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Abstract. In a seminal paper, McMillan proposed a technique for con-
structing a finite complete prefix of the unfolding of bounded (i.e., finite-
state) Petri nets, which can be used for verification purposes. Contextual
nets are a generalisation of Petri nets suited to model systems with read-
only access to resources. When working with contextual nets, a finite
complete prefix can be obtained by applying McMillan’s construction
to a suitable encoding of the contextual net into an ordinary net. How-
ever, it has been observed that if the unfolding is itself a contextual
net, then the complete prefix can be significantly smaller than the one
obtained with the above technique. A construction for generating such
a contextual complete prefix has been proposed for a special class of
nets, called read-persistent. In this paper we propose a new algorithm
that works for arbitrary semi-weighted, bounded contextual nets. The
construction explicitly takes into account the fact that, unlike ordinary
or read-persistent nets, an event can have several different histories in
contextual net computations.

1 Introduction

In recent years there has been a growing interest in the use of partial-order
semantics to deal with the state-explosion problem when model checking con-
current systems. In particular, a thread of research that started with the seminal
work by McMillan [10, 11] proposes the use of the unfolding semantics as a basis
for the verification of finite-state systems, modelled as Petri nets.

The unfolding of a Petri net, originally introduced in [14], is a safe, acyclic
occurrence net that completely expresses its behaviour. For non-trivial nets the
unfolding can be infinite even if the original net is bounded, i.e., it has a finite
number of reachable states. McMillan’s algorithm constructs a finite complete
prefix, i.e., a subnet of the unfolding such that each marking reachable in the
original net corresponds to some concurrent set of places in such a prefix.

⋆ Research partially supported by EU IST-2004-16004 SEnSOria, MIUR Project
ART, DFG project SANDS and CRUI/DAAD Vigoni “Models based on Graph
Transformation Systems: Analysis and Verification”.
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Fig. 1. (a) A safe contextual net; (b) its encoding by replacing read arcs with con-
sume/produce loops; (c) its concurrency-preserving PR-encoding.

Contextual nets [13], also called nets with test arcs [5], activator arcs [8] or
read arcs [17], extend ordinary nets with the possibility of checking for the pres-
ence of tokens without consuming them. The possibility of faithfully representing
concurrent read accesses to resources allows to model in a natural way phenom-
ena like concurrent access to shared data (e.g., reading in a database) [16], to
provide concurrent semantics to concurrent constraint programs [12], to model
priorities [7] or to conveniently analyse asynchronous circuits [18].

When working with contextual nets, if one is interested only in reachable
markings, it is well-known that read arcs can be replaced by consume/produce
loops (see Fig. 1(a) and (b)), obtaining an ordinary net with the same reachabil-
ity graph. However, when one unfolds the net obtained by this transformation,
the number of transitions and places might explode due to the sequentialization
imposed on readers. A cleverer encoding, proposed in [18] and hereafter referred
to as the place replication encoding (PR-encoding), consists of creating “private”
copies of the read places for each reader (see Fig. 1(c)). In this way, for safe nets
the encoding does not lead to a loss of concurrency, and thus the explosion of
the number of events and places in the unfolding can be mitigated.

A construction that applies to contextual nets and produces an unfolding
that is itself a contextual (occurrence) net has been proposed independently
by Vogler, Semenov and Yakovlev in [18] and by the first two authors with
Montanari in [3]. In particular, the (prefixes of the) unfolding obtained with this
construction can be much smaller than in both encodings considered above.

Unfortunately, as discussed in [18], McMillan’s construction of the finite com-
plete prefix does not extend straightforwardly to the whole class of contextual
nets. The authors of [18] propose a natural generalization of McMillan’s al-
gorithm by taking into account some specific features of contextual nets (for
example, in the definition of co-sets), but they show that their approach only
works for contextual nets that are read-persistent, i.e., where there is no interfer-
ence between preconditions and context conditions: any two transitions t1 and t2
such that t1 consumes a token that is read by t2 cannot be enabled at the same
time. Similarly, the algorithm proposed in [2], where McMillan’s approach was

2



generalised to graph grammars, is designed for a restricted class of grammars,
which are the graph-grammar-theoretical counterpart of read-persistent nets.

The algorithms of [18] and [2] fail on non-read-persistent systems because,
in general, a transition of a contextual occurrence net can have more than one
possible causal history (or local configuration, according to [18]): this happens,
for example, when a transition consumes a token which could be read by another
transition. In this situation, McMillan’s original cut-off condition (used by the
algorithms in [18] and [2]) is not adequate anymore, because it considers a single
causal history for each event (see also the example discussed in Section 3).

In this paper we present a generalization of McMillan’s construction that ap-
plies to arbitrary bounded semi-weighted contextual nets, i.e., Place/Transition
contextual nets where the initial marking and the post-set of each transition are
sets rather than proper multisets: this class of nets strictly includes safe con-
textual nets. The proposed algorithm explicitly takes into account the possible
histories of events, and generates from a finite bounded semi-weighted contex-
tual net a finite complete prefix of its unfolding. The same constructions and
results could have been developed for general weighted contextual nets, at the
price of some technical (not conceptual) complications.

As in McMillan’s original work, the key concept here is that of a cut-off
event, which is, roughly, an event in the unfolding that, together with its causal
history, does not contribute to generating new markings. We show that the
natural generalisation of cut-off that takes into account all the possible histories
of each event is theoretically fine, in the sense that the maximal cut-off free prefix
of the unfolding is complete. However, this characterisation is not constructive in
general, since an event can have infinitely many histories. We then show how this
problem can be solved by restricting the attention to a finite subset of “useful”
histories for each event, which really contribute to generating new states.

The contribution of this approach is twofold. From a theoretical point of view,
the algorithm extends [18] since it applies uniformly to the full class of contextual
nets (and, for read-persistent nets, it specialises to [18]). From a practical point
of view, with respect to the approach based on the construction of the complete
finite prefix of the PR-encoding, we foresee several improvements. For safe nets
the proposed technique produces a smaller unfolding prefix (once the histories
recorded for generating the prefix are disregarded) and it has a comparable
efficiency (we conjecture that the histories considered when unfolding a safe
contextual net exactly correspond to the events obtained by unfolding its PR-
encoding). Additionally, our technique appears to be more efficient for non-safe
nets (see Appendix A) and it looks sufficiently general to be extended to other
formalisms able to model concurrent read accesses to part of the state, like graph
transformation systems, for which the encoding approach does not seem viable.

The paper is structured as follows. In Section 2 we introduce contextual nets
and their unfolding semantics. In Section 3 we characterise a finite complete
prefix of the unfolding for finite-state contextual nets, relying on a generalised
notion of cut-off and in Section 4 we describe an algorithm for constructing a
complete finite prefix. Finally, in Section 5 we draw some conclusions.
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2 Contextual nets and their unfolding

In this section we introduce the basics of marked contextual P/T nets [16, 13]
and we review their unfolding semantics as defined in [18, 3].

2.1 Contextual nets

We first recall some notation for multisets. Let A be a set; a multiset of A is
a function M : A → N. It is called finite if {a ∈ A : M(a) > 0} is finite.
The set of finite multisets of A is denoted by µ∗A. The usual operations on
multisets, like multiset union ⊕ or multiset difference ⊖, are used. We write
M ≤ M ′ if M(a) ≤ M ′(a) for all a ∈ A. If M ∈ µ∗A, we denote by [[M ]] the
multiset defined, for all a ∈ A, as [[M ]](a) = 1 if M(a) > 0, and [[M ]](a) = 0
otherwise. A multirelation f : A ↔ B is a multiset of A×B. It is called finitary
if {b ∈ B : f(a, b) > 0} is a finite set for all a ∈ A. A finitary multirelation f

induces in an obvious way a function µf : µ∗A → µ∗B, defined as µf(M)(b) =∑
a∈A M(a) · f(a, b) for M ∈ µ∗A and b ∈ B. In the sequel we will implicitly

assume that all multirelations are finitary. A relation r : A ↔ B is a multirelation
r where multiplicities are bounded by one, namely r(a, b) ≤ 1 for all a ∈ A and
b ∈ B. Sometimes we shall write simply r(a, b) instead of r(a, b) = 1.

Definition 1 ((marked) contextual net). A (marked) contextual Petri net
(c-net) is a tuple N = 〈S, T, F,C,m〉, where

– S is a set of places and T is a set of transitions;
– F = 〈Fpre, Fpost〉 is a pair of finitary multirelations Fpre, Fpost : T ↔ S;
– C : T ↔ S is a finitary relation, called the context relation;
– m ∈ µ∗S is a finite multiset, called the initial marking.

The c-net is called finite if T and S are finite sets. Without loss of generality,
we assume S ∩ T = ∅. Moreover, we require that for each transition t ∈ T , there
exists a place s ∈ S such that Fpre(t, s) > 0.

In the following when considering a c-net N , we will implicitly assume N =
〈S, T, F,C,m〉.

Given a finite multiset of transitions A ∈ µ∗T we write •A for its pre-set
µFpre(A) and A• for its post-set µFpost(A). Moreover, A denotes the context of A,
defined as A = [[µC(A)]]. The same notation is used to denote the functions from
S to the powerset P(T ), e.g., for s ∈ S we define •s = {t ∈ T : Fpost(t, s) > 0}.

An example of a contextual net, inspired by [18], is depicted in Fig. 2(a).
Note that read arcs are drawn as undirected lines. For instance, referring to
transition t1 we have •t1 = s1, t1

• = s3 and t1 = s2.
For a finite multiset of transitions A to be enabled at a marking M , it is

sufficient that M contains the pre-set of A and one additional token in each place
of the context of A. This corresponds to the intuition that a token in a place
(like s in Fig. 1(a)) can be used as context concurrently by many transitions;
instead, if read arcs are replaced by consume/produce loops (as in Fig. 1(b)) the
transitions needing a token in place s can fire only one at a time.
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Fig. 2. (a) A contextual net N0 and (b) its unfolding Ua(N0).

Definition 2 (enabling, step). Let N be a c-net. A finite multiset of transi-
tions A ∈ µ∗T is enabled at a marking M ∈ µ∗S if •A ⊕ A ≤ M . In this case,
the execution of A in M , called a step (or a firing when it involves just one
transition), produces the new marking M ′ = M ⊖ •A⊕A•, written as M [A〉M ′.

A marking M of a c-net N is called reachable if there is a finite sequence of
steps leading to M from the initial marking, i.e., m [A0〉M1 [A1〉M2 . . . [An〉M .

Definition 3 (bounded, safe and semi-weighted nets). A c-net N is called
n-bounded if for any reachable marking M each place contains at most n tokens,
namely M(s) ≤ n for all s ∈ S. It is called safe if it is 1-bounded and Fpre,
Fpost are relations (rather than general multirelations). A c-net N is called semi-
weighted if the initial marking m is a set and Fpost is a relation.

Observe that requiring Fpre (resp. Fpost) to be relations amounts to asking
that for any transition t ∈ T , the pre-set (resp. post-set) of t is a set, rather than
a general multiset.

We recall that considering semi-weighted nets is essential to characterise the
unfolding construction, in categorical terms, as a coreflection [4]. However, in this
paper, the choice of taking semi-weighted nets rather than general weighted nets
is only motivated by the need of simplifying the presentation: the generalisation
would require only some technical complications in the definition of the unfolding
(Definition 10), related to the fact that an occurrence of a place would not be
completely identified by its causal history.
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2.2 Occurrence c-nets

Occurrence c-nets are safe c-nets such that the dependency relations among
transitions that we will introduce, causality and asymmetric conflict, satisfy
suitable acyclicity and well-foundedness requirements.

Causality is defined as for ordinary nets, with an additional clause stating
that transition t causes t′ if it generates a token in a context place of t′.

Definition 4 (causality). Let N be a safe c-net. The causality relation <N is
the least transitive relation on S ∪ T such that

1. if s ∈ •t then s <N t;
2. if s ∈ t• then t <N s;
3. if t• ∩ t′ 6= ∅ then t <N t′.

Given x ∈ S ∪ T , we write ⌊x⌋ for the set of causes of x in T , defined as
⌊x⌋ = {t ∈ T : t ≤N x} ⊆ T , where ≤N is the reflexive closure of <N .

We say that a transition t is in asymmetric conflict with t′, denoted t րN t′,
if whenever both t and t′ fire in a computation, t fires before t′. The paradigmatic
case is when transition t′ consumes a token in the context of t, i.e., when t∩•t′ 6=
∅, as for transitions t′

1
and t′

2
in Fig. 2(b) (see [4, 15, 9, 18]).

Note that the fact that whenever both t and t′ fire, t fires before t′ trivially
holds when t <N t′, because t cannot follow t′ in a computation, and (with t

and t′ in interchangeable roles) also when t and t′ have a common precondition,
since they will never fire in the same computation. For technical convenience the
definition of րN takes these two situations into account as well.

Definition 5 (asymmetric conflict). Let N be a safe c-net. The asymmetric
conflict relation րN (also denoted ր if N is clear from the context) is the binary
relation on T defined as

t րN t′ iff t ∩ •t′ 6= ∅ or (t 6= t′ ∧ •t ∩ •t′ 6= ∅) or t <N t′.

For X ⊆ T , րX denotes the restriction of րN to X, i.e., րX=րN ∩ (X ×X).

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour, satis-
fying suitable conflict freeness requirements.

Definition 6 (occurrence c-nets). An occurrence c-net is a safe c-net N

such that

– each place s ∈ S is in the post-set of at most one transition, i.e. |•s| ≤ 1;
– the causal relation <N is irreflexive and its reflexive closure ≤N is a partial

order, such that ⌊t⌋ is finite for any t ∈ T ;
– the initial marking is the set of minimal places w.r.t. ≤N , i.e., m = {s ∈ S :

•s = ∅};
– ր⌊t⌋ is acyclic for all t ∈ T .
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The last condition corresponds to the requirement of irreflexivity for the
conflict relation in ordinary occurrence nets. In fact, if a transition t has a րN

cycle in its causes then it can never fire, since in an occurrence c-net N , the
order in which transitions appear in a firing sequence must be compatible with
the asymmetric conflict relation. An example of an occurrence c-net can be found
in Fig. 2(b).

The notion of concurrency is the natural generalisation of the one for ordinary
nets. Note that, because of the presence of contexts, some places that a transition
needs in order to fire (the contexts) can be concurrent with the places it produces.

Definition 7 (concurrency relation). Let N be an occurrence c-net. A finite
set of places M ⊆ S is called concurrent, written conc(M), if

1. ∀s, s′ ∈ M. ¬(s < s′);
2. ⌊M⌋ is conflict-free, i.e., ր⌊M⌋ is acyclic.

It can be shown that, as for ordinary occurrence nets, a set of places M is
concurrent if and only if there is some reachable marking in which all the places
of M contain one token.

From now on, consistently with the literature, we shall often call the transi-
tions of an occurrence c-net events.

Definition 8 (configuration). Let N be an occurrence c-net. A set of events
C ⊆ T is called a configuration if

1. րC is well-founded;
2. {t′ ∈ C : t′ ր t} is finite for all t ∈ C;
3. C is left-closed w.r.t. ≤, i.e. for all t ∈ C, t′ ∈ T , t′ ≤ t implies t′ ∈ C.

We denote by Conf (N) the set of all configurations of N , equipped with the
ordering defined as C ⊑ C ′, if C ⊆ C ′ and ¬(t′ ր t) for all t ∈ C, t′ ∈ C ′ \ C.

Furthermore two configurations C1, C2 are said to be in conflict (C1#C2)
when there is no C ∈ Conf (N) such that C1 ⊑ C and C2 ⊑ C.

The notion of configuration characterises the possible (concurrent) computations
of an occurrence c-net. It can be proved that a subset of events C is a config-
uration iff the events in C can all be fired, starting from the initial marking,
in any order compatible with ր. The relation ⊑ is a computational order of
configurations: C ⊑ C ′ if C can evolve and become C ′. Remarkably, this order
is not simply subset inclusion since a configuration C cannot be extended with
an event t′ if t′ ր t for some t ∈ C, since t′ cannot fire after t in a computation.
Two configurations are in (symmetric) conflict if they do not have a common
extension. More concretely C1#C2 when there exists t1 ∈ C1 and t2 ∈ C2 \ C1

such that t2 ր t1 or the symmetric condition holds.
Given a configuration C and an event t ∈ C, the history of t in C is the set

of events that must precede t in the (concurrent) computation represented by
C. For ordinary nets the history of an event t coincides with the set of causes
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⌊t⌋, independently of the configuration where t occurs. Instead, for c-nets, due
to the presence of asymmetric conflicts between events, an event t which occurs
in more than one configuration may have different histories. The next definition
formalises this fact.

Definition 9 (history). Let N be an occurrence net. Given a configuration C

and an event t ∈ C, the history of t in C, denoted by C[[t]], is defined as

C[[t]] = {t′ ∈ C : t′(րC)∗t}.

The set of all possible histories of an event t, namely {C[[t]] : C ∈ Conf (N) ∧ t ∈
C} is denoted by Hist(t).

2.3 Unfolding

Given a semi-weighted c-net N , an unfolding construction allows us to obtain an
occurrence c-net Ua(N) that describes the behaviour of N [3, 18]. As for ordinary
nets, each event in Ua(N) represents a particular firing of a transition in N , and
places in Ua(N) represent occurrences of tokens in the places of N . The unfolding
is equipped with a mapping to the original net N , sending each place (event) of
the unfolding to the corresponding place (transition) in N .

The unfolding can be constructed inductively by starting from the initial
marking of N and then by adding, at each step, an occurrence of each transition
of N which is enabled by (the image of) a concurrent subset of the places already
generated. We present an equivalent axiomatic definition, in the style of the one
proposed by Winskel in [20].

Definition 10 (unfolding). Let N = 〈S, T, F,C,m〉 be a semi-weighted c-net.
The unfolding Ua(N) = 〈S′, T ′, F ′, C ′,m′〉 of the net N is the unique occurrence
c-net satisfying the following (recursive) equations

m′ = {〈∅, s〉 : s ∈ m}
S′ = {m′} ∪ {〈t′, s〉 : t′ = 〈Mp,Mc, t〉 ∈ T ′ ∧ s ∈ t•}
T ′ = {〈Mp,Mc, t〉 : Mp,Mc ⊆ S′ ∧ Mp ∩ Mc = ∅ ∧ conc(Mp ∪ Mc) ∧

t ∈ T ∧ µfS(Mp) = •t ∧ µfS(Mc) = t}

F ′
pre(t

′, s′) iff t′ = 〈Mp,Mc, t〉 ∧ s′ ∈ Mp (t ∈ T )
C ′(t′, s′) iff t′ = 〈Mp,Mc, t〉 ∧ s′ ∈ Mc (t ∈ T )
F ′

post(t
′, s′) iff s′ = 〈t′, s〉 (s ∈ S)

where fN = 〈fT , fS〉 : Ua(N) → N is the folding morphism, consisting of a
pair of mappings fT : T ′ → T and fS : S′ → S defined by fT (t′) = t for
t′ = 〈Mp,Mc, t〉 and fS(s′) = s for s′ = 〈x, s〉.

As said before, places and events in the unfolding of a c-net represent respectively
tokens and firing of transitions in the original net. Each place in the unfolding
is a pair recording the “history” of the token and the corresponding place in the
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original net. Each event is a triple recording the precondition and context used
in the firing, and the corresponding transition in the original net. A new place
with empty history 〈∅, s〉 is generated for each place s in the initial marking.
Moreover, a new event t′ = 〈Mp,Mc, t〉 is inserted in the unfolding whenever
we can find a concurrent set of places (precondition Mp and context Mc) that
corresponds, in the original net, to a marking that enables t. For each place s in
the post-set of such t, a new place 〈t′, s〉 is generated, belonging to the post-set
of t′. The folding morphism f maps each place (event) of the unfolding to the
corresponding place (transition) in the original net.

An initial part of the unfolding of the net N0 in Fig. 2(a) is represented in
Fig. 2(b). The folding morphism from Ua(N0) to N0 is implicitly represented by
the name of the items in the unfolding.

The unfolding is complete with respect to the behaviour of the original net
in the following sense.

Proposition 1 (completeness of the unfolding). Let N be a c-net and let
Ua(N) = 〈S′, T ′, F ′, C ′,m′〉 be its unfolding. A marking M ∈ µ∗S is coverable
in N iff there exists a concurrent subset X ⊆ S′ such that M = µfS(X).

This is the notion of completeness that we will use in the rest of the paper:
it is slightly weaker than that of [10, 18], for example, as it is concerned with
markings only, and not with transitions.

3 Defining a Complete Finite Prefix

To obtain a finite prefix of the unfolding that is still complete in the sense of
Proposition 1, the idea is to avoid to include useless events in the unfolding,
where “useless” means events which do not contribute to generating new mark-
ings. To this aim McMillan introduced the notion of “cut-off” for ordinary nets,
which is roughly an event whose history does not generate a new marking. Then
the complete finite prefix is the greatest prefix without cut-offs. This definition
of cut-off event has to be adapted to the present framework, since for contex-
tual nets an event may have different histories, or, using McMillan terminology,
different local configurations.

Considering only the minimal history of an event, i.e., its set of causes, in
the definition of cut-off leads to a finite but not necessarily complete prefix,
as observed in [18]. For instance, consider net N0 in Fig. 2(a). According to
the ordinary definition of cut-off, in its unfolding Ua(N0) shown in Fig. 2(b)
the event t′

2
would be a cut-off since its minimal history {t′

0
, t′

2
} generates a

marking corresponding to the initial marking. Thus the largest prefix without
cut-offs would be the net O0 in Fig. 3(a), which is not complete since it does not
“represent” the marking s0 ⊕ s3, reachable in N0.

Considering instead all the possible histories of an event leads to a charac-
terisation of a prefix which is finite and complete, even if this characterisation is
not constructive since there can be infinitely many possible histories for a single
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Fig. 3. (a) An incomplete and (b) a complete enriched prefix for the net in Fig. 2.

event (see [2]). In the present paper we suggest to record for each event only a
subset of histories which are considered “useful to produce new markings”.

To formalise this fact we introduce a notion of occurrence net decorated with
possible histories for the involved events.

Definition 11 (enriched occurrence net). An enriched occurrence net is a
pair E = 〈N,χ〉, where N is an occurrence net and χ : T → P(P(T )) is a
function such that for any t ∈ T , ∅ 6= χ(t) ⊆ Hist(t).

The enriched occurrence net E is called closed if for all t, t′ ∈ T , for any
C ∈ χ(t) if t′ ∈ C then C[[t′]] ∈ χ(t′).

A configuration of E is a configuration C ∈ Conf (N) such that C[[t]] ∈ χ(t)
for all t ∈ C. The set of configurations of E is denoted by Conf (E).

Often, given an enriched occurrence net E we will denote its components by
NE and χE . If the enriched net is Ei, we will call its components Ni and χi.

A generalisation of the natural prefix ordering over occurrence nets can be
defined on enriched occurrence nets.

Definition 12 (prefix ordering). Given two enriched occurrence nets E1 and
E2, we say that E1 is a prefix of E2, written E1 � E2, if N1 is a prefix of N2,
and for any t ∈ T1, χ1(t) ⊆ χ2(t).

From now on, N = 〈S, T, F,C,m〉 is a fixed semi-weighted c-net, Ua(N) =
〈S′, T ′, F ′, C ′,m′〉 is its unfolding, and fN : Ua(N) → N is the folding morphism.

Definition 13 (enriched event, enriched prefix). An enriched event of the
unfolding is a pair 〈t,Ht〉, where t ∈ T ′ is an event of the unfolding, and Ht ∈
Hist(t) is one of its histories. An enriched prefix of the unfolding Ua(N) is any
closed enriched occurrence net E such that NE is a prefix of Ua(N). We will say
that the enriched prefix E contains 〈t,Ht〉 and write 〈t,Ht〉 ∈ E if t ∈ TE and
Ht ∈ χE(t).

10



An example of enriched prefix of Ua(N0) in Fig. 2(b) is given in Fig. 3(b).
For any event t the set of histories χE(t) is written near to the event itself.

It can be shown that the set of enriched prefixes of Ua(N) endowed with the
prefix ordering � forms a lattice. Given two enriched prefixes E1 and E2, their
least upper bound is E1⊔E2 = 〈NE , χE〉, where NE is the componentwise union
of N1 and N2, and, for any event t in N , χE(t) =

⋃
{i:t∈Ni}

χi(t). Moreover, it
is not difficult to prove that given two enriched prefixes E1 and E2

E1 � E2 iff Conf (E1) ⊆ Conf (E2).

A configuration of Ua(N) represents a computation in the unfolding itself,
which in turn maps, via the folding morphism, to a computation of N . Hence
we can define the marking of N after a finite configuration of the unfolding.

Definition 14 (marking after a configuration). Let C ∈ Conf (Ua(N)) be a
finite configuration. We denote by mark(C) the marking of N after C, defined as
µfS(m′ ⊕

⊕
t∈C t• ⊖

⊕
t∈C

•t).

The notion of cut-off is now defined for enriched events, thus taking histories
explicitly into account.

Definition 15 (cut-off). An enriched event 〈t,Ht〉 of the unfolding Ua(N) is
called a cut-off if either mark(Ht) = m, the initial marking of N , or there is
another enriched event 〈t′,Ht′〉 of Ua(N) satisfying

(1) mark(Ht) = mark(Ht′) and
(2) |Ht′ | < |Ht|.

Let E be an enriched prefix of the unfolding. We say that E contains a cut-off
if some enriched event 〈t,Ht〉 ∈ E is a cut-off in the full unfolding Ua(N). The
enriched event 〈t,Ht〉 ∈ E is called a local cut-off in E if either mark(Ht) = m

or there is an enriched event 〈t′,Ht′〉 ∈ E satisfying (1) and (2) above.

A different notion of cut-off which refines the one originally proposed by
McMillan by using adequate orders over configurations has been introduced
in [6]. We are confident that this improvement can be integrated seamlessly
into our framework, as mentioned in the conclusions.

Note that the notion of cut-off is based on a quantification over all the en-
riched events of the full unfolding and as such it is not effective. For an enriched
event, being a cut-off is a global property, independent of the specific prefix of
the unfolding we are considering. Clearly, every local cut-off in an enriched pre-
fix E is also a cut-off. This simple observation will be used several times in the
sequel.

Definition 16 (truncation). The truncation Ta(N) of the unfolding is an en-
riched occurrence net defined as the greatest enriched prefix (w.r.t. prefix ordering
�) of the unfolding which does not contain cut-offs.

11



The above definition is well-given thanks to the lattice structure of the set of
enriched prefixes ordered by �. However, it is not yet constructive. In Section 4
we will present an algorithm for computing a complete finite prefix, possibly
larger than the truncation, using the notion of local cut-off.

We say that a configuration C of the unfolding includes a cut-off if for some
t ∈ C, the enriched event 〈t, C[[t]]〉 is a cut-off. The next fundamental lemma
shows that configurations of the unfolding containing cut-offs can be disregarded
without losing information about the reachable markings.

Lemma 1 (cut-off elimination). Let C ∈ Conf (Ua(N)) be a finite configura-
tion. There exists a finite configuration C ′ without cut-offs such that mark(C) =
mark(C ′).

Using the lemma above we can show that the truncation is a complete prefix
of the unfolding.

Theorem 1 (completeness). The truncation Ta(N) is a complete prefix of the
unfolding, i.e., for any reachable marking M of N there is a finite configuration
C of Ta(N) such that mark(C) = M .

For finite n-bounded nets the number of reachable states of the net is finite
and thus one can prove that the truncation of its unfolding is finite. We get
this as a corollary of a more general result which will be useful in proving the
termination of the algorithm for the complete prefix.

Theorem 2 (finiteness). Let N be a finite n-bounded c-net and let E be an
enriched prefix of the unfolding free of local cut-offs. Then E is finite.

Recalling that any local cut-off is a cut-off and thus that Ta(N) is free from
local cut-offs we have the following.

Corollary 1. Let N be a finite n-bounded net. The truncation Ta(N) is finite.

For instance, consider the net N0 and its unfolding Ua(N0) in Fig. 2. The
truncation Ta(N0) is the enriched prefix depicted in Fig. 3(b). Note that it in-
cludes the event t′

2
. In fact t′

2
has two possible histories: the minimal history

H2 = ⌊t′
2
⌋ = {t′

0
, t′

2
} and H ′

2
= {t′

0
, t′

1
, t′

2
}. While 〈t′

2
,H2〉 is a cut-off, the pair

〈t′
2
,H ′

2
〉 is not, and thus it is included in the truncation.

4 Computing the prefix

The construction builds incrementally a finite prefix of the full unfolding of a
semi-weighted c-net N by starting from the initial marking and by iteratively
adding new events representing occurrences of transitions of N . For each event t

in Fin, the currently built part of the prefix, we also record a current set of his-
tories χFin(t), thus making the prefix under construction an enriched occurrence
net. During the construction we record in a set pe the enriched events which are
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Fig. 4. Predecessors w.r.t. asymmetric conflict of an event t.

candidates for being included in Fin, i.e., the pairs 〈t,H〉 where t is an event
enabled in Fin and H is one of its current possible histories.

Let us first illustrate how the histories of an event t in a given enriched prefix
E can be obtained from the histories of the events that are in direct asymmetric
conflict with t. Consider a situation like in Fig. 4, which illustrates a part of the
prefix E. A direct predecessor of t w.r.t. asymmetric conflict is either a cause
(like t1, which produces a token that is read, or t2, which produces a token that
is consumed by t) or an event as t3 that reads a token consumed by t.

A new history for t can be constructed as follows: for every direct cause ti
of t choose any history Hi of ti, while for every transition tj that is in direct
asymmetric conflict with t (but not a cause) optionally take any history Hj .
Whenever such histories are pairwise not in conflict (see Definition 8) then the
set H = {t} ∪

⋃
i Hi, the union of all such histories (and t), is called a history

for t consistent with E.

Note that H ∈ Hist(t) and furthermore adding H to E keeps the prefix
closed, since for every transition t′ ∈ H the history H[[t′]] is already contained
in E. This is a consequence of the fact that for any ti we have H[[ti]] = Hi since
no two histories in the union are in conflict.

The algorithm proceeds as follows. Again we use the notation of Definition 10.

Initialization: Start with Fin := m′ and let χFin be the empty function. An
event t = 〈Mp,Mc, t̂〉 is enabled in Fin whenever conc(Mp ∪ Mc). Now let
pe be the set of all pairs of the form 〈t,Ht〉, where t is an event enabled in
Fin and Ht is a history of t consistent with Fin. Initially the only history of
t is {t}.

Loop: While pe 6= ∅ do: Choose a pair 〈t,Ht〉 ∈ pe such that |Ht| is minimal.
Remove this pair from pe.

– If 〈t,Ht〉 would be a local cut-off in Fin, do nothing.

– If 〈t,Ht〉 is not a local cut-off, then insert it into Fin. This means

• if t is already present in Fin then add the history Ht to χFin(t);
• otherwise add t to Fin and set χFin(t) := {Ht}.

Consider all events t′ contained either in Fin or in pe: Whenever t′ has
a new history Ht′ consistent with the updated prefix Fin, arising from
the insertion of Ht, then add 〈t′,Ht′〉 to pe. (Note that a propagation
phase is necessary to obtain all new histories.)

13



If a new transition has been added to Fin, update pe by adding all events
t which have become enabled in Fin in the last step together with all their
histories consistent with Fin. Then perform the next step of the loop.

Note that whenever a new pair 〈t′,Ht′〉 is added to pe, then the size of Ht′

is larger than the size of the history Ht under consideration. This is due to the
fact that these newly generated histories must include Ht. Observe also that all
pairs 〈t,H〉 with H ∈ Hist(t) are considered at some point, unless there exists a
local cut-off 〈t′,H ′〉 such that t′ ∈ H and H ′ = H[[t′]].

An efficient computation of the prefix should be based on suitable data struc-
tures. As observed above, a set of direct predecessors is needed for each event
in order to update its histories. Furthermore histories should not be stored ex-
plicitly, but via pointer structures containing references back to the histories
they originated from. In addition, causality and conflict of histories should be
computed incrementally. To this aim it would be helpful to keep trace of all
the ր-sequences t1 ր . . . ր tn in order to support an easy identification of
ր-cycles.

It can be shown that at every iteration of the algorithm the prefix Fin does
not contain local cut-offs. This can be used to prove the correctness and termi-
nation of the algorithm.

Theorem 3. If the net N is finite and n-bounded the algorithm terminates and
Fin is complete.

The complete prefix of a c-net can be much smaller than the complete prefix
(constructed using McMillan’s algorithm) for the net where read arcs are re-
placed by consume/produce loops. In fact, consider a net Nn

1
analogous to the

net in Fig. 1(a) but with n readers t1, . . . , tn. Let Nn
2

be obtained encoding Nn
1

as an ordinary net by simply replacing read arcs with a consume/produce loops,
as in Fig. 1(b). The unfolding of net Nn

2
includes kn = n + n(n − 1) + . . . + n!

events corresponding to the readers, since each event does not only record the
occurrence of a transition, but also its entire history, i.e., the sequence of all
events occurring before. Similarly, there are kn + 1 copies of event t′

0
. Note that

none of these events is a cut-off (according to McMillan’s definition), since any
two events generating the same marking have histories of equal size. Therefore
the complete prefix computed for Nn

2
is the unfolding itself. Instead, the com-

plete enriched prefix obtained from Nn
1

is the net Nn
1

itself, thus it has n + 2
transitions only; among them, t0, t1, . . . , tn have one history each, while t′

0
has

2n histories. Even if still of exponential size, this prefix is much smaller than the
complete prefix of Nn

2
, essentially because the order in which the events occurred

does not need to be recorded. Moreover, the underlying net obtained by disre-
garding the histories, which are only auxiliary information needed to construct
the prefix, is dramatically smaller in this case.

Now let Nn
3

be the PR-encoding of Nn
1
, as shown in Fig. 1(c). The unfolding of

Nn
3

has one occurrence for each of the transitions t0, t1, . . . , tn and 2n occurrences
of t′

0
, none of which is a cut-off (hence, also in this case, the complete prefix
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is the full unfolding). Thus there is a one-to-one correspondence between the
histories in the enriched prefix of Nn

1
and the events of the unfolding of Nn

3
. We

conjecture that this is a general fact, i.e., the histories of the complete enriched
prefix of a safe c-net N are in one-to-one correspondence with the events of the
complete finite prefix of the PR-encoding of N . Still, the size of the prefix of
Nn

3
is exponential in n while the size of the prefix of Nn

1
, once the histories are

disregarded, is linear.
It is worth stressing that the size of the complete prefixes can be further

reduced using adequate orders [6], as remarked also in the conclusion. This would
lead to a smaller prefix, for example, for Nn

2
.

5 Conclusions

We have presented an approach for computing finite complete prefixes of gen-
eral contextual nets, which extends the approach proposed for the class of read-
persistent nets in [18] and provides an alternative to the technique based on
the PR-encoding of contextual nets as ordinary nets. Our work relies on the
idea of dealing explicitly with the multiple histories that events can have in con-
textual net computations, due to the presence of asymmetric conflicts. Subsets
of “useful” histories for events are recorded in the prefix during the construc-
tion and, correspondingly, a new notion of cut-off is considered. In the case of
read-persistent nets every transition has a single history and hence our approach
coincides with the one introduced in [18].

Our work shares some basic ideas with [19], where however the definition of
cut-off is non-constructive, since it depends on all the possible histories that an
event may have. In order to avoid this problem we introduced the (constructive)
notion of local cut-off. Apart from that the notion of cut-off in [19] is stronger
than ours, which might lead to larger prefixes.

As witnessed by some examples in the paper, the complete prefix of a con-
textual net can be significantly smaller than that of an equivalent net where
read arcs are replaced by consume/produce loops, and it will never be larger.
The ability to generate smaller unfoldings comes with a price, i.e., during the
construction of the prefix we have to record and evaluate additional information
such as histories and asymmetric conflict. Still, we conjecture that the algorithm
will never require more space or time than the ordinary algorithm applied to the
PR-encoding of the net. More precisely, for safe nets, as discussed in Section 3
the histories in the prefix should correspond exactly to the events in the unfold-
ing of the PR-encoding, and causality and conflict on histories should be the
exact match to causality and conflict for transitions. Furthermore we expect our
technique to be strictly more efficient for non-safe nets (see Appendix A), since,
in this case, the PR-encoding can lead to concurrent occurrences of the same
reader where the occurrences share places in consume/produce loops, leading to
a blowup in the size of the unfolding.

From a more methodological perspective, let us stress that our approach can
build a complete finite prefix for a large class of c-nets directly, without the
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need of resorting to an encoding. We think that this feature makes our approach
more suitable than others to be extended to other classes of systems exhibiting
concurrent read-only accesses, for which an encoding could either not be feasible
or could cause a significant loss of concurrency.

In particular, we are interested in graph transformation systems (GTSs),
a quite expressive formalism where reading and preserving part of the system
state, in this case a graph, is an integral part of the model. We believe that
our direct approach will be useful to generalise McMillan’s approach to the full
class of GTSs, while currently only its read-persistent subclass is dealt with [2].
We are also interested in nets with inhibitor arcs. In this case, an encoding as
c-nets would be feasible but it would cause (at least in the non-safe case) a loss
of concurrency, and thus a direct approach could be preferable.

We plan to implement and test the algorithm for contextual nets in the
framework of the Mole unfolder [1] that currently deals with ordinary nets. At
present, with the limited goal of analyzing the size of the produced prefix, we
implemented a prototype which given a safe c-net, converts the read arcs into
consume/produce loops, builds its finite prefix, and then merges the occurrences
of the same context places. A complete implementation of our algorithm is cur-
rently in progress. We expect that in order to obtain satisfactory experimental
results about the complexity (in time and in space) of our algorithm, in compar-
ison with others, firstly we will need to be able to deal with more refined notions
of cut-offs based on adequate orders [6], and secondly we will have to design and
implement efficient data structures for recording the sets of histories of an event
during the construction of the prefix.
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A Unfolding of Non-Safe Nets

Unfolding of a non-safe contextual net N with the algorithm proposed in this
paper might lead to an occurrence net smaller than the unfolding of the ordinary
net obtained as the PR-encoding of N (see Fig. 1(c)). As an example consider
the following net:

76540123•

��

76540123•

��
76540123•

��

t1

##H
HH

HH
t2

{{vvv
vv

76540123•

��
r1

76540123
s

��

r2

t0

The truncation of this net has two occurrences of transition t0 (either t0 is
caused by t1 or by t2), each with four histories (which specify whether r1 or r2,
or both, or none has been fired before). So in total we have eight histories.

Now consider the corresponding PR-encoding:
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��

t1

�� ))SSSSSSSSSS t2
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��
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s2zzuuu
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��
r2``

t0

Unfolding this net we obtain four occurrences of place s1 (after firing t1 or
t1; r1 or t2 or t2; r1) and analogously four occurrences of place s2. All pairs of
such places (one representing s1 and the other s2) are concurrent. Hence we
obtain 4 · 4 = 16 occurrences of transition t0.

Intuitively this can be interpreted as follows: the token in s is split into two
half-tokens in s1 and s2. Then some of the transitions in the unfolding of the
encoded net consume “half a token” produced by t1 and “half a token” produced
by t2.

More generally, consider a net like the one above, but with h writers t1, . . . ,
th and k readers r1, . . . , rk. Then the truncation of the contextual net has h

occurrences of t0 with a total number of histories h · 2k, since t0 can consume
the token produced by any of the h writers, after it has been read by any subset
of the k readers. Instead, the unfolding of the PR-encoding of the net includes
(h · 2)k occurrences of t0, since each occurrence of t0 consumes k tokens, and
each of these tokens can be produced by any of the h readers and it could have
possibly been produced/consumed by the corresponding reader.
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