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Abstract

Reduced time—to—market in spite of increasing the sys-
tem’s functionality, reuse of software on different hardware
platforms, and the demand for performing validation activ-
ities earlier in the development phase raise the need for re-
vising the state—of—the—art development methodologies for
distributed embedded systems.

The Model Driven Architecture is a design methodol-
ogy addressing these emerging requirements. Developing
embedded systems according to this model-based paradigm
requires a platform-independent representation of the func-
tionality of the application as well as a precise model of the
targeted hardware platform.

In this paper we introduce a meta-model for capturing
the resources of hardware platforms realizing the DECOS
architecture, which is an integrated time-triggered archi-
tecture aimed at the development of distributed embedded
systems. Furthermore, we present a tool chain based on
this meta-model that speeds up the modeling process and
reduces the likelihood of human errors by facilitating the
reuse of hardware building blocks from libraries.

1. Introduction

In order to satisfy the industrial demands on perfor-
mance, dependability and cost with respect to a large variety
of different platforms (e.g., car platforms), the current state—
of-the—art system development methodologies for distrib-
uted embedded systems are heavily imposed to be reviewed,
because of the strong competition between manufacturers
and the requirement to continuously improve functionality
with stringent time—to—market constraints [3]. In the auto-
motive domain, e.g., a main requirement for reducing de-
velopment costs is to enable the reuse of software on dif-
ferent platforms, i.e. reuse between car series and car types.

Therefore, it is required to separate the hardware of an Elec-
tronic Control Unit (ECU) from the software on it [6].

Furthermore, in today’s development cycles of embed-
ded systems the validation of the system can only occur af-
ter the integration of the software onto the chosen hardware
platform. However, in this late phase of the development
process, any changes to the system would result in signif-
icant costs. By applying a virtual integration [5] based on
models of the software as well as the hardware of the em-
bedded system, design faults could be identified earlier in
the development process.

These emerging demands are addressed by the platform-
based design methodology [21] and the Model Driven Ar-
chitecture (MDA) [17] where application development is
decoupled from the implementation of the architecture.
This requires a separation of the application logic from the
underlying platform technology by providing models for the
application and the hardware platform. The main challenge
in designing a model for the hardware platform is to pre-
cisely capture the resources in a sufficient level of detail for
integrating the application functionality onto the target plat-
form, but preserving flexibility and extensibility in order to
adapt the model to changing technologies with reasonable
effort.

In this paper we provide a solution for capturing the re-
sources of the hardware platform and the integration of this
information into a development process based on the MDA.
Our approach is tailored to the DECOS integrated architec-
ture, which is a system architecture designed to combine the
benefits of federated and integrated system design [11]. The
DECOS architecture offers a framework for the develop-
ment of distributed embedded real-time systems integrating
multiple applications with different levels of criticality and
different requirements concerning the underlying platform.

In the scope of this paper we present a meta-model that
enables the designer to model hardware platforms according
to the DECOS component model. The meta-model defines



resource building blocks, which allow the composition of
hardware platforms out of already specified resources stored
in a library. This also facilitates the modeling of constituting
parts of a hardware platform in parallel by different experts,
which is ideal for handling domains with a high level of
heterogeneity (e.g., the automotive domain). For reducing
the likelihood of human errors in the modeling process, we
provide tool support for automatically validating the con-
formance of the modeled hardware platform to the meta-
model.

The paper is structured as follows. Section 2 gives an
overview on related approaches, which separate hardware
platform specification from application development. In
Section 3 the DECOS architecture is introduced. Section 4
covers the proposed system design methodology. While
Section 5 elaborates on the meta-model for the resource
specification, a concrete realization based on UML and a
tool chain supporting the modeling process are presented in
Section 6. The results are discussed in Section 7.

2. Related Work

A design approach for avionic systems that strictly sep-
arates between hardware and software development was in-
troduced by Marchetto in [13]. He introduces the concept of
Blueprints, which tackle the design of distributed avionics
systems by organizing the required information for system
specification in separate units, the so-called Blueprints, so
that changes of system integration decisions can be trans-
ferred in a controlled way to the target system by simply al-
tering the appropriate Blueprints. Marchetto distinguishes
three types of Blueprints, namely Application Blueprints
containing run-time requirements of the application such as
processing and memory requirements and communication
requirements, Resource Blueprints describing the physical
topology of the architecture, and System Blueprints, which
specify the mapping of the system description contained in
the Application Blueprints to the physical system descrip-
tion given by the Resource Blueprints.

A similar approach for Integrated Modular Avionics
(IMA) [1] systems is presented by Fraboul and Martin
in [4]. The modeling of application functionality is based
on the APplication EXecutive (APEX) [2] interface defini-
tion. For describing the available resources of the hardware
platform, they introduce the Architecture Model in which
Cabinets and Intercabinets Communication Busses (global
data busses) are defined. Cabinets are further subdivided
into Modules consisting of Application Processing Units
and Bus Interface Units, which communicate over Inter-
modules Communication Busses (back-plane busses). The
mapping of APEX partitions to particular Modules is estab-
lished by the Allocation Model.

For managing the complexity of automotive systems

there is an ongoing initiative driven by the AUTOSAR (AU-
Tomotive Open System ARchitecture) development part-
nership. In [7] the aimed system design methodology for
automotive electric/electronic (E/E) systems of AUTOSAR
is outlined. Software components are described by their
logical functionality irrespective of the actual physical hard-
ware they are executed on later. Additionally, ECU resource
descriptions exists, which represent physical and electronic
attributes of that ECU. Based on this information and an ad-
ditional system constraint description [7], configuration in-
formation for ECUs and software components is generated,
which is exploited for the final deployment of the generated
software executables on the actual ECUs.

The basis of the resource specification meta-model and
the development process introduced in this paper is formed
by the component model of the DECOS architecture. DE-
COS is an integrated time-triggered architecture providing
certain services at the architectural level facilitating the de-
velopment of integrated mixed-criticality systems for the
automotive and the avionics domain by preserving the cer-
tifyability of the safety-critical application subsystems as
available in federated systems. The consequential require-
ments on the architecture (e.g., strict separation of applica-
tion subsystems by means of connector units) have to be
captured by the meta-model presented in this paper.

3. The DECOS Integrated Architecture

The DECOS architecture [11] offers a framework for
the development of distributed embedded real-time sys-
tems integrating multiple Distributed Application Subsys-
tems (DASs) with different levels of criticality and different
requirements concerning the underlying platform. A DAS
is a nearly distributed subsystem of a large distributed real-
time system that provides a well-specified application ser-
vice [11]. Examples of DASs in present day automotive ap-
plications are body electronics, the power-train system, and
the multimedia system. Structuring rules guide the designer
in the decomposition of the overall system at a functional
level and for the transformation to the physical level. In ad-
dition, the DECOS integrated architecture aims at offering
to system designers generic architectural services, which
provide a validated stable baseline for the development of
applications.

3.1. Functional System Structuring

For the provision of application services at the controlled
object interface, the overall system is divided into a set of
nearly-independent DASs. Each DAS is further decom-
posed into smaller units called jobs. A job is the basic unit
of work and exploits a virtual network [15] in order to ex-
change messages with other jobs and works towards a com-



mon goal. A virtual network is the encapsulated commu-
nication system of a DAS. All communication activities of
a virtual network are private to the DAS, i.e. transmissions
and receptions of messages can only occur by jobs of the
DAS unless a message is explicitly exported or imported by
a gateway. Furthermore, a virtual network exhibits prede-
fined temporal properties that are independent from other
virtual networks.

A port is the access point between a job and the virtual
network of the DAS the job belongs to. Depending on the
data direction, one can distinguish input ports and output
ports. In addition, we classify ports into state ports and
event ports depending on the information semantics of send
or received message.

3.2. Physical System Structuring

During the development of an integrated system the
functional elements must be mapped onto the physical
building blocks of the platform. These building blocks are
the time-triggered physical core network, components and
partitions. The components are part of a distributed com-
puter system interconnected by the time-triggered physical
core network. A component is a self-contained computa-
tional element with its own hardware (processor, memory,
communication interface, and interface to the controlled
object) and software (application programs, operating sys-
tem) [12]. Components are the target of job allocation and
provide encapsulated execution environments denoted as
partitions for jobs. Each partition prevents temporal inter-
ference (e.g., stealing processor time) and spatial interfer-
ence [9,20] (e.g., overwriting data structures) between jobs.
In the DECOS architecture, a component can host multiple
partitions and jobs that belong to different DASs.

3.3. Architectural Services

Generic architectural services separate the application
functionality from the underlying platform technology in
order to facilitate reuse and reduce design complexity. This
strategy corresponds to the concept of platform-based de-
sign [21], which proposes the introduction of abstraction
layers, which facilitate refinements into subsequent abstrac-
tion layers in the design flow.

The architectural services of the DECOS architecture are
such an abstraction layer. The specification of the architec-
tural services hides the details of the underlying platform,
while providing all information required for ensuring the
functional and meta-functional (dependability, timeliness)
requirements in the design of a safety-critical real-time ap-
plication. The architectural services serve as a validated
stable baseline that reduces application development efforts
and facilitates reuse, because applications build on an ar-

chitectural service interface that can be established on top
of numerous platform technologies.

In order to maximize the number of platforms and ap-
plications that can be covered, the DECOS architectural
service interface distinguishes a minimal set of core ser-
vices and an open-ended number of high-level services that
build on top of the core services. The core services include
predictable time-triggered message transport, fault tolerant
clock synchronization, strong fault isolation, and consis-
tent diagnosis of failing components through a membership
service. An example of a suitable base architecture pro-
viding those core services is the Time-Triggered Architec-
ture (TTA) [10].

Based on the core services, the DECOS integrated ar-
chitecture realizes high-level architectural services, which
are DAS-specific and constitute the interface for the jobs
to the underlying platform. Among the high-level services
are gateway services, virtual network services, and encap-
sulation services. On top of the time-triggered physical net-
work, different kinds of virtual networks are established and
each type of virtual network can exhibit multiple instantia-
tions. Gateway services selectively redirect messages be-
tween virtual networks and resolve differences with respect
to operational properties and naming. The encapsulation
services control the visibility of exchanged messages and
ensure spatial and temporal partitioning for virtual networks
in order to obtain error containment.

4. System Design in DECOS

The design flow of distributed embedded systems can
be decomposed into three phases, the requirement analysis,
the subsystem design, and the system integration phase [5].
In order to exploit the inherent benefits of integrated sys-
tems [11] , the integration phase for designing systems
based on the DECOS architecture has to cope with in-
creased requirements like mapping of jobs to appropriate
hardware partitions, configuring the communication system
and the parametrization of the architectural services.

System design in DECOS is guided by the ideas of
the MDA introduced by the Object Management Group
(OMG). The primary goals of the MDA are portability, in-
teroperability, and reusability of applications achieved by
architectural separation of concerns [17]. For the descrip-
tion of the structure of distributed computer systems, mod-
els with various levels of detail and focus are used. A model
is a formal specification of a system and provides an ab-
straction, i.e. the model includes certain classes of informa-
tion while suppressing other ones. The selection of which
classes of information to include or suppress depends on
the purpose and the focus of the model. A particular se-
lection of such information classes is denoted as a view-
point. Widely used viewpoints in the design of distributed
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computer systems are platform-independent and platform-
specific viewpoints, which separate the application logic
from the underlying platform technology. The MDA pro-
poses such viewpoints — denoted as Platform Independent
Model (PIM) and Platform Specific Model (PSM) — and de-
fines their role in the design of a system [17].

This paper adapts this distinction between platform-
independent and platform-specific viewpoints introduced
by the MDA.

4.1. Platform-Independent DAS Represen-
tation

A PIM is a formal specification of the structure and func-
tion of a system that abstracts away technical details [16].
In the DECOS integrated architecture, the PIM structures
the overall application functionality into DASs and jobs.

The identification of DASs is guided by functional coher-
ence and common criticality of subsystems. A DAS should
provide a meaningful application service (e.g., brake-by-
wire service of a car) to its users at the controlled object
interface. By associating with a DAS an application service
that is relevant in the actual application context, the men-
tal effort in understanding the various application services
is reduced.

In addition, the identification of DASs is controlled by
the criticality of the application services. In general, the
realization of safety-critical services is fundamentally dif-
ferent from the design of non safety-critical services. While
the first incorporate fault-tolerance functionality and focus
on maximum simplicity to facilitate validation and certifica-
tion, the latter are usually characterized by a larger amount
of functionality and the requirement of flexibility and re-
source efficiency. By separating functionality with different
criticality via dedicated DASs early on in the design test-

ing, certification, and validation efforts can be matched to
the criticality of each subsystem.

A major focus of the PIM is also the specification of the
linking interfaces of the jobs within a DAS, as well as the
specification of the interfaces between DASs. A linking in-
terface consists of one or more ports through which jobs
communicate. The linking interface specification captures
operational properties (syntax, temporal constraints, inter-
face state) and meta-level properties (e.g., dependability) of
the messages exchanged via the port. The linking interface
specification enables the independent development of jobs
through separate vendors, because it provides each job de-
veloper with the required information about obligations and
available services at the interfaces to jobs. Thus, a job de-
veloper knows which services must be provided and which
services can be relied upon. In addition, a precise linking in-
terface specification is also a prerequisite for reuse of jobs
in different systems.

The PIM - including the specification of the linking
interfaces — is expressed in Unified Modeling Language
(UML) and constrained by a respective meta-model [18].

4.2. Resource Specification

The transformation of the platform independent DAS
representations into the platform-specific representation of
the integrated system is accomplished by the Virtual Inte-
gration (cf. Figure 1). As implied by the name, the Virtual
Integration does not perform an integration of the DASs on
a physical hardware platform, but operates on a virtual plat-
form described by the Resource Specification. The aim of
the Virtual Integration is to find a feasible allocation of jobs
to partitions and mappings of virtual networks to the time-
triggered core network. Based on the specification of the
available resources of a concrete hardware platform, several
checks can be performed that allow the identification of in-
feasible integration results at an earlier stage of the design
phase than after physical integration on a particular plat-
form.

Essential resource categories described in the Resource
Specification are:

Computational Resources like processors and memory
elements (volatile or non-volatile), which primarily
determine the job-to-component allocation during the
Virtual Integration. Sufficient processing power and
memory capacity are prerequisites for hosting jobs on
a particular component.

Communication Resources including communication in-
terfaces, communication controller, and connectors de-
termine the physically available network resources, the
number of physical links to other components or the
environment as well as their compatibility with respect



to supported physical layers or protocols. Only if the
communication demands of a job (i.e. bandwidth, la-
tency, and latency jitter) are fulfilled by the communi-
cation resources and a feasible communication sched-
ule can be found, a job-to-component allocation might
be considered as valid.

Special Purpose HW constitutes the third type of resource
primitives that are described in the Resource Specifi-
cation and used for judging the correctness of the Vir-
tual Integration. They include, e.g., I/O ports and de-
vices, sensors, actuators, or application-specific hard-
ware blocks (e.g., hardware video decoder) provided
by a particular component.

Besides the overall information on the available resources,
the Resource Specification also includes the internal struc-
ture of the constituting components of the cluster, i.e. the al-
location of resources to components and their internal com-
munication. The Resource Specification is constraint by a
meta-model, which is introduced in Section 5.

4.3. Platform-Specific System Representa-
tion

A PSM extends the specifications in the PIM with the de-
tails that define how the system uses the available platform
resources. The generation of the PSM out of a PIM is con-
strained by dependability requirements, constraints with re-
spect to hardware resources (e.g., CPU, memory), and con-
straints with respect to network resources (e.g., bandwidth).
The PSM extends the PIM with the following information:

Allocation of jobs to partitions. The PSM contains a
mapping between jobs and partitions within components.
The establishment of this mapping is a complex optimiza-
tion problem that needs to take into account numerous
constraints.  Firstly, the available component resources
(e.g., CPU time, memory, special hardware) limit the num-
ber and the type of jobs that can be allocated to a com-
ponent. Furthermore, when using n-modular redundancy,
replicated jobs need to be allocated to different components
that fail independently. In addition, specific application re-
quirements can enforce constraints, e.g., physical proxim-
ity to sensors/actuators or collocation of jobs on the same
component in order to prevent exchanged messages from
consuming bandwidth on the time-triggered core network.

Mapping of virtual networks to the time-triggered core
network. The PSM defines a communication schedule for
the time-triggered physical network, as well as the subdivi-
sion of the communication resources for the different vir-
tual networks. The media access control strategy of the

time-triggered core communication service is Time Divi-
sion Multiple Access (TDMA), thus dividing the channel
capacity into a fixed number of slots. Every component
is assigned a unique component slot that periodically reoc-
curs at a priori specified global points in time. In the PSM
a component slot is further subdivided in so-called virtual
network slots. Each virtual network slot contains those mes-
sages that are produced by jobs in the component that are
connected to the respective virtual network.

Parametrization of high-level services. The actually de-
ployed high-level architectural services are selected and
configured during the transformation of the PIM to the
PSM. This parametrization includes e.g., the instantiation
and configuration of the generic architectural gateways be-
tween virtual networks via timed automata [14] or the defi-
nition of diagnostic checks [19].

5. Resource Specification Meta-Model

During the virtual integration phase of the DECOS sys-
tem design (cf. Figure 1), the functional blocks of the dis-
tributed embedded system are mapped onto the physical
building blocks of the DECOS hardware platform. Subject
to this mapping are the time-triggered core network and the
components of the cluster.

It is the purpose of the Resource Specification Meta-
Model to enable the description of the available resources
relevant for this mapping process. Relevant characteris-
tics of the platform include amongst others computational
resources (e.g., CPU and memory), communication re-
sources, and dependability properties. However, depending
on the concrete realization of the virtual integration, e.g.,
the objective function of the job—to—component allocation
algorithm, the required information on the hardware plat-
form varies. For instance, if multiple components are po-
tential candidates for hosting a particular job and the min-
imization of hardware costs is an optimization objective,
various information on the vendor, shipment and price of
the involved hardware elements is required. Thus, one main
objective of the meta-model is to provide a high degree of
flexibility and extensibility with respect to the types and
characteristics of the resources that are able to be described.

Specifying the characteristics of the exploited physical
building blocks is a time-intensive engineering task. Since
it is likely that identical hardware elements are deployed
several times on the same hardware platform (e.g., a clus-
ter consisting of identical components) or are also deployed
on different platforms (e.g., an upgraded version of an al-
ready existing platform), the Resource Specification Meta-
Model supports the definition of so-called resource primi-
tives, which can be reused in different platform descriptions
(see Section 5.1).



In order to complete the concept of composing DECOS
platforms out of predefined building blocks, a framework
for guiding the composition of resource primitives to larger
physical hardware blocks is provided, ending up in a com-
plete description of DECOS components (see Section 5.2).
This framework reflects the DECOS Component Model as
defined in [11], which strictly separates safety-critical and
non safety-critical application functionality on an integrated
mixed-criticality component.

5.1. Definition of Resource Primitives

Resource primitives are the smallest physical hardware
units whose characteristics are captured and utilized for the
virtual integration of DASs. They form the lowest level of
the platform description with the highest level of detail con-
cerning the provided information. In the Resource Primitive
Model one can distinguish two categories of resource prim-
itives. The first category is represented by a predetermined
list of resource primitive types that are likely to be required
in most of the described hardware platforms. The second
category includes special purpose resource primitives re-
alizing special features of a particular hardware platform
(e.g., transducers, I/O devices, etc.). The resource primi-
tives belonging to the first category are listed in the follow-
ing.

Processor: The processor models the hardware unit that is
responsible for the execution of the operating system
of a hardware element, middleware services, and ap-
plication jobs contained in partitions.

Memory: The Resource Primitive Model permits the dis-
tinction of volatile and non-volatile memory resources.
During the virtual integration the available memory re-
sources constrain, e.g., the allocation of jobs to partic-
ular components.

Communication Interface: Every DECOS component is
at least connected to one physical network: the core
network. Therefore, every component requires at least
one communication interface that is associated with an
adequate communication controller as well as a com-
patible physical connector.

Communication Controller: A communication controller
in the Resource Primitive Model is a resource that per-
forms self-contained access to component internal or
component external networks.

Connector: It represents a physical connector that is re-
quired for establishing physical links between a phys-
ical hardware unit and a network (either component
internal or external).

FPGA: The existence of FPGAs on a DECOS component
is modeled by this resource primitive.

One aim of the Resource Primitive Model is to provide a
high degree of flexibility and extensibility to platform de-
scriptions with respect to the number and type of attributes
captured for each resource primitive. This goal is addressed
by the representation of resource primitives and their char-
acteristics. Instead of explicitly defining a set of known re-
source primitives and characteristics, an open, expansible
approach is followed in the Resource Primitive Model that
allows the definition of new resource primitive types and
characteristics.

The main challenge with this approach is to establish
a common view on the meaning of a particular resource
characteristic. Consider, e.g., the access time of a memory
element. Depending on the deployed technology (SRAM,
DRAM, Flash, hard disk, etc.) different definitions of “ac-
cess time” with varying interpretations exist. For instance,
the access time of a data element stored on a hard disk varies
with its location due to different factors (e.g., seek time, in-
ternal hard disk cache hit, etc.) while it is constant for RAM
elements. Thus, without a common interpretation of the re-
sources and its characteristics the virtual integration process
would become intractable. An approach to tackle this chal-
lenge is the establishment of so-called Technical Dictionar-
ies. Technical Dictionaries originate from the field of elec-
tronic business—to—business relationships [22]. They are di-
vided into several categories and each category consists of
various components and sub-components with a common
interpretation. Examples for such Technical Dictionaries
are the RosettaNet Technical Dictionary! and the Compo-
nent Data Dictionary of the IEC 61360 standard?.

In the Resource Primitive Model the concept of Tech-
nical Dictionaries is utilized to establish a common under-
standing of the resources and their characteristics. There-
fore, besides an attribute containing a natural language de-
scription of the entity, each resource primitive and its asso-
ciated characteristics consist of a pair of attributes, Standard
and ID, which creates a unique link to an entry in a Tech-
nical Dictionary. For instance AAA061 in the IEC 61360
Component Data Dictionary denotes a micro-controller and
AAF224 its characteristic clock frequency.

5.2. Composition of DECOS Components

While the Resource Primitive Model guides the descrip-
tion of resource primitives and their characteristics, the next
step when describing the hardware platform of the DECOS
integrated architecture is concerned with the composition
of components out of previously modeled resources. A typ-

Ihttp://www.rosettanet.org/
2http://dom2.iec.ch/iec61360/iec61360.nsf
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ical setup of a DECOS cluster and the internal setup of its
components is depicted in Figure 2.

A typical DECOS component is vertically structured into
two subsystems. The safety-critical subsystem is an encap-
sulated execution environment for ultra-dependable appli-
cations. The non safety-critical subsystem offers an envi-
ronment for those applications having less stringent depend-
ability requirements. The safety-critical and non safety-
critical subsystems are established by means of spatial and
temporal inner-component partitioning [20]. The access of
jobs to the time-triggered core communication system is
controlled by connector units. The primary purpose of a
connector unit is the allocation of network resources within
a component that is vertically structured into two or more
subsystems by ensuring that each subsystem obtains a pre-
defined share of the overall network resources. In the DE-
COS component model we distinguish between three types
of connector units (cf. Figure 2).

The Basic Connector Unit (BCU) performs the primary
allocation of the physical network resources, as required for
the separation of the safety-critical and non safety-critical
subsystems of a component. The Saftey-Critical Connec-
tor Unit (SCU) allocates network resources to the jobs of
the safety-critical subsystem and realizes the safety-critical
high-level services (e.g., voting functionality). In analogy to
the BCU, simplicity of the SCU is of major concern in or-
der to control certification efforts. The Complex Connector
Unit (XCU) performs the allocation of network resources
for the non safety-critical subsystem of a component. Like
the SCU, the XCU does not directly access the communi-
cation controller, but builds on top of the BCU. This way,
the XCU is not involved in the fault isolation and error con-
tainment between the safety-critical and non safety-critical
subsystem of a component, as this separation is performed
by the underlying BCU. Therefore, the XCU and the non
safety-critical subsystems of a component need not be cer-
tified to the highest criticality levels and the XCU can pro-
vide increased functionality at the cost of increased com-

plexity. An analysis of the DECOS component model with
respect to certifyability, encapsulation and independent de-
velopment aspects can be found in [11].

A physical hardware unit that is capable of realizing
(parts) of a component (e.g., a single board computer, an
FPGA board, etc.) is denoted in the Resource Specifica-
tion Meta-Model as Hardware Element. Hardware Ele-
ments are modeled by the composition of several resource
primitives to a larger physical unit. The meta-model de-
fines a set of mandatory resources that must be available
on any Hardware Elements of the DECOS platform (e.g., at
least one communication controller, communication inter-
face, and connector).

The explicit modeling of Hardware Elements eases the
management and the reuse of the modeled hardware for two
reasons. First, it is likely that already generated descriptions
of particular resource primitives are utilized for the compo-
sition of several Hardware Elements. These resource primi-
tives need to be modeled only once and then are referenced
by all Hardware Elements. This entails the advantages that
the number of hardware descriptions can be held lower and
changes to the description of particular resource primitives
have to be performed only once and not in all Hardware Ele-
ments comprising those resources. Second, several compo-
nents of a DECOS cluster may consist of similar or even
identical physical hardware units. When explicitly mod-
eling Hardware Elements as the constituting parts of DE-
COS components, hardware similarities can be exploited
by reusing an already modeled Hardware Element several
times in different components or by deriving descriptions
of similar physical hardware units with small effort.

The concrete realization of a DECOS component is not
predetermined by the component model. The functional-
ity of each Connector Unit (BCU, SCU, or XCU) and Ap-
plication Computer has to be realized by a Hardware Ele-
ment of the component; however, whether a single Hard-
ware Element realizes the entire component or multiple dis-
crete Hardware Elements are utilized, is not restricted by the



component model of the DECOS architecture. If a compo-
nent is made up of several discrete Hardware Elements, an
internal communication infrastructure has to be set up. The
Resource Specification Meta-Model comprises a set of con-
straints that ensure that the deployed Hardware Elements
provide sufficient communication resources for establish-
ing an intra-component communication (e.g., a Hardware
Element realizing the BCU requires at least two commu-
nication interfaces: one towards the core network and one
towards the intra-component network).

5.3. Resource Specification at Cluster Level

The last level of the hierarchical composition of the hard-
ware platform of a DECOS cluster is formed by model-
ing the interconnection of the previously described com-
ponents. In the DECOS integrated architecture the com-
munication between components is established by a time-
triggered core communication service. The Resource speci-
fication Meta-Model covers performance (bandwidth), tem-
poral (latency and latency jitter), and dependability-related
(redundancy and network topology) properties of the core
network. Furthermore, the minimum number of required
components in order to guarantee a successful startup in a
bounded time or to fulfill the applied fault-hypothesis can
be specified.

6. Implementation

The Hardware Specification Meta-Model is realized by
UML models (using UML class diagramms) in order to for-
malize the rules and constraints guiding the description of
hardware platforms for the DECOS architecture. Figure 3
depicts a partial UML representation of the meta-model
showing the highest two hierarchy levels of the bottom-up
platform modeling concept. The full UML-based imple-
mentation of the Hardware Specification Meta-Model can
be found in [8].

In UML it is common practice to attach notes to respec-
tive UML entities in order to express additional constraints
that are not covered by the formalism of UML. However,
this practice is far away from defining constraints in a for-
mal, machine-readable manner. Therefore, the UML mod-
els are augmented with Object Constraint Language (OCL)
constraints tightening the specifications of the UML mod-
els. OCL provides means for formally specifying additional
constraints, without enhancing the complexity and reducing
the readability of the UML models.

OCL is a formal language for describing expressions on
UML models. It can be used to specify invariants that must
hold during the whole lifetime or only in particular states.
With OCL, constraints at model level and meta-model level
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Figure 3. Partial UML Representation of the
Hardware Specification Meta-Model

can be described. Thus, they can be used (i) to check in-
stances of the model (objects) against the model (model
level constraints) and (ii) to check the model itself against
the UML specification (meta-model constraints). The entire
list of OCL constraints developed for the Hardware Speci-
fication Meta-Model can be found in [8].

6.1. Tool-Aided Platform Modeling

This section elaborates on a workflow for tool-supported
modeling of DECOS platforms, which is realized by the in-
terconnection of Commercial-Off-The-Shelf (COTS) tools
using the XML Metadata Interchange (XMI) file format.
Since modeling the resources of DECOS platforms is a
highly time-intensive and error-prone task, exploiting the
benefits of UML, OCL, and COTS tools features various ad-
vantages. Especially when capturing the resources of a new
target platform for the DECOS architecture from scratch, it
is important to minimize the number of possible mistakes
introduced by the system designer when instantiating the
UML models. UML tools allow online-monitoring of the
correctness of generated objects and links according to the
meta-model and thus structural errors of the resource de-
scription are avoided. Furthermore, by the use of an OCL
checker operating on UML entities, a high number of mod-
eling errors can be identified automatically at an early stage
of the modeling process.

The identified workflow is presented in Figure 4. Its cen-
tral parts are a UML modeling tool, an OCL checker, and
a transformation tool. The UML modeling tool is used to
create a UML model (a UML object diagram) of the DE-
COS platform according to the mental model of the system
designer and constrained by the meta-model introduced in
the previous section. Thereby, the required resources are ei-
ther modeled from scratch or imported from already exist-
ing platform descriptions. In order to validate the correct-
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ness of the UML model, the Hardware Specification Meta-
Model has to be imported to the modeling tool. Therefore,
XMI is utilized.

Then, the resulting tentative description of the platform
resources has to be validated using the OCL constraints,
which mainly restrict the structure and interconnection of
the objects and the concrete values of the attributes of the
objects. Here again, XMl is used for importing the tentative
cluster resource description into the OCL checker as well as
for producing the output.

Since the interface to subsequent levels in the DECOS
design flow, particularly the virtual integration, is speci-
fied using the Extensible Markup Language (XML) [8], a
final transformation of the approved resource description
has to be performed. This transformation is realized via
an Extensible Stylesheet Language Transformation (XSLT).
A transformation expressed by means of XSLT, denoted as
stylesheet is specified as a well-formed Extensible Markup
Language (XML) document. A stylesheet contains rules
for transforming a source tree into a result tree. These rules
consist of two parts: a pattern and a template. The pattern
is matched against the source tree. In case of a success-
ful match, the associated template is instantiated in order to
create a part of the result tree. A final automatic validation
ensures that the resulting XML document conforms to the
defined specification.

7 Discussion

The presented framework for the specification of the
hardware platform of a DECOS system facilitates designers
in the meeting of stringent time-to-market constraints. Hier-
archically organized libraries with reusable resource build-
ing blocks enable designers to amortize efforts for capturing
resources across different components in a cluster, as well

as across different projects. In addition, the resource specifi-
cation framework supports the independent construction of
the constituting parts of a hardware platform model through
different designers. Thereby, we establish an important pre-
requisite for platform-based design with support for virtual
integration in the context of the MDA.

Rapid Modeling of New Hardware Platforms and Modi-
fication of Existing Ones. The presented solution for the
resource specification in the DECOS architecture supports
the compositional definition of node computers and com-
plete clusters. Consequently, a designer that needs to cap-
ture a hardware platform of a DECOS system needs not to
start from scratch, but can build on resource building blocks
stored in a library.

On the one hand, the resource specification framework
provides a library with resource primitives (e.g., proces-
sors, memory chips, communication controllers). The li-
brary comprises elementary resources, which are no fur-
ther decomposed in the resource specification. The library
provides predefined resource categories, but is kept extensi-
ble and supports the addition of new instances of resource
primitives. The library is not only reusable across differ-
ent projects, but also speeds up modeling within a project.
Even heterogeneous components of a DECOS cluster con-
tain identical resource primitives. For example, consider
a DECOS cluster with FlexRay as its time-triggered core
communication protocol. Although the cluster can be com-
posed of heterogeneous node computers (e.g., different host
computers, special hardware), all node computers will con-
tain a FlexRay communication controller for accessing the
core network.

In addition to the resource primitive library, the resource
specification framework provides a library with derived re-
sources denoted as Hardware Elements. For example, the
library can define an application computer as a hardware el-
ement, which is made up of a specific processor and mem-
ory chip. On their behalf, hardware elements can be further
composed to form DECOS components and entire clusters.

Modular Resource Specification — Division of Work
Among Experts. We utilize standardized technical dic-
tionaries for ensuring the compatibility of the parts of the
resource specification model, which are taken out of the
libraries or defined by independent developers. The stan-
dardized technical dictionaries capture those attributes of
resources that are significant for ensuring a seamless inte-
gration into complete components and clusters. Hence, dif-
ferent parts of the resource specification can be delegated to
the respective experts. For example, a specific type of sen-
sor can be modeled by an expert with profound knowledge
in this domain.



Design Flow According to MDA and Virtual Integration
Support. A resource specification model is a necessary
prerequisite for a design process according to the MDA. The
resource models and the tool support presented in this pa-
per are enabling technologies for the design of integrated
systems according to the MDA design methodology. De-
signers can perform a virtual integration of software sub-
systems for the identification of design faults early on in the
development process. In addition, the platform-independent
modeling of applications facilitates reuse, which is crucial
in domains such as the automotive sector, where a particu-
lar software subsystem is subject to mass customization and
needs to be deployed in different car types and car series.

Through the accompanying tool support (see Section 6),
virtual integration efforts are minimized for mapping a PIM
to different hardware platforms. Hence, designers are en-
abled to experiment freely with different hardware plat-
forms. They can determine at relative ease a cost-effective
platform, which meets all functional (e.g., availability of
special purpose hardware) and non-functional requirements
(e.g., temporal properties such as network bandwidth or
CPU speed) identified in the PIM.
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