
from the mixture model (1.4) with a NRM mixing dis-
tribution. We refer to such a model as a NRM mix-
ture model. Historically, the first MCMC methods for
posterior sampling from NRM mixture models are of
the same type as those proposed by MacEachern [52]
and Escobar and West [13] for DP mixture models:
they rely on the system of predictive distributions in-
duced by the NRM mixing distribution. See James et
al. [36] for details. Typically these methods can be
difficult to implement and computationally expensive
due to the necessary numerical integrations. To over-
come this drawback, we propose novel MCMC meth-
ods of marginal type for NRM mixture models. Our
methods are generalizations of Neal’s celebrated Al-
gorithm 8 [61] to NRM mixture models, and repre-
sent, to the best of our knowledge, the first marginal
type samplers for NRM mixture models that can be
efficiently implemented and do not require numeri-
cal integrations. As opposed to MCMC methods of
marginal type, conditional samplers for NRM mixture
models have been well explored in the recent litera-
ture by Nieto-Barajas and Prünster [63], Griffin and
Walker [27], Favaro and Walker [15] and Barrios et
al. [2]. Here we propose some improvements to the ex-
isting conditional slice sampler recently introduced by
Griffin and Walker [27].

For concreteness, throughout the present paper we
consider as a running example the NGGP mixture
model, namely, a mixture model of the form (1.4)
with the specification of a NGGP mixing distribution.
The NGGP is a recently studied NRM generalizing
the DP and featuring appealing theoretical properties
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which turns out to be very useful in the context of
mixture modeling. We refer to Pitman [70], Lijoi et
al. [48, 50] for an account on these properties with
a view toward Bayesian nonparametrics. In particu-
lar, the NGGP mixture model has been investigated in
depth by Lijoi et al. [48] who proposed a comprehen-
sive and comparative study with the DP mixture model
emphasizing the advantages of such a generalization.

The paper is structured as follows. Section 2 intro-
duces NRMs and defines the induced class of NRM
mixture models. In Section 3 we present the proposed
MCMC methods, of both marginal type and condi-
tional type, for posterior sampling from NRM mixture
models. Section 4 reports on simulation results com-
paring the proposed methods on a NRM mixture model
with an underlying NGGP mixing distribution. A final
discussion is presented in Section 5.

2. NORMALIZED RANDOM MEASURES

We review the class of NRMs with particular empha-
sis on their posterior characterization recently provided
by James et al. [36]. Such a characterization will be
crucial in Section 3 for devising MCMC methods for
posterior sampling from NRM mixture models.

2.1 Completely Random Measures

To be self-contained, we start with a description of
CRMs. See the monograph by Kingman [41] and ref-
erences therein for details on such a topic. Let X be
a complete and separable metric space endowed with
the corresponding Borel σ -algebra X . A CRM on X

is a random variable μ taking values on the space of
boundedly finite measures on (X,X ) and such that
for any collection of disjoint sets A1, . . . ,An in X ,
with Ai ∩ Aj = ∅ for i �= j , the random variables
μ(A1), . . . ,μ(An) are mutually independent. King-
man [40] showed that a CRM can be decomposed
into the sum of three independent components: a non-
random measure, a countable collection of nonneg-
ative random masses at nonrandom locations and a
countable collection of nonnegative random masses at
random locations. In this paper we consider CRMs
consisting solely of the third component, namely, a col-
lection of random masses (Jj )j≥1 at random locations

(X̃j )j≥1, that is,

μ =
∑

j≥1

Jj δX̃j
.(2.1)

The distribution of μ can be characterized in terms of
the distribution of the random point set (Jj , X̃j )j≥1 as
a Poisson random measure on R+ ×X with mean mea-
sure ν, which is typically referred to as the Lévy inten-

FIG. 1. A draw
∑

j≥1 Jj δ
X̃j

from a CRM. Each stick denotes an

atom in the CRM, with mass given by its height Jj and location

given by X̃j . Behind the CRM is the density of its Lévy intensity

measure ν. The random point set {(Jj , X̃j )}j≥1 is described by
a Poisson process with intensity measure given by the Lévy mea-
sure ν.

sity measure. As an example, Figure 1 demonstrates a
draw of a CRM along with its Lévy intensity measure.

For our purposes we focus on the so-called homo-
geneous CRMs, namely, CRMs characterized by a
Lévy intensity measure ν factorizing as ν(ds, dy) =
ρ(ds)μ0(dy), for a nonnegative measure ρ absolutely
continuous with respect to Lebesgue measure and a
nonatomic probability measure μ0 over (X,X ). Such
a factorization implies the independence between the
random masses (Jj )j≥1 and the random locations

(X̃j )j≥1 in (2.1). Hence, without loss of generality,
the random locations can be assumed to be indepen-
dent and identically distributed according to the base
distribution μ0, while the distribution of the random
masses (Jj )j≥1 is governed by the Lévy measure ρ: it
is distributed according to a Poisson random measure
with intensity ρ.

2.2 Homogeneous Normalized Random Measures

Homogeneous CRMs provide a fundamental tool
for defining almost surely discrete nonparametric pri-
ors via the so-called normalization approach. Specifi-
cally, consider a homogeneous CRM μ with Lévy in-
tensity measure ν(ds, dy) = ρ(ds)μ0(dy) and denote
by T = μ(X) =

∑

j≥1 Jj the corresponding total mass.
Then one can define an almost surely discrete random
probability measure on X as follows:

μ̃ = μ

T
=

∑

j≥1

J̃j δX̃j
,(2.2)

where (J̃j )j≥1 is a sequence of random probabilities
defined by normalizing, with respect to T , the se-
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quence of random masses (Jj )j≥1. To ensure that the
normalization in (2.2) is a well-defined operation, the
random variable T has to be positive and finite almost
surely; this is guaranteed by a well-known condition on
the Lévy measure ρ, that is,

∫

R+
ρ(ds) = +∞,

(2.3)
∫

R+

(

1 − e−s)ρ(ds) < +∞.

The random probability measure μ̃ is known from
James et al. [36] as a homogeneous NRM with Lévy
measure ρ and base distribution μ0. See also Regazz-
ini et al. [78] for an early definition of NRMs. The idea
of normalizing CRMs, in order to define almost surely
discrete nonparametric priors, is clearly inspired by the
seminal paper of Ferguson [16] who introduced the DP
as a normalized Gamma CRM.

EXAMPLE 2.1 (DP). A Gamma CRM is a homo-
geneous CRM with Lévy intensity measure of the form

ρa(ds)μ0(dy) = as−1e−s dsμ0(dy),

where a > 0. We denote a Gamma CRM by μa and its
total mass by Ta . Note that the Lévy measure ρa satis-
fies the condition (2.3), thus ensuring that the NRM

μ̃a =
μa

Ta

is a well-defined random probability measure. Specif-
ically, μ̃a is a DP with concentration parameter a and
base distribution μ0.

Other examples of homogeneous NRMs have been
introduced in the recent literature. Notable among
these in terms of both flexibility and sufficient math-
ematical tractability is the normalized generalized
Gamma process (NGGP). Such a process, first intro-
duced by Pitman [70] and then investigated in Bayesian
nonparametrics by Lijoi et al. [48], is defined by nor-
malizing the so-called generalized Gamma CRM pro-
posed by Brix [5]. Throughout this paper we will con-
sider the NGGP as a running example.

EXAMPLE 2.2 (NGGP). A generalized Gamma
CRM is a homogeneous CRM with Lévy intensity
measure of the form

ρa,σ,τ (ds)μ0(dy)
(2.4)

=
a

Ŵ(1 − σ)
s−σ−1e−τs ds μ0(dy),

where a > 0, σ ∈ (0,1) and τ ≥ 0. We denote a gen-
eralized Gamma CRM by μa,σ,τ and its total mass by

Ta,σ,τ . Note that the Lévy measure ρa,σ,τ satisfies the
condition (2.3), thus ensuring that the NRM

μ̃a,σ,τ = μa,σ,τ

Ta,σ,τ

is a well-defined random probability measure. Specif-
ically, μ̃a,σ,τ is a NGGP with parameter (a, σ, τ ) and
base distribution μ0.

The NGGP includes as special cases most of the dis-
crete random probability measures currently applied
in Bayesian nonparametric mixture modeling. The DP
represents a special case of a NGGP given by μ̃a,0,1.
Further noteworthy examples of NGGPs include: the
normalized σ -stable process, given by μ̃a,σ,0, first in-
troduced by Kingman et al. [42] in relation to optimal
storage problems, and the normalized inverse Gaus-
sian process (NIGP), given by μ̃a,1/2,τ , recently inves-
tigated by Lijoi et al. [47] in the context of Bayesian
nonparametric mixture modeling. As regards the cele-
brated two-parameter Poisson–Dirichlet process, intro-
duced by Perman et al. [69], this is not a NRM. How-
ever, it can be expressed in terms of a suitable mixture
of NGGPs. See Pitman and Yor [72] for details on such
a representation.

It is worth pointing out that the parameterization
of the Lévy intensity measure (2.4) is different from
those proposed in the past by Brix [5], Pitman [70]
and Lijoi et al. [48]. Such a parameterization uses
three parameters rather than two parameters. This is
so that our NGGP can easily encompass all the other
NRMs mentioned above. The three-parameter formu-
lation does not lead to a strict generalization of the two-
parameter formulation since the a and τ parameters are
in fact redundant. Indeed, rescaling μa,σ,τ by a con-
stant c > 0, which does not affect the resulting NRM,
leads to a generalized Gamma CRM with parameters
(acσ , σ, τ/c).

2.3 Normalized Random Measure Mixture Models

Given a set of n observations Y = (Y1, . . . , Yn),
a NRM mixture model consists of a corresponding set
of latent random variables X = (X1, . . . ,Xn) condi-
tionally independent and identically distributed given a
NRM mixing measure μ̃. According to the hierarchical
formulation (1.3), a NRM mixture model can be stated
as follows:

Yi |Xi
ind∼ F(·|Xi),

Xi |μ̃
i.i.d.∼ μ̃,

(2.5)
μ̃ = μ

T
,

μ ∼ CRM(ρ,μ0),
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where CRM(ρ,μ0) denotes the law of the CRM μ

with Lévy measure ρ and base distribution μ0. The
rest of this section elaborates on some posterior and
marginal characterizations for the NRM mixing mea-
sure μ̃. These characterizations will be useful in deriv-
ing the MCMC methods for posterior sampling from
the NRM mixture model (2.5).

Because μ̃ is almost surely discrete, ties may occur
among the latent random variables X, so that X con-
tains k ≤ n unique values. Hence, an equivalent repre-
sentation of X can be given in terms of the random par-
tition on [n] := {1, . . . , n} induced by the ties and the
unique values. Let π be the induced random partition
of [n], that is, a family of random subsets of [n] such
that indices i and j belong to the same subset (clus-
ter) if and only if Xi = Xj . For each cluster c ∈ π , we
denote the corresponding unique value by X∗

c . In the
context of mixture modeling, the random partition π

describes the assignment of observations to the various
components, while the unique value X∗

c plays the role
of the parameter associated with component c.

The random variables X are a sample from an ex-
changeable sequence directed by μ̃ and, accordingly,
the induced random partition π is also exchangeable,
namely, the probability mass function of π depends
only on the number of clusters |π | and the sizes of the
clusters {|c| : c ∈ π}. Such a probability mass function
is known in the literature as the exchangeable parti-
tion probability function (EPPF). See the monograph
by Pitman [71] and references therein for details on this
topic. The EPPF induced by the NRM μ̃ has been re-
cently characterized by James et al. [36] using an aux-
iliary random variable U whose conditional distribu-
tion, given the total mass T , coincides with a Gamma
distribution with shape n and inverse scale T . In par-
ticular, the joint conditional distribution of the random
variables X and U , given μ, is

P
[

π = π,
{

X∗
c ∈ dxc : c ∈ π

}

,U ∈ du|μ
]

(2.6)

=
1

Ŵ(n)
un−1e−T u du

∏

c∈π

μ(dxc)
|c|.

The next propositions briefly summarize the posterior
characterizations introduced by James et al. [36]. We
start by considering the characterization of the EPPF
and the system of predictive distributions induced by a
NRM μ̃. Note that such a characterization can be de-
rived from the distribution (2.6) by means of an appli-
cation of the so-called Palm formula for CRMs. See,
for example, Daley and Vere-Jones [9].

PROPOSITION 2.1. Let μ̃ be a homogeneous NRM
with Lévy measure ρ and base distribution μ0. The in-
duced joint distribution of X and U , with μ̃ marginal-
ized out, is given by

P
[

π = π,
{

X∗
c ∈ dxc : c ∈ π

}

,U ∈ du
]

(2.7)

= 1

Ŵ(n)
un−1e−ψ(u) du

∏

c∈π

κ|c|(u)μ0(dxc),

where ψ(·) denotes the Laplace exponent of the under-
lying CRM μ and κm(u) denotes the mth moment of
the exponentially tilted Lévy measure e−usρ(ds), that
is,

ψ(u) =
∫

R+

(

1 − e−us)ρ(ds),

(2.8)

κm(u) =
∫

R+
sme−usρ(ds).

In particular, by marginalizing out the auxiliary ran-
dom variable U , the EPPF of π has the following ex-
pression:

P[π = π ] =
∫

R+

1

Ŵ(n)
un−1e−ψ(u)

∏

c∈π

κ|c|(u) du,

while the unique values {X∗
c : c ∈ π} are independent

and identically distributed according to μ0. Together
these characterize the joint distribution of the latent
variables X. Accordingly,

P[Xn+1 ∈ dx|U,X]

∝ κ1(U)μ0(dx) +
∑

c∈π

κ|c|+1(U)

κ|c|(U)
δX∗

c
(dx)

is the predictive distribution for a new sample Xn+1 ∼
μ̃, given U and X and once μ̃ is marginalized out.

Note that from the probability distribution (2.7) fol-
lows the posterior distribution of U given X, that is,

P[U ∈ du|X] ∝ un−1e−ψ(u) du
∏

c∈π

κ|c|(u).(2.9)

The next proposition completes the posterior charac-
terization for NRMs by showing that the posterior dis-
tribution of a homogeneuos CRM μ, given X and U , is
still a CRM.

PROPOSITION 2.2. Let μ̃ be a homogeneous NRM
with Lévy measure ρ and base distribution μ0. The
posterior distribution of the underlying homogeneous
CRM μ, given X and U , corresponds to

μ|U,X ∼ μ′ +
∑

c∈π

J ′
cδX∗

c
,(2.10)
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where μ′ is a homogeneous CRM with an exponential
tilted Lévy intensity measure of the form

ν′(ds, dy) = e−Usρ(ds)μ0(dy)

and where the random masses {J ′
c : c ∈ π} are inde-

pendent of μ′ and among themselves, with conditional
distribution

P
[

J ′
c ∈ ds|U,X

]

=
1

κ|c|(U)
s|c|e−Usρ(ds).

The posterior distribution of the NRM μ̃, given X

and U , follows by normalizing the CRM μ|U,X.

We conclude this section by illuminating Proposi-
tions 2.1 and 2.2 via their applications to the DP and
NGGP.

EXAMPLE 2.3 (DP). An application of Proposi-
tion 2.1 to the Lévy measure of the Gamma CRM
shows that π is independent of U , and its distribution
coincides with

P[π = π |U ] = P[π = π ]
(2.11)

=
Ŵ(a)a|π |

Ŵ(a + n)

∏

c∈π

Ŵ
(

|c|
)

.

The corresponding predictive distributions are also in-
dependent of U and are of the form

Xn+1|U,X ∼
a

a + n
μ0 +

∑

c∈π

|c|
a + n

δX∗
c
.(2.12)

An application of Proposition 2.2 shows that the pos-
terior distribution of μ, given U and X, corresponds
to (2.10) with μ′ a Gamma CRM with Lévy intensity
measure

ν′(ds, dy) = as−1e−s(U+1) ds μ0(dy),

and random masses J ′
c distributed according to a

Gamma distribution with parameter (|c|,U + 1). Nor-
malizing the posterior CRM, the resulting posterior
random probability measure μ̃|U,X does not depend
on the scale U + 1 and is still a DP, with updated base
measure

μn = aμ0 +
∑

c∈π

|c|δX∗
c
.

The law of the random partition π induced by the
predictive distributions (2.12) is popularly known as
the Chinese restaurant process. The metaphor is that of
a sequence of customers entering a Chinese restaurant
with an infinite number of round tables. The first cus-
tomer sits at the first table, and each subsequent cus-
tomer joins a new table with probability proportional

to a, or a table with m previous customers with prob-
ability proportional to m. After n customers have en-
tered the restaurant, the seating arrangement of cus-
tomers around tables corresponds to the partition π ,
with probabilities given by (2.11). Relating to X, each
table c ∈ π is served a dish X∗

c , with Xi = X∗
c if cus-

tomer i joined table c, that is, i ∈ c. See Blackwell and
MacQueen [4] for a first characterization of the predic-
tive distributions (2.12). See also Aldous [1] for details
and Ewens [14] for an early account in population ge-
netics.

EXAMPLE 2.4 (NGGP). An application of the for-
mulae (2.8) to the Lévy measure of the generalized
Gamma CRM leads to

ψ(u) =
a

σ

(

(u + τ)σ − τσ )

,

(2.13)

κm(u) =
a

(u + τ)m−σ

Ŵ(m − σ)

Ŵ(1 − σ)
.

The random partition π and U are not independent as
in the DP, and has a joint distribution given by

P[π = π,U ∈ du]

=
a|π |un−1

Ŵ(n)(u + τ)n−σ |π | e
−(a/σ)((u+τ)σ −τσ ) du(2.14)

·
∏

c∈π

Ŵ(|c| − σ)

Ŵ(1 − σ)
,

and the corresponding system of predictive distribu-
tions for Xn+1, given U and X, is

Xn+1|U,X

∼ a(U + τ)σ

a(U + τ)σ + n − σ |π |
μ0(2.15)

+
∑

c∈π

|c| − σ

a(U + τ)σ + n − σ |π |
δX∗

c
.

Finally, an application of Proposition 2.2 shows that
the posterior distribution of μ, given U and X, corre-
sponds to

μ|U,X ∼ μ′ +
∑

c∈π

J ′
cδX∗

c
,(2.16)

where μ′ is a generalized Gamma CRM with parame-
ters (a, σ,U + τ) and the random masses J ′

c are inde-
pendent among themselves and of μ′, and distributed
according to a Gamma distribution with parameter
(|c| − σ,U + τ).

Note that the predictive distributions (2.15) pro-
vide a generalization of the Chinese restaurant process
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FIG. 2. Left: prior distribution of the number of clusters with σ = 0.7, τ = 1, a = 0.1,1 and 10 and n = 1000. With increasing a the
number of clusters increases. Right: distribution of the number of clusters with σ = 0.1, τ = 1, and a = 38.5,61.5 and 161.8. Values of a

were chosen so that the mean number of clusters matches those in the left panel. With a smaller value of σ both the mean and the variance
in the number of clusters decreases, which is why the values of a are increased from the left panel.

metaphor for the DP. Conditionally on U , the proba-
bility of the (n + 1)st customer joining a table with m

existing customers is proportional to m − σ , with σ

acting as a discount parameter. Note that the relative
effect of σ is more pronounced for small values of m,
which leads to larger proportions of small tables with
larger σ and power-law behaviors in π . On the other
hand, the probability of joining a new table is propor-
tional to an increasing function of all three parameters.
Figure 2 shows how the distribution over the number
of clusters is affected by the parameters, while Fig-
ure 3 shows how the distribution over the number of

clusters grows with n for different values of the param-
eters.

Lijoi et al. [48] provided a detailed comparative
study between the predictive structures of the NGGP
and the DP in the context of mixture modeling. The
advantage of specifying the NGGP mixing distribution
with respect to the DP mixing distribution clearly relies
on the availability of the additional parameter σ . In the
DP mixture model the only free parameter which can
be used to tune the distribution of the number of clus-
ters is the mass parameter a: the bigger a, the larger
the expected number of clusters. In the NGGP mixture

FIG. 3. Mean and standard deviation of the number of clusters as a function of n, on a log–log plot. Left: with parameters σ = 0.5, τ = 1
and a = 0.1,1 and 10. Right: with parameters σ = 0.1,0.5 and 0.9, τ = 1 and a = 1. The growth rate with n follows a power-law with
index σ , while a affects the number of clusters without affecting the power-law behavior.
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model the parameters a and τ play the same role as
the mass parameter a in the DP mixture model. On the
other hand, σ influences the grouping of the observa-
tions into distinct clusters and can be used to tune the
variance of the number of clusters in the NGGP mix-
ture model: the bigger σ , the larger the variance of the
number of clusters. Further, σ also controls an inter-
esting reinforcement mechanism that tends to reinforce
significantly those clusters having higher frequencies.
This turns out to be a very appealing feature in the con-
text of mixture modeling. We refer to Lijoi et al. [48]
for details on the prior elicitation for σ to control the
reinforcement mechanisms induced by it.

3. MCMC POSTERIOR SAMPLING METHODS

In this section we develop some novel MCMC sam-
plers of both marginal and conditional type for the
NRM mixture models (2.5). In particular, we consider
as a running example the NGGP mixing measure with
parameter (a, σ, τ ) and base distribution μ0.

3.1 Conjugate Marginalized Sampler

We start with the simplest situation, when the base
distribution μ0 is conjugate to the mixture kernel F . In
this case both the CRM μ and the cluster parameters
{X∗

c : c ∈ π} can be marginalized out efficiently, leav-
ing only the partition π and auxiliary variable U to be
sampled. The joint distribution of π and U is given
by (2.7), while the likelihood is

P[Y|π = π ] =
∏

c∈π

f (Yc),(3.1)

where Yc = {Yi : i ∈ c} and

f (Yc) =
∫

X

∏

i∈c

f (Yi |x)μ0(dx).

Since μ0 is conjugate to F , the integral is assumed to
be available in closed form and efficiently evaluated us-
ing the sufficient statistics of Yc. Moreover, since both
the conditional distribution of π given U and the likeli-
hood are in product partition form, the conditional dis-
tribution of π given Y and U is also in a product parti-
tion form.

We can update π using a form of Gibbs sampling
whereby the cluster assignment of one data item Yi is
updated at a time. Let π\i be the partition with i re-
moved. We denote the cluster assignment of Yi with a
variable zi such that zi = c denotes the event that Yi

is assigned to cluster c ∈ π\i , and zi = ∅ denotes the
event that it is assigned a new cluster. In order to up-
date zi , we can use formulae (2.7) and (3.1) to provide

the conditional distribution of zi , given π\i , Y and U .
Specifically,

P[zi = c|π\i,U,Y]
(3.2)

∝

⎧

⎪

⎨

⎪

⎩

κ|c|+1(U)

κ|c|(U)

f ({Yi} ∪ Yc)

f (Yc)
, for c ∈ π\i ,

κ1(U)f
(

{Yi}
)

, for c = ∅.

Under the assumption that μ̃ is a NGGP and us-
ing (2.13), the above simplifies to

P[zi = c|π\i,U,Y]

∝
{

(

|c| − σ
)

f (Yi |Yc), for c ∈ π\i ,

a(U + τ)σf (Yi |∅), for c = ∅,

where

f (y|y) =
f ({y} ∪ y)

f (y)
.

We see that the update is a direct generalization of that
for the DP which can be easily recovered by setting
σ = 0. The probability of Yi being assigned to a clus-
ter is simply proportional to the product of a condi-
tional prior probability of being assigned to the cluster
and a conditional likelihood associated with the obser-
vation Yi . See MacEachern [52] and Neal [60] for de-
tails on the DP case. In the next section we describe
the updates for the parameters a, σ and τ , and for U ,
before proceeding to the marginalized and conditional
samplers in the case when μ0 is not conjugate.

3.1.1 Updates for NGGP parameters and U . For U ,
note that given π , U is independent of Y with condi-
tional distribution (2.9). In particular, in the case of the
NGGP, the conditional distribution simplifies to

P[U ∈ du|π ] ∝
un−1

(u + τ)n−a|π | e
−(a/σ)((u+τ)σ −τσ ) du.

A variety of updates can be used here. We have found
that a change of variable V = log(U) leads to bet-
ter behaved algorithms, since the conditional density
fV |π (v) of V given π , that is,

P[V ∈ dv|π ] ∝ evn

(ev + τ)n−a|π | e
−(a/σ)((ev+τ)σ −τσ ) dv

= fV |π (v) dv,

is log concave. We use a simple Metropolis–Hastings
update with a Gaussian proposal kernel with mean V

and variance 1/4, although slice sampling by Neal [62]
or, alternatively, adaptive rejection sampling by Gilks
and Wild [21] can also be employed.
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For the NGGP, we can easily derive the updates for
the parameters a, σ and τ using (2.14) and given prior
specifications for the parameters. See Lijoi et al. [48]
for a detailed analysis on prior specification in the con-
text of Bayesian nonparametric mixture modeling. As
regards a, we can simply use a Gamma prior distribu-
tion with parameter (αa, βa). Then the conditional dis-
tribution of a, given σ , τ , U and π , is simply a Gamma
distribution, that is,

P[da|σ, τ,U,π]

∝ aαa+|π |−1e−a(βa+((U+τ)σ −τσ )/σ ) da.

For τ we can again use a Gamma prior distribution with
parameter (ατ , βτ ). Then the conditional distribution
of τ , given a, σ , U and π , is

P[dτ |a,σ,U,π]

∝ τατ −1e−τβτ
e−(a/σ)((U+τ)σ −τσ )

τσ |π |(U + τ)n−σ |π | dτ.

We update τ in its logarithmic domain, using the same
procedure as for U described above. Finally, for σ

we can use a Beta prior distribution with parameter
(ασ , βσ ). Then the conditional distribution of σ , given
a, τ , U and π , corresponds to

P[dσ |a, τ,U,π]

∝ σ ασ −1(1 − σ)βσ −1 e−(a/σ)((U+τ)σ −τσ )

τσ |π |(U + τ)n−σ |π |

·
∏

c∈π

Ŵ(|c| − σ)

Ŵ(1 − σ)
dσ.

We can easily update σ using slice sampling by
Neal [62].

3.2 Nonconjugate Marginalized Samplers

The main drawback of the previous algorithm is the
assumption of conjugacy, which limits its applicability
since nonconjugate priors are often desirable in order
to increase modeling flexibility. For DP mixture mod-
els a number of marginalized algorithms for the non-
conjugate setting have been proposed and investigated
in the literature. The review of Neal [61] provides a de-
tailed overview along with two novel algorithms. One
of these algorithms, the so-called Algorithm 8, is sim-
ple to implement, has been demonstrated to provide
excellent mixing speed, and has a tunable parameter
to trade off computation cost against speed of conver-
gence.

3.2.1 Generalizing Neal’s Algorithm 8. In this sec-
tion we provide a straightforward generalization of
Neal’s Algorithm 8 to the class of NRM mixture mod-
els with a nonconjugate base distribution. Here, the
cluster parameters X∗

c cannot be easily marginalized
out. Instead we include them into the state of the
MCMC algorithm, so that the state now consists of
the partition π , {X∗

c : c ∈ π} and the random vari-
able U , and we sample the cluster parameters along
with π and U . Note that the parameters for existing
clusters X∗

c can be updated with relative ease, using
any MCMC update whose stationary distribution is the
conditional distribution of X∗

c given everything else,
that is,

P
[

X∗
c ∈ dx|π,U,Y

]

∝ μ0(dx)
∏

i∈c

f (Yi |x).

The difficulty with a nonconjugate marginalized sam-
pler is the introduction of new clusters (along with their
parameters) when Gibbs sampling the cluster assign-
ments. Following Neal [61], we conceptualize our up-
date in terms of an augmented state with additional
temporarily existing variables, such that the marginal
distribution of the permanent variables once the tempo-
rary ones are integrated out is the appropriate posterior
distribution.

Consider updating the cluster assignment variable
zi given the existing clusters in π\i . We introduce an
augmented space with C empty clusters, with param-
eters Xe

1, . . . ,X
e
C that are independent of π\i and in-

dependent and identically distributed according to μ0.
The state space of zi is augmented as well to include
both existing clusters π\i and the new ones [C] =
{1, . . . ,C}, with conditional distribution

P[zi = c ∈ π\i |π\i] ∝ κ|c|+1(U)

κ|c|(U)

and

P
[

zi = k ∈ [C]|π\i
]

∝
κ1(U)

C
,

respectively. Identifying zi being in any of the addi-
tional clusters as assigning Yi to a new cluster, we see
that the total probability for Yi being assigned to a
new cluster is proportional to the first moment κ1(U),
which is the same as in (2.7) and (3.2).

The update can be derived by first initializing the
augmentation variables given the current state of the
Markov chain, updating zi , then discarding the aug-
mentation variables. If Yi is currently assigned to a
cluster which contained another data item, then zi = c
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for some c ∈ π\i , and the empty cluster parameters are
simply drawn independently and identically according
to μ0. On the other hand, if Yi is currently assigned to a
cluster containing only itself, say, with parameter X∗

∅,
then in the augmented space zi has to be one of the new
clusters, say, zi = k for some k ∈ [C] with Xe

k = X∗
∅.

The actual value of k is unimportant, for convenience
we may use k = 1. The other empty clusters then have
parameters drawn independently and identically ac-
cording to μ0. We can now update zi by sampling from
its conditional distribution given Yi and the parameters
of all existing and empty clusters. Specifically,

P[zi = c|π\i,U,Y]
(3.3)

∝

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

κ|c|+1(U)

κ|c|(U)
f

(

Yi |X∗
c

)

, for c ∈ π\i ,

κ1(U)

C
f

(

Yi |Xe
c

)

, for c ∈ [C].

Under the assumption that μ̃ is a NGGP, (3.3) again
simplifies to

P[zi = c|π\i,U,Y]

∝

⎧

⎨

⎩

(

|c| − σ
)

f
(

Yi |X∗
c

)

, for c ∈ π\i ,
a

C
(U + τ)σf

(

Yi |Xe
c

)

, for c ∈ [C].

If the new value of zi is c ∈ [C], this means that Yi is
assigned to a new cluster with parameter Xe

c; the other
empty clusters are discarded to complete the update.
On the other hand, if the new value is c ∈ π\i , then
Yi is assigned to an existing cluster c, and all empty
clusters are discarded. Finally, the random variable U

and any hyperparameters may be updated using those
in Section 3.1.1.

3.2.2 The Reuse algorithm. In the above algorithm,
each update to the cluster assignment of an observation
is associated with a set of temporarily existing vari-
ables which has to be generated prior to the update and
discarded afterward. As a result, many independent and
identically distributed samples from the base distribu-
tion have to be generated throughout the MCMC run,
and in our experiments this actually contributes a sig-
nificant portion of the overall computational cost. We
can mitigate this wasteful generation and discarding of
clusters by noting that after updating the cluster assign-
ment of each observation, the parameters of any unused
empty clusters are in fact already independently and
identically distributed according to the base distribu-
tion. Thus, we can consider reusing them for updating
the next observation. However, note that as a result the

parameters of the empty clusters used in different up-
dates will not be independent, and the justification of
correctness of Neal’s Algorithm 8 (as Gibbs sampling
in an augmentation scheme) is no longer valid.

In this section we develop an algorithm that does
reuse new clusters, and show using a different tech-
nique that it is valid with stationary distribution given
by the posterior. For the new algorithm, we instead
augment the MCMC state space with a permanent set
of C empty clusters, so the augmented state space now
consists of the partition π , the latent variable U , the
parameters {X∗

c : c ∈ π} of existing clusters and the pa-
rameters {Xe

k :k ∈ [C]} of the auxiliary empty clusters.
Further, we develop the cluster assignment updates as
Metropolis–Hastings updates instead of Gibbs updates.

In the following we use the superscript ′ in or-
der to denote variables and values associated with the
new proposed state of the Markov chain. Suppose we
wish to update the cluster assignment of observation
Yi . Again we introduce the variable zi , which takes
value c ∈ π\i if Yi is assigned to a cluster containing
other observations, and takes values k ∈ [C] uniformly
at random if Yi is assigned to a cluster by itself. If
zi = c ∈ π\i , then the proposal distribution Q is de-
scribed by a two-step algorithm:

1. Sample the variable z′
i from the conditional distri-

bution (3.3) as before.
2a. If z′

i = c′ ∈ π\i , then we simply assign Yi to the
existing cluster c′.

2b. If z′
i = k′ for one of the empty clusters k′ ∈ [C]

with Xe
k′ = x, then:

(i) we assign Yi to a newly created cluster with
parameter X∗′

∅ := x;
(ii) set Xe′

k′ := x′ ∼ μ0 with a new draw from the
base distribution.

On the other hand, if Yi is currently assigned to a clus-
ter all by itself, say, with parameter X∗

∅ = x0, then zi

will initially take on each value k ∈ [C] uniformly with
probability 1/C. We start by setting the value for the
kth empty cluster parameter Xe

k := x0 (its old value is
discarded) and then removing the singleton cluster that
Yi is currently assigned to. Then the two-step algorithm
above is carried out.

It is important to point out that the proposal de-
scribed above is reversible. For example, the reverse
of moving Yi from an existing cluster c to a new clus-
ter with parameter X∗

∅ = x, where x is the previous
value of Xe

k′ with its new value being a draw x′ from
μ0, is exactly the reverse of the proposal moving Yi

from a singleton cluster with parameter X∗
∅ = x to
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the cluster c, while replacing the previous value x′ of
Xe

k′ with x. We denote the two proposals as (c ⇒ k′)
and (k′ ⇒ c). Analogously, the reverse of (c ⇒ c′) is
(c′ ⇒ c) and the reverse of (k ⇒ k′) is (k′ ⇒ k).

Note also that the proposals are trans-dimensional
since the number of clusters in the partition π (and par-
ticularly the number of cluster parameters) can change.
See Green [24] and Richardson and Green [79] for
approaches to trans-dimensional MCMC. Fortunately
they are dimensionally balanced. In fact, we can show
that the acceptance probability is simply always one.
For example, for the (c ⇒ k′) proposal, the joint prob-
ability of the initial state and the proposal probability
are, respectively, proportional to

P
[

zi = c,Xe
k′ ∈ dx · · ·

]

∝
κ|c|+1(U)

κ|c|(U)
f

(

Yi |X∗
c

)

μ0(dx)

and

Q
[

z′
i = k′,X∗′

∅ ∈ dx0,X
e′
k′ ∈ dx′ · · · |

zi = c,Xe
k′ ∈ dx · · ·

]

∝
κ1(U)

C
f (Yi |x)δx(dx0)μ0

(

dx′).

We have suppressed listing all other variables for
brevity. For the reverse proposal (k′ ⇒ c), the prob-
abilities are, respectively,

P
[

z′
i = k′, dX∗′

∅ ∈ dx0,X
e′
k′ ∈ dx′ · · ·

]

∝
1

C
κ1(U)μ0(dx0)f (Yi |x)μ0

(

dx′)

and

Q
[

zi = c,Xe
k′ ∈ dx · · · |z′

i = k′,X∗′
∅ ∈ dx0 · · ·

]

∝
κ|c|+1(U)

κ|c|(U)
f

(

Yi |X∗
c

)

δx0(dx).

Note that the normalization constants arising from the
conditional distributions (3.3) for proposals in both di-
rections are the same, so they can be ignored. We see
that the product of the probabilities for the (c ⇒ k′)
proposal is the same as that for the reverse (k′ ⇒ c),
so the Metropolis–Hastings acceptance ratio is simply
one. Similarly, the acceptance ratios of other proposal
pairs are also equal to one.

In addition to updating the cluster assignments of
all observations as above, we also need to update the
parameters of the C empty clusters. We do this by
marginalizing them out before updating U and the hy-
perparameters according to Section 3.1.1, and replac-
ing them afterward with new independent and identi-
cally distributed draws from the base distribution. Note

that the resulting Metropolis–Hastings updates are very
similar to the augmentation scheme Gibbs updates de-
scribed in Section 3.2.1. The only difference is the way
the parameters of the empty clusters are managed and
retained across cluster assignment updates of multiple
observations.

3.3 Conditional Slice Sampler

In the so-called marginalized samplers the CRM μ

is marginalized out while the latent variables X repre-
senting the partition structure and the cluster parame-
ters are sampled. In a conditional sampler we instead
alternatively Gibbs sample μ given X and X given μ.
Proposition 2.2 provides the conditional distribution
for μ given X, while the conditional of X given μ is
straightforward. What is not straightforward is the fact
that since μ has an infinite number of atoms we can-
not explicitly sample all of it on a computer with finite
resources. Thus, it is necessary to truncate μ and work
only with a finite number of atoms.

In this section we will describe a conditional sampler
based on a slice sampling strategy for truncation. See
Walker [85] for the slice sampler in DP mixture mod-
els, and Griffin and Walker [27] and Griffin et al. [26]
for slice samplers in NRM mixture models on which
our sampler is based. Recall from (2.5) that each ob-
servation Yi is assigned to a cluster parametrized by
an atom Xi of μ. We augment the state with an addi-
tional slice variable Si , whose conditional distribution
is a Uniform distribution taking values between 0 and
the mass of atom Xi in μ, that is,

Si |Xi,μ ∼ Uniform
(

0,μ
(

{Xi}
))

.(3.4)

Marginalizing out Si , the joint distribution of the other
variables reduces back to the desired posterior distribu-
tion. On the other hand, conditioned on Si , Xi can only
take on values corresponding to atoms in μ with mass
at least Si . Since Si is almost surely positive, this set
of atoms is finite, and so Si effectively serves as a trun-
cation level for μ in the sense that only these finitely
many atoms are needed when updating Xi . Over the
whole data set, only the (finitely many) atoms in μ with
mass at least S = mini∈[n] Si > 0 are required when up-
dating the set of latent variables X given μ and the slice
variables S = {Si : i ∈ [n]}.

The state space of our sampler thus consists of the
latent variables X, the slice variables S, the CRM μ

and the auxiliary variable U introduced in Section 2.3.
At a high level, our sampler is simply a Gibbs sampler,
iterating among updates to X, U , and both μ and S

jointly.
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First consider updating X. It is easy to see that con-
ditioned on U , μ and S the Xi’s are mutually inde-
pendent. For each i ∈ [n], the conditional probabil-
ity of Xi taking on value x ∈ X is proportional to
the product of the probability μ({x})/μ(X) of x un-
der the NRM μ̃, the conditional distribution function
f (Yi |x) of observation Yi , and the conditional density
of Si given Xi = x, which is simply 1/μ({x}) when
0 < Si < μ({x}) and 0 otherwise. The resulting condi-
tional distribution of Xi simplifies to

P[Xi = x|μ,Yi, Si] ∝
{

f (Yi |x), if Si < μ
(

{x}
)

,

0, otherwise.

This is a discrete distribution, with positive probability
of Xi = x only when x coincides with the location of
an atom in μ with mass greater than Si . Note that there
almost surely are only a finite number of such atoms in
μ since Si > 0, so that updating Xi is computationally
feasible.

Now consider updating U . We will perform this up-
date conditioned only on the partition described by X,
with the random measure μ and the slice variables S

marginalized out. We can also update any hyperparam-
eters of the CRM and of the base distribution μ0 at
this step as well. For example, if μ̃ is a NGGP, we
can update both U and the parameters (a, σ, τ ) using
those described in Section 3.1.1, which makes these
Metropolis-within-Gibbs updates.

Finally, consider updating μ and S jointly. Note that
this update needs to be performed right after the U up-
date since μ and S were marginalized out when up-
dating U . The conditional distribution of μ given U

and X is given by Proposition 2.2, which shows that μ

will contain a finite number of fixed atoms located at
the unique values {X∗

c : c ∈ π} among X, and a count-
ably infinite number of randomly located atoms corre-
sponding to the unused clusters in the NRM mixture
model. Given μ, the slice variables are independent
with distributions given by (3.4); in particular, note that
they depend only on the masses of the fixed atoms of
μ. On the other hand, as noted above, we only need
the random atoms of μ with masses above the overall
truncation level S = mini∈[n] Si . Therefore, a sufficient
method for sampling both μ and S is to first sample the
fixed atoms of μ, followed by S, and finally the random
atoms with masses above S.

For the fixed atoms of μ, Proposition 2.2 states that
each of them corresponds to a unique value among X

and that their masses are mutually independent and
independent from the random atoms. For each such

unique value X∗
c , c ∈ π , the conditional distribution of

its mass J ′
c is

P
[

J ′
c ∈ ds|U,X

]

∝ s|c|e−Usρ(ds),(3.5)

where |c| is the number of observations allocated to the
cluster c, that is, with Xi = X∗

c . Under the assumption
of μ̃ being a NGGP, the density in (3.5) simplifies to
s|c|−σ−1e−(U+τ)s , a Gamma density. We also update
the locations of the fixed atoms as well using an ac-
celeration step as in Bush and MacEachern [7]. The
conditional distribution function of X∗

c is proportional
to its prior distribution function times the likelihoods
of observations assigned to the cluster, that is,

P
[

X∗
c ∈ dx|Y

]

∝ μ0(dx)
∏

i∈c

f (Yi |x),

where i ∈ c indicates indices of those observations as-
signed to the cluster c. Note that any ergodic Markov
kernel with the above as its stationary distribution suf-
fices.

Once the fixed atoms are updated, the slice variables
are updated by sampling each Si independently from
its conditional distribution (3.4). Finally, the random
atoms of μ with mass above the overall truncation level
S can be sampled using Proposition 2.2. As we work
only with homogeneous CRMs here, the locations are
simply independent and identically distributed draws
from μ0, while their masses are distributed according
to a Poisson random measure on [S,∞) with an expo-
nentially tilted intensity measure ρ′(ds) = e−Usρ(ds).

We propose an adaptive thinning approach (see
Ogata [66]) to sample from the Poisson random mea-
sure which is computationally efficient but applies
only to certain classes of intensity measures which
can be adaptively bounded in the following sense.
Let v′(s) be the density of ρ ′(ds) with respect to the
Lebesgue measure and assume that for each t ∈ R+
there is a function wt (s) such that wt (t) = v′(t) and
wt (s) ≥ wt ′(s) ≥ v′(s) for every s, t ′ ≥ t . See Figure 4.
In particular, for the NGGP one has

v′(s) =
a

Ŵ(1 − σ)
s−1−σ e−s(τ+U),

and we can use the family of adaptive bounds

wt (s) = a

Ŵ(1 − σ)
t−1−σ e−s(τ+U),

with the inverse of the integral given by

W−1
t (r) = t −

1

τ + U
log

(

1 −
r(τ + U)Ŵ(1 − σ)

at−1−σ e−t (τ+U)

)

.
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FIG. 4. Adaptive bounds for simulating from a Poisson random
measure with intensity v′(s).

Note that both wt (s) and the inverse of the map
Wt (s) =

∫ s
t wt (s

′) ds′ are analytically tractable, with
∫ ∞
t wt (s

′) ds′ < ∞.
The method is based on the idea of thinning by Lewis

and Shedler [45], a method to simulate from a Pois-
son random measure by first proposing points accord-
ing to a proposal Poisson random measure with higher
intensity than the desired one. Each point is then ac-
cepted with probability given by the ratio of intensities
under the proposal and desired Poisson random mea-
sures. The idea of adaptive thinning is that we can pro-
pose points iteratively from left to right starting at S,
and after each proposed point t the bound wt is used as
the intensity of the proposed Poisson random measure
from which the next point is drawn. As t increases, the
bound tightens, so rejections are reduced. Further, as
∫ ∞
s wt (s

′) ds′ < ∞, the iteration will terminate after a
finite number of points are proposed. Specifically, the
sampling scheme is described as follows:

1. set N := ∅, t := S;
2. iterate until termination:

(i) let r be a draw from an Exponential distribu-
tion with parameter 1;

(ii) if r > Wt (∞), terminate; else set t ′ := W−1
t (r);

(iii) with probability v′(t ′)/wt (t
′) accept sample:

set N := N ∪ {t ′};
(iv) set t := t ′ and continue to next iteration;

3. return N as a draw from the Poisson random mea-
sure with intensity v′ on [S,∞).

The returned N constitutes the set of masses for the
random atoms in μ with masses above the overall trun-
cation level S.

3.4 Some Remarks

There is a rich literature on conditional sampling
schemes for nonparametric mixture models. In the
DP mixture model case, the use of the stick-breaking
representation for μ̃, as proposed by Ishwaran and

James [31], Papaspiliopoulos and Roberts [68] and
Walker [85], is very simple since it involves a sequence
of random variables that are independently Beta dis-
tributed a priori as well as a posteriori conditioned on
other variables. However, this simplicity comes at a
cost of slower mixing due to the label-switching prob-
lem discussed in Jasra et al. [38]. Papaspiliopoulos and
Roberts [68] noted that while the likelihood is invariant
to the ordering of atoms, the stick-breaking prior has
a weak preference for atoms to be sorted by decreas-
ing mass, resulting in multiple modes in the posterior.
Then, they proposed Metropolis–Hastings moves that
interchange pairs of atoms to improve mixing. A more
sophisticated approach that avoids the weak identifia-
bility altogether is to use the natural unordered repre-
sentation stated in Proposition 2.2. This approach was
taken in Griffin and Walker [27], and we used it here as
well.

There are a few alternative methods for sampling
from the Poisson random measure governing the
masses of the random atoms. Griffin and Walker [27]
proposed first sampling the number of atoms from
a Poisson with rate ρ′([S,∞)), then sampling the
masses independently and identically distributed ac-
cording to a distribution obtained by normalizing ρ′.
Another possibility proposed by Barrios et al. [2] and
Nieto-Barajas and Prünster [63] is to use the represen-
tation proposed by Ferguson and Klass [17], which in-
volves using the mapping theorem for Poisson random
measures to sample the masses in order starting from
the largest to the smallest.

Our slice sampler follows Griffin and Walker [27] in
introducing a slice variable Si for each observation i.
Another approach described in Griffin and Walker is
to introduce a single slice variable Sall for all observa-
tions, with conditional distribution

Sall ∼ Uniform
(

0, min
i∈[n]

μ
(

{Xi}
)

)

.

Griffin and Walker [27] found that either method may
work better than the other in different situations. We
preferred the method described here, as it is simpler
and the updates for the latent variables, which form the
most time consuming part of the algorithm, can be triv-
ially parallelized to take advantage of recent parallel
computation hardware architectures.

Slice samplers have the advantages that they can
technically be exact in the sense that they target the
true posterior distribution. This is opposed to alterna-
tive truncations which introduce approximations by ig-
noring atoms with low masses, for example, Ishwaran
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and James [31] and Barrios et al. [2]. However, a dif-
ficulty with slice samplers is that although the number
of random atoms in μ above the truncation level S is
finite with probability one, the actual number gener-
ated can occasionally be extremely large, for example,
in case of NGGPs when S is small and σ is large. In
our implementation our program can occasionally ter-
minate as it runs out of memory. We fix this by in-
troducing an approximation where we only generate
atoms with masses above 10−8 and only keep a maxi-
mum of the 106 atoms with largest masses. Griffin and
Walker [27] and Barrios et al. [2] have also made sim-
ilar approximations. Of course this approximation ef-
fectively nullifies the advantage of slice samplers be-
ing exact, though we have found in experiments that
the approximation introduced is minimal.

Comparing the computational requirements of the
proposed marginalized and conditional samplers, we
expect the marginalized samplers to produce chains
with less autocorrelation since they marginalize more
latent variables out. Further, their computational costs
per iteration are controllable and more stable since
each involves introducing a fixed number of empty
clusters. Concluding, while the conditional sampler
is easily parallelizable, the marginalized samplers are
not.

4. NUMERICAL ILLUSTRATIONS

In this section we illustrate the algorithms on a num-
ber of data sets: three simple and well-studied data
sets, the galaxy, acidity and the Old Faithful geyser
data sets, as well as a more complex data set of neu-
ronal spike waveforms. The galaxy data set consists
of the velocities at which 82 galaxies are receding
away from our own and the acidity data set consists of
the log acidity measurements of 155 lakes in Wiscon-
sin; both are one-dimensional. The geyser data set is
two-dimensional, consisting of 272 durations of erup-
tions along with the waiting times since the last one.
The spikes data set2 consists of a total of 14,802 neu-
ronal spike waveforms recorded using tetrodes. Each
of the four electrodes contributes 28 readings sampled
at 32 kHz, so that each waveform is 112-dimensional.
Prototypical waveforms are shown in Figure 10. To re-
duce computation time, in the following we first used
PCA to reduce the data set down to six dimensions,
which preserved approximately 80% of the variance

2We thank Görür and Rasmussen [23] for providing us with the
data set.

and sufficient information for the mixture model to re-
cover distinct clusters.

We analyzed the data sets by means of NRM mix-
tures of (multivariate) Gaussian distributions. Let D be
the number of dimensions of the data set. The base dis-
tribution over the Gaussian means and covariance ma-
trices is factorized as follows:

μ0(dm,d) = ND(dm;m0, S0)I W D(d;α0,0),

where ND denotes a D-dimensional Gaussian distribu-
tion with given mean and covariance matrix and I W D

denotes an inverse Wishart over D × D positive defi-
nite matrices with given degree of freedom and scale
matrix.

A number of authors have advocated the use of
weakly informative priors for mixtures of Gaussian
distributions. See Nobile [65], Raftery [75] and
Richardson and Green [79]. We follow the approach
advocated by Richardson and Green [79], general-
izing it to the multivariate setting. In particular, we
assume knowledge of a likely range over which the
data lies, with the range in the ith dimension be-
ing [m0i − si,m0i + si]. We set S0 to be a diago-
nal matrix with ith diagonal entry being s2

i so that
the prior over component means is rather flat over
the range. We set α0 = D + 3, and set a hierarchi-
cal prior 0 ∼ I W D(β0, γ0S0) where β0 is chosen
to be D − 0.6. These degrees of freedom express the
prior belief that component covariances are generally
similar without being informative about their absolute
scales. We choose γ0 so that E[] = S0/50, that is,
that the a priori range of each component is approx-
imately

√
50 ≈ 7 times smaller than the range set by

S0, although the model is not sensitive to this prior
range since 0 is random and allowed to adapt to the
data in its posterior. In the one-dimensional setting this
prior reduces to the same one used by Richardson and
Green. A detailed study of prior specifications for mix-
tures of multivariate Gaussian distributions is beyond
the scope of this paper and the interested reader is re-
ferred to Müller et al. [59] and Fraley and Raftery [18]
for alternative specifications.

In the one-dimensional setting we also considered a
conjugate prior so that we can compare the samplers
with and without component parameters marginalized
out. We use a similar weakly informative prior in the
conjugate case as well, with base distribution given by

μ0(dm,d)

= N1
(

dm;m0, S0
−1
0 

)

I W 1(d;α0,0),
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FIG. 5. Visualizing the induced prior on the number of clusters with n = 82 corresponding to the size of the galaxy data set. Left: histogram
of the mean number of clusters. Center: histogram of the standard deviation of the number of clusters. Right: scatter plot of standard deviation
vs mean of the number of clusters. 10,000 draws from the prior for a and σ were used.

where the one-dimensional inverse Wishart with pa-
rameter (a, s) is simply an inverse gamma with param-
eter (a/2, s/2). We used the same α0 and hierarchical
prior for 0 as for the nonconjugate prior, while the a
priori expected value for the variance of m can be seen
to be E[S0

−1
0 ] = S0, which is independent of 0

and matches the nonconjugate case. In both cases we
updated the 0 by Gibbs sampling.

The parameters a and τ of the NGGP are redundant
(see Section 2 for details), so we simply set τ = 1 in
the simulations. We place a gamma (1,1) prior on a,
while σ is given a beta prior with parameters (1,2). We
can visualize the induced prior on the partition struc-
ture by drawing samples of a and σ from their prior
and for each sample calculating the mean and standard
deviation of the prior over the number of clusters. Fig-
ure 5 shows the result for n = 82, corresponding to
the size of the galaxy data set. We see that the prior
gives support over a wide range of values for the mean
and standard deviation of the number of clusters, with
higher probability for the mean number of clusters to
be in the region between 1 and 20.

4.1 One-Dimensional Data Sets: Galaxy and

Acidity

In the conjugate case, we applied both the conju-
gate marginalized sampler of Section 3.1 and the con-
ditional slice sampler of Section 3.3 (but with mix-
ture component parameters marginalized out). To in-
vestigate the difference between marginalizing out the
component parameters and not, we also applied the
generalization of Neal’s Algorithm 8 in Section 3.2
and the Reuse algorithm of Section 3.2.2, both with
C ∈ {1,2,3,4,5} and the conditional slice sampler
to the conjugate model (sampling the parameters in-
stead of marginalizing them out). In the nonconju-
gate case we applied the conditional slice sampler and

the two nonconjugate marginalized samplers with C ∈
{1,2,3,4,5}. For all samplers in both conjugate and
nonconjugate models, the initial 10,000 iterations were
discarded as burn-in, followed by 200,000 iterations,
from which we collected 10,000 samples.

Figure 6 shows some aspects of the posterior dis-
tribution on the galaxy data set for the nonconjugate
model obtained using the conditional slice sampler,
while Figure 7 shows the same for the acidity data set.
The marginalized samplers produce the same results,
while the posterior for the conjugate model is simi-
lar and not shown. The co-clustering probabilities are
computed as follows: the color at location (x, y) indi-
cates the posterior probability that observations Yi and
Yj belong to the same components, where Yi is the
largest observed value smaller than min(x, y) and Yj

is the smallest observed value larger than max(x, y).
The posterior distribution of the number of compo-
nents used is shown in the top half of Figure 8. The
posterior distributions are consistent with those ob-
tained by previous authors, for example, Richardson
and Green [79], Escobar and West [13], Griffin and
Walker [27] and Roeder [80].

In Table 1 we compared the samplers in terms of
both their run times (in seconds, excluding time re-
quired to compute predictive probabilities) and their
effective sample sizes (ESSs) of the number of com-
ponents (as computed using the R Coda package).
By marginalizing out the mixture component param-
eters, we see that the samplers mix more effectively
with higher ESSs. The conditional slice sampler and
the nonconjugate marginalized samplers were effective
at handling mixture component parameters that were
sampled instead of marginalized out, but the ESSs were
a little lower, as expected. Among the marginalized
samplers, with increasing C both the computational
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FIG. 6. Visualizations of the posterior distribution of the nonconjugate NGGP mixture model on the galaxy data set. Top-left: posterior
mean and 95% credible interval (pointwise) of the density function. Top-right: co-clustering probabilities, whiskers at edges denote observa-
tions. Bottom: histograms of the posteriors of σ , log(a) and log(β0), respectively.

FIG. 7. Visualizations of the posterior distribution of the nonconjugate NGGP mixture model on the acidity data set. Top-left: posterior
mean and 95% credible interval (pointwise) of the density function. Top-right: co-clustering probabilities, whiskers at edges denote observa-
tions. Bottom row: histograms of the posterior of σ , log(a) and log(β0), respectively.
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FIG. 8. Top: Distribution of the number of components used, for the nonconjugate NGGP mixture model for the galaxy (left) and the
acidity (right) data sets, respectively. Bottom: distribution of the number of empty clusters instantiated by the conditional slice sampler at
each iteration (on the logarithmic scale) for the galaxy (left) and the acidity (right) data sets.

costs and the ESS generally increase, with the com-
putational cost of Neal’s Algorithm 8 increasing more
rapidly, as expected.

While the conditional slice sampler is typically faster
than the marginalized samplers, they also produce
lower ESSs. An important difference between the slice
sampler and the marginalized samplers is that the slice
sampler we proposed uses one slice variable per ob-
servation, so typically a significantly smaller number
of components are considered at each update of the
cluster assignment variables, and thus the algorithm is
faster and has lower ESSs. If a single slice variable is
used instead, as proposed in Griffin and Walker [27],
or if a nonslice conditional sampler like Barrios et
al. [2] is used, then all instantiated components will be
considered at each update. This can result in not only
higher ESSs but also higher computational overheads
since the number of empty components introduced can
be very large. The bottom half of Figure 8 shows the
distribution of the number of empty components for
one of the runs for the nonconjugate case (on the log-
arithmic scale). The mean numbers of empty compo-
nents are 76.6 and 31.4 for the galaxy and acidity data
sets, respectively. Other runs and the conjugate case are
similar and not shown. For comparison, the top panels
of Figure 8 show the posterior distribution of the num-
ber of nonempty components, which are smaller. As a

further note, we have found that the truncation of the
slice variables at 10−8 described in Section 3.3 is es-
sential to the program working properly, as otherwise
it will sometimes generate far too many atoms, causing
the program to run out of memory. Table 2 shows the
number of times the truncation came into effect during
each MCMC run. We did not find cases in which the
106 limit on the number of atoms was reached among
these runs.

4.2 Multidimensional Data Sets: Geyser and

Spikes

We have also explored the efficacies of the algo-
rithms on the geyser and spikes data sets. For the spikes
data set we reduced the size of the data set by ran-
domly selecting 500 spike waveforms to reduce the
overall computation time for the experiments. In pre-
liminary experiments this does not affect the qualita-
tive conclusions drawn from the results. We did not
include the generalization of Neal’s Algorithm 8 in
these experiments, as we have found in initial explo-
rations that it took significantly more computation time
without producing substantially higher ESSs than the
Reuse algorithm. The setups of the experiments are
similar as for the one-dimensional setting, with each
algorithm producing ten independent runs, each con-
sisting of 10,000 burn-in iterations followed by 10,000
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TABLE 1
Comparison of sampler efficiencies on the one-dimensional galaxy and acidity data sets. Each of 10 runs produces 10,000 samples, at

intervals of 20 iterations, after an initial burn-in period of 10,000 iterations. Each entry reports the average and standard error over the 10
runs. In the first column, C indicates conjugate prior specification, N for nonconjugate, while M indicates component parameters are

marginalized and S means they are sampled

Galaxy Acidity

Model Sampler Runtime (s) ESS Runtime (s) ESS

CM Cond Slice 239.1 ± 4.2 2004 ± 178 196.5 ± 1.0 910 ± 142
CM Marg (C = 1) 215.7 ± 1.4 7809 ± 87 395.5 ± 1.7 5236 ± 181

CS Cond Slice 133.0 ± 3.2 1594 ± 117 77.4 ± 0.7 1099 ± 49
CS Marg Neal 8 (C = 1) 74.4 ± 0.6 5815 ± 145 133.3 ± 1.8 4175 ± 85
CS Marg Neal 8 (C = 2) 87.9 ± 0.6 6292 ± 94 163.8 ± 1.5 4052 ± 158
CS Marg Neal 8 (C = 3) 101.9 ± 0.7 6320 ± 137 188.2 ± 1.1 4241 ± 99
CS Marg Neal 8 (C = 4) 115.9 ± 0.6 6283 ± 86 216.6 ± 1.7 4266 ± 122
CS Marg Neal 8 (C = 5) 130.0 ± 0.6 6491 ± 203 243.8 ± 2.0 4453 ± 123
CS Marg Reuse (C = 1) 64.3 ± 0.3 4451 ± 79 114.6 ± 2.0 3751 ± 65
CS Marg Reuse (C = 2) 67.6 ± 0.5 5554 ± 112 123.1 ± 1.9 4475 ± 110
CS Marg Reuse (C = 3) 71.3 ± 0.5 5922 ± 157 128.2 ± 2.2 4439 ± 158
CS Marg Reuse (C = 4) 74.9 ± 0.5 6001 ± 101 140.1 ± 1.6 4543 ± 108
CS Marg Reuse (C = 5) 78.7 ± 0.6 6131 ± 124 147.7 ± 1.5 4585 ± 116

NS Cond Slice 75.5 ± 1.2 939 ± 92 50.9 ± 0.5 949 ± 70
NS Marg Neal 8 (C = 1) 65.0 ± 0.5 4313 ± 172 110.9 ± 0.8 4144 ± 64
NS Marg Neal 8 (C = 2) 78.6 ± 0.4 4831 ± 168 139.2 ± 1.8 4290 ± 125
NS Marg Neal 8 (C = 3) 92.5 ± 0.5 4785 ± 97 162.7 ± 0.9 4368 ± 72
NS Marg Neal 8 (C = 4) 106.3 ± 0.5 4849 ± 120 187.6 ± 1.1 4234 ± 142
NS Marg Neal 8 (C = 5) 119.7 ± 0.6 5029 ± 89 215.4 ± 1.3 4144 ± 213
NS Marg Reuse (C = 1) 55.2 ± 0.5 3830 ± 103 91.3 ± 0.9 4007 ± 122
NS Marg Reuse (C = 2) 58.7 ± 0.5 4286 ± 101 98.1 ± 0.9 4192 ± 138
NS Marg Reuse (C = 3) 62.4 ± 0.6 4478 ± 124 105.1 ± 0.9 4260 ± 136
NS Marg Reuse (C = 4) 66.1 ± 0.5 4825 ± 63 112.3 ± 1.0 4191 ± 139
NS Marg Reuse (C = 5) 69.8 ± 0.6 4755 ± 141 121.0 ± 1.8 4186 ± 121

samples collected at intervals of 20 iterations. In addi-
tion to C = 1, . . . ,5, we also explored higher values of
C = 10, 15 and 20.

The run times and ESSs are reported in Table 3.
The trends observed for the one-dimensional setting
hold here as well: that the slice sampler is faster but
produces lower ESSs, and that with increasing C the

TABLE 2
Average number of times the slice threshold S was less than the

10−8 truncation level over the 10 conditional slice sampling runs.
The total number of iterations of each run is 210,000. Each entry

reports the average and standard error over 10 runs

Model Galaxy Acidity Geyser Spikes

CM 4476 ± 440 6143 ± 1148 – –
CS 4597 ± 385 4385 ± 394 – –
NS 3712 ± 222 8017 ± 1180 15,180 ± 980 5621 ± 475

marginalized sampler produces higher ESSs at higher
computational costs. As expected, the algorithms mix
more slowly on the higher-dimensional spikes data set,
with significantly lower ESSs. For the spikes data set
the nonconjugate marginalized samplers with higher
values of C have significantly higher ESSs. In fact,
they had better ESSs per unit of run time than for lower
values of C or for the slice sampler. This contrasts
with the other simpler data sets, where lower values of
C worked very well, probably because the additional
complexity of higher C values was not needed. Fig-
ure 9 shows the posterior distributions over the number
of clusters, log(a) and σ .

Finally, we illustrate the clustering structure among
spike waveforms discovered by the NGGP mixture
model. 2000 spike waveforms were selected at ran-
dom from the data set and the Reuse algorithm with
C = 20 is run as before, with 10,000 burn-in iterations
followed by 10,000 samples collected every 20 itera-
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TABLE 3
Comparison of sampler efficiencies on the geyser (2D) and spikes (6D) data sets. Each of 10 runs produces 10,000 samples, at intervals of

20 iterations, after an initial burn-in period of 10,000 iterations. Each entry reports the average and standard error over the 10 runs

Geyser Spikes

Model Sampler Runtime (s) ESS Runtime (s) ESS

NS Cond Slice 142.6 ± 1.1 574 ± 36 732.6 ± 8.1 17.1 ± 2.3
NS Marg Reuse (C = 1) 208.0 ± 1.3 2770 ± 209 1120.3 ± 8.8 35.7 ± 2.4
NS Marg Reuse (C = 2) 225.3 ± 1.4 3236 ± 73 1164.5 ± 5.4 46.9 ± 2.9
NS Marg Reuse (C = 3) 241.5 ± 1.3 3148 ± 71 1204.1 ± 7.3 57.0 ± 3.9
NS Marg Reuse (C = 4) 257.7 ± 1.7 3291 ± 145 1238.5 ± 7.8 61.4 ± 3.3
NS Marg Reuse (C = 5) 274.8 ± 1.7 3144 ± 70 1291.8 ± 7.9 69.8 ± 4.9
NS Marg Reuse (C = 10) 356.3 ± 2.5 3080 ± 135 1513.8 ± 11.9 90.8 ± 5.6
NS Marg Reuse (C = 15) 446.6 ± 4.9 3312 ± 154 1746.3 ± 10.7 95.9 ± 4.2
NS Marg Reuse (C = 20) 550.4 ± 3.5 3336 ± 109 1944.0 ± 14.7 114.5 ± 8.4

tions. We use co-clustering probabilities to summarize
the clustering structure. For each pair (i, j) of spikes
let pij be the (estimated) posterior probability that the
two spikes were assigned to the same cluster. We use
average linkage to organize the spikes into a hierarchy,
where the distance between spikes i and j is defined to
be 1−pij . This is then used to reorder the co-clustering
matrix. The hierarchy and reordered matrix are shown
on the upper panels of Figure 10. We see that most
spikes belong to six large clusters, two of which have
significant overlap and merged into one, while a sub-
set of waveforms formed smaller clusters which may
or may not overlap with other clusters. In the bottom
panels of Figure 10 we visualize the various clusters
found by thresholding the hierarchy at 0.95 and ignor-
ing clusters of size less than 10.

We can interpret the clusters found here in the con-
text of spike sorting, an important process in exper-
imental neuroscience of detecting spikes from neural
recordings and determining the neuron corresponding
to each spike from the shape of its waveform (as well
as the number of neurons) using a variety of manual
or automated clustering techniques, with each cluster

interpreted as a unique neuron. See Quiroga [73] and
Lewicki [44] for reviews of spike sorting methods, and
also Görür and Rasmussen [23], Wood and Black [86]
and Gasthaus et al. [20] for Bayesian nonparametric
mixture modeling approaches to spike sorting. We find
that the 5 largest clusters found (1, 4, 6, 7 and 8) all
correspond to well-defined waveforms with distinctive
shapes, and expect each of 1, 4, 6 and 8 to correspond
to a single neuron. Spikes in cluster 5 have similar
waveforms, as 6 and the two clusters are in fact merged
at a threshold of 0.99, though spikes in 5 lacked refrac-
tory periods; they may either correspond to the same
or distinct neurons. Clusters 2 and 3 consist of outliers,
false detections or waveforms formed by the superpo-
sition of two consecutive spikes. We note that a num-
ber of waveforms in other clusters are also superpo-
sitions as well. Finally, analyzing the two subclusters
of 7, we see that although their shapes are very similar,
the waveforms in the first two subpanels of 7a seem to
be slightly smaller than those in 7b, though it is un-
clear if the subclustering is due to two neurons or is an
artefact of the mixture components not being flexible
enough to capture spike waveform variability.

FIG. 9. Histograms of the posterior distribution of σ , log(a) and the number of clusters, respectively, for the spikes data.
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FIG. 10. Top: hierarchical organization of spike waveforms obtained by average linkage and the corresponding reordered co-clustering
matrix. Bottom: clusters found by thresholding at 0.95. Each panel consists of four subpanels, each corresponding to the waveforms recorded
by an electrode. Each waveform in the cluster is plotted in light grey and their mean in dark grey.

The approach taken here is simply to use an agglom-
erative linkage algorithm to help us visualize and ex-
plore the posterior over partition structures under the
mixture model. An alternative approach is to summa-
rize the posterior using a single partition, for exam-
ple, using the maximum a posteriori partition or one
that minimizes the posterior expectation of a loss func-
tion like Binder’s loss. The issue of how best to an-
alyze and interpret the posterior partition structure of
Bayesian models for clustering is still an open ques-
tion and beyond the scope of this paper. We refer the
interested reader to Binder [3], Medvedovic and Siva-
ganesan [56], Dahl [8], Lau and Green [43], Fritsch

and Ickstadt [19] and Rasmussen et al. [76] for classi-
cal and recent efforts in this regard.

5. DISCUSSION

NRMs provide a large class of flexible nonparamet-
ric priors beyond the standard DP, but their more com-
mon use is currently hindered by a lack of understand-
ing and of good algorithms for posterior simulation.
This work provides a review of NRMs for easy ac-
cess to the extensive literature, as well as novel algo-
rithms for posterior simulation that are efficient and
easy to use. We will also provide open source Java
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software implementing all four algorithms described
in Section 3 so that others might more easily explore
them.

All the samplers proposed in this paper are ba-
sic samplers that make changes to the cluster assign-
ment of one observation at a time. Samplers that make
more complex changes, for example, those based on
split-merge Metropolis–Hastings moves by Jain and
Neal [32], can be significantly more efficient at explor-
ing multiple posterior modes. Such samplers can be de-
rived in both marginalized and conditional forms, using
the characterizations reviewed in this paper, and are an
interesting avenue of future research. Beyond the al-
gorithms described in Section 3, there are many vari-
ants possible with both marginalized and conditional
samplers for NRM mixture models. While conditional
samplers have been well explored in the literature, ours
are the first tractable marginalized samplers for mixture
models with a homogeneous NRM prior. In addition,
a number of samplers based on the system of predictive
distributions of NRMs have been proposed by James et
al. [36] and by Lijoi et al. [46–48], but these sampling
methods can be computationally expensive in the non-
conjugate setting due to numerical integrations needed
for computing the probabilities associated to new clus-
ters, and convergence is slow, requiring additional ac-
celeration steps. See, for example, Bush and MacEach-
ern [7] for details.

A random probability measure that is in popular
use but conspicuously not within the class of NRMs
is the two-parameter Poisson–Dirichlet process (other-
wise known as the Pitman–Yor process) by Perman et
al. [69]. See also Pitman and Yor [72] and Ishwaran
and James [31] for details. It is instead in an even
larger class known as the Poisson–Kingman processes
introduced by Pitman [70], which are obtained by al-
lowing the total mass of the otherwise completely ran-
dom measure underlying the NRM to have a different
distribution. Poisson–Kingman processes represent the
largest known class of random probability measures
that are still mathematically tractable. In addition to
NRMs, they also include random probability measures
induced by the so-called Gibbs type exchangeable ran-
dom partitions introduced by Gnedin and Pitman [22].
The marginalized and conditional samplers we have
developed may be extended to the Poisson–Kingman
processes as well.

Throughout this paper we have used the NGGP as
a running example to illustrate the various properties
and formulae, because of its tractability and because
it includes many well-known NRMs as examples. It

has been shown by Lijoi et al. [50] that the NGGP is
the only NRM that is also of Gibbs type. Beyond the
NGGP, the formulae derived tend to become intractable
and require numerical integrations. A notable excep-
tion is the class of NRMs whose Lévy intensity mea-
sure are mixtures of those for the generalized Gamma
CRM, first proposed by Trippa and Favaro [84] who
also showed that they form a dense subclass of the
NRMs. It is straightforward to extend the algorithms
and the software derived in this paper to this larger
class.

As a final remark, the study of random probabil-
ity measures underpins a large body of work spanning
probability, statistics, combinatorics and mathematical
genetics. They also form the core of many Bayesian
nonparametric models that are increasingly popular in
applied statistics and machine learning. By expanding
the class of tractable random probability measures be-
yond the DP to NRMs, we hope that our work will in-
crease both the range and flexibility of the models in
use now and in the future.
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