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Abstract
B-cell acute lymphoblastic leukemia (B-ALL) consists of dozens of subtypes de�ned by distinct gene
expression pro�les (GEPs) and various genetic lesions. With the application of transcriptome sequencing
(RNA-seq), multiple novel subtypes have been identi�ed, which lead to an advanced B-ALL classi�cation
and risk-strati�cation system. However, the complexity of analyzing RNA-seq data for B-ALL classi�cation
hinders the implementation of the new B-ALL taxonomy. Here, we introduce MD-ALL (Molecular
Diagnosis of ALL), a user-friendly platform featuring sensitive and accurate B-ALL classi�cation based
on GEPs and sentinel genetic alterations.

In this study, we systematically analyzed 2,955 B-ALL RNA-seq samples and generated a reference
dataset representing all the reported B-ALL subtypes. Using multiple machine learning algorithms, we
identi�ed the feature genes and then established highly accurate models for B-ALL classi�cation using
either bulk or single-cell RNA-seq data. Importantly, this platform integrates the key genetic lesions,
including sequence mutations, large-scale copy number variations, and gene rearrangements, to perform
comprehensive and de�nitive B-ALL classi�cation. Through validation in a hold-out cohort of 974
samples, our models demonstrated superior performance for B-ALL classi�cation compared with
alternative tools.

In summary, MD-ALL is a user-friendly B-ALL classi�cation platform designed to enable integrative,
accurate, and comprehensive B-ALL subtype classi�cation.

Introduction
B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer and remains a leading
cause of childhood cancer death1. As a highly heterogeneous disease, B-ALL consists of dozens of
subtypes with distinct gene expression pro�les (GEPs) and constellations of genetic alterations2. With the
application of transcriptome sequencing (RNA-seq), multiple novel B-ALL subtypes have been identi�ed
harboring recurrent genetic lesions and distinct GEPs3–5. The current WHO Classi�cation (5th edition) of
Hematolymphoid Tumors (WHO-HAEM5)6, along with the International Consensus Classi�cation of
Myeloid Neoplasms and Acute Leukemia (ICC)7, recognize a total of 11 and 26 molecular subtypes of B-
ALL, respectively. While the treatment of B-ALL is moving toward the precision medicine era, it is critical to
apply these granular subtypes in clinics to optimize the tailored therapies8, 9. Currently, clinical diagnosis
and classi�cation of B-ALL is still dominated by a combination of multiple assays such as �ow
cytometry, �uorescence in situ hybridization (FISH), cytogenetic karyotyping, and panel-based sequencing
assays10, 11. The data generation and analysis using these platforms are time-consuming, expensive, and
error prone. More importantly, they are inadequate to identify the subtypes de�ned by cryptic genetic
lesions (e.g., DUX43 and MEF2D5 rearrangements) or the ones primarily de�ned by GEPs (e.g., Ph-like12,
ETV6::RUNX1-like13, and PAX5-altered14).
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With rapid progress in understanding the genetic diversity of B-ALL in recent years, updating clinical test
assays accordingly has become a challenging task. Alternatively, applying RNA-seq for clinical diagnosis
of B-ALL subtypes has been investigated by multiple institutions and led to encouraging outcomes15, 16.
With its easy-to-follow protocol and multiple layers of information, RNA-seq is poised to revolutionize the
classi�cation of B-ALL in both research and clinical settings. However, bioinformatics analysis of RNA-
seq data to extract both the sentinel genetic lesions and the GEP signatures for classi�cation is still
highly challenging. Although a few bioinformatics tools have been developed for this purpose17–19, they
solely rely on GEP for B-ALL subtyping. In this study, we present MD-ALL (Molecular Diagnosis of Acute
Lymphoblastic Leukemia), a user-friendly bioinformatics platform that integrates genetic and
transcriptomic features from RNA-seq to provide integrative, accurate, and comprehensive B-ALL subtype
classi�cation.

Materials And Methods

RNA-seq datasets
To establish the training and validation cohorts, we collected raw RNA-seq datasets of 3,005 non-
duplicate (according to sample ID) B-ALL samples from multiple published studies2, 5, 14, 20–27.
Additionally, we inferred the genetic relationship of the enrolled samples using the KING toolkit28 based
on the genotype of variants called from RNA-seq. We identi�ed twenty pairs of samples as potential
duplicates or related, and then removed the ones with relatively lower sequencing coverage. From the
remaining 2,985 samples, we further excluded samples with low coding region coverage (< 15% at 30-
fold) or low B-cell ratio (< 30%; estimated by the CIBERSORTx29; see Methods below). Eventually, 2,955 B-
ALL samples with high quality RNA-seq data were kept as the primary dataset for this study
(Supplementary Table 1).

RNA-seq data analysis
The raw RNA-seq data were analyzed using a uniform analysis pipeline described in our previous work14,

21. In brief, the sequencing reads were aligned to human genome reference GRCh38 using the STAR
package (v2.7.6a)30. Gene annotation downloaded from the Ensembl database (v102; see URLs) was
used for STAR mapping and the following read count evaluation. Then the Picard (v2.26.11; see URLs)
was used to mark duplicates and generate the �nal bam �les.

Gene expression level evaluation. Read count per gene was calculated by HTSeq31 and FeatureCount32,
the two most popular tools for this purpose. Then gene expression level was normalized by the variance
stabilizing transformation (VST) algorithm in the DESeq2 package33. With the VST gene expression data,
R packages Rtsne and umap were used to map the samples to 2-dimential t-Distributed Stochastic
Neighbor Embedding (tSNE) and Uniform Manifold Approximation and Projection (UMAP) plots using the
top variable genes (based on median absolute deviation). The ComBat function in the sva R package34
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was used to correct the batch effects introduced by different library preparation kits and sequencing
lengths (Supplementary Fig. 1).

Digital deconvolution of bulk GEP data. To establish a GEP reference for annotating the primary blood
cell types, we reanalyzed public single-cell RNA-seq (scRNA-seq) data of 166K cells obtained from eight
healthy individuals used in the 1-Million Immune Cells Project (see URLs). Through stringent quality
control, we established a GEP reference composed of over 10K cells representing 20 distinct cell types. To
distinguish detailed differentiation stages of B cells, the annotation includes common lymphoid
progenitors (CLP), pro-B1 (early pro-B), pro-B2 (late pro-B), pre-B1 (large pre-B), pre-B2 (small pre-B),
immature B, mature B, and plasma cells. With the single-cell GEP reference, we used the CIBERSORTx29 to
digitally deconvolute the bulk GEPs of B-ALL samples and delineate the composition of different cell
types. The collective amount of B-lineage cells (pro-B1 to mature B) deconvoluted from the bulk samples
were used to estimate leukemic cell ratios.

Mutation detection from RNA-seq. The short sequence mutation including single nucleotide variants
(SNVs) and insertions/deletions (Indels) were called from RNA-seq by following the best practice
work�ow from the GATK forum (see URLs) as we reported before14, 21. In brief, the bam �les were
processed by the SplitNCigarReads module of GATK (v4.2.2) to Splits reads that contain Ns in their cigar
string. MuTect2 and HaplotypeCaller modules were used to call SNVs and Indels afterwards. The variants
reported in the dbSNP (v152) and gnomAD (v3.1) databases as common single nucleotide
polymorphisms (SNP; population minor allele frequency ≥ 1%) were removed. Then the remaining
mutations were annotated to gene regions by VEP35 (v103). For B-ALL subtyping, the analysis was
focused on a few signature mutations such as PAX5 P80R and other PAX5 mutations, IKZF1 N159Y, and
ZEB2 H1038R. To further assist B-ALL subtyping, other signature mutations in gene FLT3, IL7R, JAK1,
JAK2, JAK3, KRAS, NRAS, PTPN11, NF1, IKZF3, and TP53 recorded in the COSMIC somatic mutation
database (see URLs) were also reported.

Fusion calling from RNA-seq. CICERO36 (v0.3.0p2) and FusionCatcher37 (v1.33) were used as they can
sensitively identify gene rearrangements involving highly repetitive regions such as the immunoglobulin
heavy chain (IGH) locus. Since CICERO analysis may take a long time if the input bam �les contain too
many reads, we capped the bam �les to 50 million reads for CICERO fusion calling. Normally, CICERO and
FusionCatcher report dozens or even hundreds of fusions, but most of them are false positive. Therefore,
we manually curated all the reported fusions to identify the reliable ones. Due to the complexity of DUX4
rearrangements, a few of them were rescued through manual inspection of aligned reads in the IGV
browser38.

Copy number variation (CNV) and iAMP21 calling from RNA-seq. With read counts and SNVs called from
RNA-seq, the RNAseqCNV package39 was used to detect chromosomal level CNVs. The gender
information of the samples was also inferred by RNAseqCNV. Besides standard CNV analysis,
RNAseqCNV also provides visualization results that can be used to identify intrachromosomal
ampli�cation of chromosome 21 (iAMP21) genetic lesions.
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GEP-guided detection of genetic lesions. We detected and validated genetic lesions by using the
expression level of speci�c genes or the overall GEPs. First, we compiled a list of candidate mutations
and gene rearrangements that are signatures of different B-ALL subtypes. Then, we identi�ed the genetic
lesions that are consistent with the GEP features. For example, CRLF2 rearrangements are associated
with CRLF2 overexpression, while DUX4 rearrangements are expected in DUX4 subtype de�ned by GEP.
Similarly, GEP-de�ned PAX5 P80R subtype indicates both PAX5 P80R mutations and secondary PAX5
alterations.

Ancestry inference from RNA-seq
The ancestral background of enrolled samples was estimated using the iAdmix package40, with the
genotype of SNPs from the 1000 Genomes Project populations, which include European, African, Native
American, East Asian, and South Asian, used as the reference41. The genetic ancestral compositions of
the test samples were quanti�ed and then used to determine each ethnic group as described in previous
reports42.

Construct the GEP reference of B-ALL subtypes
Through integrative analysis of driver genetic lesions and GEPs, the enrolled 2,955 B-ALL samples were
classi�ed into 26 molecular subtypes, with 19 having distinct GEP features (Supplementary Table 1). To
construct a GEP reference for B-ALL classi�cation, we performed iterative sample selection using the
PhenoGraph clustering43 and k-nearest neighbor (KNN) analysis of two-dimensional UMAP to identify the
samples with stable and correct GEP clusters. In addition, the major subtypes with highly distinct GEPs,
such as ETV6::RUNX1, KMT2A, DUX4, TCF3::PBX1, and MEF2D, were further trimmed to keep the sample
size of training vs. test cohort as around 2:1.

GEP feature gene selection
Since the GEP reference cohort is not evenly distributed across different B-ALL subtypes, generic feature
selection algorithms may favor the features of the major subtypes. To overcome this, cohorts with same
sample size per subtype were generated by subsampling major subtypes and arti�cially constructing
additional samples for minor ones using the SMOTE algorithm44. Eight different samples sizes (n = 10,
25, 50, 75, 100, 150, 200, and 250) per subtype were used to evaluate whether the feature genes can be
stably identi�ed. Then Boruta, a random-forest-based feature selection algorithm45, was used to identify
the genes con�rmed as contributing features for distinguishing different subtypes. Furthermore, to
accommodate both mRNA and total RNA-seq libraries, only the protein-coding genes were considered for
feature selection.

GEP-based B-ALL classi�cation model
Using the feature genes and reference cohort described above, two GEP-based B-ALL prediction models
were constructed: 1. support vector machine (SVM) classi�cation. Among multiple machine learning
algorithms, we observed that SVM performed the best. The reference samples from the 19 distinct
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subtypes were analyzed by SVM to train a prediction model using different numbers of feature genes
(ranging from 100 to 1,058 genes in 11 rounds, with 100 as the interval). 2. PhenoGraph clustering43.
PhenoGraph is a clustering algorithm originally developed to identify and partition cells into
subpopulations using high-dimensional single-cell mass cytometry data. Here it was applied to cluster
the test samples with the reference cohort using different numbers of feature genes as described above
for B-ALL classi�cation. Since SVM and PhenoGraph models do not provide con�dence score for
classi�cation, MD-ALL applies the 11 rounds of prediction using different numbers of genes to quantify
the prediction reliability. A subtype is reported if the con�dence score is above 0.5.

Integration of genetic lesions and GEP features
GEP-based subtype prediction and key genetic lesions identi�ed from RNA-seq were integrated to assist
de�nitive classi�cation of B-ALL subtypes. For example, if the genetic lesions and GEP predictions point
to the same subtypes, a highly reliable classi�cation will be achieved. However, if GEP-based subtyping
gives ambiguous prediction score or it is not consistent with the driver genetic lesions, a knowledge-
based decision-making is needed. For example, samples with both BCR::ABL1 fusion and hyperdiploid
karyotype should be classi�ed as Ph (BCR::ABL1) subtype, regardless of the GEP prediction. A detailed
description of integrating GEP-based prediction and sentinel genetic lesions for B-ALL classi�cation is
summarized in Table 1.
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Table 1
Integrative criteria for B-ALL classi�cation by MD-ALL

Genetic alteration GEP subtype GEP
feature

Subtype Note  

BCL2, MYC or BCL6
rearrangement

BCL2/MYC Distinct BCL2/MYC The rearrangements can
involve genes adjacent to MYC

CDX2 overexpression
&

UBTF::ATXN7L3
fusion

CDX2/UBTF Highly
distinct

CDX2/UBTF CDX2 overexpression

CRLF2
rearrangement

Not Ph/Ph-
like

Non-
distinct

CRLF2(non-
Ph-like)

Less recognized subtype

DUX4 rearrangement DUX4 Highly
distinct

DUX4 DUX4 gene family
overexpression

ETV6::RUNX1 fusion ETV6::RUNX1 Highly
distinct

ETV6::RUNX1  

No ETV6::RUNX1
fusion

ETV6::RUNX1 Highly
distinct

ETV6::RUNX1-
like

Commonly seen with ETV6 or
IKZF1 rearrangements

HLF rearrangement HLF Distinct HLF HLF overexpression

Chromosome
number ≥ 51

Hyperdiploid Distinct Hyperdiploid  

iAMP21 iAMP21 Less
distinct

iAMP21 iAMP21 can be identi�ed by
RNAseqCNV

IKZF1 N159Y
mutation

IKZF1 N159Y Highly
distinct

IKZF1 N159Y  

KMT2A
rearrangement

KMT2A Distinct KMT2A  

No KMT2A
rearrangement

KMT2A Distinct KMT2A-like Minor subtype; Reported with
AFF1 fusion

Chromosome
number 47–50

Hyperdiploid Distinct Low
hyperdiploid

Less recognized subtype

Note:

If genetic lesions do not agree with GEP-based prediction, genetic lesions determine the primary
subtypes, while GEPs guide the decision on the secondary subtypes.

*Gene rearrangements involving ABL1, ABL2, CSF1R, PDGFRA, PDGFRB, LYN, CRLF2, JAK2, EPOR,
TSLP, TYK2, IL2RB, NTRK3, PTK2B, FGFR1, FLT3, DGKH, BLNK, and CBL.

iAmp, intragenic ampli�cation.
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Genetic alteration GEP subtype GEP
feature

Subtype Note  

Chromosome
number 31–39

Low
hypodiploid

Distinct Low
hypodiploid

Commonly seen with TP53
mutations

MEF2D
rearrangement

MEF2D Highly
distinct

MEF2D Commonly seen with
chromothripsis around MEF2D

Chromosome
number 24–30

Hyperdiploid Non-
distinct

Near haploid Less frequently with GEP of
low hypodiploid

NUTM1
rearrangement

NUTM1 Less
distinct

NUTM1 NUTM1 overexpression

PAX5 P80R mutation PAX5 P80R Highly
distinct

PAX5 P80R Abnormal MEGF10 isoform
overexpression

PAX5::ETV6 PAX5::ETV6 Distinct PAX5::ETV6 Originally reported as PAX5alt

PAX5 alteration PAX5alt Distinct PAX5alt¶ Featured with PAX5 fusion,
mutation, or iAmp, but not
deletion

BCR::ABL1 fusion Ph/Ph-like Distinct Ph At least two GEP subclusters
observed within Ph group

Non-Ph kinase-
activating alteration*

Ph/Ph-like Distinct Ph-like Commonly seen with kinase
activating fusions

TCF3::PBX1 fusion TCF3::PBX1 Highly
distinct

TCF3::PBX1 Rare fusions with EWSR1 have
been reported

ZNF384
rearrangement

ZNF384 Highly
distinct

ZNF384 Also observed in Mixed
Phenotype acute leukemia

No ZNF384
rearrangement

ZNF384 Highly
distinct

ZNF384-like Minor subtype; Reported with
ZNF362 fusion

Note:

If genetic lesions do not agree with GEP-based prediction, genetic lesions determine the primary
subtypes, while GEPs guide the decision on the secondary subtypes.

*Gene rearrangements involving ABL1, ABL2, CSF1R, PDGFRA, PDGFRB, LYN, CRLF2, JAK2, EPOR,
TSLP, TYK2, IL2RB, NTRK3, PTK2B, FGFR1, FLT3, DGKH, BLNK, and CBL.

iAmp, intragenic ampli�cation.

scRNA-seq analysis and B-ALL classi�cation
scRNA-seq reads were analyzed by the Cell Ranger (v6.0.1) pipeline using the human reference genome
GRCh38. Genes expressed in at least 5 cells were retained, as were cells with a minimum of 200
expressed genes and less than 10% mitochondrial reads. Cells with gene counts exceeding the median
plus 3 median absolute deviation of gene number were considered outliers and removed. Doublet cells



Page 9/30

identi�ed by the DoubletFinder46 R package were also excluded. The Seurat47 (v4.0.5) was used for gene
expression normalization and variable gene selection. With the GEP reference of blood cell types and B-
ALL subtypes described above, the SingleR package48 was used to annotate the cell type and B-ALL
subtype for each cell.

Results

Characteristics of the RNA-seq cohort
In total, 2,955 B-ALL samples with high-quality RNA-seq data were included in this study (Supplementary
Table 1). This cohort comprises 67.8% pediatric and 28.4% adult cases from different racial/ethnic
backgrounds, with a relative higher proportion of male patients (56.1%) (Supplementary Fig. 2). Through
manual curation of the genetic lesions, 3,304 gene rearrangements, 2,979 sequence mutations, and 95
FLT3 internal tandem duplications (ITDs) were identi�ed (Supplementary Tables 2–4). Subsequently,
sentinel gene fusions and mutations were used to facilitate B-ALL classi�cation (Supplementary Tables 5
and 6). Through integration of genetic lesions and GEP-based predictions, the cohort was classi�ed into
26 molecular subtypes (Fig. 1A). In summary, this well-curated large cohort encompasses all the reported
B-ALL subtypes across different age groups, genders, and racial/ethnical backgrounds, making it an
excellent resource for constructing and evaluating B-ALL subtype prediction models, as well as advancing
our understanding of the genetic and transcriptomic features of each B-ALL subtype.

High accuracy of GEP-based B-ALL classi�cation by MD-
ALL
To generate the GEP reference for subtype prediction, 1,821 samples con�rmed by sentinel genetic
lesions and stable GEP clusters were selected as the training cohort, representing the 19 B-ALL subtypes
with distinct GEPs (Fig. 1B). Using this GEP reference cohort, 1,058 feature genes were consistently
con�rmed by the Boruta algorithm in eight SMOTE-resampled cohorts (Supplementary Table 7). Each
feature gene was assigned an importance score by Boruta, which was used to rank their signi�cance for
distinguishing different subtypes. Based on the reference cohort and selected feature genes, MD-ALL
employs SVM and PhenoGraph algorithms to predict the subtypes of the test samples. Considering that
the user-provided test RNA-seq data may use different library preparation strategies and the sample size
may not be su�cient for reliable batch effect correction, our prediction models were evaluated using the
test samples’ GEP data without batch effect correction as well.

For the training cohort, 100% accuracy was achieved by both SVM and PhenoGraph algorithms as
expected (Fig. 2A). For the test cohort, subtypes with non-distinct GEPs, such as Near haploid, and less
recognized subtypes, such as Low hyperdiploid and CRLF2(non-Ph-like), as well as unclassi�ed cases
were excluded. To evaluate the performance across different tools, phenocopy subtypes, including Ph-
like, ETV6::RUNX1-like, KMT2A-like, and ZNF384-like, were merged with their canonical counterparts to
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accommodate the different strategies used by different tools for identifying them. Moreover, PAX5alt and
Ph-like subtypes are primarily de�ned by GEP, but their GEP features are less distinct compared with
others. To avoid potential bias of evaluating different tools for these two subtypes, only the PAX5alt and
Ph-like cases carrying sentinel genetic lesions (i.e., PAX5 mutation, fusion, or intragenic ampli�cation in
PAX5alt, and rearrangements involving kinase activating genes in Ph-like; see Table 1) were kept in the
test cohort.

Although this study enrolled a large number of samples, seven minor subtypes have fewer than 30
quali�ed samples, which include BCL2/MYC (n = 29), PAX5::ETV6 (n = 23), ZEB2/CEBP (n = 19), NUTM1
(n = 18), IKZF1 N159Y (n = 14), HLF (n = 11), and CDX2/UBTF (n = 9). Following the training vs. testing
sample size ratio of 2:1 set for the major subtypes, fewer than 10 samples would be left for testing.
Therefore, a leave-one-out validation was used to evaluate the prediction models for these minor
subtypes, eventually resulting in a test cohort of 974 samples (Supplementary Table 8).

Through GEP-based prediction, SVM and PhenoGraph effectively classi�ed 971 and 972 samples into
distinct subtypes, respectively, with high overall accuracy achieved in both models (SVM: 96.1%, n = 936;
PhenoGraph: 92.7%, n = 903). Despite the high accuracy of both models, SVM surpassed PhenoGraph in
discerning multiple subtypes such as iAMP21 and Ph/Ph-like, whereas PhenoGraph demonstrated
superior performance over SVM in identifying the ETV6::RUNX1/-like subtype (Fig. 2B&C).

In summary, the GEP-based models in MD-ALL can achieve high classi�cation rate as well as high
accuracy for B-ALL classi�cation.

MD-ALL classi�cation is superior compared with alternative
tools
Currently, there are three alternative tools providing the functionality of B-ALL classi�cation, which include
ALLSpice17, ALLSorts18, and ALLCatchR19. The subtype prediction by these tools is solely based on GEP;
therefore, the comparison with them is restricted to the GEP prediction results of MD-ALL. Additionally, it
should be noted that the holdout test cohort of this study partially overlaps with the training cohort of the
other tools, since the majority of B-ALL RNA-seq data used in MD-ALL and these alternative tools are from
our previous study, which comprises 1,988 B-ALL samples14. This overlap may lead to overestimated
accuracy for the alternative tools. Additionally, the PAX5::ETV6 fusion, originally reported as one of the
sentinel alterations of PAX5alt subtype14, is still considered as PAX5alt by other tools. Therefore,
PAX5::ETV6 cases were annotated as PAX5alt when comparing the performance of different models.

In the same test cohort of 974 samples, a higher number of samples remained unclassi�ed by ALLCatchR
(n = 36), ALLSorts (n = 142), and ALLSpice (n = 327) when compared to MD-ALL. The overall accuracies
were 91.3% (889/974), 81.2% (791/974), and 58.8% (573/974) for each method, respectively, which were
signi�cantly lower than those achieved by both models in MD-ALL. When considering only the samples
with assigned subtypes, the accuracies of ALLCatchR, ALLSorts, and ALLSpice were 94.8% (889/938),
95.1% (791/832), and 88.6% (573/647), respectively (Fig. 2B). Therefore, the MD-ALL SVM prediction
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surpassed all other models in terms of classi�cation rate and accuracy. For the MD-ALL PhenoGraph
model, when evaluating solely the samples classi�ed by other tools, the accuracies reached 93.7% (879
out of 938 ALLCatchR-classi�ed), 94.8% (789 out of 832 ALLSorts-classi�ed), and 97.1% (628 of 647
ALLSpice-classi�ed), indicating that PhenoGraph is also a highly reliable prediction model for B-ALL
subtyping (Supplementary Table 8). Among the prediction models, ALLSpice had the lowest number of
correctly classi�ed samples (n = 573). Moreover, key B-ALL subtypes, such as Ph-like and ZEB2/CEBP, are
not included by ALLSpice, signi�cantly limiting its potential for clinical use. Therefore, ALLSpice will be
excluded from further comparisons.

In terms of speci�city, MD-ALL (SVM and PhenoGraph), ALLCatchR and ALLSorts demonstrated excellent
performance for most subtypes. However, differences were observed in certain subtypes: MD-ALL
algorithms outperformed ALLCatchR and ALLSorts in Ph/Ph-like subtype, while ALLCatchR and ALLSorts
excelled in Hyperdiploid subtype (Fig. 2C). As for sensitivity, ALLSorts consistently underperformed
compared with MD-ALL and ALLCatchR in most subtypes, particularly those with less distinct GEP
clusters, such as iAMP21 (35.6%), Low hypodiploid (50.0%), PAX5alt (72.4%), and Hyperdiploid (70.6%).
Of note, ALLCatchR performed very well in the test cohort; especially in the Ph/Ph-like group, ALLCatchR
surpassed both MD-ALL algorithms in sensitivity (97.2%) at the expense of reduced speci�city (95.9%)
compared to MD-ALL. As both MD-ALL SVM and ALLCatchR use the SVM algorithm, the high sensitivity
levels achieved by these two models are anticipated. However, MD-ALL SVM surpassed ALLCatchR in
terms of sensitivity for multiple major subtypes, such as iAMP21 (81.4% vs. 59.3%), PAX5alt (99.0% vs.
79.0%), Hyperdiploid (94.5% vs. 89.9%), ETV6::RUNX1/-like (96.0% vs. 91.3%), ZNF384 (100% vs. 97.1%),
and Low hypodiploid (100% vs. 97.5%; Fig. 2C)

In conclusion, when relying exclusively on GEP, MD-ALL demonstrates superior performance over
alternative tools in B-ALL classi�cation rate and accuracy, particularly for challenging subtypes such as
iAMP21 and PAX5alt.

Integrative RNA-seq analysis provide reliable and de�nitive
B-ALL classi�cation
Although GEP alone can provide highly accurate B-ALL classi�cations, sentinel genetic lesions take
precedence when GEP results are ambiguous or con�ict with the genetic lesions. In this study, 43 near
haploid cases were identi�ed based on digital or clinical karyotype. These cases were predicted as
hyperdiploid (n = 40) or low hypodiploid (n = 3) by our GEP models. This highlights the importance of
integrating GEP predictions with sentinel genetic lesions to accurately determine the subtypes. Moreover,
when RNA-seq data is available for evaluating GEP, it would be straightforward to generate genetic lesion
information to assist integrative B-ALL classi�cation.

In MD-ALL, users can input raw translocations and sequence mutations for integrative B-ALL
classi�cation. Upon reanalysis of 2,955 RNA-seq samples, 96 sentinel gene rearrangements and 587
mutations were identi�ed (Supplementary Tables 5 and 6). By integrating GEP and mutation information,
MD-ALL calls RNAseqCNV to identify aneuploid subtypes, such as Hyperdiploid, Low hypodiploid, Near
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haploid, and even iAMP21. Our previous work on RNAseqCNV39 demonstrated 100% accuracy in
determining aneuploid subtypes, though iAMP21 detection was not mentioned. In this study, we observed
high accuracy (35/36) of detecting iAMP21 in B-ALL samples with con�rmed iAMP21 status (by SNP
array), further broadening the utility of RNA-seq for de�ning B-ALL subtypes (Supplementary Fig. 3 and
Supplementary Table 9).

In addition, MD-ALL provides visualization of subtyping results for test sample in SVM and PhenoGraph
models using different numbers of genes (Fig. 3A). This visualization aids in assessing the stability of
the subtyping results. Furthermore, a UMAP plot of the test sample mapped to the reference cohort using
all the feature genes (n = 1,058) offers an insightful overview of the sample's relationship to the reference
(Fig. 3B). As certain gene rearrangements are strongly associated with speci�c gene expressions, such as
CRLF2 overexpression commonly seen in CRLF2-rearranged cases, MD-ALL can display a gene’s
expression across all B-ALL subtypes to verify the reliability of speci�c fusions or subtypes (Fig. 3C). The
JAK2 p.R683G hotspot mutation, known for its high concurrence in CRLF2-rearranged cases49, further
con�rms the reliability of the IGH::CRLF2 fusion. MD-ALL then compiles all input information to assist the
�nal subtype classi�cation. For instance, a sample with an IGH::CRLF2 fusion and GEP-based Ph/Ph-like
prediction, but lacking BCR::ABL1 fusion, can be de�nitively classi�ed as Ph-like (Fig. 3D). To facilitate
de�nitive B-ALL classi�cation for all subtypes, MD-ALL incorporates a knowledge-based subtyping
guideline that integrates both genetic lesions and GEP features (Table 1).

In summary, MD-ALL offers an integrative RNA-seq analysis solution that evaluates subtyping-relevant
information, all derived from the most basic information from RNA-seq data. Combined with speci�c
knowledge in the B-ALL molecular subtyping �eld, MD-ALL can provide highly reliable and de�nitive B-
ALL classi�cation.

Distinct B-cell differentiation patterns of B-ALL subtypes
Using high-quality scRNA-seq data, we compiled a GEP reference consisting of over 10K cells that
represent 20 major blood cell types (see Methods; Fig. 4A). Subsequently, we used the single-cell GEP
reference to deconvolute the bulk RNA-seq GEP of different B-ALL subtypes (Supplementary Table 10).
Our analysis revealed that the PAX5 P80R and KMT2A subtypes carry a strong Pro B1 (pre-pro B stage)
signature, indicating that they are at the very early stage of B-cell development. By contrast, the
BCL2/MYC subtype exhibits a strong enrichment of pre B2 and even immature B cell signatures (Fig. 4B).
This suggests that the leukemic B cells are more mature, which is consistent with the observation that
BCL2 and MYC rearrangements are more commonly seen in B-cell lymphomas50, a malignancy
transformed from more mature B lymphocytes. These conclusions agree with clinically reported
immunophenotypic features of B-ALL subtypes 23 as well as other digital deconvolution reports51.

To validate the digital deconvolution results, we compared the clinically reported B-cell blast ratio from 70
B-ALL samples and their inferred B-cell ratio by CIBERSORTx, and a high correlation was observed
(correlation = 0.85; 95% CI: 0.76–0.9; Fig. 4C and Supplementary Table 11). Therefore, digital
deconvolution can be used to assess the potential normal cell contamination in bulk samples. In addition,
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we observed that samples without classi�ed subtypes were enriched with low B-cell ratio (35.9% of 64
samples have < 50% B-cell ratio) compared to those with de�ned subtypes (3.1% of 2,718 samples have
< 50% B-cell ratio). This �nding indicates that contamination of normal cells can interfere classi�cation of
B-ALL subtypes.

High sensitivity B-ALL subtyping at a single-cell level
In bulk RNA-seq, it is critical to obtain pure leukemic cells prior to RNA-seq assay to ensure that the GEP
represents the disease. However, in clinical settings, patient samples often contain a low proportion of
leukemic cells. As a result, B-cell blasts require proper enrichment prior to analysis. Even with B-cell
enrichment, samples may still be contaminated by normal B-cell blasts, or contain an inadequate number
of enriched cells for bulk RNA-seq.

To address these challenges, we explored the potential of employing single-cell GEP to identify B-cell
blasts (pro- to pre-B cells) using the GEP reference representing major blood cell types (Fig. 4A). After
identifying the blast cells, we annotated them to different B-ALL subtypes using the GEP reference
compiled from bulk RNA-seq (Fig. 1B). By using public scRNA-seq datasets52, 53, we reliably identi�ed
multiple B-ALL subtypes, such as KMT2A (Fig. 5), ETV6::RUNX1, Hyperdiploid, and Ph (Supplementary
Fig. 4), even in samples with blast percentages below 20%. Furthermore, a cluster of B cells was observed
with a mixture of different B-ALL subtypes in the KTM2A case, indicating that they are normal B-cell
blasts.

In summary, our study highlights the potential of single-cell analysis in the sensitive and accurate
detection of leukemic cells and their B-ALL subtypes. With the advent of more cost-effective scRNA-seq
platforms and the continual decrease in sequencing costs, single-cell analysis is expected to revolutionize
clinical diagnosis of granular disease subtypes.

MD-ALL: an integrative platform for B-ALL classi�cation
The primary goal of MD-ALL is to provide a user-friendly, one-stop solution for B-ALL classi�cation. To
this end, an interactive graphical interface was developed using the R Shiny package, making the tool
accessible to users with limited or no computational background. The minimum required input is the raw
read count from RNA-seq data. The test sample(s) will be normalized against an internal reference cohort,
which consists of 234 samples representing all reported subtypes (Supplementary Table 12). This
reference cohort was sequenced using various library preparation kits, sequencing lengths, and
strandness. Therefore, normalization against this reference helps minimize potential batch effects. The
normalized GEPs of test samples are then analyzed by PhenoGraph and SVM models to predict the B-
ALL subtypes, as described earlier. Users can also provide raw output of gene rearrangements and
mutations to MD-ALL to integrate genetic alterations and GEP information for robust classi�cation
(Fig. 6). MD-ALL platform also provides single-cell level B-ALL classi�cation, requiring only the raw read
count output from standard scRNA-seq analysis.
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Thus, with minimal bioinformatics assistance to generate the raw information of GEP and genetic
lesions, users can manage the subsequent analysis using MD-ALL to achieve integrative B-ALL
classi�cation and explore gene expression features of different B-ALL subtypes.

Discussion
In this study, we present the �rst RNA-seq analysis platform capable of integrating both genetic lesions
and GEP features to assist B-ALL classi�cation. Designed with the incorporation of biological knowledge
about this highly heterogeneous disease and the informatics characteristics of its various subtypes, the
tool aims to offer an intuitive B-ALL classi�cation experience. For most test samples, the integrative
analysis will lead to consensus subtypes based on multiple layers of information. Additionally, the
platform supplies detailed information for users to review and adjust the results as necessary.

This study is based on one of the largest B-ALL RNA-seq cohorts to establish a GEP reference
representing all reported B-ALL subtypes, achieving high accuracy and sensitivity compared with
alternative tools. By integrating genetic lesions, which other tools lack, subtypes can be determined more
accurately, making this approach more feasible for future translational application in clinical settings.

Using the GEP reference compiled from bulk RNA-seq, we also explored the B-cell differentiation stages of
different B-ALL subtypes. Our observations con�rmed that certain B-ALL subtypes are blocked at early B-
cell progenitor stages, while others progress to more mature stages. Moreover, some subtypes have been
observed to have overlapping GEP features, such as iAMP21, PAX5alt, and Ph/Ph-like. Incorporating
distinct B-cell differentiation patterns of different subtypes might be bene�cial for better separation of
these subtypes.

As genomic analysis advances towards single-cell resolution, we have demonstrated the feasibility of
using GEP reference derived from bulk RNA-seq for accurate B-ALL classi�cation in multiple subtypes.
However, to apply single-cell analysis in clinical settings, all reported B-ALL subtypes still need to be
evaluated, possibly with a GEP reference established from scRNA-seq. Currently, generating comparable
samples size of single-cell data remains challenging due to technological and cost limitations. Moreover,
scRNA-seq is unable to provide as comprehensive transcript abundance as bulk RNA-seq, and different
scRNA-seq library preparation kits have been reported with larger batch effects compared with bulk RNA-
seq. As a result, bulk RNA-seq remains the optimal platform for generating bona �de GEP signatures for
each B-ALL subtype.

The classi�cation of B-ALL subtypes using RNA-seq is revolutionizing clinical practice. Moreover,
genomic data such as whole-genome sequencing can provide a more comprehensive understanding of
genetic alterations, including mutations, CNVs, and structural variations. These results can further
con�rm the subtypes identi�ed by RNA-seq. Importantly, genetic alterations can further differentiate
patients within the same subtypes into more granular prognosis subgroups, making them critical
complementary assays for B-ALL classi�cation54, 55.
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In conclusion, we introduce MD-ALL, a highly sensitive and accurate bioinformatics platform that serves
the research and clinical �elds for integrative B-ALL classi�cation based on RNA-seq.
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Figure 1

Gene expression pro�les (GEPs) of B-ALL subtypes.

The tSNE plots display the GEP distribution using 1,058 signature coding genes identi�ed from
referenceB-ALL subtypes (see Methods). GEPs are derived from bulk RNA-seq data, with each dot
representing an individual sample. A perplexity parameter of 10 was used in tSNE analysis to better



Page 21/30

visualize the minor subtypes. B-ALL subtypes are color-coded and annotated, while less recognized ones
such as CRLF2 (non-Ph-like), Low hyperdiploid, ZNF384-like, KMT2A-like, and unclassi�ed are shown in
grey. A. tSNE plot of 2,955 B-ALL samples, which represents the total cohort of this study. B. tSNE plot of
reference samples (n=1,821) from 19 B-ALL subtypes with distinct GEPs. For GEP-based classi�cation,
Ph and Ph-like are combined one Ph/Ph-like group.

Figure 2
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High accuracy of B-ALL subtyping with MD-ALL.

A. A heatmap showing the study cohort (n=2,955) highlights B-ALL subtypes and metadata. Each column
represents a sample. Two GEP-based subtype prediction models, SVM and PhenoGraph, were established
within MD-ALL. *Phenocopy subtypes are identi�ed by their similar GEPs to their corresponding canonical
subtypes and are thus annotated with the same colors. For the training/testing annotation, leave-one-out
validation was used to evaluate the prediction for minor subtypes, which made samples in these
subtypes as both training and testing data. Gender information was inferred using the RNAseqCNV, while
race/ethnicity information was determined by the iAdmix package (see Methods). B. A confusion matrix
compares subtype predictions made by MD-ALL and alternative tools. The ground-truth subtypes of the
974-sample test cohort are displayed on the left side of each matrix, while prediction results from
different models are shown at the bottom. The phenocopy subtypes and their corresponding canonical
subtypes are merged for evaluation. MD-ALL, comprising SVM and PhenoGraph models, is compared
with ALLCatchR, ALLSorts, and ALLSpice, with ALLSpice showing the largest number of unclassi�ed
samples. C. Sensitivity and speci�city of GEP-based B-ALL classi�cation. The same test cohort (n=974)
described above was used to evaluate all different models. The ZEB2/CEBP and CDX2 (CDX2/UBTF)
subtypes are not available in the ALLSorts model. Detailed sensitivity and speci�city values are labeled
for conditions where they are not 100%. The evaluated sample sizes per subtype are annotated in
parentheses.
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Figure 3

Integrative summary of B-ALL classi�cation by MD-ALL.

A. GEP-based subtype prediction by SVM and PhenoGraph models. Different numbers of feature genes
are used in the prediction models to evaluate classi�cation robustness. The test sample was consistently
predicted as the Ph subtype. B. The test sample is mapped to a prede�ned UMAP space for visualizing
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GEP-based classi�cation. The UMAP uses 1,058 features genes. The test sample clusters with the Ph/Ph-
like group, which agrees with the SVM and PhenoGraph prediction. C. Expression of a speci�c gene
across different B-ALL subtypes. Ph-like (CRLF2) is shown as a separate group here for con�rming CRLF2
rearrangements. Users can specify a gene to examine its expression for validating genetic lesions (e.g.,
overexpression of CRLF2 in CRLF2 rearranged cases) or potential subtypes. D. Summary of MD-ALL to
assist B-ALL classi�cation. The genetic lesions, which include fusions, mutations, large-scale CNVs, will
be integrated with GEP-based prediction by PhenoGraph and SVM to assist the classi�cation of the test
sample’s B-ALL subtype.
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Figure 4

Deconvolution of bulk GEP of B-ALL subtypes

A. UMAP of single-cell gene expression reference of the primary blood cell types. Over 10K cells
representing 20 primary blood cell types were selected from the 1-Million Immune Cells project (see
URLs). B cells are classi�ed into granular differentiation stages, including common lymphoid progenitor
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(CLP), pro-B1 (early pro-B), pro-B2 (late pro-B), pre-B1 (large pre-B), and pre-B2 (small pre-B). HSC,
hematopoietic stem cell; LMPP, lymphoid-primed multipotential progenitor; DC, dendritic cell; Mye,
myelocytes; Pro-mye, promyelocytes; GMP, granulocyte-monocyte progenitor; MEP, megakaryocyte-
erythrocyte progenitor; NK cell, natural killer cell. B. Heatmap of different B-ALL subtypes and their
inferred B-cell differentiation stages. For each subtype, the median value of each B-cell stage is
calculated and presented in the heatmap. The Euclidean distance and Ward's minimum variance
clustering method were used to generate the clusters. C. Correlation of digitally inferred and clinically
reported blast percentage (blast%). The inferred blast% is estimated by combining B-lineage cells from
pro B1 to mature B stages (see Methods). Seventy samples from a cohort provided by the ALLSorts
package were used in this analysis.
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Figure 5

B-ALL subtype classi�cation at a single-cell level

A. scRNA-seq of a B-ALL sample at diagnosis shown in a UMAP plot. The abnormally enriched B-cell
blasts (pro- to pre-B cells) represent the leukemic cells. With the GEP reference of the B-ALL subtypes, the
majority of the B-cell blasts are reliably predicted as KMT2A subtype, which is consistent with the
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reported subtype. A small cluster (highlighted in a red rectangle) observed with a mixture of different B-
ALL subtypes indicates that they are normal B-cell blasts. B. A bar graph shows the distribution of
different cell types. Less than 20% of the test sample are B-cell blasts, which could be challenging to be
accurately identi�ed as KMT2A subtype based on bulk GEP prediction. C. Heatmap of subtype prediction
score shows that over 90% of the B-cell blasts exhibit highly reliable KMT2A GEP signature. Low hypo.,
Low hypodiploid; CLP, common lymphoid progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-
primed multipotential progenitor; DC, dendritic cell; Mye, myelocytes; Pro-mye, promyelocytes; GMP,
granulocyte-monocyte progenitor; MEP, megakaryocyte-erythrocyte progenitor; NK cell, natural killer cell.
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Figure 6

Work�ow of integrative B-ALL classi�cation by MD-ALL.

MD-ALL accepts three types of standard output from bulk RNA-seq data: translocations (optional; raw
output from FusionCatcher and/or CICERO), gene expression (required; read count by HTSeq or
FeatureCount), and sequence mutations (optional; VCF �les called by GATK). Based on the input data,
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four aspects of information will be identi�ed: 1) the input translocations are compared with an internal
reference to identify signature fusion genes; 2) the gene expression data normalized from raw read count
are analyzed by SVM and PhenoGraph to predict the subtype and shown in a UMAP plot; 3) the variants
in the provided VCF �les are annotated to identify the signature gene mutations; and 4) the gene
expression and mutation information are integrated by RNAseqCNV to identify chromosomal CNVs,
which will assist the identi�cation of aneuploid and iAMP21 subtypes. Then, a comprehensive subtype
summary from the four aspects of information will be integrated to determine the subtypes of the testing
samples.
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