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Abstract—Deep Neural Networks are allowing mobile devices
to incorporate a wide range of features into user applications.
However, the computational complexity of these models makes
it difficult to run them effectively on resource-constrained
mobile devices. Prior work approached the problem of support-
ing deep learning in mobile applications by either decreasing
model complexity or utilizing powerful cloud servers. These
approaches each only focus on a single aspect of mobile
inference and thus they often sacrifice overall performance.

In this work we introduce a holistic approach to designing
mobile deep inference frameworks. We first identify the key
goals of accuracy and latency for mobile deep inference and the
conditions that must be met to achieve them. We demonstrate
our holistic approach through the design of a hypothetical
framework called MDINFERENCE. This framework leverages
two complementary techniques; a model selection algorithm
that chooses from a set of cloud-based deep learning models to
improve inference accuracy and an on-device request duplica-
tion mechanism to bound latency. Through empirically-driven
simulations we show that MDINFERENCE improves aggregate
accuracy over static approaches by over 40% without incurring
SLA violations. Additionally, we show that with a target latency
of 250ms, MDINFERENCE increased the aggregate accuracy in
99.74% cases on faster university networks and 96.84% cases
on residential networks.

Keywords-Mobile deep learning, performance

I. INTRODUCTION

Deep learning on mobile devices is allowing for a wide

range of new features such as virtual personal assistants [1],

[2], visual text translation [3] and facial filters [4] to become

commonplace in mobile applications. These diverse func-

tionalities are made possible by recent advanced in machine

learning models called deep neural networks (DNNs), which

on some tasks can approach human-level accuracy [5].

However, DNNs achieve this high accuracy with high

computational complexity [6] leading to high latency, es-

pecially when running on mobile devices [7]. This causes a

necessary trade-off to be made between model accuracy and

model execution latency. Modern frameworks such as Ten-

sorFlow allow for on-device execution, in-cloud execution,

or some hybrid of these two, introducing a wide range of

choices for this accuracy-latency trade-off.

Each of these three approaches each have strengths but

introduce additional drawbacks. On-device inference allows

for executing inferences entirely on the mobile device with

easy to predict latency but the mobile developer has to

choose between high execution latency or using lower accu-

racy models. In-cloud inference can execute high-accuracy

models with low latency but the reliance on network commu-

nication means unpredictable, and potentially unacceptably

long, overall response time [8]. Hybrid inference involves

spreading execution between the mobile device and the cloud

allowing for potential reductions in latency, but can result

in worse latency and lower accuracy than purely on-device

or in-cloud approaches.

In this paper we argue the need for mobile-oriented infer-

ence frameworks. We discuss the pros and cons of existing

approaches and pinpoint the potential areas for improvement.

We propose a holistic approach that considers mobile-

specific factors when designing mobile inference frame-

works. Finally, we demonstrate our approach through the

design of a hypothetical framework called MDINFERENCE

aiming to increase aggregate accuracy, defined as the av-

erage accuracy for all models used to service requests,

while bounding latency for mobile inference requests. This

is enabled by both utilizing a network-aware model selection

algorithm to dynamically choose high-accuracy models that

can execute within a target response time and duplicating

requests to ensure a bounded latency response.

Instead of approaching the design of mobile inference

frameworks as a static problem, where a single model is used

and network time is disregarded, we consider a run-time

approach to mobile inferences with a two-pronged design.

First, by selecting the most accurate model for in-cloud

inference based on the network delay we increase accuracy

within an overall latency target. Second, by duplicating

inference execution on-device using a low-latency model we

can ensure that we can meet the latency target regardless of

network connectivity and delay. In short, by dynamically

selecting a model while running inference both in-cloud

and on-device we improve accuracy while providing latency

guarantees for mobile applications.

Our three main contributions are:

• We introduce a new mobile-oriented approach to de-

signing deep inference frameworks that focuses on the

specific goals and constraints of mobile devices, such
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trained on powerful servers and exported to a format that is

optimized for mobile devices. Mobile oriented optimizations

to decrease the latency of on-device execution often aim to

reduce the complexity of the models themselves [6], [13].

In Figure 2 we show the execution latency of 21 pretrained

CNN models [7]. While many of the models that have

been optimized for mobile devices completed execution in

under 250ms, these models have lower accuracy results.

Higher accuracy models often take much longer to run,

even on devices with specialized hardware such as the Pixel

2 [16]. Further, we observe that the lower accuracy models

show a distinct range of latencies, with latency increasing

exponentially with accuracy, leading to the highest accuracy

models having multi-second latency on all tested devices.

Further, even mobile-oriented models can still be orders

of magnitude slower than running on dedicated servers

with accelerators. The inference latency can be exacerbated

when an application needs to load multiple models, such

as chaining the execution of an OCR model and a text

translation model [3], or requires higher accuracy.

In summary, even though on-device inference is a plausi-

ble choice for simple tasks and newer mobile devices, it is

less suitable for complex tasks or older mobile devices.

B. In-cloud Inference

In-cloud inference, as illustrated in Figure 1(b), executes

models on remote servers instead of on-device. Cloud-based

servers, especially those with access to powerful accelerators

such as GPUs, can execute models orders of magnitude

faster than mobile devices. For example, execution of the

NasNet Large model takes over 5 seconds on all of our

mobile devices but takes only 113ms on a server with

GPU (details in Table III). By leveraging this decrease in

latency, in-cloud inference could decrease overall response

time, even while using more accurate models. However,

transferring the input data to the cloud-based servers can

incur long and unpredictable network time [8], [17].

Model serving systems [18]–[21] allow mobile appli-

cations to leverage these cloud-based frameworks, often

through REST APIs. However, many such systems require

mobile developers to manually specify the exact model to

use through the exposed API endpoints. These frameworks

fail to consider the impact of dynamic mobile network

conditions, which can take up a significant portion of end-

to-end inference time [17], [22]. Moreover, such static

development-time decisions can lead to using high-accuracy

models whose high execution latency may be compounded

by unexpectedly long network transfer time.

In summary, cloud-based inference has the potential to

support many application scenarios, simple and complex,

for heterogeneous mobile devices. However, current mobile-

agnostic serving platforms fall short by not automatically

adapting inference choices based on mobile constraints.

Symbol Meaning

Tsla Response time SLA
Tbudget Time allowed for model execution
Tnw Estimated round-trip network time
M A set of available models
A(m) Accuracy of a model m

µ(m), σ(m)
Average and standard deviation of
model execution time for model m

Tab. I: Symbols used throughout this paper.

C. Hybrid Inference

Hybrid inference spreads the execution of models across

both the mobile device and a cloud-based server, as shown in

Figure 1(c). By splitting the execution between two locations

hybrid inference allows for decisions to be made at runtime

to reduce overall response latency.

The division of model execution between the mobile

device and the remote server is done by identifying partition

points in models where intermediate data can be efficiently

transferred from the mobile device to the remote server [23].

Executing the first layers of a model on-device and then the

rest of the model on a remote server allows for transferring

less data across the network. However, if the network is

unavailable the entire model can be executed locally, but an

unpredictable network can lead to an increase in latency.

To remove this reliance on the network, each segment

of the model execution can calculate a confidence in its

response [24], [25] where a high confidence will result in

using the current response. If the confidence is too low

on-device, the intermediate data can be sent for remote

inference. This decreases the reliance on the network but

potentially decreases accuracy.

In addition, since hybrid inference relies on continuing

execution on the remote server this server has to host to

same model as was used on the mobile device. In order to

accommodate the possibility of no network connection this

limits the models that can be used for hybrid execution.

In summary, hybrid inference allows for decreasing la-

tency by partitioning the inference model and selecting

where and whether each of the pieces should be executed.

Network constraints may lead to longer latency and with a

limited ability to improve accuracy by the models used.

III. PROBLEM STATEMENT

We target the problem of designing mobile deep inference

frameworks for mobile applications. The core aspect of this

problem is that the mobile device can have a variable, or

nonexistent, network connection while request inferences.

Additionally, an application developer has access to a set

of models M that exhibit a range of different accuracies

and latencies [7], [26] for the same task. Therefore, the

problem is about how to enable high-accuracy inference

results for mobile devices within a given target latency.

Concretely, for a mobile device requesting an inference
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within a target latency, Tsla, we want to select an inference

model, m ∈ M that maximizes accuracy and returns results

within Tsla. Note, all symbols used throughout this paper

can be referenced in Table I.

We consider two main metrics that measure the quality of

solutions to this problem. First is Service Level Agreement

(SLA) attainment, which is measured as the number of

requests that return results within the specified response

time target. The goal for a mobile-oriented framework is to

return all results within a given SLA. Second is aggregate

accuracy, which is the average accuracy of all models used

by the framework. For example, if three inference requests

are serviced by models with 40%, 60% and 60% accuracy,

then the framework’s aggregate accuracy is 53.3%. The goal

of any framework is to maximize its aggregate accuracy.

System model and assumptions: We assume our mobile

device is resource constrained and can only run a single

on-device model. Further, we assume the mobile device

may have access to an in-cloud server hosting a set of

functionally-equivalent models, but transferring input data

can take a variable network time Tnw. We call a set of

distinct models functionally-equivalent if they all perform

the same task, such as image classification. We further

assume this network time can be calculated or estimated

through a number of methods such as time synchronization,

direct measurement, or network modeling [8].

Our hypothetical system is designed specifically for CNNs

performing image classification tasks. We assume that any

required preprocessing is completed on the mobile device

and is not directly considered as part of the response time.

We also assume that each request has an appropriate Tsla,

representing the target request-response latency.

IV. MOBILE INFERENCE FRAMEWORK DESIGNS

Mobile-oriented inference frameworks have a number of

unique goals and constraints that we discuss next. These rep-

resent a number of opportunities we discuss in Section IV-B.

A. Mobile-Aware Framework Design Goals and Challenges

As more mobile applications are leveraging DNNs it is

becoming critical that inference frameworks be aware of the

special demands of these applications. Existing approaches

focus on optimizing for single goals, such as latency on mo-

bile devices or inference server throughput, while ignoring

mobile-specific needs. As an example, the NasNet Mobile

model was designed to provide high-accuracy inference on

mobile devices. On a Pixel 2 phone this model ran in 236ms

but on other tested devices this model took up to 2.5X longer.

Goals for a mobile-specific inference framework: A

mobile inference framework needs to dynamically balance

two design goals: latency and accuracy. This need is driven

by a dynamic mobile environments and network connec-

tions, and the inherent heterogeneity of devices.

Goals Factors (Awareness)

Accuracy Latency Network Resource SLA

On-Device ✗ ✓ – ✓ ✓

In-Cloud ✓ ✗ ✗ – ✓

Hybrid ✓/✗ ✓/✗ ✓ ✓ –

MDINFERENCE ✓ ✓ ✓ ✓ ✓

Tab. II: Different mobile inference approaches and their goals
and awareness. The three approaches discussed each have differ-
ent optimization goals. On-device inference relies on an awareness
of available resources to optimize for inference latency. In-cloud
inference has the goal to increase the throughput of inference
servers for the most accurate models, showing an attention to SLA
but ignoring the network. With hybrid approaches, the goals and
awareness lie on a spectrum. Typically frameworks are aware of
a subset of the various factors but no single approach is aware of
all three. MDINFERENCE is aware of all three factors to achieve
a reliable latency while increasing accuracy when possible.

Latency is the time required to return an inference re-

sponse to the mobile end-user. Keeping this metric low and

consistent is important to mobile applications which are

inherently user facing. Response times that are particularly

long relative to the average will be obvious to users.

Accuracy is the ability a model to return the correct

response on input data, which is often reported for image

classifications models as the top-1 accuracy. This describes

the model’s average likelihood to correctly classify input im-

ages. In complex use cases accuracy is especially important.

Challenges for mobile-oriented frameworks: An ideal

mobile inference framework should allow for both goals to

be optimized by balancing them. To do this it would have

to be aware of three major constraints, which we introduce

below and have summarized in Table II.

First, mobile devices experience a wide range of network

conditions that can lead to large variations in the latency

of transferring input data for remote inference. Frameworks

that performs remote inference should be aware of this

variation and able to adapt its inference decisions to min-

imize the impact. Second, mobile devices are inherently

resource constrained, making on-device inference difficult,

which is exacerbated by device heterogeneity. A mobile-

aware inference framework should reduce its reliance on

on-device inference as these constraints are device-specific

and may force each device to use a different low-accuracy

model. Finally, mobile applications are user facing and thus

are generally very sensitive to response time. Therefore any

framework providing mobile devices with inference services

should be able to provide results within a reasonable time,

often defined by its latency SLA.

B. Inference Serving Opportunities

The existing approaches that mobile deep inference frame-

works take introduce a number of potentially opportunities.

On-device inference aims to ensure that mobile users

can always run inference but at a decreased accuracy.

By decreasing the complexity of deep learning models it
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is possible to run inference directly on the mobile device

within a reasonable latency. This ensures that regardless

of network connectivity mobile users can obtain inference

results. One example of this is MobileNets [13] which by

tuning the number of parameters within the model prior to

training allows for a smooth trade-off curve between latency

and accuracy based on the same model architecture.

The main drawback of on-device inference is that de-

creased latency is achieved by sacrificing inference accuracy.

In the case of MobileNets, this can mean decreasing the top-

1 accuracy by 29.6% (comparing the accuracy of the fastest

and most accurate variations [7]). The problem of trading

accuracy for latency is further compounded by the need to

make such decisions prior to training. In particular, doing

so at development time means an application either relies

on a single model across all devices or needs to select the

optimal model per device, which is challenging given the

wide range of devices and models.

In-cloud inference allows for high-accuracy models

to be run with low latency but neglects the needs of

mobile applications. By leveraging hardware accelerators

such as GPUs, cloud-based inference servers can greatly

reduce the latency and improve the serving throughput even

with complex high-accuracy models [18], [19], [27]. As an

example, we observed that the time to execute the NasNet

Large model (82.6% accuracy) in the cloud was faster than

running inference requests with the MobileNetV1 160 1.0

model (68.0% accuracy) on the fastest mobile device in our

experiments. (For details see Figure 2 and Table III.) Cloud-

based serving allows not only for high-accuracy inferences

with low execution latency, but also opens up opportuni-

ties to serve inference requests with functionally-equivalent

models that exhibit different latency-accuracy trade-offs.

The drawback of in-cloud inference frameworks is that

they mobile-agnostic and are typically oriented towards

service providers. This has two impacts. First, cloud-based

servers aim to achieve a service level objective considering

only on-server time and exclude the network latency of the

input data [18], [28]. Due to this, poor mobile network

connections can result in poor mobile performance [17].

Second, optimizations for throughput, such as batching, lead

to an increase in the latency of individual requests [11], [18].

Hybrid inference spreads execution across multiple

locations allowing for decreased latency but at the cost

of relying on the availability of both locations. Spreading

inference across multiple devices allows for a decrease in the

amount of data transmitted across the network [23] or to exit

early from execution when confidence in the intermediate

result is above a threshold [25]. As a result, frameworks that

support hybrid inference have the flexibility to selectively

improve the inference performance by carefully spreading

the model across different locations.

However, this requires both that intermediate data be

transferred between locations and that the intermediate data

can be used in both locations, leading to the same model

be executed in both locations. In the case that network

transfer of intermediate data is prohibitive the model must be

executed entirely on-device. For complex models this leads

to unacceptable latency, and simple models fail to benefit

from the remote execution. Therefore, hybrid frameworks

have similar limitations to on-device frameworks, in that

the model used must be selected during development, and

in-cloud frameworks with their sensitivity to the network.

V. MDINFERENCE FRAMEWORK DESIGN

The key insight of MDINFERENCE is that we can lever-

age a set of cloud-based functionally-equivalent models

to improve accuracy. In addition, duplication of inference

requests [29], [30] allows us to bound latency. For each

inference MDINFERENCE submits an inference to a remote

server that dynamically selects an accurate model, and at the

same time executes a low model to ensure results will be

available for uses within the SLA. This allows for increased

accuracy and reliable latency.

MDINFERENCE combines the advantages of existing ap-

proaches in order to improve end-user performance. By

dynamically selecting cloud-based models based on network

information we can opportunistically use higher accuracy

models and improve the aggregate accuracy. Additionally,

MDINFERENCE and further improve the aggregate accuracy

by using a more accurate on-device model, although this can

impact the minimum achievable SLA. This combination of

local and remote inferences allows MDINFERENCE to pro-

vide for reliable latency and improved aggregate accuracy.

MDINFERENCE consists of two components. First, a

cloud-based server selects between a number of functionally-

equivalent models for one that can complete within a specific

SLA by estimating the time consumed for transferring input

data. This algorithm is detailed in Section V-A. Second, a

local inference is run on-device to ensure that results are

available within the target SLA. The combination of these

two components ensures that inference output is available

within the SLA, possibly with improved aggregate accuracy

from the cloud-based component. We discuss the implication

of duplicating inference requests in Section V-B.

A. Model Selection Algorithm

MDINFERENCE’s model selection algorithm is designed

to manage a set of functionally-equivalent CNN models

and pick the most accurate model that can return results

within the specified SLA. It is designed to take advantage

of the low variability of model execution latency to not

only mitigate the impact of variations in the mobile network

latency but opportunistically use them to improve accuracy.

The key insight of our model selection algorithm is that

the variations of transfer latency for an inference request

can be compensated for with the appropriate choice of

inference model. As functionally-equivalent models each
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have different execution times and accuracies, by explicitly

making inference latency and model accuracy trade-offs

MDINFERENCE determines which CNN model to execute.

MDINFERENCE works by selecting the most accurate

model that has a low enough execution time to return results

to the end-user within the SLA. It accomplishes this by

first calculating the request’s time budget as the difference

between SLA and the estimated network time. That is,

Tbudget = Tsla − Tnw where Tnw, referred to as network

time, denotes the time to transfer the inference request and

to return the result. Consequently, Tnw can be estimated

conservatively as Tnw = 2 × Tinput where Tinput is the

time to transfer the data to the remote server. Estimating Tnw

using Tinput is straightforward as Tinput can be measured

by the server prior to inference execution. Further, such esti-

mation is reasonable for application scenarios such as image

recognition or image-to-text translations. These applications

often need to send more data to the cloud (i.e., input data)

which leads to Tinput ≥ Toutput, the time to return results.

For other application scenarios such as speech recognition

where output data size is often larger, one could leverage

past observations of Toutput and estimate Tnw = 2×Toutput

instead. Using this time budget we can then identify the

set of models, ME , that can complete execution within the

request time budget Tbudget.

The basic approach described above assumes that the ex-

ecution times and accuracies of models previously measured

stays the same. However, these two assumptions do not al-

ways hold, leading to a need to expand on the basic concept

of model selection to probabilistically select models. Real-

world serving systems [18], [19] often experience queuing

delay or workload spikes [31] leading to transient increases

in latency. Additionally, accuracy is affected over time by

concept drift [32]. To handle these changes in latency and ac-

curacy the model selection algorithm probabilistically selects

models, thus exploring available models that might have

been previously disregarded due to transient issues. We do

this by selecting a model using a weighted probability based

on the model’s latency relative to Tbudget and accuracy.

We implement this probabilistic approach via a three stage

algorithm described below.

Stage one: greedily picking the baseline model. In this

stage, MDINFERENCE takes all the existing models and

selects a base model mj as follows.

maximize
j

A(m) (1)

subject to µ(m) + σ(m) < Tbudget, m ∈ M (2)

To find the base model we first consider all models that

have an expected inference time less than the time budget

and use the most accurate of these models. This is to make it

likely that the model will finish within the calculated budget.

We use this model mb as our base model. In the case that no

models satisfy the time budget constraint the fastest model

available is chosen as the base model and execution begins.

Stage two: optimistically constructing the eligible

model set. In order to account for unexpected performance

variations, such as queueing delays or accuracy variations,

the probabilistic model selection algorithm will expand

around the base model to form an exploration set, ME . This

exploration set represents models that are similar to the base

model in terms of execution time. Specifically, we construct

the exploration set as

ME = {m | µ(m) ∈ [µ(mb)− σ(mb), µ(mb) + σ(mb)]}
(3)

which is the set of all models that have an average execution

time within the typical execution time of the base model. It

is important to note that ME may include models that violate

the latency variation constraints imposed on the base model.

This is accounted for in stage three.

Stage three: opportunistically selecting the inference

model. From the exploration set ME we select a model m′

to balance the risk of SLA violations and the exploration

reward. Concretely, we calculate the utility for each model,

U(m), based on its inference accuracy and its likelihood to

violate response time SLA as:

U(m) = A(m)
Tbudget −

(

µ(m) + σ(m)
)

|Tbudget − µ(m)|
. (4)

MDINFERENCE than normalizes these utilities to calcu-

late the selection probability as Pr(m) = U(m)∑

n∈ME

U(n) and

picks m′ based on its probability. This helps avoid choosing

models with lower inference accuracy, wider inference time

distribution, and outdated performance profile while still

exploring the set of potentially eligible models.

B. Request Duplication

To ensure that all requests can be serviced within the

SLA, MDINFERENCE duplicates requests to bound their

tail response latency. As discussed in Section II-A, many

mobile-oriented models can produce results on-device within

a reasonable time limit, but with lower accuracy.

When an inference is initiated two requests are generated

by the MDINFERENCE framework. The first is sent to a

remote inference server that executes the model selection

algorithm outlined previously. While this cloud request aims

to return results within the SLA it is not guaranteed. There-

fore, an inference request is duplicated and executed locally

using the on-device model. In MDINFERENCE we chose

the fastest available model to use on-device, supporting for

SLAs as low as 50ms, although any model that satisfies the

SLA goal can be used.

There are two potential outcomes to duplication. First, the

SLA expires without the remote inference request having re-

turned results, in which case MDINFERENCE uses the results

of the on-device model. In our experiments this occurred in
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