
N. Koch, P. Fraternali, and M. Wirsing (Eds.): ICWE 2004, LNCS 3140, pp. 132–136, 2004.
© Springer-Verlag Berlin Heidelberg 2004

MDA Applied: From Sequence Diagrams to Web
Service Choreography

Bernhard Bauer1 and Jörg P. Müller2

1 Programming of Distributed Systems, Institute of Computer Science,
University of Augsburg, D-86135 Augsburg, Germany

bernhard.bauer@informatik.uni-augsburg.de
2 Siemens AG Corporate Technology, Intelligent Autonomous Systems,

Otto-Hahn-Ring 6, D-81739 München, Germany
joerg.p.mueller@siemens.com

Abstract. Web Services and Web Service composition languages for Web
Service choreography are becoming more and more important in the area for
inter-enterprise application and process integration. However the aspects of
modeling these software systems have not been studied in detail, in contrast to
the definition of business processes where well-known techniques exist. The
model-driven architecture (MDA) approach of the Object Management Group
is a good starting point for the development of Web Services and Web Service
choreography. In this paper we show how platform independent models speci-
fied by UML 2 sequence diagrams can be automatically transformed in a Web
Service composition language representation.

1 Introduction

Over the past few years, enterprises are currently in a thorough transformation proc-
ess as they encounter the necessity to react to challenges such as globalization, unsta-
ble varying demand, and mass customization. A most important factor to maintaining
competitiveness is the ability of an enterprise to describe, standardize, and adapt the
way it reacts to certain types of business events, and how it interacts as well as its
procedures for interaction with suppliers, partners, competitors, and customers. To-
day, virtually all larger enterprises describe these procedures and interactions in terms
of business processes, and invest huge efforts to describe and standardize these proc-
esses. Web Services are the key technology for Enterprise Application Integration
(i.e. EAI; see e.g. [3] for details, [16]) and Inter Enterprise Integration. IBM defines
Web Services as [1]: “Web services are self-contained, self-describing, modular ap-
plications that can be published, located, and invoked across the Web (see e.g. [17]).”
It is possible to combine them to added-value Web Services offering more function-
ality than the original ones. This process is called Web Service Choreography or -
composition depending on the point of view of the description. Several standards are
under development for the definition of languages for Web Service composition or
Web Service Choreography, typical examples are BPEL4WS [4], BPML [9], XPDL
[13]. ebXML [8] with ebXML Business Process Specification Schema [7].

MDA Applied: From Sequence Diagrams to Web Service Choreography 133

The Model Driven Architecture (MDA) (for details see [10, 11]) is a framework for
software development driven by the OMG. The following models are at the core of
the MDA: Computational Independent Model (CIM): This model describes the
business logic and domain model; Platform Independent Model (PIM): This model
is defined at a high level of abstraction; it is independent of any implementation tech-
nology. Platform Specific Model (PSM): It is tailored to specify a system in terms
of the implementation constructs available in one specific implementation technol-
ogy, e.g. Web Services. Code: The final step in the development is the transformation
of each PSM to code. Based on OMG’s model-driven approach, our objective is to
demonstrate a mapping of platform independent models based on UML 2 sequence
diagrams [12] (triggered by e.g. [15]) to a platform dependent model based on the
Business Process Execution Language for Web Services (BPEL4WS). This paper can
be seen as part of a series of papers dealing with software engineering starting from
business processes and transforming them into web services choreography, see
[19, 18].

Fig. 1. Web Service enabled business processes

2 Conceptual Methodology

Figure 1 (an updated version of Figure 3 of [18]) illustrates the top-down develop-
ment process starting with a semantic business process specification using and ex-
tending UML 2.0 activity diagrams. This specification is refined into two models: a
static model, which is essentially the service model in our conceptual methodology,
even though enhanced with metadata, such as the description of pre- and post-
conditions for service invocation, and with exception definitions; a dynamic model,
which is essentially the service choreography oriented layer in the conceptual meth-
odology. Each of these two models is described by a platform independent model and
one or more platform specific models. In this paper we will focus on the mapping of
UML 2 Sequence Diagrams to BPEL4WS as a part of the development process.
Readers interested in the other parts are referred to [18, 19].

134 B. Bauer and J.P. Müller

3 From Sequence Diagrams to BPEL4WS

As a next step we will now go into the details of UML 2 sequence diagrams and de-
fine informally1 by induction the mapping of sequence diagram elements to
BPEL2WS, i.e. a mapping

transform: Sequence Diagram Element → BPEL4WS

A sequence diagram defines an interaction denoted as . Thus a complete
sequence diagram is transformed into a process definition of BPEL4WS:

transform () = <process name = “EventOccurence” >

 transform(inner_part())</process>

where inner_part delivers the sub-diagram defined in the overall sequence diagram.
Lifelines are a modeling element that represents an individual participant in an inter-
action. A lifeline represents only one interacting entity. They are transformed by the
following rule:

transform (…) = <partners> partner name = “Lifeline” serviceLinkType = “…”
partnerRole = “…” myRole = “…” </partner> … </partners>

Note, that the serviceLinkType, partnerRole as well as myRole are not specified in
the sequence diagram, but have to be defined in a e.g. class diagram defining the role
of a participant and the interface (serviceLinkType) as well as the partner role.
Messages are translated as follows
Synchronous/Asynchronous messages:

Transform() = <receive partner = receiver()
 portType = "…" operation = "operation" inputContainer = "operationInC"

 outputContainer = "operationOutC" </receive>

where receiver calculates the name of the right-hand-side lifeline name and op-
erationInC and operationOutC are automatically generated tokens for the
input and output container of the operation, for aynchronous messages an output
container is not specified since no result is transported back to the sender.
Reply messages:

Transform() = <reply partner = receiver() portType = "…"
operation = "operation" container = "operationC"</reply>

where receiver calculates the name of the left-hand-side lifeline name and op-
erationC is an automatically generated token for the container of the operation.

1 Note that, a formal definition of the mapping can be based on the MOF/XMI for data ex-

change of models; however for the sake of readability we use the graphical notation of the
elements instead.

MDA Applied: From Sequence Diagrams to Web Service Choreography 135

Lost and found messages are specified as usual messages with the exception of ap-
plying the wait-construct. Co-regions are constructed with the flow-construct and the
messages of the co-region are transformed in the usual way.
One of the newest aspect of UML 2 sequence diagrams is the possibility to define

combined fragements, depicted as .. UML 2 distinguishes between:
• alt – at most one of the operands will execute, this can be transformed us-

ing the switch-construct

transform () =
 <switch> <case condition="bool-expr"> transform(operand_1) </case>

…
 <otherwise>? transform(operand_n+1) </otherwise>
 </switch>

in this case the alternatives in the sequence diagram have to be annoted with
specific conditions for each case (as in our application example in one case).

• opt – either the (sole) operand happens or nothing happens, this is modeled
similar to the alt-operator, where we have two cases, one case is the trans-
formed operand and the other one is the distinguished no-operation of
BPEL4WS.

• loop – repeated a number of times, transformed using the while-construct
 <while condition="myConstraint"> transform(operand_loop) </while>

where myConstraint is the translated constraint of the sequence diagram.
• par – parallel merge between the behaviors of the operands, this can easily

be transformed with the flow-construct.
 <flow> transform(operand_1) … transform(operand_n) </flow>

• seq – weak sequencing depending on lifelines and operands and strict –
strict sequencing not depending on lifelines and operands can be modeled
with
 <sequence> transform(operand_1) … transform(operand_n) </sequence>

critical – critical region, this is handled by the transaction mechanism; assert –
assertions are translated into boolean expressions which are evaluated during run-
time; ignore – message types are not shown within fragment; consider – messages
considered within fragment; and interaction reference – a reference to another inter-
action, can be seen as abbreviations and need not be transformed; neg – invalid traces,
have not been transformed. Another novelty is the usage of continuations which can
be seen as conditional "goto" statements. These continuations can be mapped to
BPEL4WS by applying while-loops and a boolean global variable stating if the jump
has to performed or not. The while-statement has to be placed at the maximal com-
prehensive block of the operands where the jump is performed.

4 Conclusions and Outlook

The main contribution of this paper is that it elaborates the relationship between the
platform independent model of service choreography and its mapping to BPEL4WS a

136 B. Bauer and J.P. Müller

specific business process execution language. The work is part of a larger project
depicted in Figure 1. The informal definition of a mapping between the two repre-
sentation shows that such a step can be automated. However additional information
concerning the Web Services has to be at hand. This can be the WSDL definition of
the Web Service interfaces specified with UML class diagrams as used e.g. by [20].
The next steps are the definition of a formal mapping between both representations;
looking at a inverse mapping to allow reverse engineering; taking the "other" aspects
of BPEL4WS into consideration, i.e. modelling of the context of the Web Service
choreography; integration with the mapping from the computational independent
model to the platform specific model, and integration into a development tool.

References

1. IBM (2003) ‘Web Service Tutorial’,
http://www-106.ibm.com/developerworks/web/library/w-ovr/?dwzone=ibm

2. WebServices (2003) http://www.webservices.org
3. Sun (2002) ‘Powering the Collaborative Enterprise Sun ONE and Java Technology in the

Extended Supply Chain’,
http://www.sun.com/products-n-solutions/automotive/docs/sunarc.pdf

4. IBM (2003) ‘BPEL4WS’,
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

5. IBM (2003)‘ WSCI’, http://wwws.sun.com/software/xml/developers/wsci/
6. WFMC (2003) ‘XPDL’, 10 June, http://www.wfmc.org/standards/docs.htm
7. ebXML (2003) ‘Business Process Specification Schema’, 10 June,

http://www.ebxml.org/specs/ebBPSS.pdf
8. ebXML (2003) ‘Enabling global electronic markets’, http://www.ebxml.org
9. BPMI (2003) ‘BPML’, 10 June, http://www.bpmi.org/
10. MDA homepage. The Object Management Group (OMG). http://www.omg.org/
11. Kleppe M., Warmer J., Bast W. MDA Explained – The Model Driven Architecture:

Practice and Promise, Addison Wesley, 2003
12. UML Homepage. The Object Management Group. http://www.omg.org/uml/
13. WFMC (2003) ‘XPDL’, 10 June, http://www.wfmc.org/standards/docs.htm
14. FIPA (2003), FIPA specifications, 10 June, http://www.fipa.org/specs/fipa00030/
15. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent

Software Systems, International Journal on Software Engineering and Knowledge Engi-
neering (IJSEKE), Vol. 11, No. 3, 2001 Engineering, 2001.

16. Fuchs, I. (2002) ‘Web Services and Business Process Management Platforms – Under-
standing Their Relationship and Defining an Implementation Approach’,
http://www.ebpml.org/ihf.doc

17. W3C Web Services glossary. http://www.w3.org/TR/ws-gloss/
18. Müller, J.P., Bauer, B., Friese, Th.: Programming software agents as designing executable

business processes: a model-driven perspective, in Proceeding PROMAS 03, 2004.
19. Bauer, B., Marc-Philippe Huget: Modelling Web Service Composition with (Agent)

UML, Special Issue of Journal of Web Engineering, 2003
20. Armstrong, Ch. (2002) ‘Modelling Web Services with UML’, Talk given at the OMG

Web Services Workshop 2002.

	Introduction
	Conceptual Methodology
	From Sequence Diagrams to BPEL4WS
	Conclusions and Outlook
	References

