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Abstract. We show that a generally convergent root-finding algorithm for
cubic polynomials defined by C. McMullen is of order 3, and we give generally
convergent algorithms of order 5 and higher for cubic polynomials. We study
the Julia sets for these algorithms and give a universal rational map and Julia
set to explain the dynamics.

1. Introduction

In 1987 Curtis McMullen gave an answer to a question posed by Steve Smale a
few years earlier on the existence of algorithms for finding zeros of polynomials ([6]
and [3]). Does there exist a rational root-finding algorithm which converges to a root
for almost every initial guess and for almost every polynomial? We use Lebesgue
measure in the complex plane and on the space of coefficients of polynomials. An
algorithm with this property is called a generally convergent algorithm.

By a root-finding algorithm we mean a map which associates a rational map of
the Riemann sphere to each polynomial of degree d with the following property: the
roots of the polynomial should be attracting fixed points of the rational map. An
initial guess yields a sequence converging to a root of the polynomial (namely the
forward orbit of the initial guess under the rational map resulting from applying the
algorithm to the polynomial) if and only if it lies in the attracting basin of the root.
Most commonly implemented root-finding algorithms are not generally convergent
(see e.g. [3]). It is well known that Newton’s algorithm is a generally convergent
algorithm of order 2 for quadratic polynomials. Several generally convergent algo-
rithms for quadratic polynomials with distinct roots which are of higher order are
discussed in [8] and [2].

McMullen proved several important results about root-finding algorithms in [3].
First, he proved that there can be no generally convergent algorithm for polynomials
of degree 4 and higher, by establishing a rigidity result on parametrized families of
rational maps. In addition he gave an explicit formula for a generally convergent
algorithm for cubic polynomials. If complex conjugation is used in the algorithm,
then generally convergent root-finding algorithms have been given by Shub and
Smale [5] for polynomials of all degrees and of n variables.
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In this paper we discuss McMullen’s algorithm, the Julia sets it produces when
applied to cubic polynomials, and we give higher order generally convergent algo-
rithms for cubic polynomials based on the same idea. While McMullen has already
pointed out that his algorithm coincides with Newton’s algorithm applied to a non-
polynomial rational map related to the originial polynomial, we show that it also
coincides with a classcial algorithm called Halley’s algorithm (or König’s algorithm),
applied to one specific polynomial.

By viewing it as coming from Halley’s algorithm however, as well as by direct
proof, we show that it is a cubically convergent algorithm. Newton’s algorithm
has convergence of order 2 near simple roots of polynomials, but one consequence
of our result is that Newton’s method gives better than quadratic convergence
when applied to a very special class of nonpolynomial maps. We extend the ideas
used to produce McMullen’s algorithm to define a different generally convergent
algorithm which we show to be of order 5. We also show that there cannot be any
generally convergent methods which are of order precisely 4, but arbitrarily high
orders of convergence can be obtained by generally convergent algorithms for cubic
polynomials.

The author thanks Kyle Kneisl for helpful discussions on the subject of root-
finding algorithms, and gratefully acknowledges the referee for suggesting improve-
ments in the paper. The graphics were produced with Mathematica programs
written by the author.

2. Preliminaries about root-finding algorithms

We call two cubic polynomials p and q similar if there is an affine map of the
form ψ(z) = az + b, a, b ∈ C − {0}, such that p(z) = q ◦ ψ(z) for all z. It
is classic that every cubic polynomial is similar to one with its quadratic term
suppressed, and that every cubic polynomial that is not similar to z3 can be given
an affine change of coordinates and multiplication by a constant to be of the form
pc(z) = z3+(c−1)z−c, c ∈ C. The roots of this polynomial are 1, 1

2 (−1−
√

1− 4c),
and 1

2 (−1 +
√

1− 4c). With this particular parametrization of cubic polynomials,
1 is always a root and the three roots add up to zero. If c 6= 1

4 , then the roots are
distinct. For the rest of this paper (since we allow ourselves to throw out a set of
measure 0 from the space of polynomials), we assume that pc has distinct roots.

We identify Poly3 with C endowed with Lebesgue measure m without any loss of
generality. By Ratd we will denote the space of rational maps of the Riemann sphere
C∞ of degree d. A rational root-finding algorithm is a map S : Poly3 → Ratd such
that the roots of pc are attracting fixed points of S(pc). Throughout, we will define
Sc = S(pc) for all rational root-finding algorithms applied to cubic polynomials.
Given a rational algorithm S, it follows that for z ∈ C in a set of positive measure,
Snc (z) converges to a root of pc as n→∞; this is just due to the classical local form
of Sc near an attracting fixed point (cf. [1]). All algorithms discussed here will
be rational root-finding algorithms and referred to simply as algorithms. Given a
rational map Sc obtained from an algorithm S applied to pc ∈ Poly3, we say that
Sc is convergent if for m a.e. z ∈ C, the sequence Snc (z) converges to a root of
pc. Note that for a convergent map Sc, the roots of pc must be the only attracting
periodic orbits. An algorithm S is generally convergent if Sc is convergent for m-a.e.
polynomial pc.
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An algorithm S is an order k algorithm (k ≥ 2) if for every polynomial pc, the
simple roots of pc are superattracting fixed points of Sc of order k. By this we mean
that the set of fixed points of Sc includes each root r of pc, and each root of pc is a
critical point of Sc of valency k, i.e., S(i)

c (r) = 0, i = 1, . . . , k − 1, but S(k)
c (r) 6= 0.

We denote by S(i)
c the ith derivative of the map Sc, while Sic means the ith iterate.

Examples. (1) The well-known Newton algorithm for finding roots of any poly-
nomial p of degree d ≥ 2 is given by

Np(z) = z − p(z)
p′(z)

.

It is known that Newton’s algorithm is at least quadratically convergent for
all polynomials with simple roots. Suppose the roots of p are {r1, . . . , rd}.
Then clearly Np has degree d and Np(ri) = ri. At each simple root ri,
p′(ri) 6= 0. The critical points of p are the only poles of Np, so N ′p(ri) =
p(ri)p

′′(ri)
(p′(ri))2 = 0. One can check directly that N ′′p (ri) 6= 0.

(2) It has been known since Cayley’s work that Newton’s algorithm is generally
convergent for quadratic polynomials, but not for cubic polynomials. In-
deed one can produce polynomials for which the algorithm has an attracting
period 2 orbit.

(3) Another algorithm that is cubically convergent but not generally convergent
for cubic polynomials is due to Halley (cf. [2]). Also called König’s method
[8], it is defined by

Hc(z) = z − 2pc(z)p′c(z)
2(p′c(z))2 − pc(z)p′′c (z)

.

One can also find “bad” cubic polynomials for Halley’s algorithm by finding
values of c for which a period 2 attracting orbit exists. Any small perturba-
tion of the coefficient results in a polynomial with the same properties.

Generally convergent algorithms for quadratic polynomials are characterized in
[3], and many examples are given in [8] and [2]. McMullen gives the unique degree 4
generally convergent algorithm for cubic polynomials. In the next section we study
its connection to Halley’s algorithm. The following theorem motivates our study of
generally convergent algorithms.

Theorem 2.1 ([3]). Every generally convergent algorithm for cubic polynomials is
obtained by specifying a rational map M1 such that:

(1) M1 is convergent for p1(z) = z3 − 1;
(2) its centralizer C(M1) contains the Mobius transformations that permute the

cube roots of unity.
The algorithm is then given (for pc with distinct roots) by

Mc = φc ◦M1 ◦ φ−1
c ,

where φc is a Mobius transformation carrying the cube roots of unity to 1,
1
2 (−1−

√
1− 4c), and 1

2 (−1 +
√

1− 4c) in any order.

We say that a rational map R generates a generally convergent algorithm (for
cubic polynomials) if R satisfies the hypotheses of Theorem 2.1. A simple inspection
reveals that the map from Halley’s algorithmH1(z) = z(2+z3)

1+2z3 satisfies the necessary
and sufficient conditions to generate a generally convergent algorithm. Namely it
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commutes with the symmetric group on the cube roots of unity; clearly H1(1/z) =
1/H1(z) andH1(ζz) = ζH1(z) where ζ is any cube root of unity. IfH1 is convergent,
we can apply Theorem 2.1 to obtain a generally convergent algorithm. This is shown
below and is a classical result.

3. McMullen’s algorithms for cubic polynomials

McMullen gives a formula for a generally convergent algorithm for a cubic poly-
nomial, which we will denote by M, in terms of the coefficients of the polynomial
pc. For the polynomial p1(z) = z3 − 1, the formula yields the map

M1(z) =
z(2 + z3)
1 + 2z3

.

Our first observation is that this is identical to the Halley algorithm map for the
same polynomial. However instead of extrapolating to other polynomials as in
the equation for Hc above (since we just discussed that Halley’s algorithm is not
generally convergent for cubics), we simply conjugate M1 to every other Mc by
composing with a Mobius map that takes the 3 roots of p1 to the 3 roots of pc.
Since the degree is 4, by uniqueness this is McMullen’s algorithm.

Next we show that M is an order 3 algorithm in contrast to the related order 2
Newton algorithm.

Proposition 3.1. McMullen’s algorithm M is a root-finding algorithm of order 3
generated by M1.

Proof. Each mapMc is conformally conjugate toM1(z) = z(2 + z3)/1 + 2z3, so it
is enough to prove the result for this case. The roots of the polynomial p1 = z3− 1
are 1, −1

2 ±
√

3
2 i. A calculation verifies that the fixed points ofM1(z) are the three

roots, 0, and ∞. We compute that M′1(0) = 2 = M′1(∞), while the first two
derivatives of M1 vanish at the roots. In addition we calculate that M′′′1 (1) = 4
and M′′′1 (−1

2 ±
√

3
2 i) = −2± 2

√
3i. The result follows.

A straightforward calculation shows that the fixed points ofMc are the roots of
pc plus the two roots ω1 and ω2 of the quadratic polynomial q(z) = 3(c − 1)z2 −
9cz − (c − 1)2, and the derivatives at the fixed points are 0 for the roots of pc
and 2 at ωi, i = 1, 2. If c = 1, then 0 and ∞ are fixed points with multiplier 2,
with the roots of p1 as the only other fixed points. Furthermore the only critical
points ofMc are the roots of pc, so the Fatou set ofMc consists exclusively of the
attracting basins of the roots of pc. This proves, without using Theorem 2.1, that
the algorithmM is generally convergent.

In Figure 1 we show the Julia set forM1 with the 3 root basins in white, black,
and gray for the polynomial p(z) = z3 − 1. In this case we have the same Julia
set for both Halley’s and McMullen’s algorithms. For a typical cubic polynomial
we obtain different root basin pictures for different methods, though the Julia sets
are mutually conformally equivalent when the McMullen algorithm is used. In
Figures 3, 4 and 5 we see the root basin pictures for the cubic polynomial p(z) =
z3 +(2i−1)z−2i using the McMullen, Halley, and Newton algorithms respectively.

3.1. Higher order generally convergent algorithms. The rigidity result in
Theorem 2.1 can be used to obtain generally convergent algorithms for cubic poly-
nomials which are of higher order than Mc. We describe the rational maps which
generate a generally convergent root-finding algorithm for cubic polynomials.
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Theorem 3.1. If R generates a generally convergent root-finding algorithm for
cubic polynomials, then there exist constants ao, a1, . . . , ak, ao, ak 6= 0, such that R
is of the following form:

R(z) =
z(ao + a1z

3 + . . .+ akz
3k)

ak + ak−1z3 + . . .+ aoz3k
.

Proof. Assume that R = p(z)
q(z) generates a generally convergent root-finding al-

gorithm, and that p and q are coprime. Then by Theorem 2.1 we have that
R(ζz) = ζR(z) for cube roots of unity ζ which implies that the exponents on the
powers of z in q(z) must be multiples of 3, and p(z) = z(ao + a1z

3 + . . .+ akz
3k),

with ak 6= 0. Furthermore, since R(ζ0) = R(0) = ζR(0), the points 0 and ∞ must
remain fixed or change places under R. Write q(z) = bo + b1z

3 + . . .+ bjz
3j (with

bo 6= 0 or p and q are not coprime). Assume bj 6= 0; if ao = 0, then 0 is fixed and
a critical point, which contradicts the assumption. Since neither 0 nor ∞ can be a
fixed point of multiplicity greater than 1, we must have that j = k.

We have by Theorem 2.1 that

R(z) =
z(ao + a1z

3 + . . .+ akz
3k)

bo + b1z3 + . . .+ bkz3k
=
z(bk + bk−1z

3 + . . .+ boz
3k)

ak + ak−1z3 + . . .+ aoz3k
= 1/R(1/z).

We conclude that ak = cbo, a1 = cbk−1, . . . , ao = cbk for some nonzero c, since the
zeros of each numerator and each denominator must be the same. Using the fact
that z = 1 is a fixed point of R we have that c = 1.

Corollary 3.1. There is no generally convergent algorithm for cubic polynomials
of degree 5 or 6. The algorithm Q : C→ Rat7 generated by

Q1(z) =
z(14 + 35z3 + 5z6)

5 + 35z3 + 14z6

is the unique degree 7 generally convergent algorithm of order greater than 3, and
it is of order 5.

Proof. We apply Theorem 3.1 to see that degree 7 is the lowest degree greater
than 4 possible for a generally convergent algorithm. We consider the map R(z) =
z(ao+a1z

3+a2z
6)

a2+a1z3+aoz6 . We assume that a2 = 1 since the coefficients are defined only up
to multiplication by a nonzero constant. We then solve for ao and a1 by setting
R′(1) = 7+a1−5ao

1+a1+ao
= 0. This imposes the relation a1 = 5ao − 7.

Let ζ1 and ζ2 denote the other roots of p1. Since the expression for R′(z) only
involves powers of z3, R′(ζ1) = R′(ζ2) = 0 as well. With this relation imposed on
the coefficients, we compute that R′′(1) = R′′(ζ1) = R′′(ζ2) = 0, R(3)(1) = 14−5ao

−1+ao
,

and R(4)(1) = −6(14−5ao
−1+ao

). Since ao 6= 1 (or R(z) would be the identity map),
the condition R(3)(1) = 0 implies that ao = 14

5 , which also implies that R(3)(ζ1) =
R(3)(ζ2) = R(4)(1) = R(4)(ζ1) = R(4)(ζ2) = 0. This follows since R(4)(z) only
involves powers of z3, and R(3)(ζjz) = ζjR

(3)(z), j = 1, 2, for all z. One can check
that R(5)(1) = 140/3, so the order of the algorithm generated by Q1 = R is 5.

Using the method of Corollary 3.1 one can always solve for integer ai’s to obtain
arbitrarily high degree algorithms of arbitrarily high order. For example, using k =
3 in the family given in Theorem 3.1 yields the unique order 7 algorithm of degree
10 which is generated by S1(z) = z(7 + 42z3 + 30z6 + 2z9)/(2 + 30z3 + 42z6 + 7z9).
Figure 2 shows the similarity between the order 5 generally convergent algorithm
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Figure 1. McMullen’s algorithm for p(z) = z3 − 1

Figure 2. Order 5 generally convergent algorithm for p(z) = z3 − 1

and the order 3 McMullen algorithm. The order 7 algorithm S gives a similar root
basin picture.

We give a standard rational map as a model for the order 3 McMullen algorithm
M via a Mobius transformation which takes the three distinct roots of each poly-
nomial pc to 0,∞, and 1. Similarly, each order 5 map Qc is conjugate a standard
form rational map (as are all the higher order ones as well). We obtain a basic ra-
tional model for each generally convergent algorithm with bounded Julia set, from
which to study the dynamics. We refer to the Julia set appearing in Figure 6 as
the universal Julia set for the algorithm M [2], since all Julia sets resulting from
the algorithmM are conformally equivalent to that one. The universal Julia set of
Q is similar as Proposition 3.3 shows.

Proposition 3.2. For each cubic polynomial pc with distinct roots, the map Mc

is conjugate to T3(z) = (3 + 6z2 − z4)/8z, and each map Qc is conjugate to T5 =
z(35 + 35z2 − 7z4 + z6)/(8 + 56z2).
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Figure 3. McMullen’s algorithm for z3 + (2i− 1)z − 2i

Figure 4. Halley’s algorithm for z3 + (2i− 1)z − 2i

Figure 5. Newton’s algorithm for z3 + (2i− 1)z − 2i
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Figure 6. Julia set and attracting basins for T3(z) = 3+6z2−z4

8z

In the case of the polynomial p1(z) = z3 − 1, a conjugating map is given by

φ(z) =
i
√

3− (2 + e2πi/3)z
e2πi/3z − 1

,

which carries the circle through the three roots of p1(z) onto the circle through −1, 1,
and ∞.

We list some properties of Tk and J(Tk), k = 3, 5, and hence of McMullen’s root-
finding algorithm for any cubic polynomial with distinct roots. These results require
little or no proof, as they are culled from the existing literature and brought together
here to give some insight into the universal Julia sets that occur for generally
convergent algorithms. Of course a similar theorem holds for the mapsM1 and Q1

and for the higher order root finding algorithms with obvious modifications. We
use these models because they have both bounded Julia sets and symmetry about
the origin. In Remark 3.1 we discuss why the Julia set of T3 (shown in Figure 6)
looks like that of the algorithmM applied to a typical cubic polynomial.

Proposition 3.3. The rational maps Tk(z), k = 3, 5, satisfy the following proper-
ties:

(1) The attracting fixed points for Tk are ∞,+1, and −1. Other fixed points for
T3 are ±

√
3i; these are repelling with derivative 2. Other fixed points for T5

are ±
√

3i, with derivative 14
5 , and ±3 and 0, each with derivative 35

8 .
(2) A superconvergent rational map is one with critical points only occurring at

periodic points; the map Tk is superconvergent.
(3) A hyperbolic rational map is one with the property that the closure of the

forward orbits of all critical points is disjoint from the Julia set; Tk is hy-
perbolic.

(4) J(Tk) has Lebesgue measure 0. Hence Lebesgue almost every point converges
to an attracting fixed point under Tk. For the associated root-finding algo-
rithm, this implies that the set of initial data which lead to a root under the
algorithm M or Q has full Lebesgue measure.

(5) The immediate basin of each superattracting fixed point is simply connected,
and J(Tk) is connected and locally connected.
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(6) Each component of F (Tk) containing an attracting fixed point is conformally
conjugate to the disk

{ω : |ω| < |a| 1
1−k },

with a = T
(k)
k (1)/k!. The local conjugating map around each fixed point ex-

tends throughout the entire component, giving cubic (or quintic) convergence
to the fixed point at the center under iteration of Tk.

(7) Consider any one of the three forward invariant Fatou components of Tk:
F∞ containing ∞, F1 containing 1, and F−1 containing −1. Each of these
is bounded by a curve.

(8) Given any ε > 0, there are only finitely many Fatou components of Tk with
diameter greater than ε (using the spherical metric).

Proof. (2) follows since the critical points of Tk are all fixed points. (3) follows from
(2). (4) is true since all hyperbolic maps have Julia set of measure 0 [7]. To prove
(5), since Tk is superconvergent, the immediate basin of each superattracting fixed
point is simply connected using [7] (Theorem 4, Chapter 3). In addition, since all
critical orbits are finite, it follows that J(Tk) is connected and locally connected [4].
To obtain (6) and (7), we use the superconvergence of and hyperbolicity of Tk, and
(5) to apply results from [7] (Chapter 3.3, Theorem 4 and Chapter 5.5, Theorem
1). (8) is just Lemma 19.4 of [4].

Remark 3.1. For a cubic polynomial pc, the Julia set of Mc looks like Figure 1 if
and only if pc = z3−1. Otherwise, the image of∞ under the mapMc is −3c/(c−1).
It is therefore typical that the immediate root basins are bounded for two of the
three roots of pc, and the root basin picture looks qualitatively like Figure 3 up to
rescaling.

This has interesting consequences for numerical studies of McMullen’s algo-
rithms. If the roots of pc do not all lie on a circle centered at the origin, then
∞ almost surely lies in the immediate attracting basin of one of the roots of pc and
large initial guesses will quickly converge to the root in that basin. Numerical evi-
dence supports this statement. In Table 1 we compare the order 5 and 3 McMullen,
and Newton algorithms for the polynomial p2i(z) = z3 + (2i− 1)z − 2i. The roots
of p2i are approximately 1, −1.5643 + 0.93956i, and 0.5643− 0.93956i.

Table 1. A numerical comparison of the algorithms Q2i, M2i,
and Newton’s algorithm N2i.

n Qn2i Mn
2i Nn

2i

0 1000.+ 100.i 1000.+ 100.i 1000.+ 100.i
1 −1.73 + 0.964i −2.4053 + 1.207i 666.67 + 66.666i
2 −1.5643 + 0.93956i −1.5751 + 0.93746i 444.44
3 ... −1.5643 + 0.93956i 296.297 + 29.628i
. ... ... ..
. ... ... ..
19 −1.5643 + 0.93956i −1.5643 + 0.93956i .99553− .00103i
20 −1.5643 + 0.93956i −1.5643 + 0.93956i 1.00002 + .00001i
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