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ABSTRACT

Allosteric mechanism of proteins is essential in

biomolecular signaling. An important aspect

underlying this mechanism is the communication

pathways connecting functional residues. Here, a

Monte Carlo (MC) path generation approach is

proposed and implemented to define likely allosteric

pathways through generating an ensemble of

maximum probability paths. The protein structure

is considered as a network of amino acid residues,

and inter-residue interactions are described by an

atomistic potential function. PDZ domain structures

are presented as case studies. The analysis for

bovine rhodopsin and three myosin structures are

also provided as supplementary case studies. The

suggested pathways and the residues constituting

the pathways are maximally probable and mostly

agree with the previous studies. Overall, it is

demonstrated that the communication pathways

could be multiple and intrinsically disposed, and

the MC path generation approach provides an ef-

fective tool for the prediction of key residues that

mediate the allosteric communication in an

ensemble of pathways and functionally plausible

residues. The MCPath server is available at http://

safir.prc.boun.edu.tr/clbet_server.

INTRODUCTION

Allostery is a key concept for regulation of protein
activity. Important processes such as binding or catalytic
activity can be modulated by perturbations at distal sites

such as ligand binding, chemical modification or changes
in the environment. The classical models in the ‘old view’
require conformational changes (1–3), yet the ‘new view’
emphasizes the pre-existence of conformational states and
dynamics in the allostery (4). Also, the perspective of
single common route has been shifted to multiple
pathways in allosteric communication between functional
sites (5). A perturbation creates a signal that propagates
through non-covalent interactions in multiple pathways
from the allosteric to the active/binding sites, which is
an important aspect underlying the allosteric mechanism
and which still remains elusive.
The nuclear magnetic resonance (NMR) is a powerful

tool to investigate allosteric pathways experimentally
(6–9). The detection of dynamics of allosteric movement
provides significant information for the investigation of
signal propagation pathways (7). Site-directed mutagen-
esis has also been useful for the determination of allosteric
sites and key residues that play a role in signaling (10,11).
Complementing the experimental efforts, various compu-
tational approaches have been developed toward under-
standing allosteric signaling mechanisms (5). In those
approaches, energetic connectivity from evolutionary
data (12), anisotropic thermal diffusion as a form of
energy propagation (13), optimal path generation on
residue networks with knowledge-based potentials (14),
perturbation response scanning (15), information propa-
gation based on a Markov process (16), protein dynamics
from modeled energy landscape (17), geometrical inter-
pretation of protein structures (18), interaction energy
networks (19), information theory (20) have been used.
Nevertheless, to our knowledge, a few web servers and
databases are available for determination of signaling
residues such as ALLOSMOD (17) and ASD (21).
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Here, we propose and implement a Monte Carlo (MC)
path generation method to define all likely allosteric com-
munication pathways by generating an ensemble of
maximum probability paths and also an infinitely long
path for plausible functional residues based on the graph
centrality measures (22,23). The pathways are the
assembly of consecutive and probable paths of inter-
residue interactions between two allosteric sites. The inter-
action weights of each residue with the others based on a
form of atomistic potential function and the MC sampling
provides an ensemble of stochastic pathways rather than a
single pathway without a complete enumeration of all
paths. This should provide maximally probable routes
for a perturbation to be dissipated in the presence of con-
formational and dynamics states. The proposed method is
elaborated mainly on PDZ domain representative
proteins, and also tested on bovine rhodopsin and three
myosin structures of different conformations that are
provided as supplementary cases.

MATERIALS AND METHODS

Energy of inter-residue interactions

A protein can be considered as a network of residues,
where the residue–residue interactions are described by a
form of the Lennard-Jones 12-6 potential that provides
the interaction probability of each residue with its neigh-
bors. The Lennard-Jones 12-6 potential was modified as
follows (24):

E rð Þ ¼ E rminð Þu rmin � rð Þ+E rð Þ u rcut � rð Þ � u rmin � rð Þ½ �
ð1Þ

where, E(r) is the Lennard-Jones potential function of
inter-atomic interaction with minimum energy e between
two atoms of r distance and collision diameter s, u is the
unit step function, rmin (rmin ¼

ffiffiffi

26
p

s) is the radius of the
minimum energy and below which the energy is con-
sidered as Emin [Emin ¼ E rminð Þ] and rcut is the maximum
radius (5.5 Å) considered for an interaction above which
the energy is taken as 0. The repulsion part in this form of
the potential function is modified to avoid the over
punishment of the accidental get-togethers in crystal struc-
tures. Experimentally obtained van der Waals parameters
were used in the calculations.

MC path generation

In the MC path generation, each step of the path is created
based on the weighted inter-residue interactions. A step is
defined as the direct propagation of a signal between two
interacting residues. For a protein with M atoms and N
residues, all atom–atom interaction energies E(r) have
been calculated based on a given structure and stored in
a square energy matrix with M�M dimensions. Then the
energy between each atom in every residue pair is summed
up to obtain a single energy value E0(r) between those two
residues. The atomistic energy matrix thus reduces to the
residue energy matrix with dimensions N�N.

The occurrence of an interaction between residue pairs i
and j is proportional to the Boltzmann weight and
normalized to define a probability measure as follows:

Pij ¼ exp
�E0

ij

kT

� �

and Qij ¼
Pij

P

N

j¼1

Pij

ð2Þ

The probability matrix of dimensions N�N comprises
the normalized probabilities for the interaction of N
residues with the remaining N� 1 residues. The diagonal
elements have 0 values. The premise here is that the inter-
residue interaction describes the highest probably flow
path from the subset of contacts in a given structure for
the propagation of a perturbation. With the MC path
generation, the random numbers are used to mediate the
flow on a subset of steps accessible to each residue accord-
ing to the weighted inter-residue interactions using
Equation (2). For the determination of functional
residues, the graph centrality parameters such as closeness
and betweenness are calculated. To obtain non-zero values
for all residues and to have a proper sampling of paths,
infinitely long pathways are generated. The closeness is the
inverse of the average of the shortest path between a
residue and all other residues given as follows:

Oij ¼
N� 1

P

N

j¼1

lij

ð3Þ

The betweenness is the reflector of the frequency of a
residue that is a part in all shortest path pairs within the
complete structure formulated as follows:

bi ¼
X

N

jk

gjik

gjk
ð4Þ

where gjk denotes the shortest path between j and k, and
gjik denotes a shortest path between j and k and passing
through vertex i.

WEB SERVICE

The MCPath server (http://safir.prc.boun.edu.tr/clbet_
server) is based on MC path generation runs with a
PDB ID or an uploaded structure. The user has three
different uses of the web service:

(A) Generating paths starting from a given residue and
number of steps: User needs to give the initial
residue index and chain ID, and the path length
The output lists all the pathways ranked with their
probabilities and populated pathways. Populated
pathway is referred to a pathway that occurs more
than once.

(B) Generating paths between two given residues: User
needs to specify the initial and final residue indexes
and chain ID. The output lists all the pathways
ranked with probabilities and populated pathways.
In the generation of allosteric pathways (A and B),
the output also includes the top three populated
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pathways shown on the structure’s ribbon diagram.
If all the pathways are distinct, the three pathways
with the highest probabilities are demonstrated. With
increasing sizes of proteins, as more number of steps
needs to link the two allosteric points, observing a
pathway repeating exactly with the same steps of the
path becomes rarer. This could be resolved by clus-
tering the pathways with a similarity measure.

(C) Generating a long path with an infinite number of
steps for the calculation of graph centrality measures
such as closeness and betweenness: User needs to
give the path length. The output lists and plots the
closeness and betweenness values with the suggested
functional residues, which are identified from the
maxima of the curves. The path length might
depend on the protein’s size. Longer path lengths
are suggested for larger protein structures.

The flowchart of the process is given in Figure 1.

RESULTS AND DISCUSSION

PDZ domains are small globular modular proteins that
mediate protein–protein interactions (25). These proteins
assume intra-domain allosteric activity and extensively
been studied by experimental and computation means.
Here, the PDZ representative proteins, third PDZ
(PDZ3) domain from Post-Synaptic Density Protein 95
(PSD-95) and PDZ2 domain from Human Phosphatase
(HPTP1E) are mainly focused. Intra-molecular communi-
cation pathways and functional sites are searched by
the MCPath Server. The predictions on bovine rhodopsin
and three myosin structures of different conformations

are also presented as supplementary case studies
(Supplementary Figures S1 and S2).

PDZ Domain from PSD-95

The PDZ3 domain from synaptic protein PSD-95 in
complex with a C-terminal peptide is selected for the
analysis (PDB ID: 1BE9) (26). The populated pathways
between the active site His372 at the ligand-binding pocket
and the allosteric site Leu353 (12) by the MC path gener-
ation using the MCPath server are mapped on the struc-
ture in Figure 2. The two distinct pathways that any
perturbation would follow to propagate are visualized
with lines. The interaction transmits through b2 in the
most populated pathway, and it goes through the
peptide and then into the core of the domain via b2 and
anti-parallel b3 in the third populated pathway. The
second populated pathway is a subset of the third
pathway. The residues by site-directed mutagenesis (27)
highly agree with the MCPath’s results (Figure 2). The
present findings also agree with the results of the
previous computational methods, energetic connectivity
from the evolutionary data (12) and anisotropic thermal
diffusion (13). Ile341 previously suggested (13,27) to be
involved in the allosteric interaction indeed participate
not in the top three but next populated pathways. The
most important result here is that the energetic coupling
suggests a pathway through the peptide and the others do
not, yet the MCPath’s most populated pathways suggest
both ways.
To identify plausible functional residues, the graph cen-

trality measures are obtained by the MCPath server. The
closeness values of the network based on an infinitely long
pathway are plotted in Figure 3. The residues at the
maxima of the closeness value curve are listed. These
residues are highly conserved with the conservation
scores 6–9 (28), except Tyr397. The latter residues
include the active site residues Leu379 and Phe325 (29)
and also the residues observed in the communication
pathways in Figure 2. Apparently, the residues with high
closeness values are predisposed to be on an allosteric
pathway or for another functional role.
Different runs (of the same or varying lengths) might

result in a slight shift in the maxima values, nevertheless
the overall shape of the closeness/betweenness curves give
consistently the same regions of the structure for high
centrality.

PDZ2 domain from human phosphatase

The PDZ2 domain from human phosphatase HPTP1E in
complex with a C-terminal peptide is also studied here
(PDB ID: 1D5G) (30). Although the structures of PSD-
95 and hPTP1E are similar, the analysis may result in
different pathways. The analysis was performed on the
first NMR model structure. The populated pathways
between the peptide-binding site His71 and the allosteric
site Val85 (12) are investigated by the MCPath server.
His71 is a characteristic binding residue for PDZ2
domains (30). The most popular communication
pathways by the MCPath server are mapped on the struc-
ture in Figure 4a. One of the most populated pathways is aFigure 1. The flow chart of the MCPath server.
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relatively short pathway passing through a2.The second
populated pathway is longer and passes through the core
of protein structure via b2 in the N-terminal region. When
an ensemble of pathways of 10 steps long from His71 is
generated without the end (target) point specificity, the
resulting populated pathways are moving through either
a2 or the protein core via a group of b turns in the
C-terminal region to b2 (Figure 4b). The pathways
passing through protein core nevertheless need more
steps to reach the allosteric site Val85, which is targeted
in the guided pathway generations. On the other hand,
when an ensemble of pathways with eight steps long are
generated starting from Ile20, another key peptide-binding
site (29), two populated pathways reaching to the two
distal sites, Val40 and Thr81, are obtained (Figure 4c).

Figure 4d shows the experimentally identified allosteric
pathways: changes in the side chain methyl dynamics with
the peptide binding (31) and energetic connectivity by
using evolutionary data that were experimentally
validated (12). The generated pathways by the MCPath

Figure 2. Two possible communication pathways between the ligand-binding site His372 (red) and the allosteric site Leu353 (green) in the PDZ3
domain from PSD-95 (PDB ID: 1BE9), with the C-terminal ligand (yellow). The residues in the allosteric pathway are colored in gray. The most
populated pathway (blue) and second populated pathway (magenta) are shown. The second most populated pathway is a subset of third populated
pathway. The table lists the three populated pathways and the other computational (12,13) and experimental (27) results.

Figure 3. The closeness values of the PDZ domain from PSD-95. The
plausible functional residues suggested by the closeness values (maxima
of the curve) are listed.
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Figure 4. (a) Two possible communication pathways between the active site His71 (red) and the allosteric site Val85 (yellow) (12) in the PDZ2
domain from HPTP1e (PDB ID: 1D5G): the most populated (magenta) and the second populated (blue) pathways. (b) Two populated pathways
from an ensemble of 10-step paths generated starting from His71 (red): the most populated (magenta) and the second populated (blue) pathways.
(c) Two populated pathways from an ensemble of 8-step paths starting from Ile20 (red): the most populated pathway (magenta) that reaches to the
distal site Thr81 and the second populated pathway (blue) ending the distal site Val40. (d) Experimentally verified energetically coupled residues
(magenta) (12) and the residues suggested for the allosteric signaling based on the methyl-containing side chain dynamics (blue) (9). The binding site
(His71) is in red. C-terminal ligand is shown in yellow stick.
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server agree with the latter studies; pathways starting from
the two key peptide-binding sites encapsulate the allosteric
interactions described in those studies. Two distal allo-
steric sites, Val40 and Thr81, are identified as in the
previous NMR studies (9,10,20,32). In this analysis, the
calculations were performed without the peptide because
the high affinity of signal transmission through peptide
may block the prediction of other signaling pathways.
The closeness values by the centrality analyses are

plotted and the functional residues are listed in Figure 5.
The results are agreed by the NMR study (31), where
Val40 and Leu66 were suggested as distal residues
affected by the peptide binding. Leu18 and Ile20 are the
binding sites. Ile35 was identified as interacting with both
distal sites using information theoretical method (20).
Also, the residues suggested by the closeness values
highly cover the residues in the allosteric pathways pre-
sented in Figure 4. The suggested functional residues have
high conservation scores of 5–9 (28).

CONCLUSION

The MC Path generation creates a new network on a given
protein structure composed of the paths created based on
the weighted inter-residue interactions. Here we demon-
strate that the maximum probability pathways with the
stochastic nature of the MCPath generation provide
possible propagation routes for a perturbation. The
analysis is based on a static structure, yet it may still be
used for the cases involving large conformational changes
by providing a set of most probable routes with
commonalities. Populated pathways imply the

predisposition of multiple pathways, which could be
used in one or in different functional states of the struc-
ture. The centrality parameters also provided by the
MCPath server labels the plausible functional regions of
the structure, such as active sites or catalytic sites and also
the regions with a role in allosteric communication.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–2 and Supplementary
References [33–40].
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