
S. Qing, H. Imai, and G. Wang (Eds.): ICICS 2007, LNCS 4861, pp. 201–215, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

MDH: A High Speed Multi-phase Dynamic Hash String 
Matching Algorithm for Large-Scale Pattern Set 

Zongwei Zhou1,2, Yibo Xue2,3, Junda Liu1,2, Wei Zhang1,2, and Jun Li2,3 

1 Department of Computer Science and Technology, Tsinghua University, Beijing, China 
2 Research Institute of Information Technology, Tsinghua University, Beijing, China 

3 Tsinghua National Laboratory for Information Science and Technology, Beijing, China 
zhou-zw02@mails.tsinghua.edu.cn 

Abstract. String matching algorithm is one of the key technologies in 
numerous network security applications and systems. Nowadays, the increasing 
network bandwidth and pattern set size both calls for high speed string 
matching algorithm for large-scale pattern set. This paper proposes a novel 
algorithm called Multi-phase Dynamic Hash (MDH), which cut down the 
memory requirement by multi-phase hash and explore valuable pattern set 
information to speed up searching procedure by dynamic-cut heuristics. The 
experimental results demonstrate that MDH can improve matching performance 
by 100% to 300% comparing with other popular algorithms, whereas the 
memory requirement stays in a comparatively low level.  

Keywords: Network Security, String Matching Algorithm, Multi-Phases Hash, 
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1   Introduction 

Along with the rapid development of modern network technology, demands for anti-
attack and security protection are now facing a drastic increase in almost all network 
applications and systems. String matching is one of the key technologies of them. For 
example, widely deployed network intrusion detection and prevention systems 
(NIDS/IPS) often use signature-based method to detect possible malicious attacks, so 
string matching algorithm is their basic operation. It has been demonstrated that string 
matching takes about 31% of the total processing time in Snort[1][5], the most 
famous open source NIDS system[8]. The other remarkable instance is content 
inspection network security systems. More and more such applications, including, but 
not limited to, anti-virus, anti-spam, instant message filtering, and information 
leakage prevention require payload inspection as a critical functionality. And, string 
matching is also the most widely used technology in payload scanning. 

However, string matching technology now encounters new challenges from two 
important facts, both of which indicate that more efficient and practical high speed 
string matching algorithms for large-scale pattern set are urgently needed. 

The first challenge is that large-scale pattern sets are becoming increasingly 
pervasive. In this paper, we define pattern set that has more than 10, 000 patterns as 
large-scale pattern set, in contrast to small or middle size pattern sets in typical 
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network security systems. As more types of virus, worm, trojan and malware spread 
on the Internet, pattern set size in anti-virus applications keeps increasing. For 
example, the famous open source anti-virus software—Clam AntiVirus[2] now has 
more than 100,000 patterns, and daily update is still quickly enlarging it. From 
February 14th to March 18th, 2007, the pattern set size increase by about 10, 000. 
However, most existing string matching algorithms are designed and tested under 
small and moderate pattern set. They cannot be efficiently used in large-scale 
scenario.  

Secondly, network edge bandwidth is increasing from 100Mbps to 1Gbps or even 
more. Such development demands for high throughput of current inline network 
security applications. In newly emerging UTM (Unified Threat Management) 
systems, turning on real-time security functionalities like intrusion prevention, anti-
virus, and content filtering will greatly reduce the system overall throughput, because 
such functionalities all need extensive string matching operation. However, string 
matching algorithms now are still far from efficient enough to meet the needs driven 
by bandwidth upgrade.  

This paper proposes a novel high-speed string matching algorithm, Multi-Phase 
Dynamic Hash (MDH), for large-scale pattern sets. We introduce multi-phase hash to 
cut down the memory requirement and to deal with high hash collision rate under 
large-scale pattern set. And we also propose a novel idea, dynamic-cut heuristics, 
which can explore the independence and discriminability of the patterns to speed up 
the string matching procedure. Experimental results of both random pattern sets and 
some real-life pattern sets show that MDH increases the matching throughput by about 
100% to 300%, compared with some other popular string matching algorithms, 
whereas, maintain its memory requirement at a low level.  

The rest of this paper is structured as follows: Section 2 overviews pervious work 
on string matching algorithms. Section 3 describes in detail our MDH algorithm. The 
experimental results are given out in Section 4 to demonstrate high matching 
performance and low memory requirement of our algorithm. Conclusions and future 
work are in the last section. 

2   Related Work 

There are basically two categories of string matching algorithms—forward algorithm 
and backward algorithm. They both use a window in the text, which is of the same 
length as the pattern (the shortest pattern if there are multiple patterns). The window 
will slide from leftmost of the text to the rightmost. Forward algorithm examines the 
characters in the text window from left to right, while backward algorithm starts at 
the rightmost position of the window and read the characters backward.  

Among the forward algorithms, Aho-Corasick algorithm[6] is the most famous 
one. This algorithm preprocesses multiple patterns into a deterministic finite state 
automaton. AC examines the text one character at a time, so its searching time 
complexity is ( )O n  when n is the total length of the text. This means that AC 

algorithm is theoretically regardless of pattern numbers. However, in practical usage,  
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automaton size increases quickly when the pattern set size goes up, which would 
require too much memory. This limits the scalability of AC to large-scale string 
matching. 

It has been demonstrated that backward algorithm have higher average search 
speed than forward algorithm in practical usage, because it can skip unnecessary 
character comparisons in the text by certain heuristics[3]. Boyer-Moore algorithm [7] 
is the most well-known backward algorithm used in single pattern matching. There 
are two important heuristics in BM algorithm, bad character and good suffix, which is 
shown in Fig.1. BM calculates both of the shift values according to these two 
heuristics and then shifts the window according to the bigger one.  

       

Fig. 1. Bad character (left) and good suffix (right) heuristic, y denotes the text and x is the 
pattern. u is the match suffix of the text window. 

Wu-Manber algorithm[4] extended BM to concurrently search multiple strings. 
Instead of using bad character heuristic to compute the shift value, WM uses a 
character block including 2 or 3 characters. WM stores the shift values of these blocks 
in SHIFT table and builds HASH table to link the blocks and the related patterns. The 
SHIFT table and the HASH table are both hash tables which enable efficient search. 
Moreover, in order to further speed up the algorithm, WM also builds another hash 
table, the PREFIX table, with the two-byte prefixes of the patterns. This algorithm has 
excellent average time performance in practical usage. But, its performance is limited 
by minimum pattern length m since the maximum shift value in SHIFT table equals to 
m-1.  

However, when pattern set is comparatively large, the average shift value in WM 
algorithm will decrease and thus the searching performance will be compromised. B. 
Xu and J. Li proposed the Recursive Shift Indexing (RSI)[10] algorithm for this 
problem. RSI engages a heuristic with a combination of the two neighboring suffix 
character blocks in the window. It also uses bitmaps and recursive tables to enhance 
matching efficiency. These ideas are enlightening for large-scale string matching 
algorithms.  

J. Kytojoki, L. Salmela, and J. Tarhioin also presented a q-Grams based Boyer-
Moore-Horspool algorithm[11]. This algorithm cuts a pattern into several q-length 
blocks and builds q-Grams tables to calculate the shift value of the text window. This 
algorithm shows excellent performance on moderate size of pattern set. However, 
when coming into large-scale scope, it is not good enough both in searching time and 
memory requirement. 

C. Allauzen and M. Raffinot introduced Set Backward Oracle Matching Algorithm 
(SBOM)[12]. Its basic idea is to construct a more lightweight data structure called 



204 Z. Zhou et al. 

factor oracle, which is built only on all reverse suffixes of minimum pattern length m 
window in every pattern. It consumes reasonable memory when pattern set is 
comparatively large. 

There are also some other popular Backward algorithms which combine the BM 
heuristic idea and AC automaton idea. C. Coit, S. Staniford, and J. McAlerney 
proposed AC_BM algorithm[8]. This algorithm constructs a prefix tree of all patterns 
in preprocessing stage, and then takes both BM bad character and good suffix 
heuristics in shift value computation. A similar algorithm called Setwise Boyer Moore 
Horspool (SBMH)[9] is proposed by M. Fisk and G. Varghese. It utilizes a trie 
structure according to suffixes of all patterns and compute shift value only using the 
bad character heuristic. However, these two algorithms are also limited by the 
memory consumption when the pattern set is large.  

3   MDH Algorithm 

We have reviewed some popular multiple string matching algorithms. They are the 
best algorithms under different circumstances. But, for large-scale pattern sets, all of 
them suffer drastic matching performance decline. Some of them, such as AC, 
AC_BM and SBMH, also face memory explosion. Moreover, as we have considered, 
there are few algorithms now solve the large-scale pattern set problem well. In this 
context, MDH is designed to both improve the matching performance and maintain 
moderate memory consumption. Based on WM algorithm, our new algorithm has two 
main improvements:  

First, when pattern sets become larger, WM algorithm has to increase the size of 
the SHIFT table and the HASH table to improve matching performance. This would 
consume lots of memory. MDH introduces multi-phase hash to cut down the high 
memory requirement.  

Second, WM algorithm considers only the first m characters of the patterns. It is 
simple and efficient, but overlooks helpful information in other characters. Therefore, 
MDH introduces dynamic-cut heuristics to select the optimum m consecutive 
characters for preprocessing. This mechanism will bring in higher matching 
performance. 

3.1   Key Ideas of MDH  

In the following description, we let B to be the block size used in WM and MDH, m 
to minimum pattern length, ∑  to be the alphebet set of both pattern and text, ∑  to 

be the alphebet set size, k to be the total pattern number, l to be the average length of 
all the patterns. 

3.1.1   Multi-phase Hash 
In WM algorithm, a certain SHIFT table entry stores the minimum shift value of all 
the character blocks hashed to it. As the pattern number increases, high hash collision 



 MDH: A High Speed Multi-phase Dynamic Hash String Matching Algorithm 205 

will reduce the average shift value ( )E shift  in SHIFT table and thus compromise the 

matching performance. 
Therefore, a better algorithm for large-scale pattern set always increases character 

block size B to deal with the high hash collision rate. But larger B will result in bigger 
SHIFT and HASH table, and thereby greatly increases the memory requirement. 
Considering the limited cache in modern computers, high memory consumption will 
decline the cache targeting rate and increase average memory access time. It will in 
turn decrease the matching performance. On the other hand, it is also difficult to load 
such large data structures into SRAM when the algorithm is implemented on current 
high speed appliance such as network processor, multi-thread processing chips and 
FPGA. This will limit its scalability to hardware implementations. 

Under such observations, we propose a novel technique called multi-phase hash. In 
WM algorithm, general hash function is used to build SHIFT table and HASH table, 
the character blocks and the hash table entries are one-to-one correspondent. But in 
MDH, we use two compressed hash table, the SHIFT table and the PMT table, to 
replace them. They are of the similar functionality, but consume less memory. MDH 

first choose a compressed hash function 1h , to reduce SHIFT table from 
B∑  entries 

to 
/ 8a∑  ( 8a B< ), which means that 1h  only uses a bits of the B-length character 

block. However, compressing the SHIFT table entries together will also reduce the 
average shift value, similar with increasing pattern set size. Some entries with non-
zero shift value would be hashed into zero shift value entry. This will bring in more 
character comparison time in matching procedure. So we then introduce another 
compressed hash table, PMT table, to separate the non-zero shift value entries away 
from zero shift value entry. When a certain character block with non-zero shift value 
is hashed into a zero shift value entry, MDH uses another hash function 2h  to rehash it 

and store their shift value as skip value in the PMT table. PMT table is of the size 
/ 8b∑  ( 8b a B< < ). Moreover, PMT table also linked by some possible matching 

patterns, similar with HASH table in WM. The number of these pattern linked to a 
certain PMT table entry is recorded as its num value.  

3.1.2   Dynamic-Cut Heuristics 
Following the common practice of some previous work[3], the average character 
comparison times ( )E comparison  is important for the matching performance of  WM 

algorithm. Large-scale pattern set can increase ( )E comparison  and compromise the 

matching performance. We handle it by introduce dynamic-cut heuristics. 
Mathematical analysis of ( )E comparison  decides the detail mechanisms used in 

dynamic-cut heuristics.  
Let ZR to be the ratio of the number of zero entries (entries with zero shift value) 

SHIFT entry to the total number of SHIFT table entries. Let 0T  to be the number of 

non-zero entries (entries linked with possible matching patterns) in PMT table, 
therefore 0/k T  is the average number of possible matching patterns (APM) in PMT 

table.  
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In the searching stage, MDH first checks the shift value in SHIFT table. If it is 
zero, the algorithm then checks the skip value in PMT table. Only if the skip value is 
also zero should the algorithm verify the possible matching patterns. So the 
probability of comparison times equals to x ( Pr( )comparison x= ) is calculated as 

follows: 

/ 8

0

/ 8

0

Pr( 1) 1

Pr( 2) *(1 / )

Pr( 2) * /

b

b

comparison ZR

comparison ZR T
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Thus, under average condition, ( )E comparison could be estimated as follows: 

( ) 1* Pr( 1) 2* Pr( 2)

                          (2 * ) * Pr( 2)

E comparison comparison comparison

l APM comparison

= = + =
+ + >

 (2) 

From (1) and (2), we get: 
/ 8

( ) 1 * * /
b

E comparison ZR l k ZR= + + ∑  (3) 

Moreover, the above analysis is only under the normal condition of network 
security application, when the pattern matches in the text are comparatively sparse. 
However, new denial-of-service attacks, such as sending text of extremely high 
matches and jamming the pattern matching modules, have emerge to compromise the 
network security application with BM-family string matching algorithms. Thus it is 
very necessary to consider the condition of heavy-load case or even worst-case, when 
there are lots of matches in the text. Under such circumstance, ( )E comparison  will 

be calculated as follows: 

( ) 2 *wE comparison l APM≈ +  (4) 

Therefore, after setting the SHIFT table size and PMT table size in multi-phase 
hash, there still remains two probabilities for improving the searching performance. 
First, from equation (3), smaller ZR results in smaller ( )E comparison  under normal 

condition and thereby brings in higher average searching performance. Secondly, as 
in equation (4), smaller APM results in smaller ( )wE comparison  and thus ensures 

high searching performance for worse-case condition. 
According to the above analysis, MDH uses dynamic-cut heuristics to cut every 

pattern into the optimum consecutive m characters and to reduce the ZR and APM in 
SHIFT table and PMT table. Theoretically, MDH could compute all the ZR and APM 
values under all the cutting conditions and then choose the optimum one. Apparently, 
such heuristic mechanism demands for high time and memory consumption in 
preprocessing when the pattern number k and average pattern length l are large. Note 
that in most network security application and systems with large-scale string 
matching, such as anti-virus and content inspection, pattern sets are changing very 
fast. It is improper to choose such complex preprocessing mechanism.  

Thus we implement the heuristics in a comparatively simple way, which is 
described detail in the following section.  
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3.2   Algorithmic Details of MDH 

3.2.1   Preprocessing Stage 
In the following description, we let the block length B=4, SHIFT table size a=20, 
PMT table size b=17. The pattern set is {opionrate, torrential, extension, 
cooperation}. So the minimum pattern length m=9. << denotes for the bit operator of 
left shift. Hash function 1h and 2h  are as follows: 

1h (block)=(*(block))&0x000FFFFF  (5) 

2h (block)=((*(block)<<12)+(*(block+1)<<8)

                +(*(block+2)<<4)+*(block+3))&0x0001FFFF
 (6) 

There are three steps in preprocessing stage: 

Step1: Initialize SHIFT table and PMT table, set all shift value and skip value to be 
m-B+1, all num value to be zero. Each pattern has its offset value, that is, the offset of 
optimum m window in the pattern. All offset value is initiated to zero. 
Step2: Process the patterns one by one, set their optimum m window position 
according to the dynamic-cut heuristics and note down the offset value. Meantime, all 
the suffix character blocks of these windows are added into the SHIFT table and the 
PMT table. Related shift value and num value are set. 
Step3: Process the patterns one by one again, add the other blocks (except the suffix 
block) in all the optimum m windows into the SHIFT table and the PMT table. 
Related shift value and skip value are set. 

3.2.1.1   Step2—Optimum m Window Position Setting. In this step, the algorithm 
processes the patterns one pattern by another and calculates their optimum m window 
position.  

“opionrate” is the one of the shortest patterns in the pattern set. So its optimum m 
window is “opionrate” itself. Its suffix block “rate” is added into SHIFT table and 
PMT table. The algorithm sets Shift value in the 1h (rate) SHIFT entry to 0, set num 

value in the 2h (rate)  PMT entry to 1, and link the pattern after 2h (rate)  PMT entry.  

For pattern “torrential”, it has two possible m window positions—“torrentia” and 
“orrential”. The algorithm check the 1h (ntia) SHIFT entry, the shift value is 4. Then 

we check the 1h (tial)  SHIFT entry, this shift value is still 4. So optimum m window is 

not found, the algorithm will manually set “torrentia” as the optimum m window and 
set related shift and num value. The procedure of adding the pattern “extension” is 
similar with that of adding “opionrate” because they are both the shortest patterns. 
Then here comes the last pattern “cooperation”. The procedure of adding this pattern 
reveals the effect of dynamic-cut heuristics. There are three possible m window 
positions—“cooperati”, “ooperatio” and “operation”. The algorithm first checks the 

1h (rati)  SHIFT entry and found its shift value is 4, then checks the 1h (atio)  SHIFT 

entry and gets the same result. So, the algorithm moves the window again and checks 
the 1h (tion)  SHIFT entry. Since 1 1h (tion)=h (sion) , its shift value will be zero. Note  
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Fig. 2. SHIFT table and PMT table before and after setting optimum minimum m window 
position for pattern set {opionrate, torrential, extension, cooperation} 

that the 2h (tion)  PMT entry has a zero num value. According to our heuristics, 

“operation” will be the optimum m window of pattern “cooperation” and the related 
offset value is 2. 

Figure 2 illustrates that, without dynamic-cut heuristics, the shift value of 1h (rati)  

SHIFT entry will be zero, there would be four SHIFT entries with zero shift value and 
therefore the ZR becomes bigger. And also “cooperation” and “opionrate” will both 
be linked to 2h (rate)  PMT entry and APM becomes larger, since 2 2h (rate)=h (rati) . 

Thus, it is demonstrated that Dynamic-cut heuristics helps to make both ZR and 
APM smaller, which will contribute to bring in higher searching performance. 
Comparison experiments between MDH without dynamic-cut heuristics and MDH 
full implementation will appear in Section 4 to further prove its effect. 

3.2.1.2   Step3—Adding Characters Blocks in the optimum m windows. In this step, 
we take processing pattern “opionrate” for example. The algorithm put a B-length 
block window (B window) at the leftmost position of the pattern and slide. Let j to be 
the offset of B window, the shift value of the character block in B window can be 
calculated by m-B-j. First compute the hash value of “opio” by hash function 
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Fig. 3. SHIFT table and PMT table before and after filling shift value and skip value of all B-
length character blocks in pattern “opionrate” 
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1h . The shift value in 1h (opio) SHIFT entry is 6, and the shift value of “opio” is 5. So 

the algorithm will note down the smaller value 5 as the new shift value of this entry. 
Then we will compute the hash value of “pion”, which is the same as 1h (tion/sion) . 

The shift value of 1h (tion/sion) entry is zero. Under this condition, the algorithm will 

compute 2h (pion)  and index to the related PMT entry. The skip value of 2h (pion)  

PMT entry is 6 and the shift value of “pion” is 4. So the algorithm will note down the 
smaller value 4 as the new skip value of this entry. Following this way, the algorithm 
then processes character block “ionr”, “onra”, “nrat”. 

Figure 3 shows the SHIFT table and the PMT table before and after the whole 
procedure above. Apparently, without multi-phase hash idea, character block “pion” 
will be hashed into 1h (tion/sion)  SHIFT entry with zero shift value. It will cause 

unnecessary pattern verification of “cooperation” with a suffix block “tion”. 
However, the algorithm will get its real shift value by checking the skip value of 

2h (pion)  PMT entry and unnecessary character comparison can be avoided. 

3.2.2   Scanning Stage 
The scanning procedure is comparatively simple and explicit. B-length text window 
slides from leftmost position of the text to right. Each time we examine B characters 
in the text window, calculates its hash value according to hash function 1h , check the 

relevant SHIFT table entry. If the shift value in this entry is not zero, move the text 
rightwards by the shift value and restart this procedure. Otherwise, hash this text 
block again using hash function 2h , use the new hash value to index to the 

corresponding PMT table entry.  Verify every possible matching pattern linked in this 
entry using naïve comparison method. After that, move the text rightwards by the skip 
value of this entry and restart the whole procedure. 

4   Experimental Results 

This section gives out a serial of experiments to demonstrate the performance of 
MDH algorithm. The test platform is a personal computer with one dual-core Intel 
Centrino Duo™ 1.83GHz processor and 1.5GB DDR2 667MHz memory. The CPU 
has 32KB L1 instruction cache and 32KB L1 data cache. The shared L2 cache is 
2048KB. 

The text and patterns are both randomly generated on alphabet set 256∑ = . And 

we then insert all the patterns into random position of the text for three times to 
guarantee a number of matches between random text and patterns. In the first 
experiment of searching time comparison, we also use a recent antivirus pattern set 
from Clam AntiVirus to demonstrate the practical performance of MDH algorithm. 
The text size in the following tests is 32MB. The pattern length of our large-scale 
pattern sets extends from 4 to 100 and 80% of patterns are of the length between 8 
and 16, which is comparatively close to content inspection based network security 
application such as instant message filtering and content inspection, recommend by 
CNCERT/CC [13]. 



210 Z. Zhou et al. 

4.1   Searching Time and Memory Requirement Comparison  

To better evaluate the performance of MDH, we choose five typical multiple string 
matching algorithms which are widely deployed in recent practical applications. The 
source codes of AC, AC_BM, WM algorithms are adopted from Snort. Unnecessary 
codes about case sensitive related operations are eliminated to take off extra time and 
memory consuming. In WM algorithm, we set the block length B=2. The source 
codes of SBMH and SBOM are from [14].  

 

 

Fig. 4. The upper graph is the searching time comparison between MDH and some typical 
algorithms. Under the pattern sets larger than 30k, MDH is much better than any other 
algorithms in this experiment. And the scalability of MDH to even larger patter sets more than 
100k is promising since its performance decline is not so rapid as other algorithms when pattern 
set size increases from 10k to 100k. The lower graph is the memory comparison. Table-based 
algorithm like MDH and WM algorithm consume much less memory than other algorithms in 
the experiment. 

Figure 4 illustrates that the performance of all the five typical algorithms suffer 
drastic declines when pattern set size exceeds 30k. Their matching throughput is 
fewer than 96Mbps with 50k patterns. Algorithms like AC, AC_BM and SBMH can 
not support pattern sets larger than 60k under our test condition because of their high 
memory consumption. When there are 100k patterns, the matching throughput of 
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MDH algorithm is still more than 100Mbps. It exceeds SBOM by 169% and WM by 
231%. In addition, MDH algorithm possesses high stability as pattern set size 
increases and also excellent scalability to small and moderate pattern set size. The 
stable performance also indicates that it has better scalability to supper-large-scale 
pattern sets. In our further test, the matching throughput of MDH is abut 48.8 Mbps 
when pattern set size is 200k, still better than that of WM and SBOM under 100k 
pattern set. 

MDH algorithm is also superior in memory requirement. When pattern set size 
increases up to 50k, memory requirement of all algorithms except WM and MDH are 
more than 200MB. Table-based algorithms like WM and our solution only consume 
less than 20 MB memory even in 100k pattern sets. 

4.2   Experiments on Real-Life Pattern Set 

To demonstrate the practical performance of MDH algorithm, we choose the real-life 
pattern set used in Clam AntiVirus in this experiment. The total number of the current 
virus data base has 102, 540 patterns. We removed all the patterns that is either 
represented by regular expressions or of the length shorter than 4. After that, the 
pattern set size is 77, 607. We also form three different subset of the size 20k, 40k and 
60k. The minimum pattern length of all these four pattern sets is 4. SBOM and WM 
are chosen to be compared with MDH, because these two algorithms also have 
reasonable searching time performance and memory consumption in Section 4.1.  

Table 1. In this table, Mem represents the total memory consumption and Thr denotes the 
matching throughput, that is, size of the text that have been processed in a second  Under large-
scale pattern sets. Under Clam AntiVirus pattern set, MDH possesses both higher searching 
performance and lower memory consumption when comparing with WM and SBOM 
algorithm. 

20k 40k 60k 77k 
Algorithm Thr 

(Mbps) 
Mem 
(MB) 

Thr 
(Mbps) 

Mem 
(MB) 

Thr 
(Mbps) 

Mem 
(MB) 

Thr 
(Mbps) 

Mem 
(MB) 

MDH 250.56 3.82 203.28 5.2 174.24 8.08 150.16 10.41 
WM 329.52 3.33 126 5.2 66.88 8.53 43.36 11.27 

SBOM 69.68 81.87 56.16 162.5 43.76 244.7 36.48 316.84 

 
From Table 1, we can see, from 20k to 77k patterns, the searching throughput of 

MDH algorithm does not suffer drastic decline as WM and SBOM algorithm. This 
stable performance indicates that MDH has better scalability to even supper-large-
scale pattern sets in real-life applications. When there are 77k patterns, the matching 
throughput of MDH algorithm is more than 150Mbps, which exceeds SBOM by 
311% and WM by 246%. Meanwhile, MDH only consumes about 3 to 11 MB 
memory to process these pattern sets, no more than WM algorithm and much fewer 
than SBOM algorithm. It is fair to assert that MDH algorithm possesses excellent 
time and space performance under the large-scale pattern sets from real-life security 
applications. 
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4.3   Experiments on Multi-phase Hash 

Table 2 is the result of comparison test between WM algorithm (B=2), WM algorithm 
(B=3) and MDH with multi-phase hash. In this table, MEM stands for the total 
memory used in WM or MDH algorithm. When pattern number is more than 10k, ZR 
becomes very high in WM algorithm (B=2). According to equation (3) in Section 
3.1.2, higher ZR would bring in bigger ( )E comparison and greatly compromise the 

searching performance. If B=3, ZR becomes comparatively low to ensure good 
searching performance. However, under this condition, SHIFT table and HASH table 

will become bigger since these tables are both of the size
B∑ . So MEM in WM 

(B=3) increase to more than 80MB. With multi-phase hash, MDH is able to maintain 
moderate ZR. Its MEM is nearly in the same level with WM (B=2) and only about 
2%~7% of WM (B=3). 

Table 2. This table is a comparison of ZR and MEM between WM algorithm (B=2), WM 
algorithm (B=3) and MDH algorithm with multi-phase hash. ZR is high in WM algorithm 
(B=2) under large-scale pattern set. If B=3, WM algorithm possesses low ZR, but another 
problem is that it consumes too much MEM. MDH is both good in maintaining low ZR and 
resonable MEM. 

WM(B=2) WM(B=3) MDH 
Pattern 
number ZR 

(%) 
MEM 
(MB) 

ZR 
(%) 

MEM 
(MB) 

ZR 
(%) 

MEM 
(MB) 

10k 14.2 0.95 0.059 80.64 0.85 2.42 
25k 31.7 1.91 0.149 81.59 1.91 2.98 
50k 53.3 3.5 0.297 83.19 3.46 3.93 
75k 68.0 5.09 0.446 84.78 4.32 4.87 

100k 78.3 6.69 0.594 86.38 6.25 5.81 

4.4   Experiments on Dynamic-Cut Heuristics 

From Table 3, we can see that ZR has a drastic decline when dynamic-cut heuristics 
are applied. In 10k pattern set, dynamic-cut heuristics reduce the zero entry number 
by about 10%, and in 100k patter set, this number increases up to nearly 30%. The 
heuristics’ influence on ZR becomes more significant when pattern set size is larger. 
It also has been demonstrated that APM value becomes comparatively smaller owing 
to dynamic-cut heuristics. 

As for time performance, dynamic-cut heuristics save about 7.6% to 14% 
searching time when pattern number ranges from 10k to 100k. Noticeably, the bigger 
the pattern set is, the more significant the time-saving effect will be. It strongly 
testifies the excellent scalability of the dynamic-cut heuristics to even larger pattern 
set. However, the overhead in processing time is still reasonable since most of the 
network security applications do not have high frequency of pattern set changing and 
more attentions are focused on improving the searching time. 
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Table 3. ZR is the zero SHIFT entry radio, the same as in Table 2. APM indicates the average 
number of possible matching patterns in PMT table. MP denotes of the MDH implementation 
without dynamic-cut heuristics. We can see that dynamic-cut herurisitcs have greatly reduce the 
Znum and AN in PMT, which contributes to the searching time decrease. 

ZR APM Preprocessing 
Time(ms) 

Searching 
Time (ms) Pattern 

Number 
MP MDH MP MDH MP MDH MP MDH 

10k 9940 8878 1.04 1.03 18.8 20.1 1112 1028 
30k 29458 23391 1.12 1.08 26.4 37.4 1459 1312 
50k 48461 36262 1.2 1.12 36 62.8 1668 1512 
70k 67005 48198 1.29 1.16 49.9 84.4 2118 1877 

100k 93842 65494 1.43 1.22 68.3 105.9 3117 2680 
 

 

Fig. 5. In the upper graph, SHIFT table size is set to  202  (a=20) and the PMT table size is 

ranging from 152  (b=15) to 192  (b=19). MDH has less run time (or better performance) when 
using larger PMT table size. The experiment related with the lower graph is done under same 

PMT table size as 172  (b=17). SHIFT table size is ranging from 182  (a=18) to 222 (a=22). The 
optimum SHIFT table size is different under different pattern sets. 
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4.5   SHIFT and PMT Table Size Selection 

The selection of SHIFT and PMT table size is the critical part of MDH 
implementation. In the upper graph of Fig 5, we can conclude that bigger PMT table 
is more helpful in improving searching performance. It matches our previous analysis. 
When PMT table is larger, we are able to partition all character blocks with zero 
SHIFT value into more entries. So APM value could be smaller. This would highly 
reduce unnecessary verification time and benefit for final performance. Thus, within 
the memory limitation, it is better to choose as larger PMT table as possible. In MDH 

algorithm, we choose a moderate and acceptable PMT table size as 
172 (b=17). 

In the lower graph of Fig 5, we test the selection of SHIFT table size under the 

same PMT table size of 
172 (b=17). The optimum SHIFT table size is related to the 

pattern set size. From 10k to about 110k patters, MDH with SHIFT table size of 
192 and

202  are of higher searching speed than other ones. And for pattern set between 
110k and 190k, a=21 becomes the best choice. When pattern number increases to 
200k or even more, a=22 will perform better than others. Moreover, we can also 
conclude that the run times curve of larger SHIFT table size always possess smaller 
average slope. The reason is that in large SHIFT table, ZR is comparatively small. 
The pattern set increment can not significantly raise this ratio and compromise the 
matching performance. 

Thus, we may conclude that the selection of SHIFT table size depends on the 
pattern set size. The algorithm should choose larger SHIFT table size to meet the 
needs of larger patter set. In this paper, we focus on pattern sets ranging from 10k to 

100k and thus set the SHIFT table size to be
202  (a=20). 

5   Conclusion and Future Works 

This paper proposes a novel string matching algorithm named Multi-Phases Dynamic 
Hash algorithm (MDH) for large-scale pattern set. Owing to multi-phase hash and 
Dynamic-cut heuristics, MDH can improve matching performance under large-scale 
pattern set by about 100% to 300% compared with other typical algorithms, whereas 
the memory requirement remains at a comparatively low level. Low memory 
requirement will help to raise the cache targeting rate in practical usage and thereby 
improve the matching performance. It would also contribute to support accelerating 
hardware architectures based on MDH, like FPGA and new multi-core chips.  

However, several works will be considered in the future. We are in the progress of 
finding the relationships between character block B, SHIFT table size a, PMT table 
size b and pattern sets size k through more experimental and mathematic analysis. We 
can also study more complex and efficient alternatives for dynamic-cut heuristics. In 
addition, architecture design of network content filtering systems based on MDH and 
multi-thread models will also be within our scope. 
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