
MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics
Simulations

Naveen Michaud-Agrawal,
Department of Biophysics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205,
naveen.michaudagrawal@gmail.com

Elizabeth J. Denning,
Department of Biophysics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205 and
Department of Pharmaceutical Chemistry, University of Maryland, Baltimore, School of
Pharmacy, Baltimore, MD 21201, USA, denniej0@outerbanks.umaryland.edu

Thomas B. Woolf*, and
Departments of Physiology and of Biophysics, Johns Hopkins School of Medicine, Baltimore,
Maryland 21205

Oliver Beckstein*

Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK and Department of
Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205

Abstract

MDAnalysis is an object-oriented library for structural and temporal analysis of molecular

dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python

language with some performance-critical code in C. It uses the powerful NumPy package to

expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions

of particles. Many common file formats of simulation packages including CHARMM, Gromacs,

Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be

selected with a syntax similar to CHARMM’s powerful selection commands. MDAnalysis enables

both novice and experienced programmers to rapidly write their own analytical tools and access

data stored in trajectories in an easily accessible manner that facilitates interactive explorative

analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux

and Mac OS X. It is freely available under the GNU Public License from http://

mdanalysis.googlecode.com.

INTRODUCTION

Molecular dynamics (MD) simulations generate a wealth of data. Deducing meaningful

conclusions from simulations requires analysis of MD trajectories in terms of the individual

positions (and possibly velocities and forces) of all atoms or a selected subset of atoms for

each time frame of a trajectory. Users can often rely on a single tool or package for most of

*Corresponding author: twoolf@jhu.edu; oliver.beckstein@bioch.ox.ac.uk.

NIH Public Access
Author Manuscript
J Comput Chem. Author manuscript; available in PMC 2012 October 15.

Published in final edited form as:
J Comput Chem. 2011 July 30; 32(10): 2319–2327. doi:10.1002/jcc.21787.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://mdanalysis.googlecode.com
http://mdanalysis.googlecode.com

their analysis. For instance, the Gromacs1 package contains a large number of individual

programs (written in C) that each performs a particular analysis task such as calculating a

root mean square deviation or a timeseries of some dihedral angles. Similarly, ptraj2,

Wordom3, MD-TRACKS4, and Simulaid5 provide interfaces to pre-defined analysis tools.

Some large, monolithic programs such as CHARMM6 or VMD7 come with a scripting

language that allows the use of a powerful atom selection languages and built-in or scripted

analysis modules. A number of libraries such as MMTK8, MMTSB9, or pymacs10 also

provide some analysis capabilities in addition to other functions such as simulation setup or

execution.

Implementing new analysis algorithms can be difficult within the existing packages as it

often requires an intimate knowledge of the internals of the software. Object-oriented

libraries such as LOOS11 or MDAnalysis (described here) encapsulate essential input/

output (I/O) functionality in order to present a consistent interface to the data in a trajectory.

They both emphasize enabling the user to create novel analysis tools easily without having

to spend effort on reimplementation of standard functionality.

We developed the open source MDAnalysis toolkit to simplify the development of new

analysis tools that specifically make use of the widely used Python language

(www.python.org). It is available under the GNU Public License from http://

mdanalysis.googlecode.com. MDAnalysis facilitates rapid code development by building on

Python, which provides a powerful and extensible but easy to learn programming language

that has been found particularly useful in the scientific community. MDAnalysis utilizes fast

numeric/algebraic libraries such as ATLAS, LAPACK, or MKL to improve speed and

powerful Python libraries such as NumPy and SciPy (www.scipy.org), which provide

optimized classes and functions for important components of scientific code such as

multidimensional arrays or linear algebra routines. A wide range of other high-quality

libraries is freely available such as the NetworkX package12 for the representation and

analysis of network graphs. The seamless integration of these scientific libraries via NumPy

arrays enables users, as we show below, to write non-trivial analysis code in a concise and

almost symbolic manner.

In this paper we first introduce the basic philosophy and layout of MDAnalysis (Figures 1

and 2) and then show examples with Python code for solving a range of analysis tasks,

ordered from simple to advanced. Code examples together with the required input are

provided at the code download URL and as part of the package test suite.

METHODS

MDAnalysis, which was initially inspired by MDTools for Python (http://www.ks.uiuc.edu/

Development/MDTools/Python/, J.C. Phillips, unpublished) and MMTK 8, is implemented

as a Python package. It consists of a core library, which is exposed via the Universe class in

the top-level name space and the analysis sub-module, which contains an expanding

selection of functionality that make use of the core library (Figure 1). A number of

performance critical or low-level input/output (I/O) routines are written in C (either directly

or using Cython), and hence installation requires a working C-compiler. It has been tested

Michaud-Agrawal et al. Page 2

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.python.org
http://mdanalysis.googlecode.com
http://mdanalysis.googlecode.com
http://www.scipy.org
http://www.ks.uiuc.edu/Development/MDTools/Python/
http://www.ks.uiuc.edu/Development/MDTools/Python/

successfully on Linux and Mac OS X platforms. Reading of CHARMM DCD trajectory

files utilizes open source code from catdcd (part of VMD7) and PDB files are read with the

Bio.PDB package13. For some analysis functions a fast linear algebra library such as

LAPACK, ATLAS or the native vecLib framework on Mac OS X is needed. MDAnalysis

depends on the NumPy package (http://numpy.scipy.org). The development process follows

standard software engineering “best practice”14 by using a publicly accessible version-

controlled source code repository with a bug tracker and a mailing list dedicated to the

project. Importantly, individual code blocks are tested through an extensive unit test suite,

ensuring that enhancements and bug fixes do not break old code or re-introduce bugs.

MDAnalysis is fully object-oriented and treats atoms, residues, segments and trajectories as

objects. These objects are represented in Python as classes with appropriate functions

(“methods”) and variables (“attributes”) defined on these objects. In the following we

describe the overall architecture of the package and some of the most important classes to

enable users to make best use of the library. A complete simulation system is represented by

the Universe class (Figure 1). It is initialized from a topology file, which defines the atoms

in the system, and a trajectory or coordinate file, which lists the position of each atom for a

number of time frames or a single snapshot.

Universe contains the attribute atoms (an instance of an AtomGroup), which can be thought

of as a list of all atoms that are represented as Atom instances. The Atom is the fundamental

object in MDAnalysis. It contains data such as chemical type, partial charge, or its Cartesian

coordinates. For convenience, atoms are grouped in residues (represented by a Residue
class, which is a special AtomGroup); a list of residues can be referred to as a Segment (a

ResidueGroup that inherits from AtomGroup). A segment can correspond to a chain in a

PDB file or a whole multi-chain protein; similarly, a residue typically corresponds to a

single amino acid in a peptide chain, water molecule, or lipid. Residues and segments are

simply containers for Atom objects; an Atom records the Residue, Segment and Universe it

belongs to. In this way it is possible to directly switch between structural hierarchies,

depending on which level is the most convenient for a task at hand. Attributes of Atom
instances can be read (and set) individually and thus provide fine grained control for specific

analysis tasks. Python indexing and “slicing” of an AtomGroup returns an Atom or a list of

Atoms; index operations on a Segment return Residue objects.

In many cases, the user is interested in a property of a group of atoms. Any AtomGroup has

a number of methods predefined that provide properties of all atoms in the group (such as

coordinates or masses) as NumPy arrays or aggregate properties of the whole group such as

the center of mass, the total mass, or the principal axes (see Figure 2 and the documentation

of the package, accessible from within Python via the help (Classname) command). Every

AtomGroup (which includes Residue, ResidueGroup, Segment and SegmentGroup classes

by inheritance) also has the attributes atoms, residues, and segments. They contain lists of

those Atom, Residue, and Segment instances to which the atoms in the group belong; for

instance, residues contains all residues of which the atoms are members so that one can

quickly find all residues for which a certain atom-based selection criterion is true. Because

such a consistent application programming interface (API) applies at all levels of the

structural hierarchy, concise code can be written that processes segments, residues and

Michaud-Agrawal et al. Page 3

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://numpy.scipy.org

arbitrary collections of atoms in the same manner. Additionally, managed attributes are

automatically generated that simplify access to certain selections. For instance, any

AtomGroup contains an attribute for each atom name that it contains (such as “CA” or “N”).

Such an “instant selector” attribute provides a group of all atoms with the same name, e.g.

all CA-atoms. Similarly, a Segment also contains instant selectors for residue names and

residue numbers (the latter are prefixed with the letter “r” to make them valid Python

identifiers). The Universe contains instant selectors for segment identifiers (prefixed with

“s” if they start with a number).

A new AtomGroup can be generated from an instant selector or a selection via the

selectAtoms() method. MDAnalysis contains a full selection language comparable to the one

offered by CHARMM6 or VMD7. It includes selections by atom properties, connectivity,

and geometry (such as distances). Selections can be grouped by Boolean operators to create

arbitrarily complex expressions.

A simulation trajectory file consists of a sequence of coordinate frames. MDAnalysis

provides a view or a “cursor” on the trajectory. A trajectory has a Timestep object associated

with it (Figure 2). The Timestep contains the current frame number, the unitcell dimensions

(if recorded in the trajectory file), and the coordinates of all atoms. Atom and AtomGroup
coordinates always refer to the coordinates in the current time step; they update

automatically. A trajectory Reader instance is responsible for reading the trajectory file and

populating the Timestep whenever a new frame is read from the file. Reader classes can be

used as Python iterators, they have a next() method to advance the trajectory cursor, and

they typically also allow indexing to jump to a specific frame. A Writer class is used to write

a Timestep to a file on disk. The design of the library is easily extensible; for instance, new

trajectory readers and writers can be added through a common API by inheriting from the

coordinates.base.Reader class and adding appropriate low-level code for the actual I/O.

The default units in MDAnalysis are the ångström (10−10 m) for length and the picosecond

(10−12 s) for time. Data from trajectories are automatically converted to these units, and data

written to trajectories is converted to the native format (although this behavior can be

changed using internal flags). The unit cell representation differs between trajectory formats.

MDAnalysis always makes the unit cell available in the dimensions attribute as a tuple

(a,b,c,α,β,γ) for the lengths and angles of the parallelepiped forming the simulation box.

RESULTS

Basic use of the library: Trajectory I/O and Selections

Once installed, MDAnalysis is imported in the standard Python fashion as:

import MDAnalysis

or

from MDAnalysis import *

Michaud-Agrawal et al. Page 4

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

For the following discussion and the examples we will assume that the second form has been

used, which makes a number of useful classes and modules available in the top-level name

space (Figure 1).

The most important class is Universe, which represents the complete simulation system. It is

initialized from a topology file, which defines the atoms in the system, and a trajectory,

which lists the position of each atom for a number of time frames:

universe = Universe(topology_file, trajectory_file)

MDAnalysis can read a range of popular file formats. This includes trajectories produced by

CHARMM, NAMD, LAMMPS, Amber, and Gromacs and the generic XYZ format (also

compressed with gzip or bzip2). It can write DCD (CHARMM/NAMD/LAMMPS) and

XTC/TRR (Gromacs) trajectories. Furthermore, it can read and write a number of single

frame formats such as Brookhaven PDB, CHARMM coordinates (CRD), GROMOS96

coordinates (GRO), and it can read PQR files as used in electrostatics calculations 15.

Periodic boundary conditions are not automatically taken into account and hence trajectories

should be appropriately preprocessed. In order to define the atoms in the system, a topology

file is required. Typically this is a CHARMM/XPLOR PSF file or a Amber PARMTOP but

it is also possible to use any of the single frame formats instead and make use of the

information stored there. For instance, using a PQR file sets the charge attribute of each

atom to the charge stored in the file. There are no restrictions on the type or number of

atoms; for instance, PDB files with large numbers of atoms are handled gracefully and

coarse grained simulations can be analyzed in the same way as atomistic ones.

The main purpose of Universe is to gather all atoms in the system in its Universe.atoms
attribute and provide the Universe.selectAtoms() method to create arbitrary groupings of

atoms (Figure 1). All such groups of atoms are instances of the AtomGroup class and a

number of simple methods are automatically defined for such a group (Figure 2). For

instance, AtomGroup.totalMass() computes the total mass of these atoms and

AtomGroup.principalAxes() the principal axes by diagonalizing the tensor of inertia. Other

examples of these types of functions include computing the center of mass, center of

geometry, radius of gyration, or the total charge. Individual properties of all atoms in an

AtomGroup can also be conveniently accessed in a fashion typical for Python (“Pythonic”)

by calling methods that return lists or arrays of the property. For example,

AtomGroup.coordinates() returns a NumPy array of the coordinates, which can be processed

further in Python code:

from numpy import array

protein = universe.selectAtoms(‘protein’)

coords = protein.coordinates()

shifted = coords + array([10.,0,0])

The example above calculates the coordinates of all protein atoms shifted by the vector

(10,0,0) along the x-axis. Other methods return lists of residue numbers, residue names,

Michaud-Agrawal et al. Page 5

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

partial charges (if defined in the topology file), atom masses, or B-factors if loaded from a

PDB file (Figure 2).

From an AtomGroup, one can also write different types of coordinate files such as trajectory

or single coordinate files (Figure 2). A single coordinate file such as a PDB can be written

with

universe.selectAtoms(“byres (resname SOL and around 3.5

protein)”).write(“solvationshell.pdb”)

The related write_selection() method writes selection commands to an output file; by

loading these commands in an external program such as VMD or PyMOL one can visualize

the MDAnalysis selection. It is also possible to use the selection commands as input for

simulations in CHARMM or Gromacs.

To write trajectory files, one obtains a trajectory Writer and then writes every individual

timestep, typically by iterating over an input trajectory. Coordinates can be manipulated

before writing them, or only a selection of the whole system can be written. In the next

example, a new trajectory in Gromacs XTC format is written, in which the whole system

(universe.atoms) is rotated by 360° around an axis parallel to the z-axis that contains the

center of geometry of residues 100 to 105:

writer = MDAnalysis.Writer(‘rotating.xtc’, \

universe.atoms.numberOfAtoms())

for ts in universe.trajectory:

angle = 360.*(ts.frame-1)/universe.trajectory.numframes

universe.atoms.rotateby(angle, axis=(0,0,1), \

point=universe.selectAtoms(“resid 100:105”))

writer.write(ts)

writer.close()

The object-oriented design of the library allows the convenient use of selections (i.e.

AtomGroups) in places where one could also provide an explicit Cartesian coordinate; if a

point in space is required, the centroid of the AtomGroup is substituted. Vectors can be

replaced by a tuple of two AtomGroups and the vector is calculated from the centroid of the

first group to the second one.

Writing of selections and trajectories is also object-aware. For example, in order to write a

Cα–only trajectory, the appropriate Cα–selection is passed to the write() method:

ca = universe.selectAtoms(‘name CA’)

writer = MDAnalysis.Writer(‘ca.dcd’, len(ca))

for ts in universe.trajectory:

writer.write(ca)

writer.close()

Michaud-Agrawal et al. Page 6

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Typical frame-based analysis of a trajectory follows the same simple iterator pattern: while

looping through the frames of the trajectory, data are collected at each time step. In the next

example, the end-to-end distance of a protein is calculated and printed at each time step:

from numpy.linalg import norm

protein = universe.selectAtoms(‘protein’)

nterm = protein[0].residue.N # N atom of first residue

cterm = protein[−1].residue.C # C atom of last residue

for ts in universe.trajectory:

d = norm(cterm.pos - nterm.pos)

print “End-to-end distance %f at frame %d” % (d,ts.frame)

The example also demonstrates the important fact that coordinates of selections or

individual atoms change dynamically when the trajectory is moved to a different frame. The

iterator approach is robust and because MDAnalysis only loads individual frames into

memory when needed, it is possible to handle large systems. So far MDAnalysis has been

tested successfully with systems up to 4.5 million particles (Daniel Parton, personal

communication).

The MDAnalysis.analysis module and advanced usage

A typical approach to testing convergence of a property is to calculate the property of

interest over blocks of a trajectory and analyze the standard deviation of the block averages

as function of the block size 16. Accumulating block results can be almost trivially carried

out in MDAnalysis by iterating over blocks and appending calculated observables to a list.

The following example defines a function blocked() that takes a universe, the number of

blocks, and a function operating on a universe as arguments:

def blocked(universe, nblocks, analyze):

size = universe.trajectory.numframes/nblocks

blocks = []

for block in xrange(nblocks):

a = []

for ts in u.trajectory[block*size:(block+1)*size]:

a.append(analyze(universe))

blocks.append(numpy.average(a))

blockaverage = numpy.average(blocks)

blockstd = numpy.std(blocks)

return nblocks, size, blockaverage, blockstd

In order to calculate the block average of the radius of gyration of a protein one would

define an analysis function such as

def rgyr(universe):

return universe.selectAtoms(‘protein’).radiusOfGyration()

Michaud-Agrawal et al. Page 7

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

that can be directly used with blocked() for a range of block numbers:

results = []

for nblocks in xrange(2,10):

results.append(blocked(universe, nblocks, rgyr)

MDAnalysis already contains a number of analysis applications that are user-friendly “best-

practice” examples for tool development (Figure 1). One example is the align module, which

contains code to fit a trajectory to a reference structure by minimizing the root mean square

deviation (RMSD) of a selection between the current frame and the reference. The

implementation uses the fast QCP method for calculating the minimum RMSD between two

structures 17 and determining the optimal least-squares rotation matrix 18.The rms_fitting()
function can be used to re-center the trajectory based on an atom selection and/or to

concatenate trajectories together while extracting an arbitrary subset of frames or atoms. An

example for this tool, rmsfit_alignment.py, is located within the examples directory.

Time series analysis

A number of often-used geometric calculations over time series of atoms are predefined and

written in C. Instead of looping over individual frames, the so-called Timeseries analysis

functions directly operate on the underlying trajectory. First a collection is populated with

the desired analysis tasks and then the analysis is carried out by passing the collection to the

correl method of the trajectory object:

MDAnalysis.collection.addTimeseries(\

Timeseries.Dihedral(atomselection))

data = universe.trajectory.correl(MDAnalysis.collection, skip=10)

The current implementation (for DCD only) includes functions for Angle, Bond, Dihedral,

CenterOfGeometry, CenterOfMass, Atom, Distance, and WaterDipole moment.

An example is shown in Figure 3 where a KALP19 peptide in a lipid membrane is analyzed.

The script below shows how to set up the calculation of a single ψ peptide backbone

dihedral; Figure 3B shows values for all ψi:

psi_sel = universe.selectAtoms(“atom KALP 21 N”, \

“atom KALP 21 CA”, “atom KALP 21 C”, \

“atom KALP 22 N”)

a = collection.TimeseriesCollection()

a.addTimeseries(Timeseries.Dihedral(psi_sel))

data = universe.trajectory.correl(a, skip=10)*180./pi

The structure of a lipid bilayer can be analyzed by the average deuterium order parameter,

SCD = (3〈cos2θ〉 − 1)/2;19 θ is the angle between carbon-hydrogen bonds in the fatty acid

tail and the bilayer normal. SCD can range from −0.5 to 1.0, representing completely

disordered chains to fully ordered chains. To analyze SCD of DMPC lipid tails in the KALP

system (Figure 3C), the C-H vectors for a given carbon on each aliphatic chain of every lipid

Michaud-Agrawal et al. Page 8

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

molecule are extracted and stored in a NumPy array. The data can be extracted in different

formats depending on the analysis – for example, the timeseries is generated in ‘afc’ format

for ‘atom, frame, coordinate’. SCD is then calculated using NumPy’s powerful arithmetic:

carbon = 3 # analyze the 3rd carbon

selection = “resname DMPC and (name C2%d or name H%dR or \

name H%dS or name C3%d or name H%dX or name H%dY)” % \

((carbon,)*6) # selects C23 H3R H3S C33 H3X H3Y

group = universe.selectAtoms(selection)

data = universe.trajectory.timeseries(group, format=“afc”, skip=skip)

cd = numpy.concatenate((data[1::3]-data[0::3], \

data[2::3]-data[0::3]), axis=0)

cd_r = numpy.sqrt(numpy.sum(numpy.power(cd,2), axis=−1))

cos_theta = cd[…,2]/cd_r

S_cd = −0.5*(3.*numpy.square(cos_theta)-1)

S_cd.shape = (S_cd.shape[0], S_cd.shape[1]/4, −1)

order_param = numpy.average(S_cd)

Distances

The distance package contains functions to calculate distances between atoms in selections.

The versatile distance_array() function (implemented as a fast compiled library) can be used

to rapidly calculate all distances dij between two groups of atoms. The following example

shows how to use it in order to calculate the radial distribution function, g(r), of water

molecules around the amino group of all lysine residues. In the example below, g(r) is stored

in the variable rdf:

from MDAnalysis.analysis.distances import distance_array

group = universe.selectAtoms(“resname LYS and name NH*”)

water = universe.selectAtoms(“resname TIP3 and name OH2”)

dmin, dmax = 1.0, 5.0

rdf, edges = numpy.histogram([0], bins=100, range=(dmin, dmax))

rdf *= 0

for ts in universe.trajectory:

box = ts.dimensions[:3]

amino_coor = group.coordinates()

water_coor = water.coordinates()

dist = distance_array(amino_coor, water_coor, box)

new_rdf, edges = numpy.histogram(numpy.ravel(dist), \

bins=100, range=(dmin, dmax))

rdf += new_rdf

numframes = \

universe.trajectory.numframes/universe.trajectory.skip

Normalize RDF

density = 1.

vol = (4./3.)*numpy.pi*density*\

Michaud-Agrawal et al. Page 9

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

(numpy.power(edges[1:],3) - numpy.power(edges[:−1], 3))

rdf = rdf/(vol*numframes)

Distances under periodic boundary conditions can be taken into account via a minimum-

image convention by providing the unit cell information to the distance_array()function. At

the moment this functionality is limited to cubic or orthogonal unit cells but additional

periodic boundary processing will be implemented in the future. In the general case it is

advisable to pre-process trajectories to center the system on the molecule of interest and

remap solvent molecules into the primary unit cell using native tools.

Density

The density package contains functions to calculate a density of a selection of atoms. The

following example shows how to use the density_from_Universe() function to calculate the

three-dimensional (3D) density map for the oxygen atom for all water molecules in the

system on a grid with spacing 1 Å:

from MDAnalysis.analysis.density import density_from_Universe

D = density_from_Universe(universe, delta=1.0, \

atomselection=“name OH2”)

D.convert_density(“water”) # measure relative to bulk water

D.export(“md_wat.dx”)

The resulting OpenDX file can be viewed in a molecular viewer such as VMD or PyMOL.

The density object can be processed further and analyzed within a Python script.

Implementation of the LeafletFinder algorithm for lipid bilayer analysis

The tight integration between MDAnalysis and NumPy together with the availability of

powerful specialized libraries enables one to express algorithms in a concise and efficient

manner. As an example we present the LeafletFinder algorithm that returns the groups of

atoms that make up the two leaflets of a bilayer. Such information is required for the

automated analysis of lipid-protein interactions or lipid exchange between leaflets. For

small, planar bilayer patches (e.g. with the bilayer normal assumed parallel to the z axis), it

is not difficult to implement a simple algorithm that (1) collects specific head group atoms

(for instance, phosphorous atoms for phospholipids), and then (2) assigns them to a leaflet,

depending on the atom’s z coordinate being above or below the center of geometry of the

bilayer. Such an approach breaks down when the bilayer shows strong undulations or if it is

not planar, as is the case for vesicles. LeafletFinder follows a different approach, first

building a network of neighbors and then using a graph-theoretic approach to analyze the

network:

1. Build the network: Treat head group atoms as vertices of a graph (Figure 4A) and

connect those that have a distance smaller than a set cut-off (Figure 4B).

2. Identify the connected subgraphs in the graph (Figure 4C).

Michaud-Agrawal et al. Page 10

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

3. Sort the subgraphs by decreasing size; the first and second subgraph are the

leaflets.

Figure 4D shows the algorithm applied to a large coarse-grained bilayer system with 24,056

lipids and a total system size of over 1.5 million particles. Here, membrane undulations have

amplitudes larger than the bilayer thickness, thus rendering the simple approach useless

whereas LeafletFinder reliably distinguishes the two leaflets as shown in the closeup in

Figure 4E.

The implementation in MDAnalysis starts with a selection of lipid head group atoms, e.g.

headgroup_atoms = universe.selectAtoms(“name P*”)

coord = headgroup_atoms.coordinates()

Step 1 of the algorithm takes the coordinates of the selected head group atoms and builds the

adjacency matrix, which contains True for any distance smaller than the cutoff and False
otherwise; this only requires a single line of code because distance_array() returns a NumPy

array that can be directly transformed using NumPy’s powerful Boolean array constructors:

from MDAnalysis.analysis.distances import distance_array

adj = (distance_array(coord,coord) < cutoff)

Step 2 and 3 make use of the NetworkX12 package. The networkx.Graph class can directly

build a graph from an adjacency matrix and the networkx.connected_components() function

returns the connected components of a graph, sorted by size. Thus only a single line of code

is required to analyze the network of neighbors of all lipids:

import networkx as NX

leaflets = NX.connected_components(NX.Graph(adj))

leaflets[0] and leaflets[1] contain the indices of the two leaflets that can be mapped back to

the atoms by indexing the selection; the corresponding residues (i.e. the lipids) are obtained

from the residues attribute of the AtomGroup:

A_lipids = headgroup_atoms[leaflets[0]].residues

B_lipids = headgroup_atoms[leaflets[1]].residues

The “top” or “bottom” leaflet of a planar membrane can be assigned by, for instance,

comparing the centers of mass of the leaflets; membrane normals can be computed via

singular value decomposition of the head group coordinates, leaflet-resolved diffusion

coefficients and order parameters can now be easily computed with standard techniques.

Native contacts analysis

Trajectories between known end states such as folding/unfolding or a macromolecular

transition between “closed” and “open” conformations are frequently simulated. A useful

metric to described the progression of such a trajectory is the fraction of native contacts

qM(t) at each time t.20 A contact exists if a atom pair (i,j) has a distance dij < Rc, where Rc

Michaud-Agrawal et al. Page 11

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

is a cut-off. A native contact relative to state M is said to exist if dij(t) < Rc and dij
M < Rc.

The fraction of native contacts is the ratio between the total number of native contacts and

the total number of contacts in state M.

The following example implements a “Q1-Q2” analysis20, applied to the simulated

transition of the enzyme adenylate kinase (AdK) from a closed to an open conformation21.

Contacts are defined between Cα atoms with Rc=8 Å. q1 is the fraction of contacts relative

to the closed state (pdb:1AKE), the starting conformation of the trajectory, and q2 is the

fraction of native contacts relative to the open conformation (based on pdb:4AKE). The

outline of the algorithm only requires a few lines of code; a full implementation can be

found in MDAnalysis.analysis.contacts.ContactAnalysis. To calculate the fraction of native

contacts q1 relative to a native structure with Cα coordinates native_coords_1:

from MDAnalysis.analysis.distances import self_distance_array

native_contacts_1 = (self_distance_array(native_coords_1) < Rcut)

ca = universe.selectAtoms(“name CA”)

for ts in universe.trajectory:

contacts = (self_distance_array(ca.coordinates()) < Rcut)

native_contacts = numpy.logical_and(contacts, native_contacts_1)

q1 = native_contacts.sum()/native_contacts_1.sum()

A plot of q1 versus q2 is shown in Figure 5, indicating that the transition progresses in a non-

linear fashion and switches from a “closed”-like conformation to an “open”-like

conformation20,21.

Benchmark

Analysis of MD simulations can be time consuming and thus performance is a concern when

using any analysis program. We benchmarked MDAnalysis together with three other

software packages (CHARMM 6, VMD 7, and Gromacs 1) on a number of representative

tasks that are readily available in each package. For a 10-ns trajectory with 10,000 frames of

fatty acid binding protein (pdb: 1IFC) in water (13,051 atoms) we computed time series for

three distances, two dihedral angles, the RMSD relative to the starting conformation, and the

radius of gyration of the protein. We also calculated the density of water oxygens around the

protein from the same trajectory. The radial distribution of 3476 water oxygens in an urea

solution was calculated from 2,000 frames of a trajectory with 11,492 atoms. MDAnalysis

code used was similar to the examples shown above. Runs were timed on an Intel Xeon

E5420 CPU at 2.5 GHz. Results are shown in Table 1.

In general, MDAnalysis performs fairly well and is even faster than most programs when

performing simple calculations such as the analysis of distances, dihedrals, generating

density maps, and the radius of gyration. Very computing intensive tasks that have to

operate on large arrays such as the radial distribution function can be substantially slower.

Profiling of the code with Python’s cProfile module revealed that in this case the drop in

performance arose mostly from the NumPy histogram() function, which requires about three

times as much time as the MDAnalysis distance calculation. If necessary, performance could

likely be improved by implementing the whole analysis task in Cython or C without using

Michaud-Agrawal et al. Page 12

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

NumPy, although requiring many more lines of code and hence implementation and testing

time.

CONCLUSIONS

MDAnalysis is a Python framework that encapsulates access to atoms in molecular

dynamics trajectories within a consistent, object-oriented framework. It hides details of the

I/O operations from the user and enables the creation of analysis tools that are largely

agnostic of the molecular dynamics code that was used to produce the trajectory. It features

an expressive atom selection language and a rich interface to access atoms and groups of

atoms in an object-oriented and “Pythonic” manner. Systems with millions of atoms have

been successfully analyzed, with the only limitation that a single timestep must be able to fit

into the main memory of the workstation. MDAnalysis comes with a suite of test cases

(which are constantly used during development to verify that the code runs correctly),

example scripts, and an expanding library of analysis modules for tasks that are not

necessarily available in any other package we know of. Tight integration between

MDAnalysis and NumPy makes it easy to immediately use a large number of scientific

libraries, thus utilizing high quality and already tested code in preference to local

implementations. The modular design of the Python language makes it easy to re-use

analysis code by storing it in modules and packages that can be imported and subclassed as

needed.

Several software packages exist that enable the user to analyze MD simulations (Tables S1

and S2, within the supporting information). Similar to pymacs 10, MMTK 8, mmLib 22, and

Atomic Simulation Environment 23, it utilizes Python libraries to perform a variety of

functions. It has advanced, intuitive atom selections similar to programs such as CHARMM

6 or VMD 7. MDAnalysis is specifically tailored to the analysis of MD simulation as seen in

examples mentioned above and on the MDAnalysis website, being able to handle many

popular trajectory formats. MMTK 8 and MDAnalysis are both Python-based, object-

oriented libraries dealing with MD simulations but they have rather different strengths.

MMTK focuses on the development of MD simulation methods whereas MDAnalysis

makes it easy to analyze MD trajectories by providing powerful selection commands,

straightforward access to trajectory data at all levels of the atom/residue/segment hierarchy,

and seamless integration with NumPy.

As MDAnalysis code can be very compact it is also possible to write short but powerful

“throw-away” scripts. The library is also well suited for interactive work in a Python shell

such as ipython (http://ipython.scipy.org). With the help of command completion features of

the shell and the instant selection attributes it is possible to quickly analyze and explore a

structure or simulation and immediately plot data (e.g. using matplotlib (http://

matplotlib.sourceforge.net)). Such a rapid-prototyping approach to tool development and

exploratory analysis is showing great promise in the authors’ labs.

MDAnalysis is available as open source code under the GNU Public License (version 2)

from http://mdanalysis.googlecode.com. Documentation is available through the standard

Python help system during interactive use and from the web site.

Michaud-Agrawal et al. Page 13

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://ipython.scipy.org
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://mdanalysis.googlecode.com

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank all those who tested the library and provided feedback; in particular we wish to acknowledge Daniel
Parton, Dr Phillip Fowler, and Tyler Reddy for contributions of code, documentation and test cases to MDAnalysis.
Dr Joshua Adelman contributed the fast QCP RMSD fitting routines. We are also grateful to Daniel Parton and Dr
Joseph Goose for testing MDAnalysis on large systems and providing an unpublished simulation of a large bilayer
for the LeafletFinder analysis. NMA was supported by a grant from the Burroughs Wellcome Fund. This research
was funded in part by a grant from the National Institutes of Health (TBW) (GM064746). OB was supported in part
by a grant from the European Union (EDICT Project, grant 201924) and in part by a Junior Research Fellowship at
Merton College, Oxford.

REFERENCES

1. Hess B, Kutzner C, van der Spoel D, Lindahl E. J Chem Theo Comp. 2008; 4(3):435–447.

2. Case DA, Cheatham r. Thomas E, Darden T, Gohlke H, Luo R, Merz J, Kenneth M, Onufriev A,
Simmerling C, Wang B, Woods RJ. J Comput Chem. 2005; 26(16):1668–1688. [PubMed:
16200636]

3. Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A. Bioinformatics. 2007; 23(19):2625–2627.
[PubMed: 17717034]

4. Verstraelen T, Van Houteghem M, Van Speybroeck V, Waroquier M. J Chem Inform Model. 2008;
48(12):2414–2424.

5. Mezei M. J Comput Chem. 2010; 31(14):2658–2668. [PubMed: 20740566]

6. Brooks BR, Brooks CL III, MacKerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G,
Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek
M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ,
Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. J Comp
Chem. 2009; 30(10):1545–1614. [PubMed: 19444816]

7. Humphrey W, Dalke A, Schulten K. J Mol Graph. 1996; 14:33–38. [PubMed: 8744570]

8. Hinsen K. J Comput Chem. 2000; 21(2):79–85.

9. Feig M, Karanicolas J, Brooks CL III. J Mol Graph Model. 2004; 22(5):377–395. [PubMed:
15099834]

10. Seeliger D, de Groot BL. Biophys J. 2010; 98(10):2309–2316. [PubMed: 20483340]

11. Romo, TD.; Grossfield, A. 31st Annual International Conference of the IEEE EMBS; Minneapolis,
Minnesota, USA. 2009; p. 2332-2335.

12. Hagberg, A.; Swart, PJ.; Schult, DA. Proceedings of the 7th Python in Science conference (SciPy
2008); Jan 1 2008; p. 11-15.

13. Hamelryck T, Manderick B. Bioinformatics. 2003; 19(17):2308–2310. [PubMed: 14630660]

14. Wilson G. Computing in Science & Engineering. 2006; 8(6):66–69.

15. Dolinsky TJ, Nielsen JE, McCammon JA, A. BN. Nucleic Acids Res. 2004; 32:W665–W667.
[PubMed: 15215472]

16. Flyvbjerg H, Petersen HG. J~Chem~Phys. 1989; 91(1):461–466.

17. Theobald DL. Acta Crystallographica Section A. 2005; 61(4):478–480.

18. Liu P, Agrafiotis DK, Theobald DL. J Comput Chem. 2010; 31:1561–1563. [PubMed: 20017124]

19. Seelig A, Seelig J. Biochemistry. 1974; 13(23):4839–4845. [PubMed: 4371820]

20. Franklin J, Koehl P, Doniach S, Delarue M. Nucleic Acids Res. 2007; 35(Suppl 2):W477–W482.
[PubMed: 17545201]

21. Beckstein O, Denning EJ, Perilla JR, Woolf TB. J Mol Biol. 2009; 394(1):160–176. [PubMed:
19751742]

22. Painter J, Merritt EA. J Appl Cryst. 2004; 37:174–178.

Michaud-Agrawal et al. Page 14

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

23. Bahn SR, Jacobsen KW. Comput Sci Eng. 2002; 4:56–66.

Michaud-Agrawal et al. Page 15

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 1.
Organization of the MDAnalysis Python library. The Universe class contains both

topological and structural information and maintains a list of all atoms – an AtomGroup
instance named atoms – in the system. The selectAtoms() methods provides an interface to

the selection mechanism and returns an AtomGroup instance. A molecular dynamics

trajectory is accessed through the trajectory attribute, which is an instance of a Reader class.

MDAnalysis also contains an analysis sub-module, which collects a number of pre-defined

classes and tools.

Michaud-Agrawal et al. Page 16

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 2.
Layout of important MDAnalysis classes. The Universe class contains an AtomGroup of all

Atom instances that can be accessed through the attribute Universe.atoms. It also features a

number of auto-generated AtomGroups, one for each segment identifier of the topology.

Users can obtain information from the individual Atom instances and computed data from a

whole AtomGroup by querying the instance attributes and methods. The Timestep class

represents the current state of the system at a particular time frame of the trajectory.

Trajectory Reader and Writer classes provide an abstract interface to trajectory I/O. They

implement special methods that allow “Pythonic” access to the objects such as treating a

Reader as an iterator over trajectory frames (via the __iter__() special method) or selecting

individual frames by the indexing operation (implemented through a custom __getitem__()
method).

Michaud-Agrawal et al. Page 17

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 3.
Calculation of geometric parameters for a KALP19 peptide in a DMPC bilayer. (A) The

alpha-helical KALP19 peptide (black) was simulated in a DMPC bilayer with 90 lipids with

the CHARMM27 force field. (B) Backbone dihedral angles φ and ψ averaged over a 75 ns

MD trajectory. Error bars indicate one standard deviation from the mean. The values for an

ideal α-helix are shown as dashed lines (φ = −57° and ψ = −47°) for comparison. (C)
Average deuterium order parameter profiles, SCD, of DMPC lipid tails. SCD converges

slowly and only the average over the last 25 ns is shown.

Michaud-Agrawal et al. Page 18

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 4.
Defining membrane leaflets (MDAnalysis.analysis.leaflets.LeafletFinder). A-C:
LeafletFinder algorithm (A) A graph is constructed that connects particles within a fixed

cutoff (circles) such as lipid head group particles. (B) An algorithm implemented in the

NetworkX package detects all disconnected subgraphs. (C) Typically, only two graphs are

found that describe the two topologically disjoint leaflets. (D) View of a coarse grained

bilayer with strong deformations. The bilayer contains ~24,000 lipids and the total

simulation system size was ~1.5 million particles (J. Goose, personal communication). The

phosphate particles in the head groups are shown and are colored black or white according

to the LeafletFinder algorithm. (E) Close-up view of a deformation that is larger than the

bilayer thickness itself.

Michaud-Agrawal et al. Page 19

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Figure 5.
Native contacts analysis for the closed to open transition of adenylate kinase. q1 is the

fraction of native contacts relative to the closed state (PDB: 1AKE) and q2 is relative to an

open state structure (PDB: 4AKE).

Michaud-Agrawal et al. Page 20

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Michaud-Agrawal et al. Page 21

Table 1

Benchmark of standard analysis tasks using various analysis software packages

MDAnalysis VMD CHARMM Gromacs

Distances (3x) 1.04 s 4.81 s 2.22 s 14.71 s

Dihedrals (2x) 0.80 s 2.40 s 2.15 s 11.92 s

RMSD 29.10 s 4.29 s 5.09 s 32.18 s

Radius of Gyration 10.16 s 12.58 s 12.10 s 16.87 s

Radial Distribution 21 m 24 s 10 m 38 s 7 m 1 s 6 m 6 s

3-dimensional Density 1 m 32.31 s 5 m 52.37 s – * 16.93 s

*
Currently not implemented within CHARMM as a stand-alone calculation.

J Comput Chem. Author manuscript; available in PMC 2012 October 15.

