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Abstract. A new multiple-scattering Monte Carlo 3-D radia-
tive transfer model named McSCIA (Monte Carlo for SCIA-
machy) is presented. The backward technique is used to ef-
ficiently simulate narrow field of view instruments. The Mc-
SCIA algorithm has been formulated as a function of the
Earth’s radius, and can thus perform simulations for both
plane-parallel and spherical atmospheres. The latter geome-
try is essential for the interpretation of limb satellite measure-
ments, as performed by SCIAMACHY on board of ESA’s
Envisat. The model can simulate UV-vis-NIR radiation.

First the ray-tracing algorithm is presented in detail, and
then successfully validated against literature references, both
in plane-parallel and in spherical geometry. A simple 1-D
model is used to explain two different ways of treating ab-
sorption. One method uses the single scattering albedo while
the other uses the equivalence theorem. The equivalence the-
orem is based on a separation of absorption and scattering. It
is shown that both methods give, in a statistical way, identical
results for a wide variety of scenarios. Both absorption meth-
ods are included in McSCIA, and it is shown that also for a
3-D case both formulations give identical results. McSCIA
limb profiles for atmospheres with and without absorption
compare well with the one of the state of the art Monte Carlo
radiative transfer model MCC++.

A simplification of the photon statistics may lead to very
fast calculations of absorption features in the atmosphere.
However, these simplifications potentially introduce biases
in the results. McSCIA does not use simplifications and is
therefore a relatively slow implementation of the equivalence
theorem.

Correspondence to:F. Spada
(francesco.spada@gmail.com)

1 Introduction

In recent years the chemical composition of the atmosphere
has become an important concern (e.g. Jacob, 1999). Due to
human activities the composition of the atmosphere is chang-
ing, not only on a local scale, but also on a global scale.
Many of these changes are related to trace gases present in
the atmosphere (e.g. O3, NO2, CO2). To increase our know-
ledge on sources and sinks of these trace gases long time se-
ries of measurements are needed on a global scale, which can
not be provided by ground stations only. Therefore, there has
recently been an increase in new satellites with new instru-
ments and capabilities. The aim of these new instruments
is to monitor our changing atmosphere and understand, in
synergy with chemical models and ground observations, the
mechanisms behind the changes in atmospheric composition.

Many satellite instruments are designed to sample the at-
mospheric composition using the UV-vis-NIR part of the
spectrum. Employing the gas absorption spectral features
it is possible to retrieve the total column gas concentration
of O3, NO2, SO2, CO, CH4, CO2 from the backscattered
solar radiation. Using the backscattered UV-vis-NIR solar
radiation, for instance, GOME on board of ESA’s ERS-2
(Burrows et al., 1999) employs a differential optical absorp-
tion spectroscopy (DOAS) method to obtain global distribu-
tions of various trace gases. Also the more recent instru-
ments SCIAMACHY (Bovensmann et al., 1999) (launched
1 March 2002 onboard of ESA’s Envisat), and OMI (Levelt
et al., 2006; Stammes et al., 1999) (launched 15 July 2004
on board of NASA’s EOS-Aura) use DOAS-like techniques
to retrieve trace gas concentrations.

Whereas GOME and OMI are nadir viewing instruments,
SCIAMACHY scans the atmosphere also in limb mode, giv-
ing the possibility to obtain stratospheric profiles and conse-
quently tropospheric trace gas columns.
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The limb view enables the retrieval of vertical profiles of
trace gases (see e.g. Rusch et al., 1984; Mount et al., 1984;
Flittner et al., 2000; Kaiser, 2002; von Savigny et al., 2003;
Kaiser et al., 2004; Sioris et al., 2004; Rozanov et al., 2005;
Segers et al., 2005), but it raises some radiative transfer (RT)
modelling issues. While for nadir geometry a plane-parallel
description of the atmosphere normally suffices, in limb it
is essential to consider the sphericity of the Earth. One ap-
proach to solve this problem is the use of a Monte Carlo
(MC) RT model (Oikarinen et al., 1999). Monte Carlo meth-
ods are in principle an accurate way of solving RT prob-
lems, and are often used as a benchmark for approximate
approaches (e.g. Walter and Landgraf, 2005). All other ap-
proaches work with some assumption to solve the RT equa-
tion in spherical geometry (see Lenoble, 1985; Marshak and
Davis, 2005, for a review of different methods). Despite the
fact that a Monte Carlo approach can be very time consum-
ing, it also gives statistical information that allows to evalu-
ate the error of the results. Another advantage that will be
explored in this paper is the possibility to separate scattering
from absorption. The separate treatment of these processes
is achieved using the Equivalence Theorem (ET). Although
it was already introduced by Irvine (1964) and illustrated by
van de Hulst (1980), only recently a rigourous implementa-
tion, also for nontrivial cases, was published (Partain et al.,
2000). In short, the ET states that it does not matter whether
the constituents doing the scattering and doing the absorption
are identical, i.e. absorption can be treated as only happening
at the scattering points or only along the photon paths. In
previous works on ET (van de Hulst, 1980; Feigelson, 1984;
Cahalan et al., 1994; Partain et al., 2000) normalised prob-
ability distribution functions (PDFs) of photons paths were
derived, using Monte Carlo models. These PDFs were used
to calculate the absorption in the atmosphere. In the studies
of the radiation in a cloudy atmosphere presented by Feigel-
son (1984), she proposes instead to derive equivalent tra-
jectories that can be convoluted with absorption profiles of
gases. Since this approach is only valid in the weak absorp-
tion limit, this kind of treatment of absorption introduces a
new approximation that we would like to avoid.

The purpose of this work is to introduce the MC RT model
named McSCIA and to illustrate the use of the ET. For the
first time we will show that the ET and the single scattering
approach (SSA) give identical results in a 3-D spherical RT
model, both in nadir and limb geometry.

We will describe in Sect. 2 the ray-tracing part of McS-
CIA, without absorption, and perform a validation (Sect. 3)
of this module. We will introduce absorption in Sect. 4 and
illustrate the two approaches that we will exploit in the pa-
per: the SSA and the ET. After a theoretical illustration on
how to apply absorption in a MC model (Sect. 4.1), we will
use a simple 1-D model, in Sect. 4.2, to introduce the reader
to a MC RT model with absorption. We will show that the
SSA and the ET approach give identical results in 1-D. The
validation of the 3-D implementation of McSCIA against the

state-of-the-art MC RT model MCC++ (Postylyakov, 2004)
will be done in Sect. 5, where we will show that the SSA and
ET approach give statistically the same results in a wide va-
riety of scenarios. After a discussion in Sect. 7 on the earlier
use of the ET and the comparison with our approach, we will
summarise in Sect. 8 our results and draw some conclusions.

2 McSCIA ray-tracing module

McSCIA is a scalar (no polarisation) backward (or time-
reversed, or adjoint) MC RT model (see Fig. 1), in which
photons are tracked from their starting position in the satel-
lite, until the end their trajectories in space. The implemen-
tation is similar to SIRO (Oikarinen et al., 1999), but the re-
fractive bending is not implemented. The basis of MC (see
also Cashwell and Everett, 1959; Spanier and Gelbard, 1969;
Lenoble, 1985; Marshak and Davis, 2005) is that every inter-
action of a photon in the atmosphere can be described via
a probability density function (PDF), the integral of which
can be linked to a random numberR (see the Appendix for
some examples). By generating enough random realisations,
the physical process can be simulated in a statistical sense.
Once the probability of one event is known, it is possible to
calculate the probability of a sequence of events as a Markov
chain, because the events are independent.

For a more in depth description of the ray-tracing module,
please refer to Fig. 2 and Appendix A4.

The whole ray-tracing algorithm has been formulated as a
function of the Earth’s radiusRearth. This enables McSCIA
to increase the Earth’s radius to very large values, effectively
resulting in a plane-parallel atmospheric model. In this way a
validation of the backward MC algorithm with plane-parallel
RTMs is a straightforward exercise.

3 Scattering in a spherical atmosphere: validation of
ray-tracing module

The current implementation of the model atmosphere con-
sists of an arbitrary number of homogeneous spherical
shells. The depth of each layer is specified independently.
The model can treat molecular scattering (Rayleigh phase
function, see Eq. A9) and aerosol and droplet scattering
(Henyey-Greenstein phase function with asymmetry param-
eter 0≤g≤1, see Eq. A13). Since absorption is treated later
(see Sect. 4), here it is assumed that the atmosphere is con-
servatively scattering, so the single scattering albedo (SSA),
ω, is set to one. The ground reflection is assumed Lamber-
tian, and the ground albedo can have a 2-D variability (see
Sect. A3.3). Since absorption will be considered in Sect. 4,
surface reflection is assumed, just for now, to be conserva-
tive. The changes in the model formulation to account for
surface or atmospheric absorption are explained in Sect. 4.

Ground reflection is considered non-absorbing for two rea-
sons:
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Fig. 1. Illustration of the backward Monte Carlo calculation. The photon leaves the satellite, enters the atmosphere at positionx0, is scattered
at pointsx1, x3, x4 in the atmosphere (blue stars) and is scattered at pointsx2, x5 on the ground (black stars). After these 5 scattering events
it ends its trajectory leaving the atmosphere. As an example the supplement of the scattering angle22 is plotted. The relation between
the old direction, the scattering angles and the new direction is explained in the Appendix in Sect. A3.5. At each scattering position the
probability is calculated that the new direction after scattering would be towards the sun. The supplement of the angle used in Eq. (A26) is
plotted for the first scattering event with the symbolπ−θs1. The pointsxout

i
represent the exit positions of the photons if they would leave

the atmosphere at thei-th scattering event in the direction of the sun. The radiance contributions are denoted asI1...I5 (see also Eqs. A25
and 1). The first of these contributions is also used to calculate the radiance for single scattering (ISS). The curly brace betweenx3 and
xout

3 , marked withτ3 is an example of the trajectory used to calculateτscai in Eq. (A27) andτexti in Eq. (2). The dashed lines represent the
projections of the scattering points on the Earth surface.

1. we are evaluating only the ray-tracing part of the model.
Absorption (both by molecules and the surface) will be
considered later (see Sect. 4);

2. absorption will be computed, anyhow, by reducing the
weight of the photons reflected by the surface (see
Sect. 4).

Since the algorithm is formulated as a function of Earth ra-
dius, the first validation of the ray-tracing was performed by
increasing the radius of McSCIA to 1000·Rearth and com-
paring our results with the Doubling and Adding model of

the KNMI (de Haan et al., 1987; Stammes, 2001), a plane-
parallel RT model. The comparison was satisfactory, giving
results with differences less than the statistical error of McS-
CIA (0.1%).

Next, as in Oikarinen et al. (1999), we compared McSCIA
results with results from Adams and Kattawar (1978) and
Kattawar and Adams (1978) to verify the implementation of
the spherical geometry. For the comparison, the Earth ra-
dius was set to 6371 km, and the atmosphere was considered
as a homogeneous spherical shell with a height of 100 km.
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Fig. 2. Photon “life cycle” algorithm of one photon for the ET(a) and SSA(b) approaches. The boxes with a bigR indicate the use of
random numbers. Note that if absorption is considered, the methods use a different vertical coordinate: the ET method uses a scattering-only
coordinate (τsca) while the SSA method uses the total extinction (τext). Si is calculated with Eq. (A26) while the transmission factorTi uses
Eq. (2). The albedo weight is calculated using Eq. (4). The lowest two boxes show another major difference in the radiance calculation: the
ET method uses an exponential decrease (Eq. 5) while the SSA method uses the single scattering albedo (Eq. 6). While the SSA approach
calculate the absorption in-line, the ET approach calculate it off-line. First the statistics is calculated by the first part (ray-tracing) of the
model (I) and stored, then the second part of the model (II) calculate the absorption accessing the stored statistics.

The atmosphere was assumed to be conservatively scattering
and the ground albedo was set to zero. In this case the pho-
tons end its trajectory when they touch the Earth’s surface.
The satellite viewing zenith angleθsatat TOA was varied be-
tween 0 and 88◦ in the principal plane. This plane is de-

fined by the relative azimuth angle valuesφ=φsun−φsat=0◦

or φ=φsun−φsat=180◦, φsat is assumed to be 0. In the first
case the setup looks like the one in Fig. 3, while in the lat-
ter the sun is in the left quadrant behind the satellite. As in
Adams and Kattawar (1978), five values have been chosen
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Fig. 3. Global coordinate reference system employed in McSCIA. The figure represents the satellite viewing zenith angleθsat. The satellite
viewing azimuth angleφsat is chosen to be zero, thus for the relative azimuth angle holdsφ=φsun−φsat=φsun. In case of limb view, the
tangent altitude TA is a function of the earth radius Re and the satellite viewing angle. The atmospheric radiusRatm is defined from the Earth
centre to the top of atmosphere. The line of sight (LOS) is also depicted.

for the solar zenith angleθsun and azimuth angleφsun (see
Table 1 and Fig. 4).

As an example of the comparison we show the results
for two Rayleigh scattering atmospheres of optical thickness
0.25. In the top panel of Fig. 5 we show the normalised single
scattering (SS) radiance values, while in the bottom panel the
normalised multiple scattering (TS) radiance values at top of
atmosphere (TOA) for all the three solar positions.

The results of our simulations agree very well with the ra-
diance values obtained by Adams and Kattawar (1978). In
most cases results agree to the last digit given in the papers.
Otherwise differences are normally smaller than 1%. In some
cases differences amount to 3–5%. Since in the original pa-
pers there is no indication of the statistical error or of the
number of photons used, the differences can be due to poorer
statistics of the old models.

Figure 5 shows that we can capture several important fea-
tures for the case of optical thickness of 0.25. First of all,
the dotted and dashed curves are not symmetric due to the
solar position, that is not on nadir. For the case in which
the solar zenith angle is 84.26◦ the incoming solar radiation
doesn’t intersect the earth anymore, and the satellite can see

Table 1. Angles used for the comparison of Fig. 5 as defined in
Adams and Kattawar (1978) and Kattawar and Adams (1978). The
intercomparison geometries are also illustrated in Fig. 4.

θsun 0◦ 70◦ 70◦ 84◦ 84◦

φsun 0◦ 0◦ 180◦ 0◦ 180◦

also some part of ground beyond the terminator. This ef-
fect increases the difference between the radiance values for
φ=0◦ andφ=180◦. Another important feature that McSCIA
reproduces is that the radiance values increase until 80◦ and
decrease for greater angles. This feature it is characteristic
of the spherical geometry: in this scenario after 80◦ a plane-
parallel model would have only a monotonous increase of
the radiance for increasing VZA (see Adams and Kattawar,
1978).

These findings are also similar to those obtained by the
SIRO model (Oikarinen et al., 1999). Therefore, we are con-
fident that our spherical implementation is correct.

www.atmos-chem-phys.net/6/4823/2006/ Atmos. Chem. Phys., 6, 4823–4842, 2006
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Fig. 4. Geometries used for the comparison with Adams and Kat-
tawar (1978). The position of the sun (sun symbols) and of the
satellite (red bullets) are indicated. See also Table 1.

4 Absorption: Equivalence Theorem and Single Scat-
tering Albedo

The Equivalence Theorem (ET) of Irvine (1964) is a power-
ful way to include absorption in RT models. As discussed
by van de Hulst (1980), the ET states that it does not matter
whether the constituents doing the scattering and those doing
absorption are identical. This means that if we distinguish
two atmospheric constituents

– haze, that causes conservative scattering,

– gas, that causes absorption along the path between scat-
tering points;

we can decide to treat absorption as if it would occur

1. only at the scattering points, using a single scattering
albedo (ω) of the haze particles less than one, or

2. only along the path between scattering points with con-
servative scattering, using an exponential decrease of
the radianceI along the trajectory following Lambert-
Beers law.

From now on we will call case 1 the SSA approach, and case
2 the ET approach.

4.1 McSCIA in a 3-D spherical atmosphere with absorp-
tion

In the book of van de Hulst (1980), it is spelled out how to use
the ET for one layer, while in the work of Feigelson (1984)
and Partain et al. (2000) possible uses of it for a multilayer
geometry are explored. Partain goes as far as applying it to a

case with a vertical profile of an absorbing trace gas. How-
ever, these applications are not suitable for a full 3-D study
case. So we decided to explore a solution that could work
in this case, as proposed, but not used, by O’Hirok and Gau-
tier (1998). Nevertheless, the current implementation of the
model is still bounded to a spherical shell atmosphere.

In McSCIA the atmosphere is formed by homogeneous
spherical shell layers defined by the scattering coefficient
ksca, the absorption coefficientkabs, the phase functionP (µ)

and the geometrical extension of each layer.
Using the ET approach (see the flowchart Fig. 2a), we per-

form a simulation of the model in a scattering-only atmo-
sphere with ground albedo equal to 1, as described in Sect. 2,
and we store all the scattering and ground reflection posi-
tions. Once this scattering-only case has been computed,
the contribution of each scattering event to the radiance can
be evaluated, using a combination of the local estimate and
weight techniques (e.g. see Marchuk et al., 1980; Davis et al.,
1985; Marshak and Davis, 2005). If we follow only the j-th
photon, similar to Eq. (A25), the value for the i-th event is
given by:

Ii = Si · Ti · walb
i · wabs

i (1)

whereSi is the scattering probability towards the sun defined
in Eq. (A26). The other quantities are defined below.

The transmittance from the photon position to the sun is

Ti = e−τexti (2)

whereτexti is the optical thickness travelled by the photon
from its current position to the sun, calculated integrating
kext along the photon paths

τexti =

∫
s

kext(s)ds =

∫
s

(ksca(s) + kabs(s)) ds. (3)

The difference between Eq. (2) and Eq. (A27) is that now
also absorption is included in the transmission, as can be seen
by the difference between Eq. (3) and Eq. (A28). In the ET
method this factor is calculated off-line, after the ray-tracing.

To account for a surface albedo less than unity, the weight
due to surface reflections,walb

i , is the cumulative ground
albedo at positionxi

walb
i =

i∏
k=1

α(xk). (4)

The coefficientα(xk)=1 if xk is in the atmosphere, and
α(xk)=a(xk) if xk is on the Earth surface, witha(xk) the
ground albedo at pointxk. With this approach the effects of
a 2-D variable ground albedo can be easily evaluated.

The cumulative atmospheric absorption weight,wabs
i , is

the product of the transmission function from point to point

wabs
i =

∏
k=1,i

e−τabsk . (5)
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Fig. 5. Comparison between McSCIA results (bullets) and those of Adams and Kattawar (1978) (lines). The normalised radiance for an
incoming solar flux ofπ as a function of the satellite viewing angle at TOA (101 km) is plotted for three different solar zenith angles. The
view angle scan is done through the principal plane,φ=0◦ (right part of the figures, VZA>0) andφ=180◦ (left part of the figures, VZA<0).
The values of the angles used, are in Table 1 as illustrated by Fig. 4. The atmosphere is a homogeneous, conservative, Rayleigh scattering
layer with optical thickness of 0.25. Top panel: single scattering. Bottom panel: total scattering.

whereτabsk=
∫
s kabs(s)ds ands is the line connectingxk−1

andxk.
In the ET approach the atmospheric absorption is ac-

counted for in calculating the extinction from the scattering
position towards the sun (Eqs. 2, 3) and from scattering point
to scattering point (Eq. 5). Both these factors are calculated
off-line.

If we use, instead, the SSA algorithm to account for ab-
sorption, we follow the flowchart of Fig. 2b. Now the scat-
tering of the photons is calculated in a scattering and absorb-
ing atmosphere. The contribution of each scattering event
is given, like for the ET case, by Eq. (1), but this time the
absorption termwabs

i is given by

wabs
i =

∏
k=1,i

ω(xk). (6)

Inspecting the flowcharts of Fig. 2 it is easy to see that the ab-
sorption is calculated “off-line” for the ET method (a), while
it is calculated “on-line” for the SSA case (b). Thus, it is clear
that the results of the SSA simulations cannot be re-used if
we change the absorption properties of the atmosphere. We
should in this case also re-calculate all the scattering posi-
tions, since they depend on the absorption coefficients in
the 3-D atmosphere. However, the ET calculation with a
scattering-only atmosphere can be applied to any distribu-

tion of absorbers, as long as the scattering properties remain
unchanged.

Now that the differences between the two approaches of
calculating absorption have been spelled out, we will show
that they give equivalent results with a simple 1-D MC RT
model.

4.2 Simple 1-D demonstration of the Equivalence Theorem

To demonstrate the use of the ET we have developed a simple
one-dimensional MCRT model. The only aim of this model
is to illustrate the ET, and would be ideal as a classroom ex-
ample for RT. It is fully described in Appendix B and it can
perform simulations in both SSA and ET methods.

To compare the level of agreement between the two
methods many scenarios were simulated (see Table B1 and
Fig. B1). The basic scenario was that of Rayleigh scatter-
ing with an ozone-like absorber. The absorption peak alti-
tude was alwayszmax=22 km. In each of these scenarios,
the amount of absorption was varied in depth (d) and absorp-
tion peak value (ca) (see Table B1) giving more that three
thousand different scenarios, with absorption optical thick-
ness ranging from 0 to 7.4 and scattering optical depth rang-
ing from 0.08 to 8.0.

To evaluate the statistical error (σ ) 10 simulations, each
with 105 photons, were performed. The average of these 10

www.atmos-chem-phys.net/6/4823/2006/ Atmos. Chem. Phys., 6, 4823–4842, 2006
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intensities represents the radiance and the sample standard
deviation is used to estimate the spread of the radiance. The
error is, thus, calculated via the formula

err = σ/I · 100 [%]. (7)

Then, the results of the ET (I1±σ1) and SSA (I2±σ2) cases
were compared calculating the standardised difference (1S)
between the two models

1S =
I1 − I2√
σ 2

1 + σ 2
2

. (8)

Figure 6 shows the1S values of the different realisations de-
scribed by Table B1. The differences are well approximated
by a normal distribution and the agreement between the two
models does not seem to be related to the optical thickness.
Thus, we can conclude that the two different approaches give
statistically equivalent results and that the remaining differ-
ences are caused by statistical fluctuations, that are an intrin-
sic part of every MC process.

5 Performance of McSCIA in 3-D

5.1 Validation of McSCIA in 3-D

The validation of McSCIA in a full 3-D case was performed
by a comparison to the results of a MC reference model de-
scribed in Loughman et al. (2004).

Table 2. Cross section used for the comparison between McSCIA
and MCC++ (from Loughman et al., 2004).

Wavelength [nm]
325 345

Rayleigh scattering cross section 10−25
[cm2

] 0.4022 0.3120
Ozone absorption cross section 10−20

[cm2
] 1.451 0

The agreement between two MC models depends criti-
cally on the way the optical properties of the atmosphere are
discretised (Postylyakov et al., 2003). The model MCC++
(Postylyakov, 2004) was chosen as a reference model since it
uses a piece-wise constant distribution function with discon-
tinuities at grid points which the same as in our implemen-
tation. As outlined by Postylyakov et al. (2003), differences
between the models up to 1% are acceptable since the opti-
cal properties are derived in different ways. However, while
the atmospheric layering difference may not be the dominant
source of differences, during the intercomparison of McS-
CIA with the model of H. Walter (Walter et al., 2006), we
have noticed that a small difference in the pointing of the
satellite, along with slightly different optical properties of the
atmospheres, could cause differences of more than 1%.

We compared with the first case of Loughman et al. (2004,
Sect. 3.2, Fig. 4): a limb scan in an aerosol free atmo-
sphere, forλ=345 nm andλ=325 nm. We use the MOD-
TRAN (Berk et al., 1989) tropical atmospheric density and
O3 profiles, with the cross section for Ozone and Rayleigh
provided in the Loughman et al. (2004) (see also Table 2).
The vertical profiles ofkscaandkext are shown in Fig. 7.

The atmosphere was discretized in 100 homogeneous lay-
ers equally spaced (1 km depth each), with the Earth radius
set to 6377.640 km. For scattering the Rayleigh phase func-
tion was used. Polarisation was neglected (scalar case).

The results of the intercomparison are shown in Figs. 8
and 9 for 345 nm and 325 nm, respectively, both for single
scattering and total scattering, using the ET method.

The percentage difference between the two models is de-
fined as

δMM = 100· (IMcSCIA − IMCC++)/IMCC++ (9)

The standard deviationσMM of the comparison is defined as

σMM =

√
σ 2

McSCIA + σ 2
MCC++

. (10)

Generally the agreement between the two models is within
two σMM (shaded region) and is better without (345 nm) than
with (325 nm) O3 absorption. The agreement is worse in the
upper part of the scan than in the lower part for the case of
325 nm.
We think that these features have a common cause: we had to
generate our own optical atmosphere for the Loughman et al.
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Fig. 7. Vertical profile of the Rayleigh scattering coefficient (full
line) and ozone absorption coefficient (dashed line) at 325 nm. The
scattering coefficient profile for 345 nm is identical to the 325 nm
profile but scaled by a factor 0.77573347, whereas ozone absorption
is assumed to be negligible at 345 nm.

(2004) intercomparison c ase, so that some small differences
exist between the two model set-ups. Another issue is that
the geometries used in McSCIA and in the intercomparison
paper are not the same: we use angles at the top of the at-
mosphere instead of angles at the tangent altitude, and small
numerical errors can be introduced in the conversion. The
differences between the two models are well under 0.2% for
most cases and always smaller than 0.5%.

In conclusion we are confident that we correctly imple-
mented absorption and the spherical geometry in our McS-
CIA model, and we have already a proof that the ET method
gives good results.

5.2 Comparison between ET and SSA in 3-D

Here we want to investigate whether the ET approach gives
equivalent results as the SSA approach in 3-D for a wide
range of scenarios with different absorption profiles. In par-
ticular we want to analyse extreme cases from very thin
to very thick atmospheres for tangent altitudes from 20 to
60 km, descibed in Table 3. McSCIA simulations were per-
formed with 1 million photons and the atmospheric profiles
were generated with Eq. (B1) using the parameter values of
Table 3.

As can be seen from Fig. 10 the ET and SSA results agree
very well. The standardised differences between the two ap-

Table 3. Parameters for Eq. (B1) used to generate the atmospheric
profiles for the scenarios ET/SSA comparison for the 3-D case. The
total scattering optical thickness is about 0.8. The total absorption
optical thickness varies from 0 to 7.4.

zscale 8.0 km
zmax 22.0 km

cs 0.1 km−1

ca 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3 km−1

d 0.1, 1.0, 5.0, 10.0 km

proaches are rarely larger than 0.5σ , and always smaller than
oneσ . More importantly, Fig. 10 shows a tendency towards
a normal distribution of SD, like in Fig. 6. However, in 3-
D the computation time is much longer than in 1-D, so we
could not make a similar number of runs as was made in the
1-D case.

Both approaches give the same results for different sce-
narios with a variable amount of absorber, concentrated in
one thin layer or spread over many layers. With McSCIA
it is now possible to study several 3-D absorption scenarios
with one simulation, thanks to the power of the Equivalence
theorem.

6 A 3-D example: sensitivity of measured radiance

A problem that is crucial at this point in history of satellite
development, is determining where the radiation measured
by a satellite is absorbed in the 3-D atmosphere. This is, in
fact, strictly related to the maximum resolution that a space
born instrument can achieve.

One approach to understand this problem, is to calculate
the fraction of absorption that is occurring in the pixel mea-
sured by the satellite (black cone in Fig. 11). This can be
efficiently calculated using the equivalence theorem in McS-
CIA to derive the sensitivity of each layer to changes in trace
gas concentrations.

Having kept all the photon statistics, it is now possible to
calculate this sensitivity by just applying the correction factor
exp(−τp) to Eq. (1), whereτp is the optical thickness added
to perturb the gas concentration. Moreover, from Eq. (1) it is
clear that the code can also efficiently calculate these values
as a function of ground albedo.

Table 4 gives the fraction of absorption that is taking place
inside the pixel at 1 km and 30 km of altitude, and for ground
albedo a=0.05 and a=1.0. The results are calculated using the
same atmospheric profile as described in Fig. 7, for 325 nm.
The satellite is looking in nadir with a circular ground pixel
of 24 km of diameter, while the solar zenith angle is 40◦ (see
Fig. 11).

The values of Table 4 show that there is a smoothing effect
and a geometrical effect. While the latter is mainly due to the
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Fig. 8. Comparison of limb profiles of radianceI between McSCIA (ET) and MCC++ atλ=345 nm, for an aerosol-free atmosphere. The
solar zenith angle is 39.2933◦ and the relative azimuth is 111.746◦ at LOS. In the left panel the radiance values of McSCIA (lines) and
MCC++ (filled circles and diamonds) are shown. In the centre panel the single scattering percentage differenceδMM (Eq. 9) is shown, with
the errorσMM (Eq. 10) represented by the shaded area and the 0% difference shown with a dashed line. In the right panel,δMM is shown for
total scattering. See also Loughman et al. (2004, Fig. 4).
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Fig. 9. Same as Fig. 8 but atλ=325 nm.
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Fig. 10. Standardised difference (Eq. 8) between the SSA and ET
of McSCIA (3-D), for the cases of Table 3 and tangent altitudes
20, 30, 40, 50, 60 km. The simulations were performed with solar
zenith angle 37◦ and azimuth 101◦.

geometry of the problem and to single scattering, the former
is due to multiple Rayleigh scattering.

The single scattering photons follow a straight line sun-
scattering point-satellite that at some altitudes does not cross
the satellite pixel (see red and black circle in Fig. 11). This
geometrical effect is more important in the higher levels of
atmosphere, as can also be seen by the differences between
1 km and 30 km, especially in the case of no scattering atmo-
sphere. In fact the two circles almost completely overlap on
the 1 km layer, while they are completely separated at 30 km
of altitude (the layer represented in Fig. 11).

The differences in fraction of absorption for the cases with
ground albedos of 0.05 and 1.0 show clearly that the increase
of multiple scattering decreases the fraction of absorption
taking place in the pixel. However, the total amount of ab-
sorption taking place is larger for larger albedos.

If we compare the no scattering case with the a=0.05 case
at 1 km of altitude, it is possible to see the smoothing ef-
fect due the Rayleigh scattering. This effect increases as the
ground albedo increases. However, at 30 km we can see a
strange behavior: the fraction of absorption is lower in the
case without scattering than in the other two. This can be
explained by the fact that the geometry that we chose is very
similar to the one depicted in Fig. 11: the two circles (red and
black) are just next to each other. In that case, without scat-
tering, the photons would cross the level only through the two
circles and the pixel would account for less than half of the

Fig. 11. Schematic illustration of the light paths of measured pho-
tons in a non scattering atmosphere (not at scale). The black cone
represents the 3-D pixel observed by the satellite instrument. The
black circle filled in gray represents the instrument ground pixel.
The layer in which are depicted the two circles represents the geo-
metrical setup for the case studied at 30 km of altitude. Note that on
this layers the two circles do not overlap.

Table 4. Fraction of absorption inside the pixel. In the no scatter-
ing case the only processes taking place are absorption and ground
reflection.

a=0.05 a=0.8 no scattering

1 km 61% 57% 97%
30 km 51% 48% 43%

absorption (the other circle is bigger and the photons cross
it with a slant path). However, if we consider an atmosphere
with Rayleigh scattering, a lot of bright single scattering pho-
tons would cross in the pixel circle without crossing the other
one.

These section shows how the ET in McSCIA can be used
to speed up calculations in which we have 3-D variation of
trace gas absorbers. With this method we are able to calculate
the fraction of absorption that is occurring inside the pixel
observed by a space born instrument. The results that we
found show that this quantity is very important and that it is
composed by a geometrical and a scattering part.
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7 Discussion

In this section we discuss different implementations of the
ET used in literature and the one used in McSCIA.

The aim of this paper is to show the validity of the ET
approach in 3-D RT problems. This power of the ET ap-
proach has been recognised earlier. For instance, van de
Hulst (1980) states that RT can be defined in terms of inert
parameters, i.e. variables that determine the radiance field but
remain constant in many equivalent situations. These inert
parameters may be clouds, geometrical setting, phase func-
tion, etc.

Considering an atmosphere in which the haze provides
scattering and absorption and a gas provides absorption, the
ET can be summarised by (van de Hulst, 1980, p. 576)

I (ω, τ, γ ) =

∑
n

In (τ, γ = 0) ωn
·

·

∫
∞

0
pn (τ, γ = 0, λ) e−γ λdλ. (11)

whereω is the haze single scattering albedo,λ the optical
path-length andγ is the ratio of the gas absorption to haze
extinction. The equation tells that the radiance in an ab-
sorbing atmosphereI (ω, γ ) can be calculated as a weighted
sum over the number of scattering eventsn of the radiance
In (γ=0) due to each scattering order calculated in a non-
absorbing atmosphere. The weight contains the absorption,
which is calculated from the statistical part of the informa-
tion in the form of the normalised probability distribution
(pdf) of photon path-lengthspn (γ=0, λ), calculated for each
scattering order. The important point here is that the pdf is
calculated in an atmosphere without absorption and is subse-
quently used to calculate the absorption contribution.

In the work of Partain, Heidinger and Stephens (Partain
et al., 2000; Stephens and Heidinger, 2000; Heidinger and
Stephens, 2000, 2002) the ET, as expressed by Eq. (11), has
been presented and employed, extending the original formu-
lation of van de Hulst (1980). The use of geometrical instead
of optical photon paths allow Partain et al. (2000) to extend
the ET to multiple homogeneous layers. The ET is actually
extended also in a way that takes into account ground albedo,
the single scattering albedo and a vertical gas profile. The
problem is solved by the introduction of a pdf that represents
the statistics for gas, particle and ground absorption. Since
storage of the complete pdf would make the model slower
than performing SSA calculations, an approximate pdf is
constructed. The authors recognised that such an approach
introduces a bias, i.e. an overestimate of the spectral absorp-
tion.

For the work of Cahalan et al. (1994) holds similar consid-
eration as for the one of Partain.

Another approach was introduced by Feigelson (1984).
The concept of equivalent trajectories is used to condense the
information of all the individual photon trajectories in an “av-
erage” trajectory. Basically this quantity represents the aver-

age number of times that a model layer has been crossed ver-
tically by the “average” photon. In principle, such an aver-
age photon path calculated for a scattering-only atmosphere
might be convolved with different absorption profiles. How-
ever, it can be shown that this approach is only valid in the
weak absorption limit (i.e. exp(−τabs)=1−τabs). Apart from
the approximate nature of these approaches, they suffer also
from the limitation that they cannot be used for 3-D varying
absorption features.

None of these implementations of the ET compared the
use of the ET and the traditional SSA approach for a 3-D
case. Thus, we extended the ideas outlined above by retain-
ing all information of the scattering photons in a 3-D spher-
ical atmosphere. Although such an approach is not efficient
(storage of the scattering positions of≈106 photons) this ap-
proach allowed us to prove the validity of the ET. However,
many possible improvements to this brute force approach can
be considered. For example, modern (multi-processor) com-
puters can handle these problems adequately for some se-
lected scattering scenarios.

An issue that deserves improvement in McSCIA is the
quality of the statistical information of photons. When at-
mospheric absorption is strongly dominant over scattering,
simulations of a scattering-only atmosphere are not represen-
tative for the true situation. For instance, in a scattering-only
case many photons will travel to the surface while in reality
most of the photons would be subject to atmospheric absorp-
tion. A way to circumvent this problem is the use of a mixed
SSA and ET approach. The conventional SSA method is
used to simulate photon paths in an absorbing and scattering
atmosphere (e.g. employing a standard absorption profile).
Afterwards, 3-D absorption perturbations can be studied us-
ing the ET approach. Using this approach, the statistical pho-
ton path information that is stored represents the actual situ-
ation more efficiently.

A strong point of our implementation is the possibility of
using a 2-D varying ground albedo in a simple way. This is
due to the fact that the ground albedo only appears in Eq. (4);
it is very simple to relate its value to an albedo map.

The gain of speed due to the use of the ET depends criti-
cally on how it is used. In fact, the gain of speed in McSCIA
depends on the amount of statistical information retained af-
ter the ray-tracing part. With a small amount of information
retained it would be possible to build a very fast model but
without too much flexibility (e.g. as done by Partain et al.,
2000). Otherwise, if more information would be saved, in
order to study more complex cases (e.g. 2-D absorber fields
(Spada et al., 20061)), then the gain of speed would be less.

Partain et al. (2000) retained the statistical information as a
PDF. This condensed form of information works efficiently,
but is only an approximation. So, we decided to retain all
ray-tracing information. At the moment the ray tracing part

1 Spada, F., Krol, M. C., and Landgraf, J.: 3D weighting func-
tions and radiative smoothing, in preparation, 2006.
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of the model is written in FORTRAN-90 and all statistical
information is stored (scattering position, scattering angles,
photon weight). A post-processing code is written in Interac-
tive Data Language (IDL) which provides good visualization
tools. From this choice it is clear that computing speed is not
a consideration at the moment.

The traditional way to use the ET is to employ the fact that
scattering varies much less with wavelength than absorption,
especially in spectral windows with sharp absorption lines.
This allow a fast calculation of absorption lines under the
assumption that scattering is constant. However, this is not
the only way in which it can be used.

While the agreement between the codes in the I3RC (Ca-
halan and Davies, 2000) shows that the ET works, we felt it
necessary to demonstrate how well it can perform. The fact
that in McSCIA we have statistically identical results, while
there is a biasing in the Partain et al. (2000) case, shows that
not every implementation of the ET is the same and that peo-
ple should be aware of it when they employ the ET in their
model.

After having demonstrated in this paper for the first time
the validity of the ET in a spherical 3-D environment, we
have shown, in Sect. 5.2, an example of calculation of the
fraction of absorption occurring in the pixel seen by the satel-
lite. We want to emphasize that these results depend crit-
ically on the wavelength used, on the geometry of the ob-
servation, on the ground albedo on the atmospheric setup
(clouds, aerosols, . . . ).

We are currently employing the ET to study the sensitiv-
ity of the TOA radiance for 3-D variations of absorption in
the atmosphere (Spada and Krol, 2005), by calculating 3-D
weighting functions. This is relevant to e.g. satellite mea-
surement of tropospheric pollution.

8 Summary and conclusions

A Monte Carlo adjoint RT model, named McSCIA, has
been developed. It is intended for the study of UV-vis-NIR
RT problems in a fully 3-D spherical atmosphere, e.g. to
study the radiances measured by limb-viewing instruments
like SCIAMACHY. McSCIA can use mixed Rayleigh and
Henyey-Greenstein phase functions and can employ a 2-D
varying Lambertian surface reflection. Refraction and polar-
isation are not included.

Results from the ray-tracing module compare well with
published results for non-absorbing plane-parallel cases, for
different phase functions (Rayleigh and Henyey-Greenstein)
and several nadir geometries and sun positions.

The spherical implementation of McSCIA was success-
fully validated against the state-of-the-art Monte Carlo model
MCC++ (Postylyakov, 2004) using a spherical shells atmo-
sphere, as described in Loughman et al. (2004), and earlier
results (Adams and Kattawar, 1978; Kattawar and Adams,

1978) simulating a homogeneous spherical single shell at-
mosphere, as described in their paper.

In McSCIA the absorption has been implemented using
two different methods. The traditional SSA methods which
uses the scattering and absorption optical depth as vertical
coordinate and employs the single scattering albedoω at the
simulated scattering positions to take into account absorption
of radiation. The ET approach which simulates photons in a
scattering-only atmosphere and treats absorption afterward
by convolving the individual photon paths with the associ-
ated absorption profile.

Using a simple 1-D model, we demonstrated that these two
different approaches give results that are identical in a statis-
tical sense for a wide range of scenarios.

A more in depth comparison between the two approaches
is made using the spherical implementation of McSCIA.
Several scenario studies show that the ET and the SSA ap-
proaches give equivalent results, even for extreme cases.

To our knowledge this is the first implementation of the
Equivalence Theorem in a 3-D spherical RT model. This ap-
proach allows us to study the radiance field, simulated for
a particular scattering geometry, as a function of 3-D atmo-
spheric absorption features. For simulations with 106 pho-
tons, the relative error of McSCIA is normally well under
0.1%. However, due to the required storage of all the individ-
ual photon paths, the computational burden is still too high
for operational applications. However, McSCIA already acts
as a reference model for faster approximate radiative transfer
codes (e.g. Walter et al., 2006). Moreover, McSCIA is one of
the few models that allow the study of 3-D varying absorp-
tion features in a spherical atmosphere. Currently, McSCIA
is used to simulate 3-D absorption features for nadir and limb
satellite measurements.

Appendix A

McSCIA Ray tracing algorithm description

This Appendix gives the formulas needed to create a MC
RT ray tracing model, without absorption, that is treated in
Sect. 4.1.

A1 Radiative transfer laws and random numbers

Since RT processes are statistical in nature, most quantities
in transfer theory can be easily interpreted as probabilities,
or probability distributions.

In the Appendix the wavelength dependence has been
omitted from the formulas to improve their readability.

The core is the fundamental principle of Monte Carlo sim-
ulations (Cashwell and Everett, 1959; Marshak and Davis,
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2005). For the continuous case, letp(x) be the normalised
probability (PF), witha≤x<b:∫ b

a

dξp(ξ) = 1.

Then p(x)dx is the probability ofx lying betweenx and
x+dx. The cumulative probability functionP(x) (CPF) de-
terminesx uniquely as a function of the random numberR:

R = P(x) =

∫ x

a

dξp(ξ). (A1)

Moreover, ifR is uniformly distributed on 0≤R<1, thenx

falls with frequencyp(x)dx in the interval(x, x+dx).
Thus, the CPF is the quantity that relates a random number

to physical processes. We will show in the next sections some
examples of this relation, guided by the processes that are
implemented in McSCIA.

A2 Photon path length

The normalised probability PF(s) that a photon will travel
through a medium from point 0 to points (see e.g. Oikarinen
et al., 1999; Marshak and Davis, 2005; Cahalan and Davies,
2000), following Lambert-Beer’s law (Liou, 1980), is

PF(s) =
exp(−τs)∫

∞

0 dτ ′
s exp

(
−τ ′

s

) (0 ≤ PF(s) ≤ 1) . (A2)

The fundamental principle of Monte Carlo simulations must
be applied to statistically derive the optical depth travelled,
soRτ must be equal to the normalised CPF

Rτ =

∫ 1τ

0 dτ ′
s exp

(
−τ ′

s

)∫
∞

0 dτ ′
s exp

(
−τ ′

s

) = 1 − exp(−1τ)

0 ≤ Rτ < 1. (A3)

The statistical optical depth travelled before the next colli-
sion is then given by

1τ = − ln (1 −Rτ ) 0 ≤ Rτ < 1. (A4)

But, since 1−Rτ is still a random number between 0 and 1,
Eq. (A4) can be rewritten as

1τ = − ln
(
R′

τ

)
0 < R′

τ ≤ 1 (A5)

With a backward MC in limb view it is advantageous to bias
this distribution, permitting the photons only to scatter in
(0,1τmax], so that the biased sampled photons do not leave
the atmosphere at the first scattering event. In that case the
sampling would be

1τ = − ln
[
1 −Rτ (1 − exp(−1τmax))

]
0 ≤ Rτ < 1. (A6)

To account for this bias the weight of the photon has to be
multiplied by 1− exp(−1τmax), which simply states that a
fraction of (1− exp(−1τmax)) of all the photons leave the
atmosphere after being emitted from the satellite.

A3 Scattering angles

When a photon is scattered by molecules (Rayleigh scatter-
ing) or aerosols and droplets (Mie scattering) or is reflected
from the ground, its direction changes. In order to find the
new direction the scattering azimuth and zenith angles have
to be simulated (see e.g. Oikarinen et al., 1999; Marshak
and Davis, 2005; Cahalan and Davies, 2000), in a statistical
sense.

The rotation of the scattering angles2 and 8 with re-
spect to the atmospheric coordinate system are discussed in
Sect. A3.5.

A3.1 Scattering azimuth angle

The scattering azimuth angle, which determines the plane of
the scattering event relative to the reference direction, is uni-
formly distributed, that is

p8(8) =
1

2π
(A7)

so that applying Eq. (A1)

8 = 2πR8 0 ≤ R8 < 1. (A8)

A3.2 Scattering zenith angle

The scattering zenith angle2 (relative to the incident direc-
tion) is determined from the scattering phase function. In the
rest of the Appendix we will use, for simplicity, this notation

µ = cos(2).

The rotation of the scattering angles angles2 and8 with
respect to the atmospheric coordinate system are discussed
in Sect. A3.5

Rayleigh scattering

For Rayleigh scattering by air, the phase function for unpo-
larised light is (Liou, 1980):

P(µ) =
3

4

(
1 + µ2

)
µ ∈ [−1, 1] . (A9)

In this case Eq. (A1) becomes

Rµ =
1

2
+

1

8

(
3µ + µ3

)
0 ≤ Rµ < 1. (A10)

This is a third order equation that can be solved exactly.
Since the quadratic term is absent it is possible to use the
“Formula Cardanica”. Equation (A10) can be rewritten as:

µ3
+ pµ + q = 0 (A11)

p = 3 andq = 4 − 8Rµ 0 ≤ Rµ < 1

Since

1 =
q2

4
+

p3

27
> 0 0 ≤ Rµ < 1
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there is a real solution and two complex solutions. The real
solution is:

µ =
(

3
√

a − q −
3
√

a + q
) 3

√
1

2
(A12)

q = 4 − 8Rµ anda =

√
q2 + 4

Henyey-Greenstein scattering

For scattering of photons in the UV-vis region on aerosols
and droplets, Mie scattering theory (see e.g. Lenoble, 1993)
has to be used. A Mie scattering phase function is generally
complicated, but a reasonable approximation is the Henyey-
Greenstein function

P(µ) =
1 − g2(

1 + g2 − 2gµ
) 3

2

(A13)

whereg is the asymmetry factor. The relation between the
scattering angle and the random number obtained using the
fundamental principle of Monte Carlo simulations is

µ =
1

2g

1 + g2
−

(
1 − g2

1 − g + 2gRµ

)2


0 ≤ Rµ < 1 (A14)

whereg is the asymmetry factor of the phase function defined
as

g =< µ >=

∫
+1
−1 µp(µ)dµ∫
+1
−1 p(µ)dµ

. (A15)

Mixed phase function

When the model has to take into account scattering from
more than one type of particles, a mixed phase function has
to be used (Oikarinen et al., 1999). Supposekext(x) repre-
sents the total volume extinction coefficient: absorption and
scattering both by molecules and particles. In general, the
profile will be a function of the 3-D positionx.

McSCIA needs to separate the extinction coefficient in
scattering and absorption coefficients:

kext(x) = kabs(x) + ksca(x) (A16)

and then to separate the scattering coefficients in molecular
and aerosol scattering

ksca(x) = ksca mol(x) + ksca aer(x). (A17)

The single scattering albedo is defined as usual

ω(x) =
ksca(x)

kext(x)
. (A18)

The ratio between molecular and total scattering is then rep-
resented by

f sca(x) =
ksca mol(x)

ksca(x)
. (A19)

For molecular scattering Eq. (A9) is employed, and for
aerosol scattering Eq. (A13). At a scattering event first a ran-
dom number is drawn to decide whether the scattering will
be molecular or from aerosol:

Rsca≤ f sca
⇒ use Eq. (A12)

Rsca> f sca
⇒ use Eq. (A14)

When the exact scattering probability of scattering towards
the sun has to be computed (see Eq. A26) a mixed phase
function expression is used

P(x, µ) = P mol(µ) · f sca(x) +

+ P aer(µ) · (1 − f sca(x)) (A20)

While the phase function for molecular scatteringP mol and
aerosol scatteringP aerare taken to be independent of the po-
sition x, the mixed phase function is a function of the posi-
tion x.

A3.3 Lambertian surface reflection

When a photon reaches the surface and is reflected, the new
direction is uniformly sampled. Thus Eq. (A1) becomes

Rµ =

∫ µ

0
dµ′µ′ 0 ≤ Rµ ≤ 1 (A21)

The relation between the scattering angle and the random
number is then given by

µ =
√
Rµ 0 ≤ Rµ ≤ 1. (A22)

As for atmospheric scattering, the azimuth angle for surface
reflection is calculated using Eq. (A8). Since the direction of
reflection it is defined only by the random number, it is easy
to introduce a 2-D variability. This is only accounted for in
the value of albedoa(xj ) that is used to calculatewalb

i (see
Eq. 4).

A3.4 Scattering angle to the sun

Equation (A26) requires the angle between the photon di-
rection and the solar rays. This angle can be calculated in
spherical geometry as

µsi (θ
dir
i , φdir

i , θsun
i , φsun

i ) = cos(θdir
i ) cos(θsun

i ) +

+ sin(θdir
i ) sin(θsun

i ) cos(φdir
i − φsun

i ). (A23)

The directional anglesθdir
i andφdir

i are different at each scat-
tering event, while the solar anglesθsun andφsun are always
the same, since a global reference system is used.

Alternatively, given positionsxi−1, xi and xout
i (see

Fig. A1) the vector formula can be used

µsi (θ
dir
i , φdir

i , θsun
i , φsun

i ) =
−−−−→
xi−1xi ·

−−−→
xix

out
i . (A24)
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Fig. A1. Zoom of Fig. 1, in particular of pointsx3 andx4. For clarity of drawing not all scales are identical. The scattering probability
towards the sun following the directionxi–xout

i
is calculated evaluating the phase function inµsi (Eq. A26). Computation of angleθsi

requires the directional and solar anglesθdir
i

, φdir
i

, θsun
i

, φsun
i

(see Eq. A23). The photon travels from positionxi−1 to xi and the angles are
defined in the global reference system x,y,z.

A3.5 New photon direction

Calculation of the new direction of a photon after a scattering
event, requires the old direction and scattering angles. The
latter are calculated using formulas (A8) and (A12), (A14)
or (A22). In the local reference system of the old direction
the new direction is calculated by two successive rotations
of 2 and8, respectively, as illustrated in Fig. A2. This new
direction is then rotated back from the local reference system
to the global reference system.

A4 Ray tracing module

Since the field of view (FOV) of the satellite is normally nar-
row usually a backward MC approach is preferred (Collins

et al., 1972; Adams and Kattawar, 1978; Marchuk et al.,
1980; Lenoble, 1985; Oikarinen et al., 1999). The principle
behind this method is illustrated in Fig. 1. With a time rever-
sal, photons emerge from the detector and are traced through
the atmosphere. The fate of these photons is influenced by
scattering on air molecules (Rayleigh), aerosols (Mie), ab-
sorption by trace gases, and surface reflection. Since in
the UV-vis wavelength region emission can be generally ig-
nored, the only source of light is the sun. However, the
chance that a photon leaves the atmosphere exactly in the
direction of the sun are extremely low. Thus, many photons
would be needed to obtain a statistically meaningful result.
Luckily a much faster convergence can be obtained by us-
ing the local estimate technique (Marchuk et al., 1980; Davis
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et al., 1985; Marshak and Davis, 2005). It consists in cal-
culating the contribution of every photon at each scattering
event (see Fig. 1). If we follow thej -th photon (e.g. the one
of Fig. 1), at each scattering positionxi , the probabilities that
the photons escape in the direction of the sun are calculated.
For a scattering-only atmosphere the radiance contribution of
this photon at the i-th scattering event is given by

Ii = Si · Ti . (A25)

Si is the scattering probability towards the sun

Si = P(µsi )/4π, (A26)

whereµsi is the cosine of the scattering angle towards the
sun, θsi (see also Fig. 1, Eqs. A23 and A24).P (µ) is the
scattering phase function, normalised over the solid angle:∫

4π

P(µ)

4π
d� = 1

where d� is the infinitesimal element of a solid angle,
d�=dµdφ. The transmittanceTi in Eq. (A25) from the pho-
ton position to the TOA in the direction of the sun, which
takes into account the intensity scattered out of the ray, is
given by:

Ti = e−τscai (A27)

whereτscai is the outgoing optical thickness:

τscai =

∫
s

ksca(s)ds. (A28)

wheres is the line connecting the scattering positionxi to
xout

i , the position where the photon leaves the atmosphere
towards the sun.ksca is the scattering coefficient.

The result of this ray-tracing procedure is a number of
scattering positions (xi, i(=)1, 5 in Fig. 1) of all the photons
that travel through the model atmosphere. To find the new
positions and directions of the photons after each scattering
event, we use the formulae described in the Appendix, fol-
lowing the algorithm illustrated by the flow chart of Fig. 2a.
For the first scattering event in limb geometry we use the bi-
ased Eq. (A6) instead of (A5). In this way all photons remain
in the atmosphere after the first scattering and no photon is
lost directly to space. As described by (Marchuk et al., 1980),
not using this biasing would result in very bad statistics for
the limb case.

The photons can only end their trajectories if they are scat-
tered into space.

The normalised radianceI measured by the satellite is
given by the sum of all contributions at the scattering events
i of photonj , divided by the total number of photons simu-
lated (Ntot) multiplied byπ

I =
π

Ntot

Ntot∑
j=1

Nsca(j)∑
i=1

Ii,j . (A29)

x
loc

z
loc

y
loc

dir
i

dir
i+1

Θ

Φ

Fig. A2. Scattering angles. The new direction diri+1 of the photon
is calculated by rotating the old direction diri by two angles2 and
8 in the local system (xloc,yloc,zloc).

The number of scattering events that a photon undergoes,
Nsca(j), can be different for each photon. The factorπ in
equation above is needed if we assume that the monochro-
matic incident solar flux through a surface unit perpendicular
to the incident solar beam isπ W m−2. Thus the normalised
radiance is expressed in sr−1. To obtain the actual value of
the radiance, one must multiply it by the extraterrestrial solar
spectral irradiance.

It is useful to calculate also the single scattering radiance,
ISS . In this case only the contribution given by the first scat-
tering event of a photon is considered.ISS is given by

ISS =
π

Ntot

Ntot∑
j=1

I1,j . (A30)

In addition toISS we will refer to the radiance given by to-
tal scattering (TS) simply as radianceI or IT S . We choose
this terminology, because for the widely used term multiple
scattering (MS) it is not always clear if it refers to the total
scattering (MS=TS) or only to the part that is scattered more
than once (MS=TS−SS). The SS component, when calcu-
lated for nadir with ground albedo greater than zero, will
contain the radiation scattered only once by the ground or
the atmosphere.

Appendix B

Simple 1-D MCRT model

To demonstrate in a didactic way that the ET and SSA ap-
proach have equivalent results, we have developed a simple
1-D MCRT model.

The atmosphere is plane-parallel (PP), and stretches from
the ground to 100 km in height. The phase function that we
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Table B1. Parameters for Eq. (B1) used to generate the atmospheric
profiles for the scenarios ET/SSA comparison. The total absorption
optical thickness varies from 0 to 7.4 and the total scattering optical
thickness varies from 0.08 to 8.0.

zscale 8.0 km
zmax 22.0 km

cs 0.01, 0.1, 1.0 km−1

ca 10−4, 5×10−4, 10−3, 5×10−3, 10−2,

5×10−2, 7.5×10−2, 10−1, 2×10−1, 3×10−1 km−1

d 0.01−→1 km with step 0.01 km, 5, 10 km
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Fig. B1. Scattering coefficient (full line) and absorption coefficient
(dashed line) as a function of the altitude used for the demonstration
of the ET in 1-D. The coloured region between the two full lines
represents the area in which the scattering profiles were varied. The
colored region between the dashed line and the axes represents the
area in which the absorbing profiles were varied. Optical properties
were calculated with Eq. (B1) with parameters from Table B1.

choose is a fully backscattering one, i.e. it inverts the direc-
tion of the photon at each scattering event. Therefore, the
photons move along a single line (1-D). The optical param-
eters are described by the absorption and scattering coeffi-
cients and single scattering albedo

ksca(z) = cs exp
(
−

z
zscale

)
,

kabs(z) = ca exp
(
−

(z−zmax)
2

2d2

)
,

ω(z) =
ksca

ksca+kabs

(B1)

whereca [km−1], cs [km−1], d [km], zscale[km], zmax [km]
are parameters specified in Table B1 andz [km] is the verti-
cal coordinate. The absorption layer formulated in this way,
mimics the absorption of UV in the “ozone” layer.

In this simple model the weight of the photon (Eq. 5 for
ET and Eq. 6 for SSA) is reduced to describe absorption.
The ground is supposed to have albedo 0, so the photons end
their trajectories either when they hit the ground or as they
leave the atmosphere.

In the ET method, the scattering optical depth is used as
the vertical coordinate

τsca(z) =

∫ zTOA

z

ks(z
′)dz′ (B2)

wherezTOA is the coordinate of the TOA. The photon is ini-
tialised at the TOA in a downward direction and its weight
is initialized to 1. The new position is calculated using the
Eq. (A4). If the photon is still in the atmosphere its weight
(Eq. 5) is calculated. The process starts with an ensemble
of photons (e.g. 106) and iterates until all photons leaves the
atmospheres. In the case the photon would end its trajec-
tory, on the ground or in space, the weight of the photon con-
tributes to the measured flux at the boundaries of the domain.

Instead, if the SSA approach is used, the total optical depth
is used as vertical coordinate:

τext(z) =

∫ zTOA

z

(kabs(z
′) + ksca(z

′))dz′. (B3)

It is important to realise that from a numerical point of view a
completely different atmosphere is simulated: it is optically
thicker in the SSA case than in the ET case. Another differ-
ence between the two methods is the way in which the weight
is calculated: in the ET case the weight due to absorption is
exp(−1τabs), where1τabs is the absorption optical thick-
ness between two subsequent scattering events. In the SSA
approach, the single scattering albedo evaluated at the scat-
tering position is used to reduce the photon weight.
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