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ABSTRACT

Protein–protein Interactions are involved in most fun-

damental biological processes, with disease caus-

ing mutations enriched at their interfaces. Here we

present mCSM-PPI2, a novel machine learning com-

putational tool designed to more accurately predict

the effects of missense mutations on protein–protein

interaction binding affinity. mCSM-PPI2 uses graph-

based structural signatures to model effects of vari-

ations on the inter-residue interaction network, evo-

lutionary information, complex network metrics and

energetic terms to generate an optimised predictor.

We demonstrate that our method outperforms pre-

vious methods, ranking first among 26 others on

CAPRI blind tests. mCSM-PPI2 is freely available as a

user friendly webserver at http://biosig.unimelb.edu.

au/mcsm ppi2/.

INTRODUCTION

Most biological processes, including cell proliferation (1),
signalling (2), host-pathogen interactions (3) and protein
transport (4), are intrinsically coordinated through complex
networks of protein–protein interactions. The diversity and
size of the interactome offers a highly selective and tunable
way to modulate protein activities and pathways (5). Ge-
netic variations leading to changes in the binding af�nity
of these interactions can disrupt or directly affect the for-
mation of interacting complexes and consequently lead to
disease (6–16) and drug resistance (17–19).
Advances in next-generation sequencing techniques have

created an explosive increase in the number of genetic vari-
ants available in the literature. However, experimental tech-
niques to study these variants are still expensive and time
consuming.mCSM (20) was one of the �rst scalable compu-
tational tools to accurately predict the effects of mutations

on binding af�nity. Previous methods were limited either in
terms of their throughput (21,22) or in terms of their perfor-
mance (23). Since then, signi�cant efforts have been devoted
to computationally study the effects ofmutations on protein
complexes (24,25) but their poor predictive performance on
new variants, particularly mutations that lead to increased
binding af�nity of the complex, has limited their use. In ad-
dition, the increase in amount of experimental evidence of
effects of variants on binding af�nity offers the opportunity
to develop new and more accurate methods.
Our previously described graph-based signatures concept

has proven to be a powerful approach and has been widely
applied to the study of protein structure, including howmu-
tations alter protein stability (20,26), dynamics (27) and in-
teractions with other molecules (20,28–34).
Here we introduce mCSM-PPI2, a webserver that inte-

grates our well-established mCSM graph-based based sig-
natures framework with evolutionary information, inter-
residue non-covalent interaction networks analysis and en-
ergetic terms, in order to provide an optimized overall pre-
diction performance.

MATERIALS AND METHODS

Data sets

The data used on this work was derived from the re-
cently updated version of the SKEMPI database (35), which
compiles experimental data on changes in thermodynamic
and kinetic parameters on mutation for protein–protein
complexes that have 3D structures deposited in the PDB.
SKEMPI 2.0 (36) includes new mutations identi�ed in the
literature after its �rst release, including data available from
three other databases: ABbind (37), PROXiMATE (38) and
dbMPIKT (39). The averagemutation effect was considered
for variants reported in multiple experiments when these
varied by less than 2.0 kcal/mol and discarded otherwise.
After �ltering for only single-point mutations with available
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experimental crystal structures of the wild-type, we were
able to collect 4169 (S4169) variants in 319 different com-
plexes.All protein structureswere collected from the Protein
Data Bank and a series of pre-processing steps were per-
formed to account for the diversity of structures (see Sup-
plementary material).
The binding af�nity of protein–protein complexes were

used to calculate the binding Gibbs free energy (�G):

�G = RT ln (KD)

where R = 1.985 × 10−3 kcal K−1mol−1 is the ideal gas
constant, T is the temperature (in K) and KD is the equilib-
rium dissociation constant of the protein–protein complex
(in molar). The change in binding af�nity upon mutation
was calculated as follows:

��Gwt−mt = �Gwild−type − �Gmutant

Since the Gibbs free energy formulation is a thermody-
namic state function a change in binding af�nity of a muta-
tion from a wild-type protein to its mutant (��GWT→MT)
should be equivalent to the negative change binding free
energy of the hypothetical reverse mutation, from the mu-
tant to the wild-type protein (–��GMT→WT) (40). Given
the unbalanced nature of the original dataset collected from
SKEMPI 2.0, 901 variants increased (��Gwt-mt ≥ 0) and
3268 decreased (��Gwt-mt < 0) binding af�nity, and in or-
der to build a more robust and balanced predictive method,
we also included the hypothetical reverse mutations. There-
fore, the �nal dataset for building mCSM-PPI2 predictive
model includes 8338 single-point mutations (S8338), which
represents an increase of up to three-fold in datapoints in
comparison with previous methods that used data from the
�rst version of SKEMPI with 2007 (S2007) (20,23), 1964
(S1964) (25), 1102 (S1102) (24) and 1327 (S1327) mutations
(41).
A subset of 487 mutations in 56 complexes (S487) con-

tained within S4169 and not in S2007 were recently curated
(24) and here we used as evidence to evaluate the perfor-
mance of mCSM-PPI2. A summary of different subsets de-
rived from SKEMPI is shown in Supplementary Table S1.
The datasets used in this work are freely available

for download at http://biosig.unimelb.edu.au/mcsm ppi2/
datasets.

Graph-based structural signatures

mCSM-PPI2 uses as one of its core components our well
established graph-based structural signatures (mCSM) to
represent the environment of the wild-type residue. This
approach models both the geometry and physicochemical
properties of the interactions and architecture of wild-type
structure and has been widely applied to the study of small
molecule and protein structure (20,26–34,42). Our signa-
tures represent atoms as nodes and their interactions as
edges, with their physicochemical properties encoded based
upon the amino acid residue properties, denoted by a phar-
macophore. From this representation of the residue envi-
ronment, distance patterns between atoms characterized by
their properties are summarized in concise signatures as cu-
mulative distribution functions.

Modelling effects of mutation

Single-point mutations can affect protein–protein interac-
tions via different molecular mechanisms, including chang-
ing folding free energy of interacting partners or disrupting
non-covalent interactions essential for complex formation
(6,43). In mCSM-PPI2, we have included six new distinct
types of features thatwere not used in our �rstmethod (Sup-
plementary Table S2). These were combined with our well-
established graph-based signatures as evidence for training
a machine learning algorithm (see Supplementary material)
to better explore the effects of mutations in protein–protein
binding af�nity (Figure 1).

Wild-type residue environment. Based on 3D structures
collected from the Protein Data Bank (44), we were able to
calculate Relative Solvent Accessibility (RSA), torsion an-
gle PHI and residue depth for the wild-type residue using
BioPython (45) version 1.7. We also extracted information
on the amino acid content in the sequence of the chain in
which the mutation occurs using iFeature (46).

Nature of wild-type and mutant residues. The conforma-
tional �exibility of glycine side chains and the rigidity of
proline side chains are important for de�ning the backbone
�exibility.Mutations from and to these two amino acids can
lead to large structural effects. For our model we included
binary terms to capture if the mutation was from or to a
glycine or proline.

Evolutionary information. Binding regions are known to
be evolutionarily conserved, which has been exploited in
a variety of studies to identify potential protein interac-
tion interfaces. For mCSM-PPI2 we also harnessed this
information by using the Position Speci�c Scoring Ma-
trix (PSSM) scores. PSSM was calculated through PSI-
BLAST of BLAST 2.2.3 using the non-redundant Swiss-
Prot database of protein sequences and the sequence of the
chain in which the mutation occurs as the query parameter.

Non-covalent interaction network analysis. We performed
analysis of the non-covalent interactions for the wild-type
residue and for the closest interface using the contacts cal-
culated by Arpeggio (47). Here, we extracted two types of
information: the difference between the number of con-
tacts of wild-type and mutant residue for covalent, Van der
Waals’, aromatic and hydrogen bond contacts, and com-
plex network metrics for the contact graph of the closest
interface of interaction, from which we extracted central-
ity metrics, including closeness and central points (48). In
this work, we consider a residue to be at an interaction in-

terface if it is located at most 5 Å away from the interacting
partner, following previous studies. In addition, we included
three protein contact potentials scores from the AAindex
database (49) (Supplementary Table S3).

Energetic terms. Interaction energy information between
the two interacting chains were extracted from FoldX (22).
In addition, we included the predicted folding free energy
change upon mutation.

http://biosig.unimelb.edu.au/mcsm_ppi2/datasets
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Figure 1. mCSM-PPI2 methodology work�ow. The method relies on graph-based signatures, which model distance patterns and encode geometrical and
physico-chemical properties on wild-type residue environment. Network analysis based on non-covalent interactions of wild-type residue and interacting
interface along with evolutionary information and energy terms are also used. All features are used as evidence to train, test and validate machine learning
algorithms.

Atomic �uctuation. We used the Bio3D R package (50)
to calculate the atomic �uctuations of the structure of
the monomer where the mutation occur using calpha
and pfanm force �elds to account for effects on protein
�exibility/rigidity.

WEBSERVER

We have implemented mCSM-PPI2 as a user-friendly
and freely available webserver (http://biosig.unimelb.edu.
au/mcsm ppi2/). The server front end was built using Ma-
terialize framework version 1.0.0, while the back-end was
built in Python via the Flask framework (Version 1.0.2). It
is hosted on a Linux server running Apache.

Input

mCSM-PPI2 can be used in two different ways: to either as-
sess the effects of mutations speci�ed by the user input or to
predict the effects of mutations at the protein–protein inter-
face in an automated manner. For user-speci�ed variations
two options are available (Supplementary Figure S1). The
‘Single Mutation’ option requires one to provide a PDB �le
or PDB accession code of the structure of the protein com-
plex, the point mutation speci�ed as a string containing the
wild-type residue one-letter code, its corresponding residue

number and the mutant residue one-letter code. The ‘Muta-
tion List’ option allows users to upload a list ofmutations in
a plain text �le for batch processing. For both options, users
are also required to specify the chain identi�er in which the
wild-type residues are located.
Alternatively, for assessing effects of mutations at

protein–protein interfaces the server requires the user to
provide a PDB �le or PDB accession code and select one
of two options: alanine scanning (all interface residues are
mutated to an Alanine) or saturation mutagenesis (all inter-
face residues are mutated to every other amino acid) (Sup-
plementary Figure S2).
In order to assist users to submit their jobs for predic-

tions, sample submission entries are available in both sub-
mission pages and a help page is also available via the top
navigation bar.

Output

For the SingleMutation option (Supplementary Figure S3),
mCSM-PPI2 outputs the predicted change in binding af�n-
ity (in kcal/mol) along with an interactive 3D viewer, built
using NGL viewer (51), showing non-covalent interactions,
generated with Arpeggio, at the mutated position. A set of
controllers are available for users to hide and show the dif-
ferent types of interactions and to alternate between wild-

http://biosig.unimelb.edu.au/mcsm_ppi2/
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Figure 2. Performance evaluation on cross-validation. mCSM-PPI2 was able to achieve a Pearson’s correlation of 0.82 and RMSE 1.18 kcal/mol when
trained on the S8338 dataset applying 10-fold cross-validation 10 times (A). In low-redundancy sets, mCSM-PPI2 was able to achieve a correlation of 0.75
and 0.67 on leave-one-complex-out (B) and leave-one-binding-site-out (C), respectively.

type and mutant structures. In addition, a 2D viewer dis-
playing non-covalent interactions of wild-type and mutant
structures is also shown. Pymol sessions are available for
download. For the Mutation List option (Supplementary
Figure S4), the results are summarized in a downloadable
table fromwhich users can access details for each single vari-
ant.
For the Alanine Scanning option on the interface anal-

ysis, the server �rst presents a table with all the interfaces
identi�ed on the submitted structure, and it also allows for
inspection of the individual interfaces. On the results page
of each interface the server shows a downloadable table
with the prediction outcomes for eachmutation, a bar chart
that summarizes the predicted changes in binding af�nity
(Supplementary Figure S5) and an interactive 3D viewer
in which the residues are coloured according to the pre-
dicted value (Supplementary Figure S6). Similarly, for the
Saturation Mutagenesis option, mCSM-PPI2 outputs a ta-
ble with all the interfaces identi�ed and allows the users to
access detailed information on each interface. For each in-
terface, the server outputs a table compiling the results for
all variants (Supplementary Figure S7), a heatmap of all in-
terface residues and their respective mutations (Supplemen-
tary Figure S8), and a 3D viewer in which the residues are
coloured according to the average prediction for each par-
ticular position (Supplementary Figure S9).

VALIDATION

Performance on cross-validation

In order to build a more robust and reliable predictive
model we performed four types of validation. Firstly, we
performed 10-times strati�ed 10-fold cross-validation, us-
ing 90% of our original dataset (S8338) for training and the
remaining as a blind test. Selection of the blind test was re-
peated 10 times in a strati�ed manner, with the model re-
trained on the remaining data, in order to test the robust-
ness of the model (see Supplementary material). For this
approach the hypothetical reverse mutations were kept in
either training or test sets during the splits according to
its counterpart original mutation. Our method was able to
achieve an average Pearson correlation (� ) of 0.82 with a
standard deviation (�) of 0.06 across the 10 runs (Figure
2A) showing a more balanced prediction when distinguish-

ing between mutations that increase binding af�nity from
decreasing ones than other methods (Supplementary Ta-
ble S4). We also evaluate the performance of mCSM-PPI2
when trained only on the original subset of mutations from
SKEMPI2 (S4169) using the same procedure and obtained
a correlation of 0.76 and RMSE of 1.19 kcal/mol. These
results corroborate the use of reverse mutations in order
to improve performance and robustness of our predictive
model. Performance comparison betweenmCSM-PPI2 and
other methods on different versions of SKEMPI and per-
formance of individual types of attributes are shown in Sup-
plementary Tables S5 and S6, respectively.
We further evaluated the performance of our approach

on two low-redundancy sets; low redundant at the (i) com-
plex and (ii) interface level. The complex low redundancy
test was performed using leave-one-complex out cross-
validation, in which we trained our model on 318 com-
plexes of our dataset and evaluate the performance on the
one remaining complex. After repeating this procedure for
each complex we achieved � = 0.75 (Figure 2B) and Root
Mean Square Error (RMSE) of 1.30 kcal/mol, outperform-
ing MutaBind (25) (� = 0.68 and RMSE = 1.57 kcal/mol).
Similarly, we applied leave-one binding site out using the

‘hold-out’ information extracted from SKEMPI2. Here, we
removed all mutations located in identical binding sites for
testing and trained on the remaining data. mCSM-PPI2
achieved � = 0.67 (RMSE = 1.39 kcal/mol) (Figure 2C),
which was signi�cantly higher (p-value < 0.0001 by Fisher
r-to-z transformation) than the results reported for Muta-
Bind when trained using only mutations from SKEMPI1 (�
= 0.57 and RMSE = 1.57 kcal/mol).

In addition, we evaluated the performance of our ap-
proach on a subset of 472 mutations (S472) not present
within the �rst version of SKEMPI but included in
SKEMPI2. For this experiment, we trained a predictive
model using all variants from the �rst version of SKEMPI
(S1964). Our method achieved a correlation of 0.63 (RMSE
= 1.11 kcal/mol).

Validation on CAPRI

mCSM-PPI2 was further validated against the CAPRI (52)
round 26, which is composed of 1862 experimentally char-
acterised mutations in two de novo in�uenza inhibitor tar-
gets (T55 and T56: 1007 mutations at 53 different positions
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Table 1. Comparative performance of mCSM-PPI2 on CAPRI and the blind test set for the complex MDM2-P53

CAPRI (T55) CAPRI (T56) MDM2-P53

Method Kendall
RMSE
(kcal/mol) Kendall

RMSE
(kcal/mol) ρ RMSE (kcal/mol)

mCSM-PPI2 0.42 2.55 0.32 4.06 0.40 0.36

mCSM (20) 0.16** 3.71 0.13** 4.15 0.23 0.83
MutaBind (25) 0.41 2.58 0.30 4.27 NA NA
iSEE (24) NA NA NA NA 0.24 0.81

BeAtMuSiC (23) 0.28** 3.04 0.30 4.06 −0.23* 0.91

FoldX (22) 0.12** 3.94 0.16** 4.33 −0.14*

0.90

MMPBSA (21) 0.19** 5.40 0.08** 28.04 NA NA

*p-value < 0.05 by Fisher r-to-z transformation test compared to mCSM-PPI2
**p-value < 0.05 by transforming tau-to-r followed by Fisher r-to-z transformation. NA: Data not available.

in T55 and 855 mutations at 45 different positions in T56).
The in vitro experimental measurements used the enrich-
ment values generated from deep sequencing and were cal-
culated based on the binary logarithm of the ratio of num-
ber of times the variant sequence was observed after and
before the selection for binding. Although the 3D struc-
tures for these two complexes were not available, struc-
tures of close homologues have been described (53,54) and
were used for generating homology model structures by in-
troducing point mutations using Modeller (55) (see Sup-
plementary Materials). mCSM-PPI2 was able to achieve a
Kendall’s score of up to 0.42 and 0.32 for mutations in T55
and T56, respectively, ranking �rst amongst 26 other meth-
ods (Supplementary Figure S10 and Table 1).

Blind test

The performance of mCSM-PPI2 was further evaluated on
a small set of 26 variants at the interface of interaction of
the MDM2-p53 complex (PDB 1YCR) (24). Our method
achieved a Pearson’s Correlation of 0.40 and an RMSE =
0.36 kcal/mol outperforming mCSM, iSEE, FoldX, BeAt-
MuSiC (23) (Table 1).
Finally, we looked at the ability of mCSM-PPI2 to ac-

curately identify PPI hotspots, residues that contribute
to the majority of the binding free energy of the inter-
action and have been recognized as important sites for
drug development (5). Here we evaluated the performance
of mCSM-PPI2 across a previously proposed set of 378
alanine-scanning experimental mutations within 19 differ-
ent protein–protein complexes (56,57) (Supplementary Ta-
ble S7). In order to minimize biases, for this experiment
we removed 232 variants from S8338 which were redun-
dant with our set of 378 alanine scanning mutations. Our
predictive model was was able to accurately distinguish
hot and not-hot spots (95% of hotspots and 92% of non-
hotspots were correctly predicted) outperforming the re-
sults reported for Robetta (precision of 79% and 68% when
predicting hotspots and non-hotspots, respectively). The
predicted changes in binding energy showed that mCSM-
PPI2 predictions correlated strongly with the experimen-
tal data (Pearson’s Correlation of 0.95 and RMSE of 0.25
kcal/mol; Supplementary Figure S11). These results indi-
cate that mCSM-PPI2 could also be a powerful tool for
hotspot identi�cation.

CONCLUSION

Here, we introduce mCSM-PPI2, a web server that imple-
ments an integrated computation approach for predicting
effects of missense mutations in protein–protein af�nity. By
consolidating our graph-based signatures framework with
evolutionary information, inter-atomic contacts and energy
terms our updated method has shown to perform better
than its previous version and other methods. In addition,
the use of hypothetical reverse mutations has shown to im-
prove the robustness of our predictive model allowing for
a more balanced prediction. mCSM-PPI2 is freely avail-
able as a user-friendly and easy to use web server at http:
//biosig.unimelb.edu.au/mcsm ppi2/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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